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A combinatorial algarithm for the minimum (2, 7)-metric problem
' and some generalizations

Alexander V. KARZANOV *

Abstract. Let G = (V, E) be a graph with nonnegative integer capacities c(e) of the
edges e € F, and let 1 be a metric that establishes distances on the pairs of elements
of a subset T C V. In the minimum O-extension problem (x), one is asked for finding
a metric m on V such that m coincides with g within 7', each-z € V is at zero
distance from some t € T, and the value ) (c(e)m(e) : e € E) is as small as possible.
When T = {s,t} and u(s,t) = 1, this turns into the classical minimum (undirected)
cut problem. When g is the path metric of the complete bipartite graph K ., (¥) is
specified to be the minimum (2, r)-metric problem. It is known that such a problem
can be solved in strongly polynomial time by use of the ellipsoid method. '

We develop a polynomial time algorithm for the minimum (2, 7)-metric problem,
using only “purely combinatorial” means. The algorithm simultaneously solves a cer-
tain associated integer multiflow problem. We then applyfthis algorithm to solve ()
for a wider class of metrics u, give other results and raise open questions.

Key words: finite metric, cut, metric extension, multicommodity flow.
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1. Introduction

By a metric on a set S we mean a function d : S x § = R, that establishes
distances on the pairs of elements of S satisfying (i) d(z,z) = 0, (ii) d(z,y) = d(y, ),
and (iii) d(z,y) + d(y, z) > d(z, 2), for all z,y, z € S. We usually write d(zy) in place of
d(z,y) and allow d(zy) = 0 for some = # y. A special case of metrics is the path metric
dT of a connected graph T' = (S, W), i.e., d'(zy) is the minimum number of edges of a
path in I' connecting = and y.

We consider an undirected graph G = (V, F) whose edges e € E have nonnegative
integer capacities c(e), and a subset T' C V of nodes called terminals. Let p be a metric
on T. A metric m on V is said to be an extension of p to V if the submetric of m on
T is just p (i.e., m and u coincide within T'), and to be a 0-ertension if, in addition,
for each z € V, there is ¢t € T such that m(tz) = 0. If p is a positive metric, i.e.,
p(st) > 0 for any s # t, then each 0-extension m of u to V one-to-one corresponds
to a T-partition, i.e., a partition of V into |T| subsets {X; : t € T} where each X,
contains exactly one terminal, namely, ¢t. This correspondence is defined by setting
X¢={z eV : m(tx) = 0}.

A path in G whose ends are different elements of T is called a T-patﬁ.. A (e
admissible) multiflow f consists of T-paths P, ..., Py in G along with nonnegative real
weights Ay = A(Py), ..., Ax = A(Pk) satisfying the capacity constraint ‘

fe= Z()\i : P; contains e) < c(e) forall e € E.

Define (u, f),. the p-value of f, to be Y (u(u;v;)A; : ¢ =1,...,k, u; and v; are the ends
of ;). If all \;’s are integers, f is called an integer multiflow. Consider the following
four problems:

(1.1) Find a 0-extension m of u to V with ¢-m = 3 (c(e)m(e) : e € E) as small as
possible;
(1.2) Find an extension m of p to V with c-m as small as possible;
(1.3) Find an integer multiflow f whose p-value is as large as possibie; o
(1.4) Find a multiflow f whose p-value is as large as possible.
(Problem (1.1) is also known as the multifacility location problem, cf. [TFL}.)
Let 7 = 7(G,c, ) and 7* = 7*(G, ¢, ) denote the minimum ¢ - m in (1.1) and (1.2),
respectively, and let v = (G, ¢, p) and v* = v*(G, ¢, ) denote the maximum p-values
in (1.3) and (1.4), respectively. For given G,c,u, an extension m with c-m = 7% is

- called minimum and a multifiow f with (u, f) = v* is called mazimum, and similarly
for 0-extensions and integer multifiows. Since (1.1) is a strengthening of (1.2), and (1.3)
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is a strengthening of (1.4), we have 7 > 7% and v < v*. In their thrn, the relaxations
(1.2) and (1.4) are, in fact, mutually dual linear programs (see, e.g., [KL]), whence
r* = v*. Thus, we have the following relations:

(1.5) >t =0 >0

Each of the two inequalities here may be strict. The simplest case with equality
throughout in (1.5) arises when p = dK2 (K, is the complete graph with p nodes).
In this case any 0-extension is a cut metric, an optimal 0-extension corresponds to a
minimum cut “separating” the pair of terminals, and 7 = v holds by the classical max
flow min cut theorem [FF]. On the other hand, if 4 = d®» with p > 3, then 7 = 7*
needs not hold; in this case (1.1) turns into the multiterminal cut problem, which is
known to be strongly NP-hard even if p = 3 [Da)].

 Following [KM], a metric u on T is called minimizable if 7(G,c,p) = 7%(G, ¢, )
holds for any graph G = (V,E) with X D T and capacities ¢ : E — Z,. For such
a i, problem (1.1) can be solved in strongly polynomial time by use of the ellipsoid
method, taking into account that (1.2) is, in fact, a linear program whose constraint
matrix has a polynomial size in |V|,|E|. The class of minimizable metrics is rather
large; in particular, it includes g = d®2r for an arbitrary r, where Kp ¢ is the complete
bipartite graph whose parts (the maximal stable sets) consist of p and g nodes. For
such a p, a 0-extension is called a (2, r)-metric, and (1.1) can be specified as:

(1.6) Given G, T, c and a partition of T into two subsets A = {s1,52} and B = {tl', ey
t,}, find a T-partition {Sy,S2,T1..., T} of V with s; € S; and t; € T; that
minimizes ¥(c(S;, Ty) : 1=1,2, j=1,...,71) + 2¢(81,8:) + 23 (e(T;,T5) : 1 <
i<j<r), |

where for X, Y C V, ¢(X,Y) denotes the total capacity of edges with one end in X and
the other in Y. Although the second inequality in (1.5) may be strict for p = dfzr
too, it holds with equality in the following important case. We say that an (integer)
capacity function c on E is inner Eulerian if ¢(X,V — X )is even foreach X CV - T.

Theorem 1.1 [KM]. Ifc is inner Eulerian and pp = d¥z2r then v = v* and, therefore,

v=r.

~ The main goal of this-paper is to give a “purely combinatorial” algorithm which
finds a minimum (2, r)-metric and finds a maximum integer multifiow when c is inner
Eulerian. The algorithm we develop runs in time polynomial in |V}, |E| and linear in
log ||¢||, where ||c|| = max{c(e) : e € E}.

In fact, the algorithm focuses on construction of a maximum integer multiflow,
whereas a minimum (2, r)-metric is obtained as a by-product. It involves three ingre-
dients: (i) a capacity scaling method, (ii) an integer augmentation procedure, and (iii)
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a maximality check-up procedure. These occur in the high, middle and low levels of
the algorithm, respectively. The capacity scaling method reduces the whole problem to
about log ||c|| similar problems each of which deals with a truncated capacity function
¢’ and finds a maximum integer multiflow for it, starting with a nearly optimal integer
- multiflow f’ whose p-value is only O(|E|) below 7(G, ¢', ). Therefore, at most O(|E|)
integer augmentations of the u-value are sufficient to transform f’ into a maximum
integer multiflow for ¢’ The integer augmentation procedure is somewhat more com-
plicated than that based on standard augmenting path techniques in maximum flow
algorithms. It involves a vertex splitting method and relies on possibility to decide
whether a given (fractional) multiflow f” for a capacity function ¢’ on E is maxi-
mum or not. Our maximality check-up procedure solves the latter problem in Str.ongly
polynomial time and in a combinatorial fashion. | ‘

Next we consider a more general ease. A complete characterization of the class of
graphs whose path metric is minimizable is given in the following theorem.

' Theorem 1.2 [K98]. - For a graph H, the metric d¥ is minimizable if and only if H
is bipartite, orientable and contains no isometric k-circuit with k > 6.

Here a subgraph (or circuit) H' = (T",U’) of H is called isometric if 4 is a
submetric of d¥; a k-circuit is a (simple) circuit with k nodes; and H is called orientable
if its edges can be oriented so that for any 4-circuit C = (vg, ey, vy, ..., €4,v4 = vp), the
orientations of the opposite edges e; and e are different along the circuit (i.e., if e; is
oriented from vy to v; say, then e is oriented from v3 to vs), and similarly for ey and
es; a feasible orientation for C is shown in Fig. 1a. For example, the graph Ky, is
orientable if and only if min{p,r} < 2. A graph H as in Theorem 1.2 is called a frame
(hereinafter we assume, w.l.o.g., that H has no parallel edges or loops).

(41 ‘ vy

Vo V3

Fig. 1 (a)

We say that edges e, e’ of a graph H = (T, U) are dependent if there is a sequence
e =e€g,€1,...,er = € where each two consecutive e;, e;1+1 are opposite edges in somev 4-
circuit of H. This relation is symmetric and transitive, and a maximal set of dependent
edges is called an orbit of H. In partiéular; the edges of each subgraph K, , in H belong
to the same orbit when r > 3. For a subset Z C U, let H/Z denote the graph obtained
from H by contracting each edge in Z. »



~ Definition. A frame H = (T,U) with the orbits Q,...,Q is called sparse if for
each 4, the graph H; obtained from H/(U — @Q;) by identifying the parallel edges and
deleting the loops (if any) is K, , with min{p,r} < 2.

Remark. One can show that a frame is sparse if and only if each orbit in it
contains (the edge set of) at most one inclusion maximal subgraph K, , with r > 3.

Figure 1b illustrates a sparse frame with four orbits. As mentioned above, for any
~ fixed minimizable metric 1y (1.1) is solvable in strongly polynomlal time by use of the
ellipsoid method. We show that for any sparse frame H, (1.1) with g = d¥ is reduced
to O(|T]) minimum cut or minimum (2, r)-metric computations. This reduction and
our minimum (2, r)-metric algorithm provide a “purely combinatorial” polynomial time
algorithrri for such a p. ‘

This paper is organized as follows. The algorithm for the minimum (2, r)-metric
‘problem and its corresponding integer multiflow problem in the inner Eulerian case is
described throughout Sections 2—4. Section 5 is devoted to the generalization for sparse
frames. The concluding Section 6 contains some remarks and raises open questions.

In what follows, for X C V, §(X) = 6%(X) denotes the set of edges of G with one
end in X and the other in V — X (a cutin G), and ¢(6(X)) stands for ¢(X,V — X). For
a multiflow f in a network (G, c,T) (as above) and a pair {u,v} C T, fuy denotes the
part of f concerning the paths with the ends u and v (the flow in f between u and v);
the total weight of these paths is called the value of fy, and denoted by |fu,|. Hence,
the p-value of f is 3_(u(uv)|fus] : {u,v} € T). For a path P in G, xF denotes its
incidence vector in RZ, i.e., xT (e) is the number of occurrencies of an edge e in P.

In conclusion of this section we point out one application of the minimum (2, r)-
metric problem. In the multiflow demand problem, one is given a set D of pairs uv of
terminals and demands d(uv) € Z 4 on these pairs, and is asked to find a multifiow f in
(G, ¢, T) satisfying | fuy| = d(uv) for all uv € D. By a five-terminus flow theorem [K87],
when |T'| = 5, the demand problem has a solution if and only if the cut condition

(1.7) c(§(X)) = 3 (d(wv) : wwe D, {u,v}nX[=1)=
holds for each X C V, and the (2,3)-metric condition
(1.8) c-m >y (dluv)m(uv) : uv € D)

holds for each (2,3)-metric m on V (concerning all possible H = (T,U)~K33). Also
[K87] shows that if (c, d) satisfies the partity condition

(1.9) c(6(X)) +dx =0 (mod 2) forall X CV,

then the problem has an integer solution f provided that it has a solution at all;
moreover, to find such an f takes O(|V[®) minimum cut and minimum (2,3)-metric
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computations. This implies that f can be found in polynomial time by a “purely
combinatorial” algorithm. ‘

2. Checking the maximality

Let f = (Py,..., Py, A1,...,Ax) be a multifiow for G, T, c, and let u = d¥, where
H = (T,U) is K5 ,. We assume that Ay,...,Ag > 0. The algorithm described in this
section decides whether the given f is maximum, and if so, finds a minimum (2,7)-
metric. We apply a “flow expansion” approach whose idea is borrowed from [Lom]. We
need some terminology and conventions. '

The algorithm transforms f step by step, and it may happen that some paths of the
current multiflow are self-intersecting in edges (even if all paths in the initial multiflow
are »simple). By this reason, we should refine the definition of f¢ in the Introduction as

(2.1) o= (Ninie) i=1,...,k),

where n;(e) is the number of occurrencies of e in P;. We define A(e) = Ag(e) := c(e)—f°
and call e residual if it is not saturated by f, i.e., if A(e) > 0. Let E° = E°(f) be the
set of residual edges in G. A residual path is a path in G whose all edges are residual.
When it is not confusing, for a path P = (zg, e1, z1, ..., €k, Tx), We use the abbreviation
Loy ...Tgx. We say that P is an zo—zx path, and denote a part of P from z; to z;
by P(z;,z;). Each path P = xo...zg in f is usually considered up to reversing (i.e.,
we do not distinguish between P and P! = xTg_1...29). For {u,v} C T, the set
of nodes occurred in the paths of the flow f,, is denoted by V,, (the domain of f..).
Let A = {s1,s2} and B = {¢3,...,t,} be the parts of H. The complete graph on T is
denoted by Kt = (T, Er). ‘

Each transformation of f never decreases the u-value and any of the sets E® and
Vuv, uv € Ep; moreover, it increases at least one of these. Each iteration applies one
of the seven operations below. The algorithm de’c.la;res that the initial multiflow is
not maximum and terminates when the p-value increases (the breakthrough situation).
This happens after performing the X-operation and, sometimes, the V-operation below.
Also the breakthorough happens if there appears a residual path P connecting different
terminals (for we can increase the u-value by pushing some non-zero flow through P).

L-operation. Suppose there are a residual edge zy and a flow f,, with V,,, contain-
ing = but not y. The I-operation chooses a path P = zy...z} in fu, passing z, T = z;
say, adds to fy, the path P/ = zq..., z;yz; .. . Tx taken with a sufficiently small weight
£ > 0 satisfying £ < A(P), A(e)/2, and accordingly reduces the weight of P by . This
adds y to V,, (while preserving the c-admissibility, the p-value, and the sets E°% and
Vury for the other u'v' € Er). ‘ -



V-operation. Suppose there are a w—v path P =zy...7 in f and a residual path
L = zy...zg such that: zp is a terminal different from v and v; z4 = x; for some %;
and either (a) p(uz) + p(zv) > p(uw), or (b) for some 5 < 4, the node z; is not in Vi,
or both. The V-operation adds to f the u—z path zg...z;24_1...29 and the z-v path
Z0...24%i+1 - - - Tk, €ach taken with a weight € > 0 such that ¢ < A(P) and € < A(e)/2
for all edges e of L, and reduces A(P) by €. This increases the p-value, yielding the
breakthrough, in case (a), and increases V,,, in case (b) (since z; is added to V,,,).

O-operation. Suppose there are a u—v path P = z¢...z; in f and a residual
path L = 2y...zq such that zp = z; and zg = z; for some 0 < i < 5 < k, and
some edge e of the subpath z;...x; is saturated. The O-operation adds to f the u-—v
path zg...2;z1...24-1%; ... 2 with a weight ¢ > 0 such that £ < AMP), Azp—12p),
p=1,...,d, and reduces A(P) by €. This increases E° (since e becomes residual).

Y-operation. Suppose there are a u—v path P = zp...z; and a u-v’ path Q =
Yo ...Yq in f such that v # o', z; = y; for some 7, 7 > 0, and some node of the subpath
Yo...y; s not in V,,. The Y-operation adds to f the paths P' = yo...yjziz1... 2%
and Q' = xo...%Yj41...Yq, cach taken with the same weight €, 0 < e < A(P), A(Q),
and reduces each of A\(P) and A(Q) by e. This increases V.

U-operation. Suppose there are a u—v path P = zg...z; and a u—v' path Q =
Yo-.-Yq in f such that z; = y; for some 1,7 > 0, p(uv) + p(uv') = p(ve'), and some
edge e of the closed path zg...z;y;-1...y0 is saturated. The U-operation adds to f
the v—v' path L = zxZg—-1...Zi¥j+1-..Yq With a weight €, 0 < ¢ < M(P), A(Q), and
reduce each of A(P) and A(Q) by €. This increases E° (since e becomes residual), while
preserving the p-value.

V-operation. Suppose there are a u—v path P = zy...x; and a z-w path @ =
Yo - - . Yq in f such that: z; = y; for some 1, 4: the terminals v, z, w are different- members
of B; u is in A; and the subpath zy...z; contains a saturated edge e. Then p(uv) =1
and p(vz) = plvw) = p(zw) = 2. The V-operation adds to f the v—z pafh L =
Tk ... TiYj—1...Yo and the v—wpath L' = xx ... 2;y41...Yq, each with the same weight
g, 0 < e < AQ), A(P), reduces A(P) by 2¢ and reduces A(Q) by e. This increases E°
(since e becomes residual), and one can see that the p-value preserves.

X-operation. Suppose there are a u-v path P = zg...xx and a z-w path @ =
Yo---Ygq in f such that: z; = y; for some 7,7; u and z are different terminals in
A; and v and w are different terminals in B. The X-operation adds to f the u—z
path zo...z;y;-1...yo and the v-w path zy...z;y;41 ...y each with a weight é,
0 < e < A(P), MQ), and reduces each of A(P),A\(Q) by . This increases the u-value
by 2¢ (since pu(uv) = p(zw) = 1 and p(uz) = p(vw) = 2), yielding the breakthrough.

The process terminates when the above operations are no longer applicable to the



current multiflow. Since each operation.increa,ses E° or V,, for some uwv € Ep, the
number of iterations is at most |E| + |V||Er|. We show the following.

Lemma 2.1.  If neither the breakthrough happens nor any of the above operations
is applicable, then the current multifiow f (as well as the initial one) is maximum.

Proof. We first assume that f; ¢, is nonempty for each p = 1,...,7. Let S1 be the
node set of the component of (V, E9) containing s;. For p=1,...7, define V;, = V1,
and T, = V, = S;. Then $;NT = {s1} and V,NT = '{sl,tp};b for if Sy contains a
terminal u # s; or V,,.contains a terniinal v # 81,tp, we have the breakthrough (taking
into account that p(s1tp) = 1 < u(s1v)+ p(vty), whence the V-operation is applicable).
Also T, N Ty = @ -for p # p’ (otherwise we can apply the U-operation to an s;-t, path
and an s;—t, path which share a common node in T, N Ty, increasing E%). Therefore,
the setis S1,Ty,...,Tr and S3 = V — U(S1.U Ty U....UT,) form a T-partition m of V;
let m be the (2,7)-metric on V induced by 7. We assert that

(2.2) for e € E, m(e) > 0 implies A(e) =0, |

and
(2.3)  cach z-w path Q@ =yo ...y, in f is m-shortest, i.e., m(Q) = plzw).

Property (2.2) follows from the fact that all edges of the cut §(S1) are saturated,
and similarly for the cuts 6(7}p) (for if e is a residual edge in some & (T,), then e belongs
to 6(V,), and we can apply the I-operation, increasing Vp). To see (2.3), consider
possible cases (up to reversing @). Note that Sy C V,, for each p (since the I-operation

is impossible).

(a) Let z = s; and w = t,. Then all nodes of @ are in V. Also @ meets
§(S1) exactly once. Indeed, if y; € S for some 7, then the nodes yo,y1,.-.¥: are
contained in S; (otherwise E® can be increased by use of the O-operation). Hence,
m(Q) = 1= p(sitp).

(b) Let both z,w be in B, z = t; and w = t; say. Let y; be the last node in 77, and
y; the first node in T3. Then yo,...,y; € T1 and yj, . .. ,Yq € To. Indeed, suppose y;: 1s
not in T} for some ' < i. If y is in S, then the V-operation applied to @ and a residual
path from s, to y,; increases V; by y; (as y; € T , implies y; € Vo). And if yi & Sq,
then y; ¢ Vi and, therefore, the Y-operation applied to @ and a ¢t;—s; path in f that '
passes y; increases V7 by y;. Now consider the nodes yit1, . - .yj—1. None of them is in
T, for p # 1,2 (otherwise the W-operation for ) and an $1—tp path in f containing such
a node increases V). If these nodes are entirely contained in one of S; and Sz, then, '
assuming j > 7 + 1, we have m(Q) = m(y;yi+1) + m(yj—1Y;) =1+4+1=2= p(tits), as
required (in case j = 4 + 1 we also have m(Q) = 2). Now suppose that y, € S; and



yn € Sy for some i < g < h < j (case i < h < g < j is symmetric). Let P be a ty-s1
path in f which contains yg. Then the Y-operation for P and @ increases V3 by yp.

(c) Let z = s and w = t,. Then Q does not meet V, for p’ # p (otherwise we can
apply the X-operation, increasing the p-value). So all nodes of @ are in T, U S2. Also
y; € Sz implies o, ..., ¥ € Sz (otherwise one can apply the Y-operation, increasing -
Vp). Hence, Q passes exactly one edge between Sy and T}, yielding m(Q) = 1 = pu(zw).

(d) Let z = s; and w = s3. Take the last node y; of @ not in Sz. Then y; € Vp
for some p, whence yo,...,y; € V;, (otherwise one can increase V,, by use of the Y-
operation). Now take the last node of @ in S;. Then yo,...,y; € S1 (otherwise one
can increase E° by use of the O-operation). Now i = j gives m(Q) = m(yi,y,;+1) =2,
and i > j gives m(Q) = m(y;¥j+1) + miyi41) = 1+ 1= 2. Thus, m(Q) = p(zw).

In a general case, for each p with f; ¢, empty, we define T}, to be the node set of
the component of (V, E®) containing t,. Again one can see that {S1,S2,T1,...,T;} is
a T-partition of V. We leave it to the reader, as an exercise, to check that (2.2)—(2.3)
hold in this case too (by arguing as above or, sometimes, even simpler). -

Now (2.2) and (2.3) (being, in fact, the complementary slackness conditions for
(1.4) and its‘dual problem) imply (p, f) = c-m. Indeed, let f consist of the u;-v; paths
Qi, i =1,...q, whose weights Ay, ..., A, are nonzero. Then

() = 3 Anluiv) < 3 Aim(Qs)
i=1 i=1
= Z fem(e) < Z c(eym(e) = c- m,

ecFE ecE

and equality holds throughout in this expression because of (2.2) and (2.3).

Thus, f is a maximum multiflow and m is a minimum (2, r)-metric. .

Let k be the number of paths of the initial multifiow f. W.l.o.g. one may assume
that the length (number of edges) of each of these paths is O(|V|). Since each operation
applied creates at most two new paths, the number of paths of each current multiflow
in the above process is polynomial in |V'|, |E|, k. Moreover, after each iteration we can
rearrange paths of the current multifiow f so as to make the length of each path in f be
O(|V]), without decreasing the p—val\ie and the sets E® and Vi, uv € Er. Then each
of the above operations can be performed in time polynomial in |V|, |E|, k, whence the
running time of the maximality check-up algorithm is polynomial in |V'|, |E], k as well,

Remark. In fact, in the above process it suffices to apply only those operations
that increase the u-value or the set E® or some set Vs 4, (rather than V; ,, or V;,4,). One
can check that Lemma 2.1 remains valid in this case too. Such a modification is more
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efficient because it applies only O(|E| + |T||V|) operations instead of O(|E| + |T|2|V])
operations in the algorithm described above.

The analysis of the above algorithm shows that the weights of paths and the values
of residual capacities are, in essense, not important. The algorithm can maintain only
the set of paths of the current multiflow and the set E° of residual edges, and perform
each iteration in terms of these two sets. In particular, this implies the following
important fact (it will be used later).

Corollary 2.2. Let f =(P,...,Pc; A1,...,Ax) be a multiflow for G, ¢, T, and let
E° be the set of residual edges for ¢ and f. Let f' be the multiflow consisting of the
same paths Py, . .., Py but taken with weight one each, and let ¢’ = x"1 4. . .+ x4+ xo.
Then f is maximum for G, c, p if and only if f' is maximum for G, ¢, p. , .

3. Integer augmentation

In this section we deal with a special case when G = (V, E) is an inner Eulerian
graph (i.e., all inner nodes £ € V — T have even degrees) and all capakities c(e) of edges
e € E are ones. We allow G to have multiple edges but not loops and denote v(G,c, 1)
by v(G,pu). As before, T = {s1,82,t1,...,t,} and u = d¥, where H = (T,U) is the
graph K , with the parts A = {s1, 52} and B = {t1,...,t,}. In the input of the integer
augmentation problem, we are given an integer multiflow f in (G, T, c) whose p-value
is not maximum, and the goal is to augment its u-value by at least one, i.e., to find an

‘integer multiflow f’ with (i, f') > (1, f). We describe an algorithm for finding such an
f’, in time polynomial in |V, |E|.

Since all capacities are ones, one may assume that every integer multiflow is a
set. of pairwise edge-disjoint T-paths (which have unit weights). Let E° be the sets of
residual (not used in the paths of f) edges of G. One may assume that each component
of (V, E®) contains at most one terminal; otherwise the problem is trivial. Then E°
is representable as the union of pairwise edge disjoint circuits. In what follows by a
decomposition we mean a decomposition D’ of G (or another inner Eulerian graph in
question) into T-paths and circuits. The u-value (u,D’) of D' is the p-value of the

corresponding multiflow formed by the T-paths in D’.

Let D be a decomposition including the initial f, and let ¥ = (u, f) = (4, D).
~ The algorithm we develop handles D rather than f, attempting to transform D into a
decomposition D’ with a greater u-value. '

To simplify the algorithm description, we assume that each inner node of G has
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degree at most four. This leads to no loss of generality. Indeed, denote by E(z) the
set of edges incident to a node x, and suppose that |E(z)| > 4 for some z € V - T
Then we can transform the graph at z as follows. Partition each edge e = zy into two
edges Tz, and z.y in series, and connect the nodes z., e € E(z), by a siniple circuit
C of new (residual) edges. For each pair e, e’ € E(z) such that e, z, e’ are consecutive
elements of some member of D, replace zz., Zze by a single edge zezer, and then remove
. See Fig. 2 for an illustration. This transformation creates |E(z)| nodes with degree
four in place of z, and D is transformed, in a natural way, into a decomposition D’
with the same p-value in the resulting graph G’. Note that D’ is not maximum in G'. |
(For otherwise take an optimal T-partition 7 for G'. Then the nodes of C are entirely
contained in one member of a'. This implies that ' induces an optimal T-parition =
for G, whence D is maximum; a contradiction.) Note also that any integer multiflow
¢’ in G’ can be easily transformed into an integer multifiow f’ with the same p-value
in G. So if we succeed to find g" in G’ with {u,g’) > (u,9), it gives a multiflow f' in G
with (u, f') > 7. | '

Let W be the set of inner nodes of degree four in G. For cach z € W, D induces in a
natural way a bi-partition p(z) = pP (z) of the set E(x) = {e1, €2, €3, e4} into two pairs,
{ey,e2} and {63, eq} say; we write p(z) = {e1, ezes, es}. W.lo.g., one may assume that
each path or circuit in D is simple and that no path P in D contains a terminal as an
intermediate node (otherwise split P at such a node into two T-paths; this does not
decrease the p-value). We say that such a D is simple. The non-maximality of f and
the fact that no residual path connects different terminals imply that W is nonempty.
Note that D is determined uniquely by the bi-partitions p(z) for z € W. Moreover,
every set of bi-partitions p’(z) at the elements z € W determines uniquely a (possibly
non-simple) decomposition D, in which each circuit contains at most one terminal and
each T-path meets T only at its ends.

11



Consider z € W, and let p(z) = {e1,ezles, es}. The splitting operation at z with
respect to a bi-partition p = {e;, ej|ep, €4} of E(z) (possibly p = p(z)) transforms G
into a graph G’ by replacing the end z of e;, e; by a new node z’ and replacing the end
x of e,, e, by a new node z” (z' # z"); see Fig. 3. This gives a (possibly non-simple)
decomposition D' = D, where p'(z) = p and p'(y) = p(y) for all y € W — {z}. We
call such an operation

(i) an augmenting splitting if (u,D') > 7;
(ii) a feasible splitting if (u, D') = 7;

(iii) a good splitting if it is feasible and D’ is still not maximum in the new graph
G, ie., v(G' ) > 7,

(iv) a laminar splitting if p = p(z), and cross-splitting otherwise.

In particular, the laminar splitting is, obviously, feasible (but may not be good).
Clearly to compute the value (i, D') and compare it with ¥ is easy. If there is an
augmenting splitting at some node x € W, we immediately obtain an integer multifiow
with a greater p-value; so assume this is not the case. Also using the maximality check-
up algorithm from the previous section, we can examine all feasible splittings at the
nodes in W to seek a good one among them, and once a good splitting is found, we

transform G into the graph G’ whose set W’ of inner nodes of degree four is smaller
than W.

Assume that the laminar splitting is not good at each node in W. We will rely on
the following simple fact.

Statement 3.1. For x € W, if both cross-splittings at x are feasible, then at least
one of them is good. v ’

Proof. Take a decomposition D’ of G with (i, D’) > ¥ (it exists by Theorem 1.1 since
f is not maximum in G), and let G’ be obtained by the splitting at £ w.r.t. the bi-
partition p' = p?'(z). Then v(G',u) > (u,D’) > T. Since the laminar splitting at
T is not good, p' # pP(z). Hence, with respect to D, the given splitting is a good
- cross-splitting (as it is feasible). | ' ‘ o

In what follows we assume that no feasible splitting at any node is good. Let P and
P’ be the members of D passing £ € W. The above statement enables us to eliminate
the following situations in which each of the two cross-splittings at z is feasible or even
augmehting: '

(3.1) (i) at least one of P, P’ is a circuit;

(ii) P is a u~v path and P’ is a z-w path and each of x(uz) + p(vw) and p(uw) +
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1(vz) is greater than or equal to pu(uv) + p(zw).

As before, we consider each path in f up to reversmg, and for u,v € T, denote by
Vm, the domain of the flow f,,. The impossibility of (3.1) implies:

(3.2) all members of D are (Simple) T-paths;

3)fori=1,2and j=1,...,r,if V;;. and V,, with {s;,¢; u,v} share an inner

33) fori=1,2and 7 =1 if V¢, and V, ith tj} # h i
node, then {u,v} is either {s;,sy} or {t;,¢;}; in particular, the flows f,,; are
pairwise openly disjoint, i.e.; Vs, N Vst = {s, t;} N {ss,t;} for (s,5) # (&, 7).

Note that f contains at least one s;—s3 or ¢;-t; path (otherwise (3.3) would imply

"~ that W = 0, whence f is already maximum). Until now we have tried to get the

desired augmentation or decrease the set W by applying a single splitting operation,

and (3.2)—(3.3) expose all we are able to get on this way. However, one can rearrange

the decomposition D more globally by combining splittings at several nodes at once

(without decreasing the p-value) in order to get a situation as in (3.1) and then make
a crucial splitting.

For example, let f contains an s;—t; path P = 2 ...2g, an s;-ta path P’ = y... 9y,
and an s;-sy path P” = 2g...2, such that P” meets both P and P’ at intermediate
nodes, z;; = z; =: ¢ and yy = z; =: y for j < j' say. Then no single splitting
at = or at y is good. Nevertheless, P U P’ U P" is decomposed into the s;—ss path
Q =wy... YitZjt 41 - -+ 2q5 the t;—t; path Q' = =i .. cZiZj41 - ZjYir41 - Yp and the
circuit C = xg...Tizj—1 ... 2. Hence, replacing P, P, P" in D by Q,Q’, C makes D’
with (p, D) = (1, D), and now a good splitting at  becomes possible since z belongs
to a T-path and a circuit. '

In general, we rearrange f as follows. Note that at least one of the flows Fsitys
fs,t, say, is nonzero (otherwise f is, obviously, maximum). We construct a minimal
set L = L(s1,t1) such that V; 3, C L and each s;—s» or t1-t, path meets the cut (L)
precisely once. ‘Such an L is unique and is constructed by use of a labelling method.
Initially, set L := Vi ¢, . Then L is increased step by step by the following rule:

(3.4) choose an s1—s2 or t1—t, path P = ¢ ...z in f such that for some 0 < i < j <k,
z; ¢ L and z; € L, and update L := LU {xzy,...,z;}.

The process terminates when L cannot be increased by (3.4). Clearly L NT =
{s1,t1}. Let Uy = {{s1, 82}, {t1, t2}, {tn, ta}, .., {t1, 8, }} and Uy = U — (U1 U {51, 11 }).
Suppose that there is a node z € L — {s;,t;} such that

(3.5) = belongs to a set V,,, where {z,w} € U;.
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We show that the submultiflow g in f that consists of the flows f,,;, and fu,
{u,v} € Uy can be rearranged within L so that there appears an s;—t; path P containing
z. Then P and the path in f,,, containing &, where {z,w} is as in (3.5), are in situation
(3.1)(ii) and, therefore, one can apply an augmenting or good splitting at x. The task
of finding such a rearrangement is reduced to the multiflow demand problem (defined
in the Introduction) for the graph I' = (F, Z), demand pairs D and demands d on the
“values of flows connecting pairs m D, where:

(i) I is formed by the nodes and edges occurring in g or in T; |

(ii) D consists of the pairs {s1,z}, {x,t1},{s1,t1} and the pairs in Uy;

(iil) d(s1z) = d(xt1) = 1, d(5152) = |fsys,| — 1 and d(uv) = |fus| for {u,v} € Uy
(|fuv| denotes the number of Paths in fuy) ‘

Statement 3.2. The above demand problem has an integer solution, i.e., there
are pairwise edge-disjoint T'-paths Q1,...,Qq in I' such that each pair {u,v} in D is
connected by d(uv) of these paths, where T' = T' U {z}.

Proof. For X C F, define dx as in (1.7), and let A(X) = |67(X)| — dx. It is easy
to see that A(X) is an even integer for any X. Also each pair in D meets at least one
of s1,ty, i.e., the graph induced by D is the union of two stars. Hence, the problem
has an integer solution provided that the cut condition holds, i.e., if A(X) > 0 for all
X C F (by a reduction of Dinitz (see [ADK]) from the two-star commodity demand
problem to the two commodity one and by a theorem of Rothschield and Whinston
concerning the latter [RW]). Suppose that A(X) < 0 for some X; let for definiteness
s1 € X. Considering the feasible multiflow g in I', we observe that A(X) < 0 is possible
only if s1,¢; € X and z € X. One may assume that X N7’ = {sy,t;} (for if v € X for
some v € T' — {s1,¢1}, then, obviously, A(X — {v}) < A(X))'

Let d = Y (|fuo] : {u,v} € Uy). Then |67(X)| > d and d = dx — 2. Therefore,
the evenness of A(X) implies A(X) = —2, whence |6T(X)| = d. The latter equality
implies that each path in each fuv, {u,v} € Uy, meets 6T(X) exactly once. Then no
node outside X can be labelled by rule (35) So z ¢ L; a contradiction. °

Let Q;’s be as in Statement 3.2, and let for definiteness (J; and ()2 be the paths
from s; to z and from z to.tl, respectively. Then the multifiow ¢’ formed by the
paths @Q3,...,Q4 and the s;—t; path being the concatenation of (J; and Q. satisfies
(4,9 = (u,9). We replace in f the part g by ¢’, obtammg situation (3.1)(ii), and
proceed with an augmenting or good splitting at z.

If there is no = as in (3.5), we consecutively construct the labelled sets Ly =
L(sy,t2),...,L, = L{s1,t,) in a similar way. At least one set L; — {s3,%;} must meet
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View with {u, v} diferent from {s1,%:}, {s1, s2}, {ti, tq}, ¢ € {1, .., 7} — {7} (otherwise, in
view of (3.3), L;N L; = {s1} for all 1 # j, whence the sets {s1}, L; — {s1} (i=1,...,7)
and V — (L1 U...UL,) form an optimal T-partition, implying that f is maximum).

The above demand problem can be solved in time polynomial in |V|,|E| (e.g., by
the method behind the proof in [RW]). Since the number of splittings we apply does not
exceed |V|, the whole time needed to find an integer augmentation of f is polynomial.

4. Scaling method

In this section we put together the above arguments to design a polynomial al-
_gorithm for solving (1.6) and the corresponding integer multifiow problem (1.3). As
before, i is the path metric of the graph K . and the capacity function ¢ on the edges
of G = (V, E) is assumed to be inner Eulerian.

At the high level, the algorithm applies a capa.mty scaling approach and consists
of big (or scaling) iterations. The number of these 1terat10ns is equal to the size of the
largest capacity ||c|| in binary notation.

More precisely, let I be [logy(|lc|| +1)]. For i = 0,...,I and e € E, define the
truncated capacity ci(e) = |c(e)/277*]. Then ¢p = 0 and cr = c. In the input of ith
big iteration, there is a maximum half-integer multifiow g;_; for G,c¢;-1, p (letting go
be zero multiflow), and the goal is to find a maximum half-integer multiflow g; for c;.
(The reason why we are forced to deal with half-integer multiflows is that c; needs not
be inner-Eulerian.) The final, Ith, big iteration will find a maximum integer multiflow
for G, ¢, p along with a minimum (2, r)-metric.

We describe ith iteration, i < I. It considers ¢’ = 2¢; as the capacity function and
g' = 4g;_1 as the initial multifiow (i.e., the weights of all paths ing;_, are increased
by a factor of four). Then ¢ is inner Fulerian and ¢’ is ¢’-admissible and integral.
Moreover, we observe that | |

(41) | () = (1 g') < 4|,

where 7(c') stands for 7(G,c’, ). Indeed, let m be a minimum (2, r)-metric for ¢;1.
Then ¢’ and m are optimal for 4¢;_1, i.e., (i, g’) = (4¢ci—1) - m. For each e € F, we have
m(e) < 2and ¢(e) = 2¢;(e) < 4c;—1(e)+2. Therefore, 7(c') < ¢'-m < (4ei—1)-m+4|E]|,
yielding (4.1).

Thus, ¢’ is nearly optimal for ¢/, and it takes at most 4|F| integer augmentations
to transform ¢’ into a maximum integer multiflow for ¢'. HoWever, the intéger aug-
mentation algorithm from Section 3 is sensitive to the capacity values (it is polynomial
only for small capacities and pseudo;polynomial in general). To this reason, every time
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we turn to this algorithm, we first transform ¢’ and the current integer multiffow g as
follows.

Let g = (Py,...,Px; A1,. .., Ax), where all \;’s dre positive integers. One may
assume that each flow gy, in g consists of at most |B| paths (for we can rearrange gy,
if needed, using standard flow decomposition techniques [FF]). Then k is O(|T|*|E}).
We replace g by the multiflow h consiéting of the same paths Py,..., Py but taken
with weight one each. Also we represent the residual capacities A(e) = ¢/(e) — ¢° as
A = arx“ + ...+ azx%, where ¢ < |E|, each o; is a positive integer and each C;
is a circuit in G (x© is the incidence vector of a circuit C' in RE). We replace ¢ by
" =xP 4+ x4+ xC 4+ ...+ x%. Then ||¢"|| is only O(|T|?|E|) and, therefore,
replacing each edge e by ¢”(e) parallel edged makes an inner Eulerian multigraph whose
size is polynomial in |V|, |E|. By Corollary 2.2, h is not maximum for ¢” if and only if g
" is not maximum for ¢’. Moreover, an integer augmentation of & by use of the algorithm
in Section 3 determines an integer augmentation of g in a natural way.

Summing up the above arguments, we conclude that each big iteration is performed
in strongly polynomial time and finds a maximum integer multifiow g for 2¢;, giving the
maximum half-integer multiflow g; = % g for ¢;. The final, I'th, iteration is applied to
the inner Eulerian ¢; = ¢ and integer multiflow ¢’ = 211 (instead of 2¢y and 4g5-1)
and finds a maximum integer multiflow f for the initial G, ¢, . Also the last application -
of the algorithm from Section 2 constructs a minimum (2, r)-metric m. Thus, the total
time of our algorithm is polynomial in |V, |E| and linear in log ||c||, as required.

5. Algorithm for sparse frames

We will use some properties of modular graphs. A graph H = (T,U) is called
modular if each three nodes vg, v1, vz € T have a median, i.é., a node z € T such that
dH (v;2) + d¥ (2v;) = dH (v;v;) for all 0 < i < j < 2. If every isometric subgraph of H
is modular, then H is said to be hereditary modular. It is easy to see that any modular
graph is bipartite.

Bandelt [B88] proved the following theorem: a bipartite graph H has no isometric
k-circuit with £ > 6 if and only if H is hereditary modular. Thus, the frames (figured in
Theorem 1.2) are precisely the orientable hereditary modular graphs. Modular graphs
have the following property (see [B85]):

(5.1)  for any orbit @ of a modular graph H and any u,v € T, if P is a shortest u—v
path and P’ is a u—v path, then |PNQ| < |P' NQ)|.

For a function £: U — R+ on the edges of a graph H = (T,U), we denote by d¥*

16



the path metric for (H,¥), i.e., d®¢(zy) is the minimum £-length £(P) = > (lei) -
i=1,...,k) of a path P = (zo,€1,%; ..., €k, L) connecting nodes z and y in H. An
{-shortest path is a path shortest for the metric dHL, We say that ¢ is orbit-invariant
if it is constant within each orbit of H. Consider a modular graph H = (T, U), and let
Q1,...,Qk be the orbits of H. From (5.1) it follows that ‘

(5.2)  for any nonnegative orbit-invariant function £ on U, each shortest path in H

is £-shortest.

Indeed, let h; = £(e) for e € @;. For two u—v paths P and P’ in H, we have
|P| = ni+ ...+ ng, |P'| =0+ ...+ n, 4(P) = hiny + ... + hgny and L(P') =
hini + ...+ hgn}, where |L| is the number of edges of a path L, n; = |P N Q;| and
n; = |P' N Q;|. If P is shortest, then n; < n; for each i (by (5.1)) implies £(P) < £(P')
since £ is nonnegative. ‘ :

For i = 1,...,k, define 4; to be the incidence vector of Q; (i.e., £i(e) =1 if e € Q;
and 0 if e € U — Q;), and let p; = d¥4.

Statement 5.1. d¥ = +... + p.

Proof. Consider a shortest u—v path P in H. By (5.2), P is £;-shortest fori =1,...,k.
Therefore, |P| = £1(P) + ... + £(P) implies d¥ (wv) = py (uv) + . .. + px(wo). o

In what follows we assume that the above graph H is a sparse frame. For i =
1,...,k, let H; = (T;,U;) be the graph in the definition of sparse frames in the Intro-
duction. Define 7; to be the partition of T formed by the node sets of components of the

-graph (T, U — Q;). We identify each node of H; with some node in the cbrresponding
 member of 7;. Then T; C T and pi is a O-extension of fi; = dfi to T.

Consider a graph G = (V, E) with V 2 T and a capacity function c on E. Let
G; = (V;, E) be the graph (with possible parallel edges and loops) obtained from G
by shrinking each set in 7; into the corresponding node of H;. Then every 0-extension
m' of p; to V one-to-one corresponds, in a natural way, to a 0-extension of i; to V;,
denoted by v;(m'); obviously, c-m' = ¢ (vi(m’)). Let 7, = 7(G;, ¢, ;). '

Let m be a minimum 0O-extension for G,c,u, i.e., c-m = 7 (= 7(G, ¢, t)). From
Statement 5.1 it follows that m is represented as m = my + ...+ my, where each m; is
~ a O-extension of y; to V. This implies

(5.3) T>T 4.+ T

Moreover, (5.3) turns into equality for any frame H. Indeed, for 7 = 1, . , k, take a
0-extension m; of i; to V; with ¢-m; = 1;, and let m; be the corresponding 0-extension
y~1(m;) of p; to V. Then m =my+ ...+ m is an extension of p to V, whence
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c-m>7* (= 7*(G,c,p)). This implies 7* < 11 + ...+ 7%, yielding 7 < 73 + ... + 7,
in view of 7 = 1. K

The above arguments prompt an approach to solve (1.1) in our case. First we find
the numbers 7; by use of the above algorithm for the minimum (2, r)-metric problem;
~ their sum is just 7. (Note that if H; is K ,, the problem for G;,c, i; is reduced to
r minimum cut computations. In fact, one can show that r = 1 is only possible but
this is not important for us.) In order to find the desired minimum 0-extension of u
to V, we can apply a method suitable for arbitrary frames (see [K98]). More precisely,
choose a node z € V — T and terminal ¢t € T and compute 7" = 7(G’, ¢, 1), where G’ is
obtained from G by identifying = and ¢t. If 7/ = 7, we replace G by G'. And if 7/ > 7,
choose another terminal ¢’ to be identified with  and do similarly, and so on (since p
is minimizable, at least one choice of a terminal ¢ for = gives 7/ = 7). Then repeat the
procedure with a next node =’ € V —T. Eventually, after at most |V —T'||T'| iterations,
we obtain a graph G = (17, E) with V =T and T(é, ¢, u) = 7, which determines the
minimum 0-extension for G ,C, b in an obvious way.

However, we can suggest a more efficient method in which the problem with the
same ; is solved only once. We say that a metric m on V is cyclically even if m(zy) +
m(yz) + m(zz) is an even integer for any z,y,z € V (in particular, m is integral).
. An extension m of u to V is called tight if each two z,y € V belong to an m-shortest
T-path, i.e., m(sz) + m(zy) + m(yt) = u(st) for some s,t € T.

As before, we first find an optimal 0-extension m; of u; to V for each ¢ and put
m = my + ...+ mg. Each m; is cyclically even (as H; is bipartite), therefore, m is
cyclically even as well. Next we find a cyclically even tight extension m’ < m of u (note
that m may not be tight). Initially, set m’ = m. Choose z,y € V such that m’ (zy) > 2
and

A(zy) := min{m/(sz) + m' (zy) + m' (yt) — p(st) : s,t € T} > 0:

Put £(zy) = max{0,m’(zy) — A(zy)} and £(e) = m'(e) for each e € Ey — {zy}, and
update m' := d***, where K = (V, Ey) is the complete graph on V. Then any T-path
P in K satisfies ¢(P) > p(st), where s,t are the ends of P, i.e., the new m’ is an
extension of u. Also one can see that m’ is cyclically even. We do similarly for a next
pair ',y € V, and so on. After O(|V|?) iterations we obtain a cyclically even extension
m’ of p such that for any z,y € V, '

(5.4) if m/(zy) > 2, then A(zy) = 0.
Statement 5.2. A(zy)=0forallz,yeV.

Proof. By (5.4), it suffices to examine a pair z,y with m/(zy) < 1. Let m/(zy) = 1. '
Choose z € V such that both m'(zz), m'(zy) are nonzero (if no such z exists, then
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m'(sz) = m/(ty) = 0 for some s,t € T, whence A(zy) = 0). Since m’ is cyclically even
and m'(zy) = 1, either m’(zx)+m/' (zy) = m'(zy) or m'(zy)+m'(yx) = m'(2z). Assume
the former (the latter is similar). Then m’(zy) > 2. Therefore, there exist s, € T such
that m’(sz) +m' (zy) +m'(yt) = p(st). This implies m'(sz) +m/'(zy) + m’(yt) = p(st),
yielding A(zy) = 0. In case m/(zy) = 0, A(zy) = 0 follows from A(zz) =0for z € V

with m/(zz) > 0. .

Thus, m’ is tight. Also m' < m implies ¢-m' < ¢-m, whence ¢c-m' = 7. We
assert that m’ is a O-extension of u and, therefore, m’ is an optimal solution to (1.1)
in our case. The proof relies on a result concerning the tight spans for frames. More
precisely, it is shown in [Dr,Is] that for every metric space (X, d), there exists a unique
" tight extension (X, ) such that any tight extension (X',d’) of (X, d) is isometrically
embeddable in (X,§), i.e., there is'a mapping v : X' — X satisfying v(s) = s for all
s € X and d'(zy) = 6(y(z)y(y)) for all z,y € X'. Such an (X, 9) is called the tight span
(or injective envelope, or Tx-space) of (X,d). [K98] gives an explicit combinatorial
construction for the tight span of the path metric of a frame. The proof of validity of
this construction includes the following result.

Statement 5.3 [K98]. Let H = (T,U) be a frame and let m' be a tight extension
of d¥ to V. For each x € V, at least one of the following is true:
(i) m'(vz) = 0 for some v € T;
(i) m' (uzx) + m/(zv) =1 for some edge uv € U;

(iii) m/ (vox) +m/ (zv2) = m/(v1z) +m'(zv3) = 2 for some 4-circuit C = vov1v2v3%0
of H. ’ '

Using this result, we show that for each z € V, there exists t € T with m/(tz) =
0. This is immediate in cases (i) and (ii) of Statement 5.3. So assume that we are
in case (iii) and m/(v;z) > 0 for i = 0,1,2,3. Then m'(v;z) = 1 for each . But
m' (vox) +m/ (zv1) + m/(v199) = 14+ 141 = 3, contrary to the fact that m' is cyclically

" even. Thus, m' is indeed a 0-extension.

This gives a “purely combinatorial” algorithm for solving (1.1) with x to be the
path metric of a sparse frame H. This algorithm involves O(|T'|) minimum (2, r)-metric
computations and runs in time polynomial in |V}, |E| and linear in log ||c||.

In fact, this algorithm solves (1.1) for any metric g of the form dHt where H =
(T,U) is a sparse frame and £ is a nonnegative orbit-invariant function on U. This
relies on the following fact.

Statement 5.4 [K97]. Let m be a minimum O-extension for G,c,d¥, where H is
~ a frame. Let ¢ be a nonnegative orbit-invariant function on the edges of H, and let
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p = dHt. Then m is a minimum O-extension for G, c, .

6. Concluding remarks .and open questions

Extending a result in [Da] on the intractability of the minimum 3-terminal cut
problem (i.e., (1.1) with u = d¥3), [K98] proves that for a fixed p = d¥, problem (1.1)
is strongly NP-hard if H is non-modular or non-orientable (e.g., if H = C5 or K3 3).
On the other hand, (1.1) is solvable in strongly polynomial time for each minimizable
metric g. There is one more polynomial case, namely, when p is representable as
p= Appi+. ..+ Ak g, where A, ..., Ag > 0, each p; is the cut metric on T corresponding
_to a bi-partition {A4;, B;} of T, and the family F = {Ay,..., Ay, By, ..., By} satisfies
the Helly property, i.é.', any subfamily of F has a nonempty intersection provided
that each two members of F meet (when p is d¥, this is shown to be equivalent to the
property that H is a median graph, i.e., any three nodes of H have precisely one median
[MS]). A strongly polynomial algorithm for this case is given in [Ch] (see also [K98,
Sec. 5] for a simple algorithm based on a reduction to ¥ minimum cut computations
and uncrossing techniques). ' |

Yet, there remain metrics g = df for which the complexity status of (1.1) is
unknown. Let H = (T,U) be modular and orientable but not necessarily hereditary
modular, and let Q1,. .., Qx be the orbits of H. Then p = d is py +. ..+ pg, where p;-
is the corresponding 0-extension of d#/(U=Q:) to T, and (5.3) holds for any G = (V, E)
(V 2 T) and ¢, as explained in Section 5. We conjecture that (5.3) holds with equality
-when each H/(U — Q;) is a frame with possible parallel edges (a stronger conjecture is
that a similar property takes place for any orientable modular graph H).

In this case, each subproblem with G, c, y; is solvable in polynomial time, and a
method in Section 5 constructs a cyclically even tight extension m’ of u to V satisfying
com' <4 41 Emisa 0-extension, then m’ is an optimal solution to (1.1),
and (5.3) turns into equality. However, m’ needs not be a 0-extension in general. For
example, suppose that H include a cube H' = (T”,U’) as an isometric subgrziph, and
let A C T’ consist of four nodes with the distance two for each pair. Then d¥ has a
cyclically even tight extension m on V = T'U {z} such that m(zv) = 1 for each v € A
and m(zv) = 2 for each v € T" — A (so m is not a O-extension in general).

We address an open question: is (1.1) in P when p is the path metric of an arbitrary
orientable modular graph? Two more open questions concern possibility to construct
a combinatorial strongly polynomial algorithm for the minimum (2, r)-metric problem,

“and a combinatorial polynomial algorithm for (1.1) with an arbitrary minimizable p.
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