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A Fast Algorithm for Finding a Maximum Free Multiflow
in an Inner Eulerian Network and Some Generalizations

Toshihide Ibaraki*, Alexander V. Karzanov®, and Hiroshi Nagamochi**

Abstract. Let N = (G,T,c) be a network, where G is an undirected graph with n
nodes and m edges, T is a set of p specified nodes of G, called terminals, and each
edge e of G has a nonnegative integer capacity c(e). If the total capacity of edges with
one end at v is even for every non-terminal node v, then N is called inner Eulertan. A
free multiflow is a collection of flows between arbitrary pairs of terminals such that the

total flow through each edge does not exceed its capacity.

In this paper we first generalize a method in Karzanov [1979a] to find a maximum
integer free multiflow in an inner Eulerian network, in O(@(n, m)log p) time, where ¢
is the complexity of finding a maximum flow between two terminals. Next we extend
our algorithm to solve the so-called laminar locking problem on multiflows, also in
O(¢(n, m)log p) time.

We then consider analogs of the above problems in inner balanced directed networks,
which means that for each non-terminal node v, the sums of capacities of arcs entering
v and leaving v are the same. We show that for such a network a maximum integer
free multiflow can be constructed in O(¢(n, m)logp+ n?m) time, and then extend this

result to the corresponding locking problem.

Keywords: Maximum flow, Multi(commodity)flow, Multiflow locking problem, Eu-

lerian graph.

1. Introduction

By a network we mean a triple N = (G,T,¢) consisting of an undirected graph

G = (Vg,Eg), a subset T of nodes of G, called terminals, and a nonnegative integer-

valued function ¢ : Eg — Z4 of capacities of edges of G. We denote n = |V |, m = |Eg|

and p = |T'| throughout this paper. A T-path is a simple path in G which connects two
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distinct terminals. A multiflow F consists of T-paths P,..., P, along with nonnegative
reals aq,..., o, and F is called c-admissible if it obeys the capacity constraint

(1) ¢Fle) := Z(ai ce€ P)<cle) forall e€ Eg.

Following Lomonosov (1985), such a multiflow is called free (because no pair of terminals
is forbidden to use as end nodes of paths in F'). Unless otherwise stated, we assume
that any multifiow we deal with is c-admissible and free. The (total) value, val(F'), of
Fis a; + ...+ ag, and F is called mazimum if its value is as large as possible. For
disjoint subsets A, B C T, the subset of F' concerning all the paths with one end in A
and the other in B forms the flow in F between A and B, and is denoted by F4 g or
Fp 4. Also F4 stands for Fsr—4. A single element set {s} is sometimes denoted by
s; e.g., Fs stands for F{,}, and AU s stands for AU {s}.

For X C V, §(X) = ég(X) is the set of edges with one end in X and the other
in V — X (a cutin G). For a function ¢ : $ — R and a subset S’ C S, g(S’) denotes
S™(g(e) : e € §'); s0 ¢(6(X)) is the capacity of a cut §(X). For A C T, Ay = Ax(c)
is the minimum capacity of a cut §(X) separating A and T — A, le., with X NT = A
or T — A. Because of (1), the value of F)4 does not exceed the capacity of such a cut,
therefore, val(F4) < A4.

We say that NV (and also c¢) is inner Eulerian if ¢(6(v)) is even for each inner node
v € Vg — T (or, equivalently, ¢(§(X)) is even for every X C Vi ~ T). Lovéasz and
Cherkassky, independently, obtained the following result.

Theorem 1 [Lovéasz 1976, Cherkassky 1977]. Let N = (G,T,c) be inner Eulerian.
Then there exists a maximum free multiflow F' which is integral (i.e., all numbers «;
in F are integers). Moreover, such an F satisfies val(F) = 3> (s : s € T), or,

equivalently,
val(Fs) = A;  forall se€T.

This implies that if ¢ is integral but not necessarily inner Eulerian, then there exists
a maximum half-integer multiflow (i.e., with all ;’s being multiples of 1/2). Note that
the proof of this theorem given by Cherkassky (1977) is constructive and provides a
solution algorithm. It applies standard augmenting path techniques combined with
the so-called T-operations, and if a shortest augmenting path is always chosen at each
iteration, the algorithm becomes strongly polynomial, like those of Dinitz (1970) and

Edmonds and Karp (1972) for the maximum flow problem.

A different idea was suggested in Karzanov (1979a) to design a significantly faster
algorithm for finding a half-integer maximum multiflow for an arbitrary nonnegative

integer-valued ¢. It is based on the divide and conquer approach which recursively
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reduces the problem in the current network G',7”,¢’ to the same problems in two
smaller networks with at most [7’/2] + 1 terminals in each. In the final stage, one
obtains a set of irreducible problems, each of which deals with exactly three terminals
and is shown to be solved by three maximum flow computations. In fact, the whole
algorithm has complexity equivalent to O(log p) max flow computations in networks
with O(n) nodes and O(m) edges (the time bound O(n*logp) pointed out in that work
comes up when an O(n®) max flow algorithm is applied). However, this algorithm needs

not construct an integer maximum multiflow in the inner Eulerian case.

In this paper we first improve the above method to find an integer maximum
multiflow in the inner Eulerian case. The algorithm we design has similar complexity;
it runs in O(¢(n, m)logp) time, where ¢(n',m’) is the complexity of finding a maximum
flow and minimum cut in a network with n’ nodes and m’ edges. If we apply, as a
subroutine, the currently fastest O(nmlog (n?/m)) max flow min cut algorithm due to

Goldberg and Tarjan (1988), then our algorithm runs in O(nmlog (n?/m)log p) time.

We then show that this algorithm can be modified to solve an important special
case of the so-called multiflow locking problem. As the input of this problem, a family

A C 2T of subsets of T is given, and one requires to

(2) Find a multifiow F in N which locks simultaneously all members of A,

where a multiflow F is said to lock a set A C T if val(F4) = A4. If such a multiflow
for A C 27 exists for every network (G, T, c) with T fixed, then A is called lockable.
The following theorem gives a complete characterization of such families. Call a family
of subsets of T' 3-cross-free if it has no three members such that each two of them are
crossing, where sets A, B C T are crossing if none of ANB, A—-B,B—A and T —(AUDB)
is empty.

Theorem 2 [Karzanov and Lomonosov 1978]. A is lockable if and only if A is 3-cross-
free. Moreover, if A is lockable and ¢ is inner Eulerian, then there exists an integer

multiflow which locks all members of A.

(For a detailed proof of this theorem, see Karzanov (1979b) and Lomonosov (1985).
Shorter proofs, based on splitting-off techniques, are given in Karzanov (1984) and
Frank et al. (1992).) Now call two sets A, B C T lamnar if they are not crossing. If
every two members of A are laminar, A is called laminar. In particular, the collection
A of all single element sets {s}, s € T', is laminar, and we observe from Theorem 1 that
for this particular A, a multiflow F' is a solution to the locking problem if and only if
F is maximum. Thus, the multiflow locking problem for laminar families A generalizes

the maximum free multiflow problem, and Theorem 1 follows from Theorem 2. In this



paper we show the following.

Theorem 3. Let A be laminar and ¢ inner FEulerian. Then an integer multiflow that

Jocks all sets in A can be found in O(p(n, m)log p) time.

Next we consider analogs of the above problems for the directed case. We deal
with a network N~ = (D, T,¢) consisting of a digraph D = (Vp, Ep), aset T C Vp of
terminals, and a function ¢ : Ep — Z of arc capacities. For X C Vp, §1(X) = §5(X)
is the set of arcs (z,y) € Ep leaving X (ie., z € X F y) and 67 (X) = 65(X) is the
set of arcs (z,y) entering X (ie., z € X 3 y). Given A C T, 6% (X) is called a dicut
from A if XNT = A, and the minimum capacity c(§(X)) for such X’s is denoted by
At = A% (c). Analogously, 67(X) is a dicut to Aif X NT = A4, and A\ = A% (c) is the
minimum ¢(6~ (X)) among such dicuts. In the definition of a multiflow F'in N7, the
only difference from the undirected case is that now the paths in F' are directed T-paths
in D. For disjoint A, B C T, Fa g denotes the subset of-F' concerning paths from A to
B (so F4 p and Fp 4 are now different). As before, Fy stands for Fa 7_a.

We impose the condition that N (and also ¢) is inner balanced, or flow-like. This
means that ¢(61(v)) = ¢(§~(v)) holds for all non-terminal nodes v € Vp — T (ie., ¢
itself is a flow with T as the set of terminals). An important property of such networks

was established by Lomonosov.

Theorem 4 [Lomonosov 1978]. Let N be inner balanced. Then there exists a
maximum multiflow F which is integral. Moreover, val(Fs) = A and val(Fr_s) = A]
hold for all s € T.

(A similar result for totally balanced networks was independently obtained by
Frank (1989). A strongly polynomial algorithm for finding a maximum integer multiflow
in an inner balanced network is designed in Karzanov (1979b).) Note that the flow-
likeness of N~ implies the following property: for any s € T and any X C Vp with
XnT={s},
(3) e(64(X)) = e(6™ (X)) = e(8%(5)) — e(57(5)).
Therefore, AT — A7 = ¢(67(s)) — ¢(67(s)) and, moreover, the minimum dicuts from s
and to s are induced by the same sets of nodes. In other words, in order to find AF
and A7 it suffices to find a minimum cut separating s and 7' — s in the corresponding
undirected network N = (G, T,¢), where G is the underlying-undirected graph for D
in which each edge e has the same capacity as that of the corresponding arc € in D,
c(e) = ¢(é).

Based on this property, one can easily reduce the maximum multiflow problem

in an inner Eulerian (undirected) network N = (G.T.¢) to that in an inner balanced
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network, as follows. Let @ be the subset of s € T with ¢(ég(s)) odd. Partition Q into
pairs and connect each pair by an edge with unit capacity. This makes the network
N’ = (G’,T,c) which is totally Eulerian. So we can represent ¢ as a nonnegative integer
combination of (the incidence vectors of the edge-sets) of some cycles. Therefore, one
can replace each edge e = {z,y} by two arcs (z,y) and (y,z), and assign integer
capacities to these arcs with the sum to be c(e) so that the directed network obtained
this way is totally balanced. Now if we delete the “artificial” arcs between those pairs
in Q and find a maximum integer multifiow for the resulting directed network, this

gives a maximum multiflow in N.

In this paper we show that some reverse reduction is also possible. More precisely,
given an inner balanced network N™ = (D, T, ¢), one can transform a maximum integer
multifiow in the underlying undirected network into a maximum integer multiflow in
N~. Asaresult, an O(p(n, m)logp+n?m) algorithm is obtained to solve the maximum

integer multiflow problem in N7,

Finally, one can suggest an analog of the locking problem for the directed case. Let
us say that a multiflow F' in N~ locks a set A C T (in both directions) if val(F4) = )\;
and val(Fr_4) = A} (= A;_A). Then, given a family A C 27, the directed version
of the locking problem is to find a multiflow F' in N7 that locks all members of A.
For T fixed, A is called lockable with respect to the directed case if this problem has a

solution for every inner balanced N = (D, T, c). We prove the following fact.

Theorem 5. For the directed case, A is lockable if and only if A is laminar. Moreover,
if A is laminar and N~ = (D, T,c) is inner balanced, then the locking problem has
a solution, which is integral and can be found in O(p(n,m)log p + n?m) time, where

n = |Vp|, m = |Ep| and p = |T]|.

Remark 1. An instance of the locking problem may be solvable even if A is not
laminar. Given an inner balanced N— = (D, T,c¢), suppose that A — Ap is laminar,
where Ap consists of all A € A such that for some X' C Vp with X N7 = A4, at least
one of the sets §7(X) and §7(X) is empty. Then an integer multiflow that locks all
sets in A does exist (even if A is not laminar), as we show in Section 4. This extends

the part of Theorem 5 concerning the solvability of the locking problem.

The structure of this paper is as follows. The algorithm for finding an integer
maximum free multiflow in an inner Eulerian network is given in Section 2. Section 3
describes how to modify this algorithm to find an integer solution to the locking problem
with A laminar and ¢ inner Eulerian. The algorithm for inner balanced networks and

the proof of Theorem 5 are given in Section 4.

It should be noted that, in the above discussion, flows and multiflows are rep-



resented in the paths packing form (i.e., via a set of weighted T-paths), as this is
often more convenient from the combinatorial viewpoint. However, in order to get the
above-mentioned time bounds, our algorithms need to handle, in intermediate steps,
the standard node-arc representation of flows. More precisely, return to the undirected
case, and let G be the digraph with the same node-set Vz whose arc-set Eg is obtained
by replacing each edge e = {z,y} of G by two arcs (z,y) and (y, z). For disjoint subsets
A, B CT, aflow from source set A to target set B is a function f’ = f"A’B . Eg — R,

satisfying the conservation condition

dp(z) = Zf’(m,y) - Zf’(y,a:) =0 foreach z € Vg — (AU B),
y y

and its value, val(f’), is defined to be [df(A)| = |dp(B)|, where ds () is called
the divergency of f' at z. We usually assume that dy is nonnegative within A, and
nonpositive within B, which will lead to no loss of generality in our considerations.
When needed, a flow F’ between A and B in the paths packing form can be transformed
into a node-arc flow f’ from A to B so that val(f’) = val(F’) and f'(z,y) + f'(y,z) <
¢F'(e) holds for all e = {z,y} € Eg, and, conversely, a node-arc flow f’ from A to B can
be transformed into a paths packing flow F' between A and B so that val(F') = val(f’)
and ¢ (e) < |f/(z,y) — f'(y,2)| holds for all e = {z,y} € Eg (due to the well-known
flow decomposition procedure, see Ford and Fulkerson (1962)). (In this moment we
do not touch computational complexity aspects for either procedure.) To distinguish
between these two representations, we use capital (resp. small) letters for flows in the

former (resp. latter) form, and similarly for multiflows.

For terminals s,s’ € T and disjoint sets 4, B C T, we write {s,s'} € {4, B}
if s belongs to one and s’ to the other of A,B. We will essentially use a non-
expensive representation of a free multiflow f in the node-arc form as being a collection
{fa, Bys---+[fa, B, } of flows, where the pairs {A;, B;} form a covering nested famaily.

This means that

(4) (i) for any distinct s,s” € T, there is a unique 7 such that {s,s'} € {4, Bi}; and

(11) for 1 <17 < j < r, either (.41‘ U BI) N (A]' U Bj) = 0 or A; U Bj C A; or
Aj U Bj C B;.

One can see that r is exactly p— 1, and that for each s € T, there is an ¢ such that
either 4; = {s} or B; = {s}. The (total) value, val(f), of fis y (val(f*) : i=1,...,1),
where f* stands for f4, p,. Besides, we will also deal with certain “local values” of

f. Such a value val(f,7) is defined for a subset Z C T, to be the sum of numbers

|d;(Z 0 (4; U B;))| among all ¢ € {1,...,7} such that neither Z nor T' — 7 entirely
includes A;UB; (then val(f, Z) = val(f,T—Z)). In particular, for a terminal s, val(f, s)
coincides with Y (|dsi(s)| : ¢ = 1,...,7). The above definitions are justified by the



easy fact that if F is a paths packing multiflow corresponding to f (i.e., the union of
paths packing flows obtained from the f*’s as said above), then val(F) = val(f) and
val(Fy) = val(f,s) for all s € T.

Similar representations of flows and multiflows in the node-arc form are used for
the directed case as well (with the difference that for a pair {A;, B;}, there are two

flows fa, B, and [B..A;)-

For a survey of some relevant results on flows and multiflows, we also refer the
reader to Ahuja et al. (1993), Frank (1995), and Goldberg et al. (1990).

2. Maximum multiflow algorithm

We may assume that p > 3. If p > 3, the algorithm recursively applies the following
network decomposition procedure. Partition T into Tl‘ and Ty = T — 717 such that
T3] < [|T1/21, i = 1,2, and find a minimum cut C = §(X) in (G, ¢) which separates
T, and Ty. Let for definiteness 77 C X; so 175 € Vg — X. Shrink the subnetwork
induced by Vg — X to a special node ¢/, forming N’ = (G',T',¢'). Here T' = T, U t';
Vo = X Ut'; ¢ coincides with ¢ within the subgraph induced by X'; each edge e of the
form {t',z} is created by merging the (nonempty) set of edges in C with one end at
z, and c(e) is the sum of capacities of these edges. Similarly, shrink the subnetwork
induced by X to a special node t’, forming N” = (G",T",c"). Let C’ and C” be the

sets of edges incident to ¢’ and t”, respectively. Then
(5) (C') = "(C") = c(C).

Unless |T?| = 3, repeat the procedure for N', decomposing it into two networks
with smaller sets of terminals, do similarly for N, and so on. Eventually, we obtain
a collection of networks, each one containing exactly three terminals. Obviously, each

network appeared is inner Eulerian.

In the rest of this section we first describe how to find a maximum integer multiflow
in a resulting network with three terminals (which is the core of the method), and then
we explain how to recursively combine the obtained multiflows so as to get the desired

maximum multiflow in the original network.

2.1. Algorithm for three terminal case. For convenience we keep the same
notation N = (G, T,c). Let T = {s1, 82,s3}. First we find a maximum integer flow f

from {s7,s3} to s;. Then

(6) —ds(s1) = A5y, = c(6(X)),
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where §(X) is a minimum cut separating {s2, s3} and s;. Next we transform f so as
to make the divergency at s, as large as possible while preserving the divergency at
s1. This is done by use of standard techniques of constructing a maximum flow in the

digraph G endowed with the arc capacities ¢y, defined by
(7) ci(e) =c(e) — f(e) + f(e) for e€ Eg

(hereinafter, for an arc e = (z,y), € denotes the reverse arc (y,z), and c(e) = c(€) is
defined to be the capacity ¢ on the corresponding edge {z,y}). More precisely, find a
maximum integer c¢y-admissible flow g from s to s3, and update f by

(8) #'(e) = max{0, f(e) + g(e) — f(€) — g(8)} for e€ Eg.

This together with (7) implies that f’ is c-admissible, and dy(v) = dy(v) + dg(v)
for each node v. In particular, —d/(s1) = —ds(s1) = Xs,. To see that f’ is maximum
at s, consider the set Y of nodes reachable from s, by augmenting paths with respect
to ¢y and g (recall that a path P = (zo,e1,21, ..., €k, zy) is augmenting if each forward
arc e; = (z;_1, ;) satisfies g(e;) < cs(e;) and each backward arc e; = (x4, T;—1) satisfies
g(e;) > 0). Since g is maximum, s3 € ¥ also Y N X = 0 (as (6) and (7) imply that
for each e € 6 (X), ¢s(e) = 0, whence g(e) = g(€) = 0). For each e € §7(Y), we have
g(e) = cple) = c(e) — f(e) + f(€) and g(€) = 0. This implies

dg(s2) = g(67(Y)) — g(67 (V) = e(8(Y)) = fF(6T(Y)) + F(67(Y)) = c(6(Y)) — ds(s2)-

Therefore, d s/ (s2) = ¢(6(Y)) = As,-

Now our aim is to transform f’ into a maximum integer multifiow. The method
will rely on the following lemma. Note that each e € Eg satisfies ¢ (e) +c(8) = 2¢(e),
therefore, cfi(e) and cs(€) have the same parity. For z € Vg, let Q(z) be the set of
edges {z,y} € 6(z) with ¢y/(z,y) odd.

Lemma 2.1. |Q(z)| is even for each node x € Vg.

Proof. Consider z € Vi, and let a = ¢ (67 (2)) and b = ¢(8(z)). For any e € 6% (x),
csi(e) = cle) — f'(e) + f'(€). Therefore, a = b —ds (x). Obviously a and |Q(xz)] have
the same parity, so it suffices to show that a is even. If © € Vg — T, the latter follows
from the facts that b is even (as ¢ is inner Eulerian) and d (z) = 0.

Let z = s;. Consider the above minimum cut §(X) separating s; and {s2,s3}.
Since ¢(6(y)) is even for cach y € X — s1, the numbers b and ¢(6(.Y')) have the same
parity. Also —d(s1) = ¢(6(X)). Therefore, a is even. For @ = s,, the argument is
similar, considering the minimum cut §(Y7) separating s, and {si.ss} and using the

equality ¢(8(Y")) = d(s2). Finally, for 2 = s3, the evenness of a follows from that for all
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other nodes and the facts that > (c(6(y)) : y € Vg)isevenand ) (ds(y) : y € Vi) = 0.

[ ]

Thus, the set @ = U(Q(z) : z € Vg) forms an Eulerian subgraph in G and,
therefore, can be partitioned into pairwise edge-disjoint circuits C1, ..., C,. We change
f' by one along each circuit C; = (xo,{zo,z1},21,. .., {Tk=1, 2k}, Zx = To). More

precisely, for each arc e; = (z;-1,x;), if f'(e;) < c(e;), then update f'(e;) := f'(e;)+1,
while if f'(e;) = c(e;) (implying f'(€;) > 0 as cp(e;) # 0), then update f'(e;) :=
f'(8;) — 1. Clearly the resulting flow f’ is c-admissible and preserves the divergencies

at all nodes. Moreover, now cy:(e) is even for all arcs e.

Using this property of f’, we construct the desired multiflow as follows. Without

loss of generality one may assume that
(9) ~dy(s1) > dg(s2),

or, equivalently, ds (s3) > 0 (otherwise take the reverse flow f", defined by f"(e) =
f'(e), and permute s; and sz). Define o0 = ¢y /2; then o is integer-valued. Find a
maximum integer o-admissible flow h from s3 to sg. This h is just the flow from s3 to
89 in the desired multifiow that we construct. Note that 2k is a maximum c;/-admissible
flow from s3 to s2, and we are going to use the second copy of h to update the flow f

from {s2,s3} to s;.

Let Z be the set of nodes reachable from s3 by augmenting paths concerning o
and h. Then sy € Z and X N Z = @. Furthermore, Z is exactly the reachable set for
cp and 2h, whence we conclude that

(10) dfl(Sg) + dg;L(Sg) = C((S(Z))

So §(Z) is a minimum cut separating sz and {s;, s2}.

Without loss of generality one may assume that for each arc e, at least one of h(e)
and h(€) is zero, and similarly for f’ (using the fact that cj does not change under
the same decrease of f'(e) and f(€)). Let f” be obtained as in (8) with f’ and A in
place of f and g, respectively. Since h is integral, f” is integral too. We assert that the

multifiow f* consisting of the two flows f” and h is c-admissible and maximum.

By (10), dpr(s3) + da(ss) = As,. Also dyu(s)) = dpi(s1) = A5, (as du(s1) = 0),
while dyv(s2) = dp(s2) + dp(s2) together with dy(s2) = As, and dj(s2) < 0 gives
dpr(s2) + |[dn(s2)] = As, (note that 2h(e) < cpi(e) = f'(€) for e € 67(Y) implies
|dn(s2)] < djr(s2); so dpr(sy) if nonnegative). So f* is a maximum multiflow, provided
that f* is c-admissible.

To see that f* is c-admissible, consider arcs e, and show that g = f(e) + h(c) +

f"(€) + h(g) does not exceed ¢(e). Three cases are possible, letting for definiteness
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f'(8) = 0. (i) Let k() = 0. Then 2h(e) < cs:(e) = c(e) — f'(e) gives ¢ = f"(e) +h(e) =
f'(e)+2h(e) < c(e). (ii) Let h(e) = 0 and f'(e) > h(€). Then f"(e) = f'(e) — h(e) and
F"(e) = 0, whence ¢ = f"(e) + h(g) = f'(e) < c(e). (iil) Let h(e) = 0 and f'(e) < h(&).
Then f”(e) = 0 and f"(g) = h(g) — f'(e), and now 2h(e) < c;/(€) = c(e) + f'(e) yields
g = f"(e) + h(e) = 2h(e) — f'(e) < c(e)-

Thus, f* is integer, c-admissible and maximum, as required. The above algorithm
applies three maximum flow computations in G (namely, it constructs flows f,g and
h), and it is easy to see that the number of other operations is linear in |Vg| + |Eg|.
Therefore, the complexity of this algorithm is O(p(n,m)).

2.2. Finding a maximum multiflow in the initial network. In the process
described in the beginning of this section, we, in fact, implicitly constructed a binary
tree T of networks, in which every pair of children networks was created from the parent
one by applying the network decomposition procedure. Then we found a maximum
integer multiflow in each leaf (final) network of this tree. Now, going in the reverse
direction, we recursively combine the occurring multiflows in each pair of children
networks in order to eventually construct the desired multiflow in the initial network.
More precisely, the multifiow aggregation procedure considers two children networks
N' = (G",T',c) and N" = (G",T",c") of the same parent network N = (G,T,2),
along with their maximum integer multiflows f’ and f, respectively, and outputs a

maximum integer multiflow f in V.

We assume by induction that f’ and f" are given in the node-arc form as being
collections of flows f{ = fiy piy..s fr = fiar p and fi' = A,, B,,,...,f” = A,, B
respectively, where w’ = ({fi’l, }3’ }, ..., {AL,B.}) and " {A’l’, B”}, R L B”})
are nested families on 77 and T, respectively (cf. (4)). Recall that by Theorem 1 the
maximality of f' means that val(f',s) = A; holds for all s € T, and similarly for f”
(the local values val(-, s) are defined in the Introduction).

Let I (resp. .J) be the set of indices i (resp. j) such that t' € AJUB] (resp. t" € ATU
BY), where ' and t" are the special terminals in N’ and N’ that respectively appeared
when N was decomposed as described in the beginning of this section. Reversing some
flows in f’ and f” if needed, one may assume that ¢’ € A} for each i € I, and ¢ € B}

for each j € J.

For each i € I, apply a flow decomposition procedure to extract from f; a maximum
integer subflow g; from ¢’ to Bf. That is, g;(e) < fj(e) for cach e € Eci, and dg, (1) =
d g (t"). Put these flows together, forming the flow g from #’ to 7' — " such that d_,,( =
S(dg, (¢') - i€ )= Ap(c"). Formally, for e € E¢, define g(e) = max{0, Y ieilgile) —
g:(€))}. Similarly, for cach j € J, extract from f a maximum integer flow A; from 4”

to t”, and combine them to the flow A from T — " to t” such that —d,(#") = Ap (¢! )
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From the minimality of the cut g/ (¢') and the maximality of f at t’ it follows that
gle) = c/(e) and g(€) = 0 for all e € 6F(t'); similarly, h(e) = ¢’ ( ) and h( ) = 0 for
all e € §~(t"). Therefore, we can combine g and h in a flow 7 from Tp = T" — t"
to T, = T' — ' in N in a natural way, using the fact that the cuts §(¢'), 6(t") and
5(X) have the same capacities in their networks, where X is the set of nodes in G
corresponding to Vg —t' (cf. (5)). Formally, f coincides with g within the subgraph of

G induced by X, coincides with h within the subgraph induced by Vs - X, and obeys
Fle) = ¢(e) and F(8)=0for all e € §~(X). Then 7 is a maximum flow from T to T}.

Now we form the multifiow f in N by adding to ]? each flow f' that is equal to
fl—giifi €I, and f] otherwise, and each flow f” that is equal to f}' — h; if j € J,
and f;' otherwise. If for some ¢ € I, the set Al consists of the only terminal ¢', then f’
vanishes in f (in this case f’ has zero divergency at each node). Similarly, f’ " vanishes
if B” = {t""}. Clearly the representation of f matches the covering nested family w
on T consisting of the pair {Tl,Tg} the pairs {A] — ¢/, B/} with A} # t', and the
pairs {A7, B} —t" } with B # t". Additional properties are exhibited in the following
statement (thls will be use in full to prove locking properties in Section 3, while now
we only need case Z = {s} for s € T).

Statement 2.2. For any Z C T, val(f, Z) = val(f’, Z). Similarly, for any Z C To,
val(f, Z) = val(f", Z).

Proof. Consider Z C Ty and {4}, B!} € w'. Let a and b be the divergencies of 71 at
A= (A" —t¥)YNZ and B = B} N Z, respectively. If t' ¢ A}, then ]?L’ = fI, whence

a = dg(A) and b = dp(B). And if ' € A}, then fl = fl — gi; we have a = d(4)
(since ¢’ ¢ Z, and dg, (s) = 0 for each s € 4} —t), and dy/(B) = b+d,,(B) = b+dj~(B)

(by the construction of ]?) This implies val(f, Z) = val(f’, Z). For Z C T> the proof is

similar. e

Since A;(¢) is equal to A;(¢') for s € ﬁ, and to A;(c"”) for s € fg, the maximality
of both /' and f” together with Statement 2.2 implies val(f,s) = As(¢) for all s € T,

i.e., f is a maximum multiflow in V.

One can estimate the number of operations in the aggregation procedure for the
current N, N’, N as follows. Let n(N), m(N), p(N) denote the numbers of nodes, edges
and terminals in a network N. We assume by induction that each flow f! forming
f'is acyclic, i.e., the subgraph S! spanned by the support supp(f!) = {e € Ec
fl(e) # 0} of f! contains no (directed) cycle; and similarly for f”. Then the above
aggregation procedure can be implemented in O(m(N)(I| + 1J])) time. Indeed, the
acyclicity of each f/ enables us to extract g; in O(m(N’)) time, by a straightlorward

method using a topological ordering of the node set of SI, i.e., one compatible with
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its acyclic structure (details are left to the reader). Similarly, extraction of each h;
is performed in O(m(N")) time. The other operations spent take O(m(NY(I| + |J]))
time in total. Let T = {i(1),,...,4(g)} and i(1) < ... < i(g). Since w' is nested, A;(l) D
Ag(z) D...D A;(q). Moreover, the network decomposition procedure guarantees that
for k = 1,...,q — 1, the cardinality of Aj, ) is at most 1+ |—|A§(k)|/21. Therefore,
|I| = O(log p(N")), and similarly, |J] = O(log p(N")). Thus, the construction of f
from f’ and f” takes O(m(N)log p(IN)) time. Note that the reduced flows f; — g; and
fi — h; are obviously acyclic because so are f! and J'-’ ; however, the new flow fmay
not be acyclic. Therefore, to be consistent with the above assumption, we must make
f acyclic as well. A routine procedure that iteratively searches for a cycle within the
support of f and cancels it by uniformly reducing f along the cycle carries out this
task in O(n(N)m(N)) time (such a procedure should also be applied to make the flows

in all the leaf networks in 7 acyclic before the aggregation process).

2.3. Complexity of the whole algorithm. We wish to show that the above
algorithm runs in time 7 that is at most Ci¢(n, m)log p + Canmlog p for some appro-
priately chosen constants C; and Cs. This is true if p = 3, as was shown in Subsection
2.1. For p > 3, we assume that the time bound ¢ of the max flow min cut algorithm
we apply is subject to some reasonable restrictions, namely: ¢ is monotone in both

variables, i.e., p(n',m') < p(n,m) if 7’ <7 and m' < m, and
(11) (R, m) + o(r",m) < (@ + 0", m);
p(n+2,m) < ¢(n,m)+ Dmlogn,
where D is a constant. For instance, this is valid for the bound O(nmlog (n*/m)) in
Goldberg and Tarjan (1988).
For p > 3, N is decomposed into two networks N’ = (G',T’,¢') and N" =
(G",T",c"), and we have

(12) T<T +T"+ p(n,m) + Knm.

Here 7' and 7" are the time to solve the problem in N’ and N”, respectively, ¢(n,m)
comes up when the network decomposition procedure finds a minimum cut in N, K is
a constant, and the bound Knm concerns the aggregation procedure for N’ and N
(including all other operations, of smaller order, incurred during the network decom-

position for N).

Assume by induction that

(13) T < Crp(n’,mNogp' + Can'm’logp’  and
T" < Crp(n”, m"log p" + Can"m"log p”,
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denoting the corresponding set sizes for N’ with primes, and for N with two primes.

We know that m/,m” < m and n’ + n"" = n + 2. Therefore,
o', m') + o, m") < p(n,m) + o(n",m) < p(n +2,m) < @(n,m) + Dmlog n.

Also n'm! + n'm" < nm + 2m. Let for definiteness p’ > p” and let v = log (p/p’).
Note that there is a constant 4o > 0 such that v > 5o regardless of p and p’. Then
log p’ < logp — o, and we have

1"

(14) o(n',mogp’ + p(n”,m")log p”

< p(n, m)log p — Yo(n, m) + Dmlog n log p — Dyomlogn
and
(15) n'm'log p’ + n'm"log p” < nmlog p — vonm + 2mlog p — 2ymg.

Without loss of generality one may assume that log nlogp < n and 4logp < von
(otherwise p,n,m are bounded, and we can get the desired time bound by choosing
C1,C5). Then, comparing (13) with (14) and (15), one obtains

1
(16) T'+T" < Cyp(n,m)log p+ Conmlog p — Civop(n, m) — §C270nm + Dnm.

Finally, choosing C; and Cs so that C1y > 1 and %CQ')/O > D + K, we conclude
from (12) and (16) that

T < Cip(n,m)log p + Canmlog p.

Thus, the algorithm runs in O(p(n, m)logp) time, as required (assuming that ¢(n,m) >
O(n,m)).

Remark 2. A similar, though slightly worse, bound can be obtained by direct
calculation of the number of operations, as follows. Let A be the height of the above-
mentioned binary tree 7, i.e., the maximum path length from the root network N to a
leaf network. Fori =0,1,...,A, let @; be the set of networks in depth exactly 7, and let
Q, be obtained by adding to @; all leaves with depth at most i —1. Then A = O(logp),
and —Q;\ is the set of all leaf networks. Let n; and m; denote the total numbers of
nodes and edges, respectively, in all the members of Q;. It is easy to show by induction
that n; < n+ 2t and m; < m +in + 2°F1 which for i = A gives na = n + O(p)
and ma = m + O(nlog p). Thus, to compute maximum multiflows in all leaf networks
takes O(p(n, m + nlog p)) time (one can even perform this by use of one maximum

multifiow computation in a combined network formed by identifying the terminal sets
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of all the leaf networks). Similarly, the running time to decompose all networks in a
layer Q; is O(p(n, m+1n)), and the running time for all aggregations in these networks
is O(nm 4 in?). This gives total time of the algorithm to be O(¢(n, m + nlog p)log p).
There is however no contradiction with the above bound because our direct calculation

can be refined so as to get rid of the term nlogp in ¢.

Remark 3. One can imagine a situation (at least in future) that a bound n(n,m)
for the minimum cut problem is smaller than the ¢ for the maximum flow problem. In
this case the complexity of our algorithm becomes O(¢(n, m) + n(n, m)log p). Also if
the bound ¢(n, m) would be smaller than O(nm), one should add O(nmlog p) to the

above bound.

In conclusion of this section, note that the maximum “node-arc¢” multiflow f found
by the above algorithm can be transformed into the paths packing form in O(nmlog p)
time. Indeed, one may assume that every flow f; = fa, p, in f is described via its
support and the corresponding function on it. Then to re‘present fi in the paths packing
form takes O(n|supp(f;)|) time. Note that if f; is another flow with A; U B; disjoint
from A; U B;, then the supports of f; and f; are also disjoint (this is easily shown
by induction on the height of 7). This together with the fact that every chain of
comparable members in the nested family for f has length O(log p) implies the above
bound. Note also that if we do not need to output the multiflow in the paths packing
form, then the algorithm requires O(mlog p) space (assuming n < O(m)).

3. Algorithm for the laminar locking problem

In fact, the algorithm in the previous section constructs a multiflow F'in N =
(G,T,c) which, in addition to every single terminal set {s}, locks a number of other
subsets A C T. Those sets A together with their complements T — A correspond to
the partitions of terminals occurred in the network decomposition process. We can use
this fact in order to solve the locking problem for a laminar family A C 7. As before,

N is assumed to be inner Eulerian.

First of all we may assume that A consists of different proper subsets and is
inclusion maximal; otherwise we simply add, step by step, new laminar sets to A to
provide its maximality (obviously, a solution to the resulting A is a solution of the
initial A). Since A is maximal, it contains all singletons and contains the complement
T — A of each member A € A. One may assume that p > 4; else the locking problem

turns into the maximum free multiflow (or flow) problem.

For A,B,C C T, C is said to strictly separate 4 and B if cither ACC CT - B
or BC CcT—A. Wesay that A, B € A are neighbors if ANB =0, A #T-D
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and no third set in A separates A and B. One can see that if two pairs among distinct
A, B, C are neighbors, then so is the third pair. The algorithm relies on the following

property.
Statement 3.1. There exists an A € A such that 1|T| < |A| < 3|T|.

Proof. Let A € A be a maximum cardinality set among those satisfying |Al < |T/2;
such a set exists since {s} € A for any s € T. Let By,..., By be all the maximal sets
in A—{T — A} which are disjoint from A (at least one such set exists since |T" - Al >2
and {s} € A for s € T — A). Then each B; is a neighbor to A and, therefore, each
two B;, B; (i # j) are neighbors as well. The maximality of A implies that k£ < 2;
otherwise B, U B is not in A and laminar to all members of A. Moreover, the set
T' = (T — A)N (T — By)n...N (T — By) is empty; otherwise A is again not maximal.
Hence, k = 2 and {4, By, By} is a partition of T. Note that |B;| < |A] (otherwise
|B1| > |T|/2, whence |A| < |T — Bi| < |T|/2, contrary to the choice of A), and
similarly |Bs| < |A|. This implies |[A| > |T|/3. o

Now we modify the algorithm of Section 2 as follows. Given a maximal lami-
nar family A, we take the partition {7},7%} in the first network decomposition to be
{A,T — A} for the A as in Statement 3.1. For the network N’ (with T = AU t'), the
corresponding family A’ C 9T’ to be locked consists of all sets B’ € A such that B’ C A,
and their complements to T’ (in particular, {¢'} € A’ as t’ = T’ — A). Similarly, for
the network N” (with T" = (T — A) Ut”), the corresponding family A" consists of all
B" € A such that B” C T — A, and their complements to 7. It is easy to see that the
maximality of A ensures that both A/, A” are maximal. Then we decompose N’ and
N in a similar way, and so on. Statement 3.1 ensures that the height of the binary
tree T of networks constructed this way is O(log p). Therefore, the resulting multiflow
f in the initial network N (obtained upon termination of the aggregation process) 1is
constructed with the same, up to a constant factor, complexity as the complexity of the
maximum multiflow algorithm in Section 2, i.e., O(p(n, m)logp). Finally, we transform
f into a corresponding multifiow F' in the paths packing form, which takes O(nmlogp)
additional operations, as discussed in the end of Section 2. Thus, the whole algorithm
runs in O(p(n, m)log p) time, as required in Theorem 3. The fact that F' solves the

locking problem rests on the following statement.

Statement 3.2. val(f, A) = A, holds for all A € A.
Proof. By induction on p. If p = 3, then A coincides with the set of singletons {s} and
their complements, and val(f, s) = As is provided by the algorithm in Subsection 2.1. So

assume that p > 3, and consider the networks N’ = (G, T, ¢') and N = (G", 1", ")
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and the families A’ C 27 and A” C 97" obtained in the network decomposition when
T is partitioned into sets Ty = T’ — ¢’ and T = T" — ¢’ with T} € A. By induction, for
the corresponding multifiow f' in N', val(f’, A’) = Aa(c’) holds for all A e A, and
for the corresponding multiflow f” in N”, val(f”, A”) = X4 (c") holds for all Ale A,

Tt suffices to consider A € A such that either A C Ty or A C T5 (taking into account
that A and 7} are laminar, val(f, A) = val(f,T — A), and T — A € A). If A C T1,
then A belongs to A’ by the construction of A’, and now val(f, A) = Aa follows from
Statement 2.2 and the fact that As(c¢’) = Aa(c). For A C T3, the argument is similar
since A € A”. o

Now the required locking property for F follows from the observation that for any
A C T, val(Fa) > val(f, A).

4. Algorithm for balanced networks

Let N~ = (D,T,c) be an inner balanced network. First of all we note that the
maximum multifiow problem in two terminal case is reduced to one maximum flow

computation, due to the following simple, but important, fact.

Lemma 4.1. [Lomonosov 1978]. Let N'~ (D', T’,¢’) be an inner balanced network in
which T' consists of two terminals s and t. Let g be a maximum c'-admissible flow
from s tot. Let h = ¢ —g. Then h is a maximum flow from t to s, and therefore,

{g,h} is a maximum multiflow in N'™.

Proof. Consider X C Vpr such that s € X F ¢t and ¢/(67(X)) is minimum. Since g
is maximum, we have h(e) = ¢/(e) — g(e) = 0 for all e € 67(X) and h(e) = c'(e) —
g(e) = c(e) for all e € §~(X). For each z € Vpr — T, der(x) = dg(z) = 0 implies
dp(x) = 0, i.e., h is a flow. Moreover, h is a maximum flow from # to s in N'7 since

dp(t) = (6™ (X)) = h(6T (X)) = ¢'(67(X)). e

In case p > 3, we apply the network decomposition method similar to that in
Subsection 2.1. More precisely, at each iteration, the network N = (D,T,c) in
question is decomposed into two networks N’ = (D', 7", ¢') and N'™ =(D",T", ")
by choosing a partition {T},T»} of T (with |Ti] < [|T']/2]) and finding a minimum
dicut §7(X) from T} (implying that §~(X) is a minimum dicut to T} since N is inner
balanced). The special terminal t' (= T’ — T1) in N'7" obeys ¢/(6%(¢')) = M) =
¢(67 (X)) and (67 (t)) = Ay (¢) = ¢(67(X)); and similarly for £ in NI

Once maximum integer multiflows f' in N7 and f” in N7 are found, the ag-
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gregation procedure similar to that in Subsection 2.2 combines these into a maximum
integer multifiow in N ™. The only difference is that, instead of one maximum flow g
between #' and T} in N/, we extract from f’ two flows: a flow ¢’ from t’ to T} with
value ¢/(6%(¢')) and a flow g” from T} to t' with value ¢/(§7(t')); similarly, in N7,
there are a flow k' from t” to T with value ¢’ (67 (¢"')) and a flow h” from T> to t” with
value ¢”(67(¢")). We combine ¢’ with A’ and ¢’ with A" in an obvious way to obtain

maximum flows from T} to T3 and from 75 to 17 in N .

To complete this algorithm, we have to explain how to solve the problem (or

subproblem) for a network N— = (D, T, ¢) with three terminals.

4.1. Algorithm for three terminal case. Let T = {s1, s2,53}. First we apply
the algorithm of Section 2 to find a maximum integer multiflow f in the underlying
undirected network N; one may assume that f consists of three flows fi 2, f13, f23,
where f; ; is a flow from s; to s; given in the node-arc form. Denote V' = Vp, F = Ep,
6t =63, 67 =65 Let E be the set of (new) arcs  reverse to arcs e in E. Then f is
such that: (i) each g = f; ; is a nonnegative integer function on E U E satisfying

dg(z) =Y (g(e) = 9(2) : e €8%(z)) = > (9(e) = g(e) : e €67 (z)) =0

for all z €V — {s;,5,}
(ii) f is c-admissible, i.e.,
¢fe) = Z(fi’j(e) + fij(8) 1 1<i<j<3)<cle) forall ecE;

and (ifi) |dy, , (s:)] + |dg 5 (sa)| + |dp 5 (s0)] = AT + AS, for1=1,2,3.

For our purposes, it is more convenient to assume that all arcs are saturated, i.e.,
(17) ¢ (e) = c(e) for all e € E.

This does not lose generality since the above f can be modified so that (17) holds.
To see this, consider the residual capacities ¢, (e) = c(e) — ¢/ (e), e € E, for the original
f. Obviously, for each z € V =T, ¢.(67(2)) 4+ ¢.(67(z)) is an even integer; moreover,
from the maximality of f (cf. (iii) above) one can see that this value is even also for
T = 81,52,53. This implies that ¢, can be decomposed into a collection of integer
weighted cycles (not necessarily directed or simple ones); this task is carried out in
O(nm) time. In other words, we can find a function (circulation) h : EUE — Z
with dj(z) = 0 for all z € VV and ¢*(e) = ¢.(¢) for all e € E. Now add h to fy2 by
updating fi1 2 := fi2+ h. Then the new multiflow f is again integer and maximun,
and it satisfies (17).

For a function g on EUE and a node x € V, define the discrepancy of g at 2 to be
Ag(a) = (gle) +9(2) : e€6F(x)) = (gle) +g(@) : e €5 (x)).

17



We say that g is regular at z if Ay(z) = 0. If g is a flow from s; to s; which is regular
at each node in V — {s;,s;}, we call g regular. The importance of this notion becomes

clear from the following statement.

Statement 4.2. Let a flow g = f; ; be regular. For e € E, define ¢/(e) = g(e) + g(e).
Then (i) ¢’ is balanced at each node z € V — {s;,s;}, ie., ¢'(67(x)) = (67 (z));
and (i) Af(c') + A; (<) = val(g); in other words, there is an integer multiflow f in
(D, {si,s;},¢) for which val(f') = val(g).

Proof. Part (i) immediately follows from Ay(z) = 0 for z € V — {s;,5;}. To see (ii),
assume for definiteness that ¢ < j and consider X C V with s; € X # s5;. We have

(18) C(6H(X)) +(67(X)) = (g9(e) + 9(8) : e € 6T(X) U6~ (X))
> (g9le) = g(@) : e € 6¥(X)) = D _(9(e) = 9(2) : e € 67(X)) = val(g).

Since ¢’ is inner balanced, this implies AJ,(c") + A7, (¢') = val(g) (in fact, this turns into
equality; this can be observed from (18) by considering a set X which gives a minimum
cut separating s; and T — s; in the underlying network N and using the maximality of

fats;). e

Thus, if all f1 9, f1,3, f2,3 are regular, then, in view of Lemma 4.1, the problem
is reduced to three max flow computations. Now we explain how to make our flows
regular. Let x € V — T. Denote, for brevity, g = fi2, ¢' = fi,3, 9" = fo,3, A = Ag(x),
A" = Ay(z) and A" = Agn(z). From (17) and ¢(6%(x)) = ¢(67(x)) it follows that
A+ A’ + A" = 0; so without loss of generality we may assume that

A>—-A">-A">0.

Let A > 0. Note that d,(z) = 0 together with the integrality of g implies that A 1s

even; similarly, A’ and A” are even.

First we modify g and ¢’ to make ¢’ regular at = and to reduce the discrepancy
of g at z by |A’|. Using the method to be described below, we extract from g and g’

integer subflows h < g and A’ < ¢’ both from s, to x such that
(19) dp(s)) =dp(s1)  and  Ap(z) — Ap(x) =AY

Then we exchange the subflows h and A/ in g and ¢’. That is, we update g := g —h+ 1’
and ¢' := ¢’ — h' + . By (19), g remains a flow from s, to s, and its value is preserved,
while its discrepancy at x becomes A — A, (2)+ Ay (2) = A+ A/, as required. Similarly,
the new ¢’ is a flow from s; to s3 with the same value as before, and Ay (2) becomes

A= Ap(z) + Ap(z) =0, Le., ¢’ is now regular at .
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The new g satisfies Ay(z) = —A”. If A” is nonzero, we apply a similar transfor-
mation to g and ¢g”. Note that g is directed from s; to sy while g” is directed from s3
to s3; so one should first reverse g, by updating g(e) := g(€). As a result, each flow
becomes regular at x. Then we repeat the procedure for a next node '€ V—-T, and so
on. In this process, one should, however, be careful to avoid the appearance of nonzero
discrepancies at = (and nodes treated earlier) anew when extracting the corresponding

subflows for z’. To this aim, before treating z’ we split z as follows. Let
Et =6}(z), E~ =bp(x), E = {e:ecET} and E ={€:ecE"}.

Since dg(z) = Ay(z) = 0, one has g(Et) = g(E~) and g(E+) = g(E ), and similarly
for ¢’ and ¢”. Split x into two nodes x; and 2, making the arcs in E+UE™ incident to
x; while the arcs in EYUE incident to zo. Then dy(z1) = dg(22) = 0 holds, and we
proceed with the new graph (which automatically prevents of emerging discrepancies
at ).

-

Finally, we treat si, s, $3. For sy, the only task is to make g” regular at s, (and
similarly for sg,s3). This is done by a method similar to that for z € V — T (we leave
details to the reader).

It remains to explain how to find flows h, A’ in (19). We can use standard flow
decomposition techniques. First we slightly transform the graph (V,E U FE) and flow
g: (i) Split z into z; and z; as above. (ii) Add new terminals s and ¢, and for each
(1,y) € EY (vesp. (y,x2) € E+), add a new arc (s,y) (resp. (y,t)). (iii) Define a
nonnegative integer-valued function § on the arc set of the resulting graph H so that g
coincide with g on (EUE)—(E™ UE+), and satisfy the conditions dg(:ﬁ) = d’g(.’l?g) =0,
3(s,y) + §(z1,v) = glz,y) for all (z,y) € ET and gly,x2) + g(y,t) = g(y, z) for all
(y,z) € E' (this can be done since A > 0). Then § is an integer flow with the source
set {s1,s} and target set {t,s2}; moreover, dg(s) = ——d;(t) = A/2. Now represent g as

G=axD 4. o™+ X+ Bx 4T

where a1, ...,ag, B1,- -, By € Zy; each P; is a simple path from s, to ¢ and each @Q; 1s
a simple path from s to ¢ in H; y® denotes the incidence vector of the arc set of a path
R; and G is a flow from {sy, s} to so. This task is carried out in O(nm) time [Ford and
Fulkerson 1962]. Let a = oy + ...+ o and b= 8) + ... + 34; then

(20) a+b=A/2

Doing similarly for ¢/, form the corresponding graph H' with node set V" 'U {s",t'}

and flow §’, and represent g as
7= el BN B 4T
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where af,..., 0, 8],..., 08y € Zy; each P} is a simple path from s; to t' and each
' is a simple path from s to t' in H’; and § is a flow from {s;,s'} to s3. Let
! ple p

ad=a)+...+ap and b = F + ...+ B; then

(21) a +b =—-A'/2.

Statement 4.3. There are nonnegative integers @ < min{a,a’}, b<bandd <V such
that 24 + 2b + 2b' = —A/.

Proof. If a’ < a, this follows from (21) by setting @ = a’, b=0and b = b. Suppose
a < a'. Since A > |A'], it follows from (20) and (21) that a < —A’/2 < a+b. Also
A’/2 is an integer. Therefore, one can put @ = a and b = 0 and choose a nonnegative
integer b < bsothat @ +b= —A'/2, providing 2a + %+ 2 =—-A'. o

Let 'd,i)\,/l;’ be as in Statement 4.3. Without loss of generality one may assume that
there are i, 7,4/, such that @1 + ... +a; = o} +...+ ol =@, f+...+6; =band
Bi+.. .+ﬁ;., =% (for if, say, a1 +...+a;—1 <@ < ay+...+«a; for some 1, we can take
two copies of P;, one with weight € =@ — a; — ... — a;—; and the other with weight

a; — ¢). Form the flows

h=axD 4+ a4 8@+ Bix Y,
B o= oxP L+ alx + Bix +5;-ng,

and let A and A’ be their corresponding flows on E U E, i.e., h and h coincide within
(EUFE) - (EtuU _E_+), h(z,y) = h(z1,y) + h(s,y) for (z,y) € Et and h(y,z) =
h(y, z2) + h(y, ) for (y,z) € E"; and similarly for #’. Then dp(s1) = dn(s1) = @ and
An(z) = Ap(z) = 24 + 2b + 2b' (observing that each path P, (resp. Q) contributes
exactly a, (resp. 283,) units to Ap(z), due to the construction of H; and similarly for
paths in the representation of §'). This gives (19) and completes the description of the

entire algorithm.

The above algorithm requires three max flow computations to construct flows
f1,2, f1,3, f2,3 in the underlying network, followed by O(n) applications of a flow de-
composition procedure to make these flows regular, followed by three max flow compu-
tations to find flows according to Lemma 4.1. As a result, it finds a maximum integer
multiflow in a network with three terminals in O(@(n, m) + n?m) time. Together with
the argument in Section 2 this shows that for an arbitrary inner balanced network N7,

. . . . 9 .
a maximum integer multiflow can be constructed in O(¢(n, m)log p + n*m) time.

Remark 4. Analysis of the above algorithm shows that its complexity can also

be stated as O(w(n, m)log p + ny(n,m)), where v(n’,m’) is a time bound to solve the
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following auxiliary problem: Given an integer flow ¢ from two sources u, u’ to one target
v whose support consists of m’ arcs and spans n’ nodes, find an integer subflow ¢’ <g¢
from u to v such that dg (u) = dg(u). We used in the above the obvious bound O(n'm’)
for v(n’,m'), which perhaps may be improved.

Next, arguing as in Section 3, we can conclude that if ¢ is inner balanced and
A C 27 is laminar, then the directed locking problem is solvable, and an integer solution
can be found within the same complexity O(p(n, m)logp -+ n?m). Finally, to complete
the proof of Theorem 5, one has to show that if A is not laminar, then there is an
inner balanced network N— = (D, T,c¢) for which no solution exists. It suffices to
construct a counterexample with A consisting of two crossing sets A = {s,t} and
B = {s,u} on four terminals s,?,u,v (then a counterexample for an arbitrary non-
laminar family is obtained by appropriately adding new terminals as isolated nodes).
A counterexample is formed by the digraph D consisting of five nodes s,t,u, v,z and
four arcs (s, z), (z, 1), (z,u), (v, ), each taken with unit capacity. Then A} = A =
/\E = Az = 1, while any nonzero multiflow F' contains a path that intersects twice

some dicut which is minimum either for A or for B.

4.2. Non-laminar case. In conclusion let us consider N— and A are as in

Remark 1 from the Introduction.

Theorem 4.4. Let N~ = (D, T, c) be inner balanced, let A C 27, and let A— Ap be
laminar. Then there exists an integer multiflow in N— that locks all members of A.

Proof. This is provided by the possibility of performing the so-called splitting-oft
operation at every non-terminal node. More precisely, one may assume that A is self-
complementary (A € Aimplies T— A € A), that c(e) > 0 for all e € Ep, and that every
weakly connected component of D contains a terminal. Apply induction on ¢(Ep). The
result is obvious (for any A) if every arc of D has both ends in T". Otherwise some arc
e connects a terminal s and inner node x € Vp — T'; let e = (s, z) (as the case e = (z, 5)
is symumetric).

Since ¢ is inner balanced, there is an arc ¢’ = (r,y) leaving x. The splitting-off
operation for e, e’ creates a new arc (or loop) € = (s,y) and transforms the capacities
by /(&) = e(e) - 1, (') = c(e') = 1, ¢/(€) = 1, and /(") = ¢(e") for the other arcs ¢’
of the new digraph D’. Obviously, ¢’ is again inner balanced and ¢/(Ep:) = ¢(Ep) — 1.
Furthermore, if A (/) = A%(c) and A7(¢/) = A7(c) hold for all A € A, then the

existence of the desired multiflow for ¢ easily follows by induction.

Suppose that the splitting-off operation for e, ' decreases AT or A~ on some A € A;
in this case we say that e’ is infeasible. Note that for any .\' C Vp, this operation either
preserves the capacities of both §7(X) and 67 (X), or decreases both capacities by one;
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the latter case occurs if and only if the cut 6(X) in the underlying undirected network
N separates = and {s,y}. Therefore, for some A € A, there is a minimum cut 6(X)
separating A and T — A in N such that s,y € X ¥ z. Since A is self-complementary,
one may assume that X N7 = A. In addition, assume that such A and X are chosen

so that | X| is maximum.

We observe that it is impossible that §+(z) is entirely included in 6~ (X) (otherwise
c(6(x)) = (67 (x)) together with e € 6~ (z) and ¢(e) > 0 would imply that c(6(X)) >
c(6(X U z)), contradicting the fact that 6(X) is a minimum cut separating A and
T — A). Therefore, some arc e’ = (z, z) in 6% (z) does not enter X (i.e., z € X). If this
e'' is feasible, we are done. Otherwise, arguing as above, there are some B € A and a
minimum cut §(Y) separating B and T — B such that s,z € Y ¥ y; let for definiteness
Y NT = B. Consider the sets A and B. Since both 67 (X) and §~(X) are nonempty
(as e € §7(X) while ¢’ € §7(X)), A is not in Ap. Similarly, B is not in .Ap. Hence, A
and B are laminar, by the hypotheses of the theorem. Also A and B are intersecting
(as s is in both A and B). Consider the remaining three cases.

(i) Suppose that AC B. Let X' =XNY and Y’ = XUY. Then X'NT = A and
Y'NnT = B. Now the obvious submodular inequality

(22) e(8(X)) + e(6(Y)) = ¢(8(X")) + c(6(Y"))

implies that §(X’) = Aa(c) and §(Y’) = Ap(c). But Y strictly includes X and s,y €
Y’ & x; contrary to the choice of A and X.

(ii) If B C A, we get a contradiction in a similar way.

(iii) Finally, suppose that AUB =T. Let X' =Y — X and Y’ = X — Y. Then
X'NT=T-Aand Y'NT =T —B. But these X,Y, X', Y also satisfy (22); moreover,
this inequality must be strict since the edge underlying e belongs to both §(X) and

6(Y) but to none of §(X’) and 6(Y”). Therefore, at least one of the cuts §(X) and 6(Y")

cannot be minimum; a contradiction. e
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