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Abstract

In the minimum O-extension problem (a version of the multifacility location problem),
one is given a metric m on a subset X of a finite set V and a nonnegative function ¢ on the
unordered pairs of elements of V. The objective is to find a semimetric m' on V that minimizes
the inner product ¢ - m', provided that m' coincides with m within X and each element of
V is at zero distance from X. For m fixed, this problem is solvable in strongly polynomial
time if m is minimizable, which means that for any superset V and function ¢, the minimum
objective value is equal to that in the corresponding linear relaxation.

In [9] A. Karzanov showed that the path metric of a graph H is minimizable if and only if all
isometric cycles of H have length four and the edges of H can be oriented so that non-adjacent
edges in each 4—cycle have opposite orientations along the cycle (such graphs are called framés
in [9]). Extending this result to general metrics m, we show that m is minimizable if and only
if m is modular and its underlying graph is a frame.
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1 Introduction

A semimetric on a set X is a function d : X x X — R satisfying d(z,z) = 0, d(z,y) = d(y, 1),
and d(z,y) + d(y, z) > d(z, z) for all z,y,z € X. If, in addition, d(x,y) > 0 for all z # y, then
d is called a metric. A particular instance is the path metric dg of a connected graph G: the
distance dg(z,y) is the minimum number of edges in a path of G connecting the nodes z and
y. A semimetric d' on a superset V D X is called an extension of d if d'(z,y) = d(z,y) for all
z,y € X, and a O-extension if, in addition, for each v € V, there exists some ¢ € X such that
d(v,z) = 0. '

Now, consider a metric m on a subset X of a finite set V' and a nonnegative integer-valued
function ¢ on the set (%) of unordered pairs of elements (points) of V. The minimum 0-extension
problem can be stated as follows:

(1.1) Find a O-extension m' of m to V minimizing c-m' := ¥ (c(e)m'(e) : e € (})).

This problem is equivalent to a variant of the multifacility location problem, in which the existing
facilities are located at points of X, the elements of V — X are thought of as new facilities to be
placed at points of X, and the numbers c(z,y) represent a measure of mutual communication or
supporting task between facilities z and y. (For a survey on location problems, see, e.g., [11].)
When m is the path metric of the complete graph K, with p nodes, (1.1) turns into the minimum
p-terminal (or p-way) cut problem, which is known to be solvable in polynomial time if p = 2 (as
being the classical minimum cut problem), and strongly NP-hard if p = 3 [5].

Let 7(V,¢,m) denote the minimum objective value ¢-m' in (1.1), and let 7(V, ¢, m) denote
the minimum objective value in its relaxation:

(1.2) Find an extension m' of m to V' with ¢ - m' minimum.

Since every O-extension is an extension, 7(V,¢,m) > 7*(V,c,m). We call a metric m minimizable
if 7(V,c,m) = 7*(V, ¢, m) holds for any choice of a finite superset V of X and nonnegative function
¢. Since (1.2) is a linear program whose constraint matrix is of size polynomial in |V|, this problem
is solvable in sfrongly polynomial time using a version of the ellipsoid method [12]. This implies
that for every minimizable metric m, (1.1) is solvable in strongly polynomial time as well. It
turned out that the class of graphs whose path metrics are minimizable is rather large.

Theorem A [9]. The metric dy of a graph H is minimizable if and only if H is hereditary

modular and orientable.

Recall that a metric m on X is called modular if every three points x1,z9,23 € X have a
median, that is. a point z € X satisfying m(z;, ) + m(z, z;) = m(z;,z;) forall 1 <i < j <3
A graph H is called modular if its path metric dy is modular, and hereditary modular if every
isometric subgraph of H is modular. (A subgraph H' of H is isometric if dg'(u,v) = dg(u,v)
for all nodes u,v of H'; in other words, dy is an extension of dy:.) Every modular graph H is
bipartite; moreover. one can easily show that the cycle space of H has a basis comprising only
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Figure 1: An orientation of a 4-cycle

4-cycles. We say that H is orientable if its edges can be oriented so that opposite (non-adjacent)
edges in every 4-cycle have apposite orientations along the cycle; see Fig. 1. For example, the
complete bipartite graph Kp, is orientable if and only if min{p,r} < 2; further the graph Ky 4,
that is, K3 3 minus one edge is not orientable (see Fig. 2b). (In the orientable case, the orientation
turns a modular graph into the Hasse diagram of an ordered set in which every order-interval
constitutes a modular lattice. Indeed, every order-interval consists of the nodes on shortest paths
between its end points, and therefore [3, Theorem 4. 7] applies.) Following [9], we call an orientable
hereditary modular graph a frame. .

In this paper we show that Theorem A can be extended to give a complete characterization
~ of minimizable general metrics. Given a metric m on X, its underlying graph H(m) is obtained
from the complete graph on X by deleting all edges zy such that there is a node z between z and
Y, ie, z # 2,y and m(z, z) + m(z,y) = m(z,y). In other words, H(m) is the least connected
graph on X in which any two nodes are connected by a path shortest for m.

We can now state the result of this paper. .

Theorem. A metric m is minimizable if and only if m is modular and its underlying gmph H(m)
s a frame.

2 Preliminaries

We begin with reformulating the property thiat a metric m on a set X is minimizable in polyhedral
terms. We regard any semimetric on a finite superset V O X as a vector of the Buclidean space
R(?) whose coordinates are indexed by the edges of the complete graph on V. The set of extensions
of m to V forms a polyhedron in R(‘;), denoted by Pvm. For m',m" € Py, we say that m”
decomposes m' in Py, if m' > Am” + (1 — )\) ) for some m{ € Py, and 0 < A < 1. If
no extension m" # m’ decomposes m/, then m' is called ertreme. The extreme extensions are

precisely the vertices of the dominant Py, + R(V) of the polyhedron Pv,m. In particular, every
O-extension of m is extreme.

It is easy to see that any extension that decomposes an optimal solution of (1.2) is an optimal
solution as well. On the other hand, by linear programming arguments, every extreme exten-
sion i3 a unique optimal solution of (1.2) for some ¢ : (‘2/) — Ry. This implies the following



characterization of minimizable metrics (cf. [9]):

(2.1) a metric m on X is minimizable if and only if for all finite supersets V of X, every extreme
extension of m to V is a O-extension.

This property suggests the following approach to proving our theorem: in order to decide whether
a given metric m is minimizable or not, it suffices to show that any extension of rn is decomposable
by a 0-extension or to find an extreme extension which is not a O-extension. In order to verify
that an extension is extreme we will use the fact that the extreme extensions have maximal sets of
shortest paths. More precisely, let d be a semimetricon V' O X. A path on V is a finite sequence
P = (vg,v1,...,vg) of points of V. The d-length d(P) of P is d(vo,v1) + ...+ d(vk_1,vx), and
P is called d-shortest if d(P) = d(vg,vg). We say that P is an X-path on V if vy, vy € X, and
denote the set of d-shortest X-paths by Z(d) = Z(X,d). It is not difficult to see that

(2.2) for m’,m" € Py, m" decomposes m' if and only if every m/-shortest X-path is m”-shortest,

i.e., Z(m') C Z(m"); this inclusion is strict when m' # m/.

Next, in our proof we will use the fact that a modular metric and the path metric of its
underlying graph have the same set of shortest paths. For a connected graph H = (X, E) and a
length,function ¢: E — Ry, let dy denote the semimetric on X, where dg ¢(z, y) is the minimum
l-length ¢(P) = K(zory) + ...+ €(zk—12k) of a path P = (¢ = z9,%1,...,Tk_1, 5k = y) between z
and y in H. If H is the underlying graph of a metric m and £ is the restriction of m to E, then
dy¢ is just m. For an edge zy of H(m), we therefore refer to m(z,y) as the length of zy. We
say that two edges e, e’ of H are projective if there is a sequence e = eg,e1,...,e; = €' of edges
such that every two consecutive edges e;, e;11 are opposite in some 4-cycle of H. A maximal set
of mutually projective edges is called an orbit. Each bridge e of H constitutes an orbit consisting
only of e (rccall that a bridge is an edge whose removal disconnects H).

Proposition 1 [1]. (i) If m is a modular metric, then the graph H(m) is modular and m is
constant on the edges of each orbit of H(m).

(i) Conversely, if H = (X, E) is a modular graph and £ is a positive length function on E which
is constant within each orbit of H, then the metric dy ¢ is modular, and the metrics dg and dy 4

have the same sets of shortest paths.
Finally, we will use the following properties of hereditary modular graphs.

Proposition 2 [2]. (i) A graph is hereditary modular if and only if it is bipartite and contains

no isometric eycles of length siz or more.

(i1) A modular but not hereditary modular graph contains an isometric 6-cycle.



3 Proof of the “only if” part

Our method of proof is close to that for the corresponding part of Theorem 1.1 in [9]. Although
the objects we deal with are more general, the constructions we apply in subsequent proofs of this
section are relatively simpler than those used in (9].

Let m be a metric on X. We will rely on the following simple fact.

Lemma 1 [9]. Let myg be the restriction of m to a set X C X. Let my be an extreme extension of
mg to a set Vo with Vo X = X;. Then there exists an extreme eztension m/' ofm toV=VuX
which comczdes with mgy on Vp.

Indeed, define d(z, y) to be mg(z,y) for z,y € Vo, m(z,y) for z,y € X, and min{mg(x, z) +
m(z,y) : z € Xo} for x € Vg and y € X. One can easily check that d is a metric on V, and
therefore, d is an extension of m. Take any extreme extension m’ of m that decomposes d. Then
the restriction of m' to V; decomposes m{) in Pvy,mo- Since myg is extreme in Py, ,mo, the semimetric
m' coincides with mg on Vp, as required.

Next we will show that if the graph H(m) is not a frame, then m has an extreme extension to
some V' O X which is not a O-extension. By (2.1), this would imply that m is not minimizable.

" Lemma 2. Let H(m) be non-modular. Then m is not minimizable,

Proof. Since H(m) is non-modular, by Proposition 1(i) m is not modular either. So there
exist points xj,x9,73 € X which do not have a median for m. Let mg denote the restriction
of m to Xo = {z1,22,23}. Define the numbers 1,7, 73 > 0 so that ri +71; = m(x;,z;) for all
1 <4 < j < 3; such numbers exist because m is a metric, and they are unique. Add a new point
z and define the distance from z to z; to'be r; for i = 1,2,3. This gives an extension my of mg to
the set V' = X, U {z}. Evidently, my is.an extreme extension. By Lemma 1, m has an extreme
extension m' to the set X U {z} that coincides on V' with myg. Since the triplet z,,z5, 23 does
not have a median, m/(z,y) > 0 for all y € X, i.e., m' is not a O-extension. Hence, m is not
minimizable, m ’

Lemma 3. Let H(m) be modular but not orientable. Then m is not minimizable.

Proof. Since H(m) is not orientable, it contains a Mébius sequence (“orientation-reversing dnal
cycle”), i.e., a circular sequence (eg = Toyo, €1 = T1y1,..., €5 = Tryx = ep) of edges such that:

(i) the edges eq,...,er_1 are distinct;

(ii) Zizi41 and y;y;41 are edges of H(m) for i =0,...,k ~ 1;

(iii) wo = yx and yo = i (yielding the “twist”);
see Fig. 2. Let Xg be the set of (different) nodes occurring among g, yo, . . . »Th—1,Yp—1, and let
g be the restriction of m to Xy. We extend the complete graph on Xj to the graph G’ = (V', E')
by adding k new nodes 21, ...,z; = zp and 3k new edges z;z;, y;2; apd Zzizigy fori =0,...,k—1.

4



Yo n Yk—1 ‘yk = g

ey | el €k—1 er = €

Lo T o Tg-1 Tr = Yo

(a) generic instance

Figure 2: Mobius sequences

Since the edges ey, e1,...,er_1 are projective, by Proposition 1{i) they have the same length,
say . Any two edges z;z;y; and y;yir1 are opposite in a 4-cycle and, therefore, they have the
same length

ﬁi = m(xi,xH_l) = m(yi,yi+1) for i = 0,... ,/C -1.

We define a length function £ on the edge set E' by letting

A(vw) = m(v,w) for v,w € Xg;
Uziz) = L(yizi) = af2 for i=1,...,k;
E(ziziﬂ) = ﬂi for i= 1, vk

We assert that d = dg ¢ is an extension of mg. To see this, it suffices to verify ¢(P) > m(v, w)
for any simple path P in G’ with end nodes v, w from Xy and all intermediate nodes in V' — Xo. .
We may assume without loss of generality that P = (v, z;,...,zj, w) with v = z; and w € {z;,y;}
for some 0 <1< j <k—1. Theu

. =1
UP) = a/2+) Bp+al?
p=t
j-1
= lzjy;) + ) Uapps1)
. p:l -
> m(zj,w)+mlv,z;) > mv,w).

Take an extreme extension my of mg to V' that decomposes d. By Lemma 1, there exists an
extreme extension 1n/ of 7o to V = V' U X that coincides with mj) on V'. We assert that m’
cannot be a 0-extension. Indeed, consider the paths P; = (x;, z;, v;), Qi = (i, 2i, Zit1, Yit1), and
R = (Yi, 2i, Zit1s Tit1) fori=1,...,k. By the definition of £ and taking into account that the
paths (x5, 9, viz1) and (i, 5, T;41) are m-shortest by Proposition 1, we conclude that

UP) = o=mlzi,y),



Figure 3: Graph G’ in the proof of Lemma 4

Q) = a+ B =m(zi,v) + myi,viv1) = m(zi, yir1),
UR) = a+f8i=my,z) + m(zi, i) = m(yi, Tig1).

Hence, F;,Q;, R; € I(V,m') by (2.2). Suppose that m' is a 0-extension of m. Then for each
new node z; there exists a node w; € X -such that m' (zi,w;) = 0. The only m-shortest path
on X between z; and y; is z;y;, whence w; € {z;,y;}. Assume wy = Zo; the case wy = yg is
analogous. Then w), = z1; otherwise, w; = y; would imply that Ry is not m/-shortest because
a+ Bo +a > m'(yo,z1). Similarly, wa = x5, and so on, until one arrives at we = ZTo = Yi,
obtaining a contradiction. Thus, m is not minimizable. m : '

Lemma 4. Let H(m) be modular and orientable but not hereditary modular. Then m is not
minimizable. ' ‘

Proof. By Proposition 2(ii) the graph H(m) contains an isometric 6-cycle C' = (50,81,---,85,80).
Let myq be the restriction of m to Xo = {sp,...,s5}. Since C is isometric, each path (s, 841, s;.42,
si+3) is shortest in H(m), and therefore, it is m-shortest (taking.indices modulo 6). As s;19 and
8i+5 are between s; and s;,3, and vice versa, it follows that the m- lengths of opposite edges of C
are equal:

m(so, 1) =m(s3,s4) =1, m(s1,50) =m(ss,s5) =: f, m(sa,s3) =m(ss,s0)=: 1.

We construct an extension mg of mg as follows. Assume a < B,7. Consider the graph
G' = (V',E') with V! = X U {z,y} shown in Fig. 3 (G’ is the skeleton of the cube with one
diagonal added). Note that (' is not orientable (as it includes K ;). Assign the following lengths
{(e) to its edges e € E' :

£(sisiv1) = m(si, si41) for i =0,...,5,



(s2r) = L(spy) = o,
Usoz) = Us3y) = f3,
U(s4z) = (1Y) =7,
lzy) =B+ —a.

Then z and y are medians of the triplets {sg,s2,s4} and {sy,s3, s5}, respectively. Notice also
that {(zy) is as small as possible subject to the requirement that the ¢-length of each path from
8; to s;43 passing through the edge zy be at least m(s;, s;43) = o + 3 + v, taking into account
that o < §,v. Then my = dg ¢ is an extension of my.

We first prove that mg is an extreme extension, by showing that m{ is uniquely determined
by the set of ¢-shortest Xp-paths in G (cf. (2.2)). To see the latter, notice that the distances from
z to 8y, 82,54 are determined by the /-lengths of the paths (so,z,s2), (s2,%,84), (84,2, 50), and
then the distances from x to s1,ss, s5 are determined by the paths (s, s2,%,54), (s3,84,7,50),
(85,50, 2, $2). Similarly, one can uniquely characterize the distance from y to each s;. Finally, the
distance between z and y is determined by the £-shortest path (s, z,y, s5) because my(s2, z) and
my(ss,y) have already been determined.

Let m' be an extreme extension of m to X U {z,y} that coincides with m} on' V'. Suppose
that m' is a O-extension, and let u and v be the points of X obeying m/(u,z) = m/(v,y) = 0. We
assert that G’ is isomorphic to the subgraph of H(m) induced by X U {u,v}. Indeed, since z is
a median of the triplet S = {sg, s2, 84} for m/, the node u is a median of § for m, and thus, by
Proposition 1, u is a median of S in H(m) as well. Since dpr(m)(8i, 8i+2) = 2 for each 4, the node
u is adjacent in H(m) to each of the nodes sg, s9,s4. Similarly, v is adjacent with each of the
nodes s1, 83, 85. The fact that C is isometric implies that v # v and that u,v ¢ C. Finally, the
path P = ($3,u,v, $5) on X is m-shortest because the path (sq,z,y, s5) is m’-shortest. Therefore,
w and v belong to a shortest path from s to s5 in H(m). Since dg(m)(s2,s5) = 3 and s3,u,v, 55
are distinct, v and v are adjacent in H(m). Thus, H(m) contains a subgraph isomorphic to G’
(which is non-orientable). This contradicts the orientability of H(m), and hence we conclude that
m! is not a O-extension. ®

Lemmas 2-4 cover all cases when H{m) is not a frame, completmg the proof of the “only if”
part of the theorem.

4 Proof of the “if” part

The proof is based on the explicit construction of the tight span of the path metric of a frame
given in [9] We review that construction, starting with necessary definitions.

An extension d' of a metric d on X to a (possibly infinite) set V O X is called tight if no other
extension of d to V is coordinatewise less than or equal to d'. This is equivalent to the property
that for any z,y € V, there are s,t € X such that d'(s,z) + d'(z,y) + d'(y, t) = d(s,t).

It is shown in [8] (and independently in [6]) that for every metric space (X, d), there exists a
unique metric space 7(d) = (X, 4d) such that d is a tight extension of d and any tight extension
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Figure 4: Creation of a folder

(V,d') of d is isometrically embeddable in T(d), in the sense that there exists a mappingv: V — X
with the identity on X satisfying d'(z,y) = 8(y(z),v(y)) for all z,y € V. The space T(d) is
called the tight span (or injective envelope, or Tx-space) of (X,d). When X is finite, X' can be
represented as a polyhedral complex of dimension at most | X1/2; see [6].

When H = (X, E) is a frame, the tight span 7 (dg) = (X,d) of its path metric is a 2-
dimensional complex obtained in the following way. Let K(A;B) denote the complete bipartite
graph with parts A and B. We call a maximal subgraph K(A; B) of H a bi-clique if |A|,|B| > 2.
Since H is orientable, any bi-clique K (A4; B) satisfies min{|A|,|B|} = 2. As H is bipartite and
does not include K ; as an induced subgraph, it easily follows that

(4.1) the intersection of two bi-cliques of H is either empty, or a single node, or a single edge.

Therefore, every 4-cycle of H is contained in precisely one bi-clique. Note that every edge e of H
which is not a bridge is contained in a 4-cycle: e belongs to an isometric cycle, and by Proposition .
2(i) all isometric cycles of H have length 4. ‘ :

'To construct the ground set X = Xy, we turn each edge into a homeomorphic copy of the
segment [0,1] C R!. Each 4-cycle C = (vo,v1,v2,v3,vp) (considered as a graph) is extended to a
2-dimensional disc D¢. Formally, D€ is a homeomorphic copy of the square [0, 1] x [0, 1] C R?, the
nodes vg, v1, 2, v3 are identified with the points (0,0),(0,1),(1,1),(1,0), respectively, and the edges
with the corresponding segments. If C' and another 4-cycle C' = (ug,u1, us,us,ug) have three
nodes in common, say, v; = u; for i = 0, 1,2, we identify the corresponding triangular halves in D¢
and D', More precisely, assuming that vg, v1, v are represented in both discs by (0,0),(0,1),(1,1),
respectively, we identify each point in DY coordinatized by (€,m) for 0 < £ < 5 < 1 with the
corresponding point (£,7) in DY, As a result, every bi-clique K = K(A; B) with A = {s1, 59}
and B = {t1,...,#;} is turned into the space F(K), called the folder of K, homeomorphic to
the space obtained by gluing together k copies of the triangle {(£,7) : 0 < ¢ < < 1} along the
side {(a,a) : 0 < & < 1}; see Fig. 4 for k = 5. By (4.1), each DC lies in one folder, and two
overlapping folders intersect in a node or an edge. This gives the desired set X.

The segment F' = F'(e) (of length 1) associated with a bridge e of H carries its natural metric;
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for convenience, F' is also referred to as a bridge of X'. Each folder F = F(K) obtained from a
bi-clique K of H is endowed with the metric dr inherited from the participating (overlapping)
squares. More precisely, any two points =,y of F belong to at least one disc D (for some
4-cycle C in K) with coordinates z = (£,5) and y = (¢,n'). Then ép(z,y) is defined to be
the [,-distance | — &'| + |p — #/|; this number is the same for all discs D¢ containing z,y. So
each dr is well defined, and moreover, any two points (on a segment) shared by different folders
F and F' are at the same distance with respect to d7 and dp. The desired intrinsic metric
0 = 0y on X is defined in a natural way : for z,y € X, é(z,y) is the infimum of the values
§(P) = dp (wo,z1) + ... + 0p, (xr-1,z,) over all finite sequences P = (z = zg,7y,...,%, = y) in
which each pair z;_, z; belongs to the same folder or the same bridge F;. One can show that §
coincides with §z within each folder or bridge F.

Theorem B [9]. For a frame H, the metric space (X, dg) is precisely the tight span T (dp).

We will use a generalization of this theorem given in [10] where the class of finite metrics with
2-dimensional tight spans is.completely characterized. More precisely, consider a modular metric
m on X such that H(m) is a frame. Let Oy,...,0; be the orbits of H(m). We know that m
is constant within each orbit O;, say m(e) = h; for all e € O;. Note that all edges of a bi-clique
K = K(A; B) with |A| 4+ |B| > 5 are projective, and therefore, they belong to a common orbit.
On the other hand, if K is a 4-cycle, it may happen that the two pairs of opposite edges belong
to distinet orbits. Accordingly, we introduce a metric 6% on the folder F = F(K) of a bi-clique
K or on a bridge F' as follows. '

(i) If K is a bi-clique whose edges belong to one and the same orbit O;, then for each 4-cycle
C in K and points z,y € DY, define 6% (z,y) = hidr(z,y) (i.e., &% is obtained by uniformly
strefching the metric 67 by a factor of h; in “all directions”).

(i) If K is a bi-clique given by a 4-cycle (vo,v1,v2,v3,%) with vov; € O; and vivy € O,
(4 # j), then for points z = (&,n), y = (£',7') of F, define 67 (z,y) = hj|€ — €| + hs|n — 1| (ie.,
477 is obtained by stretching 6p by a factor of h; in “vertical direction” and by a factor of h; in
“horizontal direction”).

(iii) If € = uw is a bridge with {e} = O;, say, then the segment F' = F(e) of length 1 with its
wetric dF is stretched by the factor of h;, that is, 6% = h;0p.

These local metrics determine the intrinsic metric 6™ on the complex X H(m) 1 an analogous
fashion as for dy above.

Theorem C [10]. Ifm is a modular metric such that H(m) is a frame, then T (m) is (Xg(m), ™).

(See also [4] for another proof.) Note that in [10] this theorem was proved for rational-valued
metrics; however, it remains valid for real-valued metrics by standard rational approximation and
compactness arguments. Indeed, take an infinite sequence #;,¢,, ... of positive rational-valued
functions on the edges of H = H(m) such that each ¢; is constant within each orbit of H and the
sequence of metrics m; = dyy,, i = 1,2,..., converges to m. Since the tight spans 7(m;) have the
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same ground set ;’(H, one can see that the metrics §” converge to some metric § on Xy, That
(X, 6) is indeed the tight span of m follows from the obvious fact that for every tight extension
m' of m, there are tight extensions of m;’s which converge to m/.

We are now ready to show that m is minimizable, arguing in a way similar to- [9]. Cousider
any extension m' of 1n to a finite superset V of X. We wish to show that there exists a O-extension
m' of-m to V such that every m’-shortest X-path on V is m"-shortest. Then m” decomposes m’
(by (2.2)), implying that every extreme extension of m is a 0-extension, i.e., m is minimizable (by
(2.1)). Clearly we may assume that m' is coordinatewise minimal, i.e., m' is a tight extension of
m. Therefore, we may regard V' as a subset of the ground set X = X H(m) of the tight span 7 (i)
and m’ as the restriction of 6™ to V. »

We construct a mapping ¢ : & — X which is identical on X and brings évery d"™-shortest
X-path on X to an m-shortest path on X. Choose a feasible orientation of H = H (m). Then
every bi-clique K of H has a unique node v = vk such that all edges of K incident to v are
oriented towards v (if K = K({s1,s2};{t1,...,%,}) with r > 3, then v is either s; or s3). For
x € X, define ¢ as follows:

(i) if z € X, then ¢(z) =

(ii) if z is an interior point on an edge e = yz € E (i.e., z # y, 2) and e is oriented from y to
z, then ¢(z) = z;

(iii) if  is an interior point of the folder F(K) for a bi-clique K of H (i.e., z is not in the
boundary K of F(K)), then ¢(z) = vg. ‘ : :

(This mapping can be interpreted as follows. The orientation of H induces a partial order <
on X. The restriction of this order to any bi-clique K is extended to the folder F(K) in a natural
way, by assuming that the smallest node of K is coordinatized as (0,0) in the discs of all 4-cycles
of K. This turns F(K) into a complete modular lattice. Also the order < is extended in a natural
way within each bridge of X. Then ¢ maps any point z of a folder or bridge F to the smallest
point from X N F which is greater than or equal to z, and therefore, the interior of F' is mapped
to the unique top point of F.)

Lemma 5. Let P = (9,21,...,7%) be a 6™-shortest X-path on X. Then ¢(P) = (¢p(xo), p(x1),
., (xg)) is an m-shortest path on X. ‘

Proof. We may assume that each pair z;_i,z; belongs to a common folder or bridge, because
we can always connect z;—; and z; by a 5m-sh0rtest path in which each consecutive pair satisfies
this property.

We use induction on the distance between the ends zg, 2 of P in the graph H. The assertion
is trivial if dg(zoxy) < 1 (in case dg(zo,zx) = 1 all intermediate points z1,...z5_1 of P lie on
the edge zozi). Also the assertion easily follows by induction if P is splittable, which means that
some intermediate point of P is in X — {:z:o,:nk} So assume that dg{zo,zr) > 2 and that P is
not bphttable Then none of the intermediate points lies on a bridge.

Consider the maximal initial subpath Py = (g, 1,...,24) of P which is entirely contained in
some folder F(K). Then z, lies on the part of the boundary of F(K) formed by the edges of K
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not incident to zg. Moreover, since the path Py is §™-shortest, it is contained in the disc D¢ for
some 4-cycle C = (vp, v1,v2,v3,vp) in K. We may assume that z¢ = vy, that z4 lies on the edge
(segment) vive of DY, and that vg,v; have the coordinates (0,0) and (0,1), respectively. Then
0= ¢(o0) < E(m) < ... < &(mg) and 0 = n(zo) < 7(51) < ... < N(zg) = 1, where (¢(x), n(x))
are the coordinates of a point = in D®. By the construction of ¢, any point of D€ is mapped
by ¢ to some node of C. Considering possible orientations of C, one can see that in all cases for

any z,y € DY, if () < £(y) and n(z) < 7(y), then &(p(z)) < £(d(y)) and n(¢(z)) < n(S(y)).

Therefore, £(¢(z0)) < ... < €(d(zq)) and (d(z0)) < ... < n(¢(zg)), i, the path G(Py) is
6™-shortest.

So we can delete the elements z1,...,24-1 from P, obtaining the path P’ = (zg,z,,..., %)
such that 6™ (P') = 6™(P) and ¢™(H(P')) = 6™(¢(P)). Recall that ¢(zo) = vy and ¢(z,) €
{vi,v2}. Insert v; between z¢ and z, in P’, which results in the path R = (zq,v1,%q,...,Zk)

satisfying 6™ (R) = 6™(P’) and 0™ (¢(R)) = 6™($(P')). Since dy(zy,v1) = 1 and dy(zg, z;) > 2,
the point v, of R is different from both zo, zx. Hence, R is a splittable §™-shortest path. By the
above argument, we have 6™(R) = m(zozk), and the result follows. m

By this lemma, the metric m’ (being the restriction of 6™ to V) is decomposed by the 0-
extension m" of m, defined by m"(z,y) = m(é(z), #(y)) for z,y € V. Thus, m is minimizable.
This completes the proof of the theorem. '
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