Preprint 99 - 043

Maximum Skew-Symmetric Flows and
Their Applications to B-Matchings

by
Andrew V. Goldberg

and |
Alexander V. Karzanov

Mitgeteilt von W. Deuber
7.4.1999

Maximum Skew-Symmetric Flows
and Their Applications to B-Matchings

Andrew V. Goldberg * Alexander V. Karzanov '

Inter'Trust Technologies Corp. Institute for System Analysis-
460 Oakmead Parkway 9, Prospect 60 Let Oktyabrya
Sunnyvale, CA 94086 117312 Moscow, Russia

email: goldberg@intertrust.com - email: sasha@cs.isa.ac.ru

March 1999

Abstract ,

We introduce the maximum integer skew-symmetric flow problem (MSFP) which gener-
- alizes both the maximum flow and maximum matching problems. We establish analogs of
the classical flow decomposition, augmenting path, and max-flow min-cut theorems for skew-
symmetric flows. These theoretical results are then used to develop an O(M(n,m) + nm)
time algorithm for solving the MSFP, where M (n,m) is the time needed to find a maximum
integer (usual) flow in a network with n nodes and m arcs. This gives a method of the same
complexity for the capacitated b-matching problem. Other methods for solving the MSFP are '
also discussed.

*Part of this work was done while the author was at NEC Research Institute, Inc., Princeton, NJ.

'Supported in part by RFBR grant 97-01-00115 and a grant from the Sonderforshungsbereich 343, Bielefeld
Universitit, Bielefeld. '

1 'Introduction

This paper continues a study of combinatorial and algorithmic properties of problems on skew-
symmetric graphs, and their applications, started in our previous paper [14]. That paper, de-
voted to regular path problems, extends the usual reachability and shortest path problems to
skew-symmetric graphs. The present paper deals with the mazimum integer skew-symmetric
flow (or mazimum IS-flow) problem, abbreviated as MSFP. We study combinatorial and linear
programming properties of this problem and develop fast algerithms for it.

That the bipartite matching problem can be viewed as a special case of the maximum flow
problem is well-known [9]. The combinatorial structure of non-bipartite matchings is, however,
somewhat more complicated than the structure of flows (cf. [5, 20]). This phenomenon explains,
to some extent, why general matching algorithms are typically more intricate relative to flow
algorithms. The maximum IS-flow problem is a generalization of both the maximum flow and
maximum matching problems. Moreover, this generalization appears to be well-grounded for two
reasons. First, the basic combinatorial and linear programming theorems for usual flows have
quite appealing counterparts for IS-flows. Second, when solving problems on IS-flows, we are able
to use some intuition, ideas and technical tools well-understood for usual flows so that the implied
algorithms for matchings become more comprehensible.

As the maximum flow problem is related to certain path problems, the maximum IS-flow prob-
lem is related to regular path problems in skew-symmetric graphs. We extensively use theoretical
and algorithmic results of [14] in this paper.

The mini-theory for IS-flows that we develop is parallel to that for usual maximum flows [9].
The basic results of the flow theory are the decomposition, augmenting path, and max-flow min-cut
theorems. The flow decomposition theorem says that a flow can be decomposed into a collection
of source-to-sink paths and cycles; the IS-flow decomposition theorem says that an IS-flow can be
decomposed into a collection of pairs of symmetric source-to-sink paths and pairé of symmetric
cycles. The augmenting path theorem says that a flow is maximum if and only if it admits no
augmenting path. The IS-flow augmenting path theorem says that an IS-flow is maximum if
and only if it admits no regular augmenting path. The max-flow min-cut theorem says that the
maximum flow value is equal to the minimum cut capacity. Its skew—symthetric equivalent is that
the maximum IS-flow value is equal to the minimum odd-barrier capacity.

Linear programming duality plays an important role in understanding the structure of network
flow problems and in developing algorithms for these problems. We discuss a linear programming
description of the maximum IS-flow problem and the complementary slackness conditions for it.

Based on theoretical results, we then develop an O(M(n,m) + nm)-time algorithm for the
MSFP that uses a max-flow algorithm to construct a good initial solution and then improves it
by augmentations along regular paths found by using a regular reachability algorithm with linear
complexity. Here and later on n and m denote the numbers of nodes and arcs of the input network,
respectively, and M (n,m) is the time needed to find an integer maximum flow in a network with
n nodes and m arcs (see [15] for the current state of the art in maximum flow algorithms). As
a consequence, we obtain an algorithm with the same complexity for the maximum and feasible

capacitated b-matching problems [6, 20], due to a simple reduction of these to the MSFP.

Next, well-known pelynomial methods for the max-flow problem are the shortest augmenting .
path algorithm of Edmonds and Karp [7], and its improved version, the blocking flow algorithm
of Dinitz [4]. We show that the ideas of both methods can be generalized for IS-flows. This
results in our shortest regular augmenting path and blocking IS-flow methods for the MSFP.
These methods extensively handle dual objects arising when the shortest regular path algorithm
from [14] is applied to the residual graphs. We show that, when making flow augmentations
along shortest regular angmenting paths, the length of such paths is monotonely non-decreasing,.
- Moreover, the MSFP is reduced to finding O{n) blocking IS-flows in acyclic networks with at
most n nodes and m arcs each. In the cases of unit arc capacities and unit “node capacities” the
number of blocking IS-flows that we need to construct becomes O(m'/?) and O(n!/?), respectively,
similarly to that for the corresponding usual networks [8, 17, 18].

This paper is organized as follows. Section 2 gives basic definitions. Sections 3 and 4 are
devoted to theoretical results, considering combinatorial and linear programming aspects of IS-
flows, respectively. Section 5 describes the algorithm for the MSFP based on finding a good
initial solution.. The shortest regular augmenting path algorithm and a high level description
of the blocking IS-flow method are given in Section 6. Necessary facts about the regular path
problems and their solution methods are reviewed in Section 7. Using these, Section 8 specifies
the subproblem arising at iterations of the blocking IS-flow method. It also estimates the number
of iterations for special skew-symmetric networks. Section 9 demonstrates applications to b-
matchings, and Section 10 contains concluding remarks.

2 Preliminaries

A digraph G = (V, E) is called skew-symmetric if there is a mapping o of V U E onto itself such
that: o is an involution (i.e., o(z) # z and o(o(z)) = x for any z € V U E); for every v € V,
o(v) € V; and for every a = (v,w) € E, a(a) = (o(w),c(v)). (Although parallel arcs are allowed
in 7, when it is not confusing, an arc leaving a node z and entering a node y is denoted by
(z,y).) We usually assume that the description of G includes o. For brevity, we often use the
term symmetric instead of skew-symmetric. We say that the node (arc) o(z) is symmetric to a
node (arc) z. Symietric elements are also called mates, and we use notation with primes for
mates, denoting by z’ the mate o(z) of an element z. Note that G can contain an arc a from a
node v to its mate v'; then o’ is also an arc from v to v'.

Unless mentioned otherwise, when talking about paths (cycles), we mean directed paths (cy-
cles). The symmetry o is extended in a natural way to paths, subgraphs, and other objects in G;
e.g., two paths (cycles) are symmetric if the elements of one of them are symmetric to those of
the other and go in the reverse order. Note that G cannot contain self-symmetric paths or cycles.
Indeed, if P = (%o, a1, 71, ..,ak, vt) is such a path (cycle), choose arcs a; and a; such that i < j,
a; = o(a;) and j — i is minimum. Then j >4+ 1 (as j = 4 would imply ¢(a;) = @a; and j =i + 1
would imply o(z;) = zj_1 = z;). Now o(a;41) = aj—1 contradicts the minimality of j — i.

2

A function h on E is said to obey the symmetry condition if h{a) = h(a') for all a € E.
Throughout, by a symmetric function we always mean a nonnegative integer-valued function
on the arcs of G (or another skew-symmetric graph in question) which satisfies the symmetry
condition. '

A skew-symmetric network is a quadruple N = (G, 0,u,s) consisting of a skew-symmetric
graph G = (V, E) with symmetry o, a symmetric function u (of arc capacities) on E, and a source
s € V. The mate s’ of s is considered as-the sink of N. A flow in N is a function f : E — R+
satisfying the capacity constramts

fla) < ufa) | forall a€ E

and the conservation constraints

dive(z Z flz,y) Z fly,z) =0 forall z €V - {s,§'}.
(zy)EE (yx)eE
The value divy(s) is called the value of f and denoted by |f|; we usually assume that |f| > 0. An
IS-flow abbreviates a symmetric integer flow, the main object that we study in this paper. The
mazimum skew-symmetric flow problem (MSFP) is to find an IS-flow of maximum value in N.

The integrality requirement is important: if we do not require f to be integral, then for any
integer flow f in N, the flow f', defined by f'(a) = (f(a) + f(a'))/2 for a € E, is a maximum flow
satisfying the symmetry condition but being not necessarily integral.

Note that, given a digraph D = (V (D), A(D)) with two specified nodes p and g and non-
negative integer capacities of the arcs, we can construct a skew-symmetric graph G by taking a
disjoint copy D' of D with all arcs reversed, adding two extra nodes s and s', and adding four arcs
(5,p),(s,4'),(q,s"), (p',s') of infinite capacity, where p', ¢’ are the copies of p, ¢ in D', respectively.
Then the integer flows from p to ¢ in D one-to-one correspond, in a natural way, to the IS-flows
from s to s’ in G. This shows that the MSFP generalizes the classical (integer) max-flow problem.
Also the MSFP generalizes corresponding problems on matchings and b-matchings, as we explain
in Section 9. ,

In our study of IS-flows we will rely on results on regular paths in skew-symmetric graphs. A
regular path (or an r-path) is a path in G that does not contain a pair of symmetric arcs. Similarly,
an r-cycle is a cycle that does not contain a pair of symmetric arcs. The r-reachability problem
(RP) is to find an r-path from s to s’ or a proof that there is none. Given a symmetric function
of arc lengths, the shortest r-path problem (SPP) is to find a minimum length r-path from s to s’
or a proof that there is none.

A criterion for the existence of a regular s—s' path is less trivial than that for the usual path
reachability; it involves so-called barriers. We say that

B = (A;X],...,Xk)
is an s-barrier if the following conditions hold.

(B1) A, X,,..., X} are pairwise disjoint subsets of V, and s € A.

Figure 1: A barrier.

(B2) For A’ =a(A), AN A" = 0.

(B3) Fori=1,... ’.k’ X; is symmetric, i.e., o(X;) = X;.

(B4) For i =1,...,k, there is a unique arc, €', from A to X;.

(B5) Fori,7 =1,.. .‘,k and i # j, no arc connects X; and Xj.

(B6) For M =V —(AUA'UX ;U...UX;) and i = 1,...,k, no arc connects X; and M.

(B7) No arc goes from A to A’ U M.

(Note that arcs from A’ to A, from X; to A, and from M to A are possible.) Figure 1 illustrates
the definition. :

Theorem 2.1 [14] There is an r-path from s to s' if and only if there is no s-barrier.

This criterion will be used in Section 3 to obtain an analog of the max-flow min-cut theorem
for IS-flows. '

Theorem 2.2 [2, 14] The r-reachability problem in G can be solved in O(m) time.

4

The methods for the maximum IS-flow problem that we develop apply, as a subroutine, the
r-reachability algorithm of linear complexity from [14] which finds either a regular s—s' path or an
s-barrier. Another ingredient used in our methods is the shortest r-path algorithm for the case
of nonnegative symmetric lengths, which runs in O(m logn) time, and in O(m) time for all-unit
lengths {14]. The needed results concerning the RP and SPP are discussed in more details in
Section 7. ' ‘

In the rest of this paper, o and s will denote the symmetry map and the source, respectively,
regardless of the network in question, which will allow us to use the shorter notation (G, u) for a
network (G, 0,u,s). Given a simple path P, the number of arcs on P is denoted by | P} and the
incidence vector of its arc set in R is denoted by x*, ie., x* (¢) =1 if ais an arc of P, and 0
otherwise. ’

3 Skew-Symmetric Flow Theory

In this section we extend the classical flow decomposition, augmenting path, and max-flow min-cut
theorems of Ford and Fulkerson [9] to the skew-symmetric case. »

Let h be a symmetric function on the arcs of a skew-symmetric graph G = (V, E), and let
supp(h) denote its support {a € E : h(a) > 0}. A path (cycle) P in G is called h-regular if all
arcs of P belong to supp(h) and each arc a € P such that o’ € P satisfies h(a) > 2. Clearly when
h is all-unit on E, the sets of regular and h-regular paths (cycles) are the same. We call an arc a
of P ordinary if o’ ¢ P and define the h-capacity d,(P) of P to be the minimum of numbers h(a)
for ordinary arcs a and numbers |kh(a)/2] for non-ordinary arcs a in P.

- To state the symmetric flow decomposition theorem, consider an IS-flow f in a skew-symmetric
network N = (G = (V,E),u). An IS-flow g in N is called elementary if it is representable as
g = 6xF + 6xF', where P is a simple cycle or a simple path from s to s’ or a simple path from s’
to s, P' = o(P), and d is a positive integer. Since g is feasible, P is u-regular and § < 0, (P). We
also denote g as (P, P',d). By a symmetric decomposition of f we mean a set D of elementary
flows such that f = > (g : g € D). The symmetric decompesition theorem is the following.

Theorem 3.1 For an IS-ﬂoiu f in G, there exists a symmetric decompositz'on consisting of at

most m elementary flows.

Proof. We may assume that f is nonzero. We build up an f-regular path I' in G until this path
contains a simple cycle P or a simple path P connecting s and s’. This will determine a member
of the desired flow decomposition. Then we accordingly decrease f and repeat the process for the
resulting IS-flow f’, and so on.

We start with I' formed by a single arc a € supp(f). First we grow I forward. Let b = (v, w)
be the last arc on I'. Suppose that w # s,s’. By the conservation for f at w, supp(f) must
contain an arc ¢ = (w, z). If ¢'isnot on I" or f(g) > 2, we add q to .

Suppose ¢ ison I" and f(¢g) = 1. Let I'; be the part of I between w' and w. Then I'; contains
at least one arc since w # w'. Suppose there is an arc ¢ € supp(f) leaving w and different from g.

5

Then we can add ¢ to I' instead of ¢, forming a longer f-regular path. Now suppose that such a §
does not exist. Then exactly one unit of the flow f leaves w. Hence, exactly one unit of the flow f
enters w, implying that b as above is the only arc entering w in supp(f), and that f(b) = 1. But
o(d) also enters w, where d is the first arc on I'y. The fact that o(d) # b (since I'; is f-regular)
leads to.a contradiction. ' :

Let (w,z) be the arc added to I'. If z is not on I, then T" is a simple f-regular path, and we
continue growing I'. If z is on I', we discover a simple f-regular cycle P.

If T’ reaches s’ or s, we start growing I' backward from the initial arc ¢ in a way similar to
growing it forward. We stop when an f-regular cycle P is found or one of s, s’ is reached. In the
latter case P = I' is either an f-regular path from s to &’ or from s’ to s, or an f-regular cycle
(containing s or s').

Form the elementary flow g = (P, P',6) with § = d7(P) and reduce f to f' = f —x¥ — oxF".
Since P is f-regular, 6 > 0. Moreover, there is a pair e, €’ of symmetric arcs of P such that either
fl(e) = f'(¢') =0 or f'(e) = f'(¢) = 1; we associate such a pair with g. In the former case e, ¢’
vanish in the support of the new IS-flow f’, while in the latter case e, e’ can be used in further
iterations of the decomposition process at most once. Therefore, each pair of arc mates of G is
associated with at most two members of the constructed decomposition D, yielding |D| <m. m

The above proof gives a polynomial time algorithm for symmetric decomposition. Moreover,
the above decomposition process can be easily implemented in O(nm) time, which matches the
complexity of standard decomposition algorithms for usual flows.

The decomposition theorem and the fact that the network has no self-symmetric paths imply
the following useful property. : \

Corollary 3.2 For any symmetric set S C V and any IS-flow in G, the total flow on the arcs
entering 5, as well as the total flow on the arcs leaving S, is even.

Remark. Another consequence of Theorem 3.1 is that w.l.o.g. we may assume that no arc
of G enters s. Indeed, consider a maximum IS-flow f in G and a symmetric decomposition D of
f. Putting together the elementary flows from s to s’ in D, we obtain an IS-flow f' in G with
|f'l = |f|, so f' is a maximum flow. Since f’ uses no arc entering s or leaving &, deletion of all
such arcs from G produces an equivalent problem in a skew-symmertric graph.

Next we state a symmetric version of the augmenting path theorem. It is convenient to
consider the graph G* = (V, E*) formed by adding a reverse arc (y,z) to each arc (z,y) of G.
For a € ET, a® denotes the corresponding reverse arc. The symmetry ¢ is extended to E* in
a natural way. Given a symmetric capacity function v on EF and an IS-flow f on G, define the
residual capacity us{(a) of an arc a € E* to be u(a) — f(a) if a € E, and f(a®) otherwise. An arc
a € Et is called residual if us(a) > 0, and saturated otherwise. Given an IS-flow ¢ in the network
(G*,uz), we define the function f @ g on E by setting (f @ g)(a) = f(a) + g(a) — g(a®?). Clearly
[@ g is a feasible IS-flow in (G, u) whose value amounts to |f| + |g|.

By an r-augmenting path for f we mean a us-regular path from $ to s’ in G*. If P is an
r-augmenting path and if 6 € N does not exceed the us-capacity of P, then we can push ¢ units
of flow through (not necessarily directed) path in G corresponding to P and then § units through
the path corresponding to P’. Formally, f is transformed into f & g, where ¢ is the elementary
flow (P, P',6) in (G*,uy). Such an augmentation increases the value of f by 24:

Theorem 3.3 An IS-flow f is mazimum if and only if there is no r-augmenting path.

Proof. The direction that the existence of an r-augmenting path implies that f is not maximum
is obvious in light of the above discussion.

To see the other direction, suppose that f is not maximum, and let f* be a maximum IS-flow in
G. For a € E define g(a) = f*(a)— f(a) and g(a®) = 0if f*(a) > f(a), while g(a®) = f(a) - f*(a)
and g(a) =0 if f*(a) < f(a). One can see that g is a feasible symmetric flow in (G*, uy). Take
a symmetric decomposition D of g. Since |g| = |f*| — |f| > 0, D has a member (P, P, §), where
P is a ug-regular path from s to s'. Then P is an r-augmenting path for f. =

In what follows we will use a simple construction which enables us to reduce the task of finding
an r-augmenting path to the r-reachability problem. For a skew-symmetric network (H,h), split
each arc a = (z,y) of H into two parallel arcs gy and ag from z to y (the first and second
split-arcs generated by a). These arcs are endowed with the capacities [hl(a;) = [h(a)/2] and
[hl(a2) = [h(a)/2]. Then delete all arcs with zero capacity [h]. The resulting capacitated graph
is called the split-graph for (H,h) and denoted by S(H,h). The symmetry o is extended to the
arcs of S(H, h) in a natural way, by defining o(a;) = (o(a)); for i = 1,2.

For a path P in S(H, k), its image in H is denoted by w(P) (i.e., w(P) is obtained by replacing
each arc a; of P by the original arc ¢ =: w(a;)). It is easy to see that if P is regular, then w(P)
is h-regular. Conversely, for any h-regular path @ in H, there is a (possibly not unique) r-path
P in S(H,h) such that w(P) = @Q. Indeed, replace each ordinary arc a of @ by the first split-arc
a; (existing as h(a) > 1) and replace each pair a,a’ of arc mates in Q by a;, a; for {i,5} = {1,2}
(taking into account that h(a) = h(a') > 2). This gives the required r-path P. Thus, Theorem 3.3
admits the following re-formulation in terms of split-graphs. '

Corollary 3.4 An IS-flow f in (G, u) is mazimum if and only if there is no regular path from s
to s in S(GT,uy).

Finally, the classic max-flow min-cut theorem states that the maximum flow value is equal to
the minimum cut capacity. A skew-symmetric version of this theorem involves a more complicated
object which is close to an s-barrier occurring in the solvability criterion for the r-reachability
problem given in Theorem 2.1. 'We say that B = (A4; X3, ..., X)) is an odd s-barrier for (G, u) if
the following conditions hold.

(01) A, X;,..., X} are pairwise disjoint subsets of V', and s € A.
(02) For A' = a(A), AN A = 0.

3) Fori=1,...,k X; is symmetric, i.e., 0(X;) = X;

(O

(O4) Fori=1,...,k, u(A, X;) is odd.

(05) Foré,j=1,...,k and ¢ # j, no positive capacity arc connects X; and X;.
(O

6) For M =V — (AUA'UX,U...UX;) and i = 1,...,k, no positive capacity arc connects
X; and M.

Compare with (Bl)—(B?) in Section 2. We refer to an odd s-barrier B = (4; X1,...,X}) as odd
barrier, and define its capacity u(B) to be u(4,V — A) — ~
The following is the symmetric max-flow min-cut theorem.

Theorem 3.5 The mazimum IS-flow value is equal to the minimum odd barrier capacity.

Proof. To see that the capacity of an odd barrier B = (4; X1,..., X}) is an upper bound on the
value of an IS-flow f, consider a symmetric decomposition D of f. For each member (P, P, 6)
of D, where P is a path from s to ', take the last arc a = (z,%) of the first path P such that
z € A. If y is in some X, then (01),(02),(05),(06) imply that P leaves X; by an arc b from
Xi to A'. Then the symmetric arc b’ belongs to the path P’ and goes from A4 to X;. Therefore,
the elementary flow (P, P',d) can be associated with the pair a, (possibly a =) and it uses at
least 24 units of the capacity u(A, X;). Since u(4, X;) is odd (by (04)), at least one unit of this
capacity is not used under the way we associate the elementary s—s’ flows of D with arcs from A
to V — A. This implies |f| < u(B).

Next we show that the two values in the theorem are equal. Let f be a maximum IS-flow.
By Corollary 3.4, the split-graph S = S(G",uy) contains no s—s' r-path, so it must contain an
s-barrier B (4; X1,...,X%), by Theorem 2.1.

Let ¢! be the (umque) arc from A to X; in S (see (B4) in Section 2). By the construction of
S, it follows that the residual capacity us of every arc from A to X; in G is zero except for the
arc w(e'), whose re81dual capacity is one. Hence,

(i) if ' was formed by splitting an arc ¢ € E, then a goes from A to X;, and f(a) = ufa) — 1;
(ii) if €' was formed by splitting a® for a € E, then a goes from X;to A, and f(a) = 1;
(iii) all arcs from A to X; in G, except @ in case (i), are saturated by f;
(iv) all arcs from Xi to A in G, except a in case (ii), are free of flow.
Furthermore, comparing arcs in S and G, we observe that:

(v) property (B7) implies that the arcs from A to A'UM are saturated and the arcs from A’UM
to A are free of flow;

(vi) property (B5) implies (05) and (B6) implies (06).

;From (i)-(vi) it follows that B is an odd s-barrier in G and |f] = u(B). m

4 Integer and Linear Programming Formulations

We can state the MSFP as an integer program in a straightforward way. We use function rather
than vector notation. Given two functions g and h on a set S, g - h denotes) s g(z)h(z).

The integer program corresponding to the MSFP is as follows, assuming that no arc of G
enters s (by Remark in the previous section).

‘maximize |f| = Y f(s,v) (4.1)

_ (s,v)erR

subject to |

f(a) >0 Yaec E (4.2)

fle)<uf@) VacE

Z’ flu,v) - Z flo,w) =0 YoeV — {s,t}
(u,vYeE (vw)EE

f(a) — f(o(a)) =0 Yac E (4.5)
- f(a) integral Ya € E (4.6)

We obtain an alternative linear programming formulation for the MSFP by replacing the
integrality condition (4.6) by certain linear constraints related to so-called fragments. This linear
program and its dual (discussed below) are analogous to, but somewhat more complicated than,
those for the usual maximum flow problem and its dual in [9]; although we will not use explicitly
these programs in our methods, they deserve to be discussed in their own right.

An odd fragment is a pair p = (V,,U,), where V, is a symmetric set of nodes with s ¢ V,,, and
~ U, is a subset of arcs entering V, such that the total capacity u(U),) is odd. The characteristic
Junction x, of p is the function on E defined by

1 if a€U,Ua(U,),
xo(@) =4 —1 if a€8(V,) - (U, Uo(U,)), (47)
0 otherwise. '

Here §(V}) is the set of arcs with one end in V, and the other in V' — V. We denote the set of
odd fragments by 2.) .

Let f be a (feasible) IS-flow and p € . Since u is symmetric, the definition of x, shows that
fxp < 2u(U,). Moreover, f-x, is at most ZU(U,,) —2, as it follows immediately from Corollary 3.2
and the fact that u(U,) is odd. This gives additional linear constraints for the MSFP:

f-xp <2u(U,) —2 foreach pe Q. (4.8)

It turns out that adding these constraints, we can drop off the symmétry constraints (4.5) and
the integrality constraints (4.6) without changing the optimum value of the linear program. This
fact is implied by the following theorem.

Theorem 4.1 Fuvery mazimum IS-flow is an optimal solution to the linear program (4.1)—(4.4),
(4.8). '

Proof. Assign a dual variable w(v) € R. (a potential) to each node v € V, v(a) € Ry (a length)
to each arc a € E, and £(p) € R4 to each odd fragment p € Q. For an arc a = (v, w), define

Ar(a) = m(w) — w(v) (the potential difference), and gy ¢(a) = y(a) + X q &(p) xp(a).
Consider the linear program:

minimize ¢(7,7,£) =) u(a)y(e) + > (2u(U,) - 2)é(p) (4.9)
sﬁbject to ’ !
v(a) >0 ' Va € E (4.10)
£(p) 20 VpeQ (4.11)
7(s) =0 (4.12)
n(s) =1 (4.13)
gye(a) — Ax(a) 20 Va € E. ' (4.14)

One can see that (4.1)-(4.4),(4.8) and (4.9)—(4.14) are mutually dual linear programs (if we
formally introduce an extra arc (s', s), add the conservation constraints for s and s', and replace
the objective (4.1) by max{f(s',s)}). Therefore,

max |f| = min ¢(r,7,¢), (4.15)

where the maximum and minimum range over the feasible solutions to these programs, respec-
tively.

We assert that every maximum IS-flow f achieves the maximum in (4.15). To see this, choose
an odd barrier B = (4; X1, ..., Xi) of minimum capacity u(B). For i = 1,...,k, let U; be the set
of arcs from A to X;; then p; = (X;, U;) is an odd fragment for G, u. Define m(v) to be 0 for v € A,
1 for v € A', and 1/2 otherwise. Define y(a) to be 1 for a € (4, 4"), 1/2for a € (A, M)U (M, A"),
and 0 otherwise, where M =V — (AU A" U X; U...U Xg). Define £(p;) = 1/2 for i = 1,...,k,
and &(p) = 0 for the other odd fragments in (G, u).

One can check that (4.14) holds for all a (e.g., gye(a) = Agz(a) = 1 for a € (A, 4') and
gyela) = Ag(a) =1/2 for a € (A,L)U(L, A"), where L =V — (AU A’)). Thus 7,7, are feasible.

Using the fact that u(A, M) = u(M, A’), we observe that u-~v = u(A4, A') + u(A4, M). Also

k k
3 2u(t),) -k - (Zu(A,Xk)) k.
=1

.0 =1
This implies ¥(7,7, &) = u(B), and now the result follows from Theorem 3.5. ®

[\DI»——l

Given potentials 7(v), v € V, and a function £ : @ — R, define the cost ¢, ¢(a) of each arc

a= (v,w) € E by
ergla) = m(w) —w(v) = Y E(p)xp(a)
2

10

Using such costs, we can get rid of the dual variables v in (4.9)-(4.14) by doing the substitution
¥(e) = max{0,cy¢(a)}. This gives an optimality criterion for the MSFP as follows. ‘

Theorem 4.2 An IS-flow f is mazimum if and only if there are a potential function 7 :V - R
with 7(s') — n(s) = 1 and a function £ : @ — Ry such that the following “complementary
slackness” conditions hold:

(CS1) for p € Q, &(p) > 0 implies f - x, = 2u(U,) — 2;
(CS2) for a € E, cre(a) > 0 implies f(a) = u(a);

(CS3) fora € E, cre(a) <0 implies f(a) =0.

5 Algorithm Using a Good Initial Solution

In this section we describe a relatively simple algorithm to solve the maximum IS-flow problem in
a skew-symmetric network N = (G,u). It finds a “nearly optimal” IS-flow and then makes only
O(n) augmentations to obtain a maximum IS-flow. The algorithm consists of four stages.

The first stage ignores the fact that NV is skew-symmetric and finds an integer maximum flow
g in N by use of one or another max-flow algorithm. Then we put h(a) = (g(a) + g(a'))/2 for all
arcs a € E. Since divy(s) = divg(s)/2 — divy(s')/2 = divy(s), h is a maximum flow as well. Also
h is symmetric and its values on the arcs are multiple of 1/2. Let Z be the set of arcs on which
h is not integral. If Z = §), then h is already a maximum IS-flow; so assume this is not the case.

The second stage attempts to improve h by decreasing Z. Let H = (X, Z) be the subgraph of
G induced by Z. For each z € V, the half-integrality of h and the equality divy(z) + divy(z') =0
imply that z is incident to an even number of arcs in Z. Therefore, we can decompose H into
simple, not necessarily directed, cycles C},...,C, which are pairwise arc-disjoint. Moreover,
we can find, in linear time, a decomposition in which each cycle C; is either self~symmetric
(C; = 0(C;)) or symmetric to another cycle C; (C; = (Cj)).

To do this, we start with some node vy € X and grow in H a simple (undirected) path
P = (vg,e1,v1,...,€q,vy) such that the mate v} of each node v; is not in P. At each step, we
choose in H an arc e # e, incident to the last node v, (obviously, such an arc exists); let = be
the other end node of e. If none of z,z' is in P, then we add e to P. If some of z,z’ is a node
of P, v; say, then we shorten P by removing its end parf from e;;; and delete from H the arcs
€i+1,---,€q,¢ and their mates. One can see that the arcs deleted induce a self-symmetric cycle
(when 2z’ = v;) or two disjoint symmetric cycles (when £ = v;). We also remove the isolated
nodes created by the arc deletions and change the initial node vy if needed. Repeating the process
for the new current graph H and path P, we eventually obtain the desired décomposition C, in
O(]Z]) time. .

Next we examine the c'ycles in C. Each pair C,C’ of symmetric cycles is canceled by sending a
half unit of flow through C and through €', i.e., we increase (resp. decréase) h(e) by 1/2 on each
forward (resp. backward) arc e of these cycles. The resulting function h is symmetric, and divy,(z)

11

preserves at each node z, whence) is again a maximum symmetric flow. Now suppose that two
self-symmetric cycles C and D meet at a node x. Then they meet at 2’ as well. Concatenating
the z-2' path in C and the z'-z path in D and concatenating the rests of C' and D, we obtain a
pair of symmetric cycles and cancel these cycles as above.

These cancellations result in C consisting of pairwise node disjoint self-syinmetric cycles, say
C1,...,Ck. The second stage takes O(m) time.

The third stage transforms h into an IS-flow f whose value |f] is at most k units below |A].
For each 1, fix a node ¢; in C; and change h on C; by sending a half unit of flow through the ¢;,~¢;
path in C; and through the reverse to the ¢{-¢; path in it. The resulting function 4 is integer and
symmetric and the divergences preserve at all nodes except for the nodes t; and t; where we have
divy(#;) = —divy(t]) = 1 for each 4 (assuming w.l.o.g. that all ¢;’s are different from s'). Therefore,
h is, in essence, a multiterminal IS-flow with sources s,ty,...,# and sinks §', t,...,t. A genuine
IS-flow f from s to s is extracted by reducing h on some h-regular paths. More precisely, we add
to G artificial arcs ¢; = (s,%;), i = 1,...,k and their mates, extend h by ones to these arcs and
construct a symmetric decomposition D (defined in Section 3) for the obtained function A’ in the
resulting graph G’ (clearly A’ is an IS-flow of value || + k).

Let D' be the set of elementary flows in D formed by the paths or cycles which contain artificial
arcs. Then § = 1 for each (P, P',8) € D". Define f' = b' — Y (x¥ +x*' : (P,P',1) € D). Then f'
is an IS-flow in G, and |f'| > |h'| = 2k > |h| — k. Moreover, since f(e;) =0 fori =1,... k, the
restriction f of f’ to E is an IS-flow in G, and |f| = |f'|. Thus, |f| > |h| — k, and now the facts
that k& < n/2 (as the nodes £y,...,t,¢,,...,1t} are different) and that 4 is a maximum flow in N
imply that the value of f differs from the maximum IS-flow value by O(n). The third stage takes
O(nm) time (the time needed to construct a symmetric decomposition of h').

The final, fourth, stage transforms f into a maximum IS-flow. Each iteration applies the r-
reachability algorithm (RA) mentioned in Section 2 to the split-graph S(GT,u £) in order to find
au s-regular s—s' path P in G* and then augment the current IS-flow f by the elementary flow
(P, P',0y,(P)) as explained in Section 3. Thus, a maximum IS-flow in N is constructed in O(n)
iterations. Since the RA runs in O(m) time (by Theorem 2.2), the fourth stage takes O(nm)
time.

Sumrhing up the above arguments, we conclude with the following.

Theorem 5.1 The above algorithm finds a mazimum IS-flow in N in O(M(n,m) + nm) time,
where M(n,m) is the running time of the maz-flow procedure it applies.

6 Shortest R-Augmenting Paths and Blocking IS-Flows

Theorem 3.3 and Corollary 3.4 prompt an alternative method for finding a maximum IS-flow in a
skew-symmetric network N = (G, u), which is analogous to the method of Ford and Fulkerson for -
usual flows. It starts with the zero flow, and at each iteration, the current IS-flow f is augmented
by an elementary flow in (G*,uy) (found by applying the r-reachability algorithm to S(G*, uy)).

12

Since each iteration increases the value of f by at least two, a maximum IS-flow is constructed in

' pseudo-polynomial time. In general, this method is not competitive to the method of Section 5.

More efficient methods involve the concepts of shortest r—aﬁgmenting paths and shortest

blocking IS-flows that we now introduce. Let g be an IS-flow in a skew-symmetric network

(H = (V,W),h). Let g(W) stand for).y g(e) (the volume of g). Considering a symmetric
decomposition D = {(P;, P/,8;) :i=1,...,k) of g, we have

g(W) = Z(MPJ +6|P/|:i=1,...,k) > |gjmin{|P] :i = 1,...,k}.
This implies

g(W) > |glr-distg g p)(s, '), ' (6.1)
where r-dist g (z, y) denotes the minimum length of a regular z—-y path in a skew-syminetric graph
H' (the regular distance from z to y). We say that an IS-flow g is

(i) shortest if (6.1) holds with equality, i.e., some (equivalently, any) symmetric decomposition
of g consists of shortest h-regular paths from s to s';

(ii) totally blocking if there is no (h — g)-regular path from s to s’ in H, i.e., we cannot augment
¢ using only residual capacities in H itself;

(iii) shortest blocking if g is shortest (as in (1)) and

I‘—diStS(H’h_g)(S, 8,) > r-diétS(H,h)(s, S'). _ : (62)

Note that a shortest blocking IS-flow is not necessarily totally blocking, and vice versa.

Given a skew-symmetric network N = (G, u), the shortest r-augmenting path method (SAPM),
analogous to the method of Edmonds and Karp [7] for usual flows, starts with the zero flow, and
each iteration augments the current IS-flow f by a shortest élementary flow g = (P, P',d, f'(P)).

The shortest blocking IS-flow method (SBFM), analogous to Dinitz’ method [4], starts with
the zero flow, and each big iteration augments the current IS-flow f by performing the following
two steps.

(P1) Find a shortest blocking IS-flow g in (G, uy).
(P2) Update f:=f @ g.

Both methods terminate when f no longer admits r-augmenting paths (i.e., g becomes the
zero flow). The following observation is crucial for the complexities of the methods.

Lemma 6.1 Let g be a shortest IS-flow in (G, uy), and let f'=f@®g. Letk and k' be the
minimum lengths of r-augmenting paths for f and f', respectively. Then k' > k. Moreover, if g
is a shortest blocking IS-flow, then k' > k.

13

Proof. Take a shortest uy-regular path P from s to s’ in G*. Then |P| = k" and ¢’ = (P, P', 1)
is an elementary flow in (G, up).

Note that supp(g) does not contain opposed arcs a = (z,y) and b = (y,z). Otherwise
decreasing g by one on each of a,b,a’, 8 (which are, obviously, different), we would obtain the
IS-flow g in (G, uy) such that |§g] = |g| and G(E*) < g(EY), which is impossible because
g(E™) > k|g| and g(E*) = k|g|. This implies that each arc a in the set Z = {a € E* : g(a®!) = 0}
satisfies ' '

up (@) = us(a) - gla). (6.3

Ifsupp(g') € Z, then ¢' is a feasible IS-flow in (G, uy) (by (6.3)), whence k' = ¢'(E*)/|g'| > k.
Moreover, if, in addition, g is a shortest blocking IS-flow, then (6.2) and the fact that ¢’ < u F—g
(by (6.3)) imply k¥’ > k.

Now suppose there is an arc e € ET such that ¢'(e) > 0 and g(e®) > 0. For each a € E™,
put A(a) = max{0, g(a) + ¢'(a) — g(a®?) — ¢'(a®)}. One can check that A\(a) < us(a) for all arcs a.
Therefore, X is an IS-flow in (G*, uy) with |\ = |g|+|¢'| = |g|+ 2. Alse A\(ET) < g(E*)+¢'(EY)
since for the e above, A(e) + A(eF) < ¢'(e) + g(e®). We have

2k = g'(EY) > ME") — g(E*) > k(lg] + 2) — klg| = 2k,
yielding ¥ > k. m

Thus, each iteration of the SAPM does not decrease the minimum length of an r-augmenting
path, while each big iteration of the SBFM inereases such a length. This gives upper bounds on
the numbers of iterations. ‘

Corollary 6.2 SAPM terminates in at most (n — 1)m iterations.

(This uses the fact (seen from the proof of Lemma 6.1) that in the sequence of iterations
with the same length of shortest r-augmenting paths, the subgraph of G* induced by the arcs
contained in such paths is monotone non-increasing, and each iteration reduces the capacity of
some arc of this subgraph, as well as the capacity of its mate, to zero or one.) '

Corollary 6.3 SBFM terminates in at most n — 1 big iterations.

As mentioned above, the SBFM can be considered as a skew-symmetric analog of Dinitz’
blocking flow algorithm. Recall that each (big) iteration of that algorithm constructs a blocking
flow in the subnetwork H formed by the nodes and arcs of shortest augmenting paths. Such a
network is acyclic (moreover, layered), and a blocking flow in H is easily constructed in O(nm)
time.

The problem of finding a shortest blocking IS-flow ((P1) above). is more complicated. Let H
be the subgraph of G* formed by the nodes and arcs contained in shortest u s-regular s-s’ paths.
Such an H needs not be acyclic (counterexamples are not difficult). We will show that problem
(P1) can be reduced to a seemingly easier task, namely, to finding a totally blocking IS-flow in a

14

certain acyclic network (H, k). Such a network arises when the shortest r-path algorithm from [14]
is applied to the split-graph S(G™T,uy) with unit lengths of the arcs.

In order to show this, in Section 8, we first need to review the r-reachability and shortest’
r-path algorithms. '

7 Regular and Shortest Regular Paths

In this section we review the r-reachability and shortest r-path algorithms, referring the reader
to [14] for details. The former algorithm is based on a so-called bud trimming operation, which
is analogous to cutting blossoms in matching algorithms.

7.1 Buds and Trimming Operation

A‘ bud is a triple 7 = (V;, E;, e; = (v,w)) such that
(1) (V, E;) is a symmetric subgraph of G with s ¢ V;.
(2) er is an arc of G entering V;, i.e., v & V; 3 w.

(3) For each node z € V, there is an r-path from w to z in (V;, E;) (and therefore an r-path
from z to w' = o(w)). ' ‘
(4) There is an r-path from s to v which meets ¥, only at v.

" The node w is called the base node of T and the arc e, is called -the base arc. The node v’ is
called the anti-base node and the arc e, is called the anti-base arc. A bud 7 is called elementary
if (V;, E;) is the union of an r-path from w to w' and its symmetric path (also from w to w').

Given a bud 7 with e; = (v,w), the trimming operation transforms G into G with the node
set

V=V-(V, - {w,w'}_)
and arc set E constructed as follows.
1. Each arc a = (z,y) € E such that either z,y € V — V, or .a =e; or a = €/ remains in E.
2. Each arc (z,y) € E — {€.} that leaves V; is replaced by an arc from w to y.
3. Each arc (x,y) € E — {e;} that enters V; is replaced by an arc from % to w'.
4. Each arc e ¢ E, with both ends in V; is replaced by an arc from w to w'.

See Figure 2 for an example of bud trimming. Clearly G has a naturally induced skew-symmetry.
We identify each arc in E with the corresponding arc in F (the ends of an arc can change).

An important property is that the bud trimming operation preserves the regular reachability
from s to s'.

Lemma 7.1 [14] There is an r-path from s to s' in G if and only if there is an r-path from s to
s'in G.

15

Before trimming After trimming

Figure 2: Bud trimming example.

7.2 The Regular Reachability Algorithm (RA)

The algorithm searches for a regular s—s' path in a given skew-symmetric graph I' = (V,W). It
grows a tree (A, T) rooted at s such that every rooted path in this tree is regular, and the sets A
and A’ = 0(A) are disjoint. By symmetry, (A',T" = o(T)) is a tree raoted to s'. Initially A = {s}
and T = 0,

Each iteration chooses an arc e = (z,y) with z € A and y € A for the current graﬁh I' and
tree (A,T). Ify ¢ A’, then y is added to A, e to T, ¢’ to A, and ¢’ to T". If y € A', then the
algorithm checks the concatenation P of the s-x path P; in (A4, T), the arc e, and the y—s’ path
Py in (A',T). If P is regular, the algorithm terminates.

Suppose P is not regular. Let (v, w) he the arc of P, closest to such that the symmetric arc
(w',v') is en Py. Let Q be the subpath of P between w and w’. Then QU Q' forms an elementary
bud 7 in I with the base arc (v, w). The algorithm trims 7 (producing the new current graph T)
and accordingly updates the tree (A,T') (by shrinking the corresponding arcs in QU Q'). Finally,
if there is no arc e as above, then the algorithm terminates with the conclusion that no regular
s—s' path exists in the input graph I'g; this follows from Lemma 7.1. Moreover, considering the
resulting set A and the maximal trimmed buds of the final graph I', one can construct an s-barrier
in T. ' | ,

Note that the r-path P found by the algorithm is a path in the current graph, possibly
repeatedly trimmed many times. The postprocessing stage of the algorithm transforms P into
an r-path from s to s’ in the initial graph I'y. This is performéd by a restoration procedure, as

16

follows. If P is already a path of I'y, we are done. Otherwise P contains two consecutive arcs a, b
such that either a is the base arc or b is the anti-base arc of some maximal trimmed bud 7. Then
we “undo” the corresponding trimming operation applied, connecting the head of a to the tail of
b by an r-path in (V;, E;). This transforms P into a regular r-path in the new (“undone”) current
graph I', and we continue the process until a regular s-s' path in Ty is obtained. Being supported
by certain data structures created by the RA, the restoration procedure can be implemented in
~ time linear in |E ()| + ... + |E ()], where 7(1),...,7(k) are the buds whose base or anti-base
arcs occur in the current paths P. This gives O(|W/|) time for the restoration procedure since the
arc sets of the trimmed buds are disjoint. Moreover, one shows that the running time is, in fact,
o(Ivl). :

A fast implementation of the RA finds a regular s—s' path or an s-barrier in linear time, as
indicated in Theorem 2.2.

7.3 The Shortest Regular Path Algorithm (SPA)

We now consider the shortest regular path problem (SPP) in a skew-symmetric graph I' = (V, W)
with nonnegative symmetric lengths £(e) of the arcs ¢ € W. Its dual problem involves so-called
fragments, which are close to, but somewhat different from, odd fragments introduced in Section 4.
A fragment is a pair ¢ = (Vs,e4 = (v,w)), where V, is a symmetric set of nodes of I' with s & Vs
and ey is an arc entering V. For instance, every bud induces the fragment defined by its node
set and its base arc. We call w, ', ey, ey the base node, anti-base node, base arc and anti-base arc
of ¢, respectively, and define the characteristic function x4 of ¢ by

1 fora=ey, ey,
xg(a) = ¢ —1 forae€ §(Vy) - {eg ey}, (7.1)
0 for the remaining arcs of I

Compare with (4.7). One can see that x* - x4 < 0 holds for any r-cycle P and any r-path P
connecting symmetric nodes, and this turns into equality if and only if PN é (V) either is empty, '
or consists of two arcs one of which is e, or e¢ ‘

For a function 7 : V. — R (of node potentials) and a nonnegatlve function € on a set ® of
fragments, define the modified length of an arc e = (x,y) to be

th(e) = £e) + m(z) — m(y) + > £(P)xg(e)
PED
The duality theorem for SPP can be formulated as follows.

Theorem 7.2 [14] A regular path P from s to s' is a shortest r-path if and only if there erist a
potential m: V = R and a positive function £ on a set ® of fragments such that

efr(e) >0 foreach eecW; » (7.2)
“(e) =0 for each ec P, (7.3)
x ‘X¢ =0 for each ¢ € ®. (7.4

17

The shortest r-path algorithm (SPA) from [14] implicitly maintains m, ®,¢ and iteratively
transforms the input graph I', starting with I'y = I', 7 = 0 and ® = @. Each, ith, iteration deals
with a graph I';; for ¢ > 1, T'; is obtained by trimming some buds in the previous graph [;_;.
Let 'Y denote the subgraph of I'; induced by the arcs with zero modified length; we call T'Y the
current 0-graph (recall that the arcs of any trimmed graph are identified with the corresponding
arcs of the original graph). The iteration applies the above r-reachability algorithm to search for
a regular s—s' path in I'! (whose arc lists are efficiently accessible, in spite of the fact that the
modified lengths of arcs in I'; are maintained implicitly). If such a path is found, the algorithm
terminates and outputs this path to a postprocessing stage described below.

If such a path does not exist, the RA constructs an s-barrier (A4; Xi,... , Xg) in I‘?. Moreover,
each X, is the node set of a bud 7 whose base arc e, is just the (uriique) arc going from A to X;.
Such a 7 generates (implicitly) the fragment ¢ with ey = e, and V} to be the set of preimages of
elements of X; in I'. The iteration adds these fragments ¢ to the current set ®, assigns certain
uniform weights £(¢) = € > 0 to these ¢’s, increases by € the weights of all maximal fragments in @
whose base nodes are in A, and updates the potential = by (z) := n(z) — € and 7 (z') = 7 (') + ¢
for all z € V such that z belongs to A and differs from the base nodes of maximal fragments in ®.
Then the iteration trims the above buds 7, giving the input graph I';; for the next iteration. The
process terminates when some, gth, iteration finds a regular s—s’ path P in the current O-graph
o, |

The postprocessing stage applies the restoration procedure of the RA, mentioned in Subsec-
tion 7.2, to extend P into a regular s—s' path P in the initial graph I'. All arcs of this P have
zero- modified lengths (since the arcs of all buds are such). Moreover, the restoration procedure
ensures that x© - X¢ = 0 for all ¢ € ®. Thus, P is the desired shortest s-s' path for ', £, by
Theorem 7.2.

In fact, the dual objects 7, ®,£ constructed this way have certain sharper properties. These
properties, exhibited in the theorem below, will be essentially used in the next section. For the
7, ®, £ obtained, define W09 = {eeW: b (e) = 0} and call the subgraph T = (V, W?) of I the
full 0-graph. The final graph 1"0 is denoted by r (V,WO) and called the trimmed O-grdph; in
fact, this graph is explicitly constructed by the algorithm. A path @ in I'? is called well-crossing
(the fragments in ®) if Q is an r-path satisfying x¥ x4 > 0 for each ¢ € @ (i.e., every nonempty set
(QN4(Vy) consists of at most two arcs one of which is ey or efb). By Theorem 7.2, the well-crossing
s—s' paths are exactly the shortest regular s—s' paths for I", £.

Theorem 7.3 [14] SPA runs in O(mlogn) time, and in O(ny/log L) time when £ is integer-valued
and L is the mazimum arc length. Furthermore, the algorithm constructs (implicitly) =, ®,¢ as
in Theorem 7.2 which possess the following additional properties:

(A1) 7 is anti-symmetric, i.e., 7(z) = —n(z') forallz € V;

(A2) ® is nested, in the sense that any distinct ¢, ¢’ € ® satisfy either Vo CVy or Vg C Vy or
V¢, N Vd)' =0;

18

(A3) for ¢,¢' € @, if Vi CVpandey € 6(V¢) then ey = ey;
(A4) for ¢, ¢ € ®, if VN Vy =0 and ey € 5(Vy), then ey # 6(Vy);

(A5) for each ¢ € @, £5(ey) = 0 and the tail of ey is reachable from s by a well-crossing path
Q(z) in TV disjoint from Vy;

(A6) for each ¢ € @, each node z € Vj is reachable from the head of ey by a well-crossing path
¢ @

QRs(x) in I with all nodes in Vs; such a path can be found by the restoration procedure of
© the RA in O(|Vy]) time.

Note that the modified length function £ is symmetric. This is because each arc e = (z,y)
satisfies £(e) = £(€'), xo(e) = xq(€’) for any ¢ € @ (by (7.1)) and =n(z) — #(y) = 7(y') — n(z")
~ (since ¢ is anti-symmetric by (A1)). Therefore, the graphs I' and ™ are skew-syminetric.

In view of (A5)-(A6), for each ¢ € ®, the triple (V, Wg,e(p) forms a bud in I'°, denoted by
7(¢), where W(g is the set of arcs of ' with both ends in V,, (we emphasize that 7(¢) is a bud
. in the initial graph, while the bud generating ¢ in the algorithm concerns a current, possibly
trimmed, graph). Let ®™** be the set of maximal fragments in the partial order on ® defined by
setting ¢ > ¢’ for V,, D Vy. Since ® is nested (by (A2)), the sets V,, for ¢ € ®™?* are pairwise
disjoint. One can see that the graph obtained from I'% by simultaneously trimming the buds 7(¢)
for all ¢ € ®™2* js precisely the trimmed 0-graph . ‘

In the next section we will take advantage of a relatlonshlp between r-paths in I and shortest
r-paths in (T',£). More precisely, any well-crossing s—s’ path in I'° becomes a regular s—s’ path
in T° under trimming the buds 7(¢) for all ¢ € ™3, Conversely, let Q be a regular s—s’ path
in T°. If e,a are consecutive arcs in § which share the base node w of a trimmed bud (),
then e = ey; therefore, we can connect in I'% the node w with the tail £ of @ by a path Qq(z) -
as in (A6). The fact that Q,(z) is well-crossing implies that the concatenation Rof e, Qy(z)
and a obeys x® - xu = 0 for each ¢' < ¢ (taking into account (A3)). Similarly, if e, a share the
anti-base node of 7(¢), we use the corresponding symmetric path Q¢(z) in FO (which exists as
W0 is symmetric). Doing so for every such pair e,a in Q, we eventually obtaln an s—s' r-path Q
in l"0 Then x9 - x4 = 0 for each ¢ € ®, whence Q is a shortest s—s' r-path.

Another important property of T is as follows.

Lemma 7.4 If the length £(C') of every r-cyele C in T is positive, then ™ s acyclic. In particular,
T is acyclic if ¢(e) > 0 for alle € E. :

Proof. Suppose this is not so, and let C be a simple cycle in ™. By the argument above, we can
extend C into a well-crossing cycle C of I'® (by adding corresponding well-crossing paths in the
subgraphs of I'’ induced by the maximal fragments ¢ with |6(V;) N'C| # @). Then x¢ - x4 = 0 for
each ¢ € ®. This implies that the original length £(C) and the modified length £ (C) are the same,
since the changes in ¢4 due to 7 cancel out as we go around the cycle. Hence, £(C) = £(C) = 0,
contrary to the hypotheses of the lemma. =

19

8 Reduction to an Acyclic Network and Special Cases

We return to the description of the shortest blocking IS-flow method (SBFM) for solving the
maximum IS-flow problem in a network N = (G = (V, E),u) begun in Section 6. Let f be a
current IS-flow in N. We show that the task of finding a shortest blocking IS-flow g in (G*,uy)
(step (P1) of a big iteration of the SBFM) is reduced to finding a totally blocking IS-flow in an
acyclic network. »
We build the split-graph I' = S(G*, uy) and apply the above shortest regular path algorithm

to this I' with the unit length function ¢ on its arcs in order to obtain ¢, ®,¢ as in Theorems 7.2
and 7.3. This takes O() time (since L = 1). Recall that the SPA sunultaneously constructs
the trimmed 0-graph [, the main object we will deal with. By Lemma 7.4, ™ is acyclic. The
following property is 1mportant for us.

Lemma 8.1 Let a € E* be an are with us(a) > 1, and let aq,ay be the corresponding split-arcs
in I'. Then #5(a)) = % (a2). Moreover, none of a1,az can be the base or anti-base arc of any
fragment in @.

Proof. Since a;,ay are parallel arcs, for each ¢ € ®, a; enters (resp. leaves) V, if and only if
ag enters (resp. leaves) Vy. This implies that £ (a;) # £ (az) can happen only if one of a1, as
1s the base or anti-base arc of some fragment in ®. Suppose a; € {es, e¢} for some ¢ € @ (the
case ay € {eg, ey} is similar). Then (A3) and (A4) in Theorem 7.3 show that ay cannot be the
base or anti-base arc of any fragment in ®. Therefore, xX¢ (a2) < xg(a1) for all ¢' € @, yielding
¢ t(a2) < #(a1). Moreover, the latter inequality is strict because xglaz) = -1 <1 = x4(a;) and
£(¢) > 0. But £ (a1) =0, by (A5). Thus, % (az) < 0, contradicting (7.2). m

Let E° C E* be the set of (images of) zero modified-length arcs of I'. Lemma 8.1 implies
that the base arc ey of each fragment ¢ € @ in I' is generated by an arc e € E® with fle) =L
We can identify these ¢ and e, and consider ¢ as a fragment in G* as well. One can see that
™ is precisely the split-graph for (H,k), where H = (V,E) is obtained from H = (V, E®) by
trimming the maximal fragments in ®, and A is the restriction of u f to B

Based on the property of each fragment to have unit capacity of the base arc, we reduce (P1)
to the desired problem, namely:

(B) Find a totally blocking IS-flow in (H,R).

We explain why such a reduction works. Suppose we have found a solution g to (B), and
let @' be the set of maximal fragments ¢ € ® with e¢ € supp(g). For each ¢ € @', we have
gleg) = 1; therefore, exactly one unit of flow goes out of the head of ey, through an arc a say.
We choose (the image of) a well-crossing path @ = Q4(z) as in (A6) of Theorem 7.3 to connect
the head of ey to the tail z of a in the O-graph on Vs and push a unit of flow through () and
a unit of flow through the symmetric path @'. This gives an IS-flow ¢ in H. Moreover, g is a
shortest blocking IS-flow in (G*,u). Indeed, the choice of well-crossing paths (ensures that a
symmetric decomposition of g consists of shortest u s-regular paths, whence g is shortest. Also

20

G cannot contain a (uy — g)-regular s—s' path R of length g(£¥)/|g|. For such.an R should be
a well-crossing path in H (in view of Theorem 7.2), whence the arcs of R occurring in H form an
(h — g)-regular s-s' path in it and, therefore, g is not totally blocking. v

" Since each path Q4(z) is constructed in O(|Vy|) time, and the sets Vj of maximal fragments
are pairwise disjoint, the reduction to (B) has linear complexity.

Lemma 8.2 A totally blocking IS-flow in (H,k) can be eztended to a shortest blocking IS-flow
in (GF,uy), in O(m) time. = :

Corollary 8.3 SBFM solves the mazimum IS-flow problem in O(qT (n,m) + qm) time, where ¢
is the number of big iterations (q < n) and T(n,m) is the time needed to find a totally blocking
IS-flow in an acyclic network with at most n nodes and m arcs.

Clearly T'(n,m) is O(m?), as a totally blocking flow can be constructed by O(m) applications
of the RA. It looks quite plausible that problem (B) can be solved significantly faster. However,
at present we do not know any method for (B) whose complexity is smaller than O(m?).

Next we are interested in special skew-symmetric networks, in particular, those related to
matchings (a relationship between IS-flows and matchings is explained in the next section). For the
standard max-flow problem there are well-known special cases of networks N = (G = (V, E),u)
with n nodes, m arcs and integer capacities for which the number of big iterations of Dinitz’
blocking flow method is significantly less than n. Two of them, having important applications,
represent the “unit arc capacity” and “unit node capacity” networks. To combine these into one
case, for a node x € V, define the capacity u(z) of z to be the minimum of values 3.,) g 4(2, ¥)
and 3.y nyep W(y, ©), and define

A(N) = Z(u(m) :z eV —{ssd}).

It was shown in [8, 18] that the number g of big iterations of the blocking low method does not
exceed 2¢/A(N). In particular, if all arc capacities are ones, then ¢ = O(m!/?), while if all node
capacities u(z), T # s, ', are ones, then ¢ = O(n'/?) (the latter generalizes the case of networks
arising from the bipartite matching problem, for which the complexity O(n!/?m) had been shown
in [16, 17)). | |

The arguments as in [8, 18] are applicable to the skew-symmetric case too.

Lemma 8.4 The number of big iterations of the SBFM is at most 2./A(N).

Proof. After performing d = /A(N) big iterations, the r-distance from s to s in the network
N’ = (G*,uy) for the current IS-flow f becomes greater than d, by Lemma 6.1. Let f* be a
maximum IS-flow in IV, and let g be defined as in the proof of Theorem 3.3. Then g is a feasible
IS-flow in N' and |g| = |f*| — |f]- We assert that |g| < d, which immediately implies that the
number of the remaining big iterations is at most d/2, thus proving the lemma. To see this, take
a symmetric decomposition D of g consisting of elementary flows (P, P',8) with § = 1. Let D' be
the family of all s—s' paths in D; then |D'| > |g|. It is easy to see that ug(x) = u(x) holds for

21

each x € V — {s,5'}. Since each path P € D’ contains at least d nodes z # s,s" and uses one unit
of the capacity of each of such 2’s, we have d|D'| < A(N). This implies gl <d m

9 Applications to B-Matchings

Given an undirected graph G' = (V', E') with no self-loops, a matching M is a subset of edges
such that no two edges share a node. The mazimum matchmg _problem is to find a matching M
whose cardinality |M| is as large as possible.

A more general problem is the mazimum capacitated b-matching problem (CBMP) [6, 20]. The
input to this problem includes capacities u'(e) € Z of the edges e € E' and supplies b(v) € Z, of
the nodes v € V'. A b-matching is a function h : E' — Z, that satisfies the capacity constraints

h(e) <u'(e) forall ec E',
and the supply constraints

Z h(v,w) < b(v) for all v e V',
w:{v,w}eck!

The value of h is h(E) = 3., h(e). The goal is to find a b-matching of the maximum value.
- The maximum matching problem is a special case of the CBMP with all supplies and capacities
equal to one. The CBMP is known to be equivalent to the so-called general matching problem,
the integer linear program in which all entries of the constraint matrix are integers between —2
and +2, the sum of the absolute values of entries in each column of the constraint submatrix not
including box constraints does not exceed two, and all entries of the objective vector are zeros
and ones [6]. ‘

The maximum capacitated b-matching problem is reduced to the maximum IS-flow problem
without increasing the problem size by more than a constant factor; such a reduction is simple
and, in fact, well-known (see, e.g., (1, 2, 19]). More precisely, given an instance of the CBMP,
we construct a skew-symmetric digraph G = (V, E) and a symmetric capacity function u on E as
follows.

e For each v € V', V contains two symmetric nodes v; and vg.
e Also V contains two additional symmetric nodes s and s' (the source and the sink).

e For each {v,w} € E’, E contains two symmetric arcs (vy,w;) and (w1, v2) with u(vy, we) =
w(vg, wy) = u'(v,w).

o For each v € V', E contains two symmetric arcs (s,v;) and (vz, s') with u(s,v1) = ufva, §)=
b(v).

Figure 3 illustrates the reduction.

22

a;

Matching Symmetric Flow

Figure 3: Reduction example for cardinality matching.

Obviously, there is a one-to-one correspondence between the b-matchings in G' and the IS-
flows from s to s’ in G, and the value of an IS-flow is twice the value of the corresponding
b-matching. Thus, a solution to the MSFP yields a solution to the CBMP, and Theorem 5.1
implies the following result. : :

Corollary 9.1 The mazimum capacitated b-matching problem can be solved in O(M(n,m)+nm)
time, where M(n,m) is the time needed to find an integer mazimum flow in a network with n
nodes and m arcs.

Note also that for the case of pure matchings, the corresponding skew-symmetric network
has unit capacity at all inner nodes, so the shortest blocking IS-low method runs in O(nl/) big
iterations, by Lemma. 8.4. V .

A slightly different version of the above problem is the feasible capacitated b-matching problem:
given upper capacities u'(e) and lower capacities #(e) of the edges e € E', and supplies b(v)
and demands d(v) of the nodes v € V’, find a b-matching h satisfying the capacity constraints
¢(e) < h(e) < u'(e) and the supply-demand constraints d{v) < ZwfvwleE h(v,w) < b(v). (In
particular, this generalizes the well-known degree-constrained subgraph problem where u' = 1
and ¢ = 0.) The above construction reduces such a problem to the corresponding feasible IS-flow
problem in which one is asked for finding an IS-flow satisfying lower and upper arc and node

23

capacities. The latter problem is easily reduced to the maximum IS-flow problem in a graph with
O(n) nodes and O(m) arcs by a method similar to that for usual flows [9]. This gives the same
time bound for the feasible capacitated b-matching problem as in Corollary 9.1.

10 Concluding Remarks

The theoretical results in Sections 3 and 4 have been described in a sketched form in [13]. Sub-
sequent to [13, 14], a similar approach has been investigated in (10, 12, 11]. The cardinality
matching algorithm of Blum (2, 3] has a flavor similar to the special case of our shortest blocking
IS-flow method on networks with unit node capacities.

As mentioned in Section 8, we have the obvious bound O(m?) on the complexity of finding
a totally blocking IS-flow in an acyclic network, i.e., on T'(n,m) in Corollary 8.3. We conjecture
that T'(n,m) is O(nm) in general case and O(m) in the case of unit arc capacities or unit node
capacities, similarly to the corresponding bounds for the blocking flow method.

References

[1] G. M. Adel’son-Vel'ski, E. A, Dinits, and A. V. Karzanov. Flow Algorithms. Nauka, Moscow, 1975.
In Russian. ‘ ‘

[2] N. Blum. A New Approach to Maximum Matching in General Graphs. In Proc. ICALP, pages
586-597, 1990.

[3] N. Blum. A New Approach to Maximum Matching in General Graphs. Technical report, Institut fiir
Informatik der Universitit Bonn, 1990, :

[4] E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estima-
tion. Soviet Math. Dokl., 11:1277-1280, 1970.

[5] J. Edmonds. Paths, Trees and Flowers. Canada J. Math., 17:449-467, 1965.

[6] J. Edmonds and E. L. Johnson. Matching, a Well-Solved Class of Integer Linear Programs. In R. Guy,
H. Haneni, and J. Schénhein, editors, Combinatorial Structures and Their Applications, pages 89-92.
Gordon and Breach, NY, 1970.

[7] J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network Flow
Problems. J. Assoc. Comput. Mach., 19:248-264, 1972. '

[8] S. Even and R. E. Tarjan. Network Flow and Testing Graph Connectivity. STAM J. Comput., 4:507-
518, 1975. v

[9] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ.‘Press, Princeton, NJ, 1962.

(10] C. Fremuth-Paeger and D. Jungnickel. A Unifying Framework for Design and Analysis of Matching
Algorithms. Technical Report 379, Institute for Mathematics, University of Augsburg, Germany, 1997.

[11] C. Fremuth-Paeger and D. Jungnickel. Polynomial Augmentation Algorithms for Balanced Network
Flows. Technical Report 381, Institute for Mathematics, University of Augsburg, Germany, 1997.

[12] C. Fremuth-Paeger and D. Jungnickel. Simple Augmentation Algorithms for Balanced Network Flows.
Technical Report 380, Institute for Mathematics, University of Augsburg, Germany, 1997.

24

[13]
(14]
[15]
[16]

(17

18]

[19]

[20]

A. V. Goldberg and A. V. Karzanov. Maximum Skew-Symmetric Flows In Proc. 8rd European Symp.
on Algorithms, pages 155-170, 1995.

A. V. Goldberg and A. V. Karzanov. Path Problems in Skew-Symmetric Graphs. Combinatorica,
16:129-174, 1996.

A V. Goldberg and S. Rao. Beyohd the Flow Decomposition Barrier. In Proc. 38th IEEE Annual
Symposium on Foundations of Computer Science, pages 2-11, 1997.

J. E. Hopcroft and R. M. Karp. An n%? Algorithm for Maximum Matching in Bipartite Graphs.
SIAM J. Comput., 2:225-231, 1973.

A. V. Karzanov. Tochnaya otzenka algoritma nakhojdeniya maksimalnogo potoka, primenennogo k
zadache “o predstavitelyakh”. In Problems in Cibernetics, volume 3, pages 66-70. Nauka, Moscow,
1973. In Russian; title translation: The exact time bound for a maximum flow algorithm applied to
the set representatives problem. '

A. V. Karzanov. O nakhozhdenii maksimal’nogo potoka v setyakh spetsial'nogo vida i nekotorykh
prilozheniyakh. In Matematicheskie Voprosy Upravleniya Proizvodstvom, volume 5, pages 81-94.
Moscow State University Press, Moscow, 1973. In Russian; title translation: On Finding Maximum
Flows in Networks with Special Structure and Some Applications. '

E. L. Lawler. Combinatorial Optimization: Networks and Matrbids. Holt, Reinhart, and Winston,
New York, NY., 1976.

L. Lovasz and M. D. Plummer. Matching Theory. Akadémiai Kiadé, Budapest, 1986.

