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Abstract. Let V be a finite set, and let S C 2V be a collection of sets such
that: (i) S is symmetric (X € S implies = V ~ X € 8), and (ii) for any two crossing
X,Y € 8, at least one of the pairs {XNY,XUY}and {X-Y,Y - X} isin S. Red and
Blue play the following game, starting with a symmetric family 7 € S. Red chooses
two crossing sets X,Y in the current F and replace them by sets X’,Y’ € § such that
either X =X NY, Y =XUY or X’ =X -Y,Y' =Y — X. Then Blue returns one
of X,Y to F. We assume that if a set Z is removed from (added to) F then the same
is done for V — Z. The game terminates (and Red wins) when F no longer contains

crossing sets.

[Hurkens at al. 1987] considers the special case when every member of S contains
exactly one of two prescribed elements of V' (in our terms). It was shown there that
Red can win in time polynomial in |V| and |F|.

Extending this result, we develop an algorithm for Red to win, in polynomial time,
in the above general case. Also a polynomial algorithm for a certain weighted version
of the game is given. The key idea of both methods is that the whole problem can be
split into a polynomial number of problems, each dealing with a cyclic family - a family
of which members correspond to partitions of a cycle into two connected parts.

The results have applications in combinatorial optimization, e.g., when we deal
with packing problems on certain cuts of a graph, such as T-cuts, directed cuts and
etc., and we desire to transform a given optimal packing into another one which is free

of crossing cuts.
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1. Introduction

Let V be a finite set. Two sets X,Y C V are called crossing if none of X - Y,
Y-X,XNY and V — (X UY) is empty; otherwise they are called laminar. If X,Y
are crossing (laminar), we write X J Y (respectively, X || Y).

Suppose we are given a set-system S C 2V consisting of subsets of V. If S has
no crossing pairs, it is called laminar. To our purposes it does not matter whether S
contains a set X or X =V — X or both X, X. To this reason, we throughout assume
that S (as well as any of its subsets under consideration later on) is symmetric, i.e.,
X € S implies X € S. Next, we assume that S is cross-closed. This means that for any
crossing X,Y € S there are X',Y’ € S such that either X’= X -Y andY' =Y — X,
or X = XNY and Y/ = X UY; we say that X',Y’ are obtained by uncrossing X
and Y, denoted as X,Y — X', Y'. For example, the following four set-systems S are
cross-closed.

(E1): S =8'U{X : X € S8'}, where S' is a crossing family, i.e., for any crossing
X,Y € 8, the sets X NY,X UY are also members of S’ (cf. [Edmonds, Giles 1977)).

(E2): Given T C V with |T'| even, S consists of the sets X C V such that [X nT|is
odd. Such an S corresponds to the set of T-cuts of a graph G = (V, E), which originally
came up in connection with the Chinese postman problem [Guan 1962; Edmonds,
Jonhson 1973].

(E3): Given a graph G = (V,E) and a set U C E, S consists of all X C V such
that [6(X)NU| =1 (cf. [Seymour 1981}).

(E4): Given a graph G = (V,E) and a mapping a : E — Z, S consists of all
X C V such that S (a(e) : e € §V(X)) is odd (cf. [Karzanov 1984]).

[Here for a graph G = (V,E) and a set X C V, §(X) = 6%(X) is the set of edges
of G with one end in X and the other in X, a cut in G.]

We consider a game of two players, Red and Blue, as follows. It starts with a
(symmetric) family F C S. At each step (move),

(1) (i) Red chooses crossing sets X,Y in the current 7 and makes uncrossing X,Y —
X', Y' ie., he replaces X,Y by X', Y' in F; then
(ii) Blue returns one of X and Y to F.
Multiple sets in F are ignored; if, say, X' has been a member of F before the

move, it simply remains a member. We also assume that if a set Z is removed from
(added to) F then its symmetric set Z is removed from (added to) F too. Note that if



all XNY,XUY,X -Y,Y — X occurin 8, Red has two possibilities to choose X' and
Y’ at his move, namely, X', Y' = X NY,XUY or X'.Y' = X - Y,Y — X. The game
terminates (and Red wins) when the current F becomes laminar.

In fact, the goal of Red is to win as soon as possible. A priori, it is unclear whether
Red can win at all. E.g., an unhappy choice of X,Y to uncross at each step may result in
cycling, as this can be shown by simple examples. If the game still terminates and even
if the initial F is small, the size of intermediate families may grow significantly during
the game; so the number of steps may be large. We denote n = |V| and m = |F| (for
the initial F) and take as a measure of time of the game the number of steps occurred
in it, thus ignoring the real complexity of performing (i)-(ii) in (1).

An interesting special case was studied in [Hurkens, Lovdsz, Schrijver, Tardos
1987]. In our terms, two elements s,t € V are fixed and S consists of all X C V
that contain exactly one of s,t. Then for any two crossing X,Y € S there is a unique
choice of X'Y’ for uncrossing. [In fact, [Hurkens at al. 1987] deals with an arbitrary
(not necessarily symmetric) family F C 2V', Red can choose arbitrary (not necessarily
crossing) X,Y € F but replace them only by X NY and X UY. To obtain the case as
above, we add new elements s and ¢ to V', add s to each member of F and then make
symmetrization of F.] It was shown that, following a simple rule, Red wins in time

polynomial in n and m.

We prove the following theorem.

Theorem 1. In general case, Red has a strategy to make F laminar in time

polynomial in n,m.

Moreover, the number of steps he uses is O(n%m), as shown in Sections 2,3 where
Theorem 1 is proved.

The algorithm developed for the game is applied to solve the following uncrossing
problem. Suppose we are given a nonnegative integer-valued function f : § — Z,4 that
is symmetric, i.e., f(X) = f(X). Let F = F(f) denote the support {X € § : f(X) #
0} of f. By the uncrossing operation we mean the following transformation of f (and
F):

(2) (i) choose some crossing X,Y € F; then
(ii) choose X',Y' € § which are obtained by uncrossing X and Y; then
(iii) for @ = min{f(X), f(Y)}, decrease f by a on the sets X,X,Y,Y and increase
f by a on the sets x X vY.

The uncrossing problem is to arrange a sequence of uncrossing operations which
results in a function f* with F(f*) laminar. Such a problem looks trivial as, independ-
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ently of the choice of X,Y, X',Y’, the process terminates in finite time (in the sense
of the number of uncrossing operations we apply). Indeed, let us associate with V
the complete graph G = (V, Ey) with vertex-set V, and for e € Ey, let f(e) denote
Y(f(X) : X € S,e € 66(X)). If f' is obtained from f by the uncrossing operation
(2), then it is easy to see that

(3) f(e) — f'(e) is nonnegative for all e € Ey, and equals 4a for some e.

Therefore, to solve the uncrossing problem takes time (})||f||/4 for the initial £,

-~

where ||f|| = 1 + max{f(e) : e € Ev}. However, a stronger result is true.

Theorem 2.  The uncrossing problem defined by uncrossing operation (2) can be
solved in time polynomial in n.m.

Indeed, we can think of the uncrossing problem as the above game, interpreting
(iii) in (2) as the move of Blue who always returns the set Z € {X,Y} for which f(Z)
remains positive, and then apply Theorem 1. Note that, to be consistent, we have to
extend slightly our game by allowing Blue to return none of X,Y. Nevertheless, we
shall see that such an extension does not affect our proof of Theorem 1.

The uncrossing problem comes up in combinatorial optimization when we deal with
certain packing problems. E.g., the well-known T-cut packing problem is: given G,T as
in (E2) and a function w : E — Z,, find a function g : C — R on the set C of T-cuts
such that Y (g(C) : C € C) is maximum provided that } (g(C) : e € C € C) < w(e) for
any e € E. [A cut §(X)in G is called a T-cutif |TNX]|is odd.] Theset S = {X : §(X)
is a T-cut} is, obviously, symmetric and cross-closed. If g is an optimal solution to this
problem, described by its support and values of g on it, then g can be transformed, in
strongly polynomial time, into another optimal solution ¢’ whose support is laminar
(in the sense that {X : ¢'(6(X)) # 0} is laminar). To do this, we solve the uncrossing
problem for S and f, defined by f(X) = g(6(X)), using the fact that uncrossing
operation (2) preserves both the value of the objective function and satisfying the
above packing condition (by (3)). Similarly, one can apply our uncrossing method to
problems concerning the sets in (E1),(E3),(E4).

One sort of uncrossing techniques was elaborated in [Grétschel, Lovasz, Schrijver
1988], Ch. 10.3 for the dual submodular flow problem [Edmonds, Giles 1977]. It
transforms, in polynomial time, an optimal solution to one with laminar support but
uses uncrossing operations different from (2).

Next we consider another, weaker, kind of uncrossing operations. It is described
via a game. We assume that S = 2V. Given f:2V - Z,,

(4) (i) Red chooses crossing X,Y in F = F(f); then



(ii) Blue chooses an integer b between 0 and a = min{f(X), f(Y)}; then

(iii) f is decreased by a on X, X,Y,Y, increased by bon X NY and X UY and
their complements, and increased by a —bon X —Y and Y — X and their
complements.

Red tends to minimize the total time, while Blue tends to maximize it. Clearly
for an arbitrary cross-closed S, step (ii) in uncrossing operation (2) can be realized
by choosing a proper b in (4)(ii). So, to solve the uncrossing problem with (4) (in the
sense of choosing a strategy for Red) takes time at least as much as that with respect to
(2). Similarly to the previous case, the game always terminates in finite time (namely,
O(n?||f]])) since we observe that

(5) f(e) — f'(e) is nonnegative for all e € Ev and there are e,e’ € Ev such that
fi(e)+ f'(e") = f(e) + f(e') — 4a.

Theorem 3. For game (4), Red has a strategy to make F laminar in time polynomial
in n, m and log ||f||, where f is the initial function.

Theorem 3 is proved in Section 4. The key idea of the proofs of Theorems 1 and
3 is that both games can be reduced to a polynomial number of games with cyclic
set-systems on n’ < n elements. We say that S’ C 2W is cyclic if the elements of
W can be numbered by 1,2,...,7 (r = |W|) so that each X € &' is of the form
7.3 ={i,i+1,...,j} for some 1 < 14,j < r (taking indices modulo r). The advantage of
dealing with a cyclic set-system is twofold. First, the sets X 'Y’ obtained by uncrossing
X,Y € 8’ are obviously of similar form, therefore, any current family F C S’ that we
handle remains cyclic under uncrossing. Second, &’ consists of at most n? members,
therefore, the size of any intermediate family in the process is polynomially bounded.
We explain how both games are reduced to those on cyclic families in Section 2.

It should be mentioned that Theorems 2 and 3 were originally established in the
preprint [Karzanov 1990]. Moreover, the proving method developed there for Theorem
2 is, in fact, very close to that we give for Theorem 1 in the present paper.

The proofs of Theorems 1 and 3 will provide polynomial algorithms which arrange
the desired efficient uncrossing processes. Regarding computational aspects, we need to
specify the input of the problem. In game (1), we may assume that S is given implicitly
via the membership oracle (MO) that, being asked of a set X C V, returns whether
or not X belongs to S. In reasonable applications, MO is realized by a procedure
polynomial in n. MO enables us to recognize efficiently which of the pairs {(X-Y,Y-X}
and {X NY,X UY} (or both) is contained S, thus providing the choice of X',Y’ in
(1)(i). In game (4), the initial f is assumed to be given explicitly, e.g., by listing all
members X of F = F(f) and indicating f(X) for these X’s. Since in this paper we
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care only for polynomiality and do not aim to precise running time bounds, we need
not come into details of how procedure (1) or (4) is performed.

In conclusion of this section we give two statements which will be used later on.

Statement 1.1. Let X,Y,Z CV besuchthat X Y, X || Z andY || Z. Then
X'||Z forany X' e {X-Y,Y - X, XNnY,XUY}

Statement 1.2. IfF’ C 2V is Jaminar and |V'| = n’ then |F'| < 4n/.

Stamement 1.1 is trivial. To prove Statement 1.2 (see, e.g., [Karzanov 1979)),
denote by a(n) the maximum cardinality of a laminar set-system on n-element set. It
is easy to show by induction on n that a(n) < a(n — 1) + 4, whence the statement
follows.

An important corollary of Statement 1.1 is that if, at some step, a set Z in the
current F becomes laminar to all other members of F then, independently of further
steps, Z continues to satisfy this property up to termination of the game. So we
will throughout assume that after each step such Z’s are automatically excluded from
consideration; i.e., for every current family F,

(6) each member of F is crossing some other of its members.

We will also assume that such a property holds when we deal with the game on a
subfamily of F being under consideration.

2. Reduction to cyclic families

We prove the following lemma.

Lemma 2.1.  For rule (1), the game is reduced to at most nm games, each for a
cyclic family R on a set W with |[W| < n.

Proof. The desired strategy for Red is as follows. He fixes a laminar family £; C F
and chooses a set A; € F — £;. f A || X for all X € £;, he simply adds X, X to £;.
Otherwise he plays within the family £; U {Al,}L}. As a result, a laminar family £,
will be constructed. Then he chooses a set A, in the new current F which is not in £,
and plays within £, U {Ag,zz}, and so on. Eventually, after k¥ < m/2 iterations the
obtained laminar family £;4; will coincide with the current F, and we are done.

We now explain how to play within a family LU {A,A}, where £ is laminar and
A is crossing some members of £. For X,Q C V, Q is called separating X if both
XN Q and X — Q are nonempty. We say that X C V is 2-partitioned with respect to



a laminar family D c 2V if there exists Z C X (possibly Z = @ or X) such that
(7) XNnQe{z,X-2,X,0} forany Q€ D.

Red plays in such a way that, at each step, the current family has a partition into
laminar families P and D such that

(8) for each X € P, at least one of X, X is 2-partitioned with respect to D.

Obviously, (8) holds for the initial P = £ and D = {A,4}. To maintain this
property, Red chooses a mazimal set X € P which is 2-partitioned with respect to D
and plays within D U {X,X}. Then for the resulting laminar family D’ the following
is true.

Claim. For eachY € P at least one of Y,Y is 2-partitioned with respect to D'.

Proof. Since P is laminar and symmetric, we may assume that either Y C X, or
XNY =0 and XUY # V. First we observe that Y is 2-partitioned with respect to D.
Indeed, if Y C X, this easily follows from the fact that X is 2-partitioned with respect
to D. Otherwise Y strictly includes X, therefore, Y cannot be 2-partitioned because
of the maximality of X.

Hence, there is Z’' C Y such that any Q € D separates neither Z’ nor Y — Z’. Since
X does not separate Y, neither Z’ nor Y — Z' is separated by any Y arising during the
game for D U {X, X} whatever moves are applied by Red and Blue. This proves the
claim. o

In view of the Claim, the game for LU{A, A} as above is reduced to at most |£|/2
games, each starting with a family R = D U {X,'f} such that D is laminar and X is
2-partitioned with respect to D. Since |£| < 4n (by Statement 1.2), the total number
of games arising for the initial F does not exceed nm, as required in the lemma.

Tt remains to show that the game within R is in fact the game on a cyclic family.
Indeed, we may assume that each Y € R is crossing some other of its members
(otherwise Y is excluded from the consideration). Then each set in D is crossing
X. Let Z be as in (7) for our X and D. Let D' = {Q € D : X NQ = Z}; then
D=DU{Q:QeD)}) ForeachQeD wehave 0 #ZCQand B # X -Z CQ.
Hence, the laminarity of D’ implies that for any two Q,Q’ € D', either Q C Q' or
Q' C Q. This means that there is a partition {V1,V3,...,V;.} of V such that V; = Z,
V. = X — Z and each Q € D' is a set of the form ViUV U...UV; forsome1 <: <r-—1.
Furthermore, X = V; UV,. Hence, DU {X,X} is a cyclic family. This completes the
proof of the lemma. o

The above proof shows that every cyclic family appeared during the game has a
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stronger form; this will be important for the proof of Theorem 1 in the next section.

Corollary 2.2. Every cyclic family occurring in the above process is equivalent to
a cyclic family R=DU{X,X} on a set W = {1,...,r} such that

(9) X ={1,r},
and
(10) D consists of the sets 1,7 for i = 2,...,r — 2, and their complements to W. e

Next, one can see that the above arguments remain valid if we consider the game
with step rule (4) instead of (1). Furthermore, the function f is monotone non-
increasing during the game, by (5). Thus, the following is true.

Statement 2.3.  For rule (4), the game for f is reduced to at most nm games, each
for a cyclic family R on W with |W| < n and a function g : R — Z, with ||g]| < || f],
where m = |F(f)|. o

3. Proof of Theorem 1

In view of Lemma 2.1 and Corollary 2.2, it suffices to consider the game that starts
with a cyclic family R = DU {X,X} on W = {1,...,r} satisfying (9) and (10), and
show that Red can win in a polynomial number of moves. Note that W was formed
by shrinking the subsets V; in a partition {Vi,...,V,} of V. Let S be the collection
of subsets of W that correspond to members Y € S of the form Y = V; UV, U...V;
(taking indices modulo 7). Obviously, 8 is cross-closed and cyclic, and we may think
of 8* as the set-system behind R. Note that (10) trivially implies that

(11) for i = 2,...,7r — 2, the set T,7 belongs to S*.

To prove the theorem, we are forced to include into consideration slightly more
general cyclic families on W. Namely, we assume that R C S* is partitioned into
laminar families £ and D such that:

(12) each set in D separates 1 and r (i.e., it is of the form 1,7 or W — 1,7 for some
2<i<r-2)

(13) each set in £ separates 1 and 2 (i.e., it is of the form 2.7 or W — 2,7 for some
3<i<r—1)



As before, we also assume that each member of R is crossing some other of its
members. We show that for such an R Red can win in time O(r3), thus proving the
theorem. Let d = d(R) denote the minimum number i such that £ contains 2,7; then
3 <d <r-1. We use induction on

w=w(r,R):=r*+r|L]/2 +d,

considering S* and R = £ U D satisfying (11)-(13). We may assume that

(14) fori =1,...,r, there is a member of R separating i — 1 and ¢

(hereinafter indices are taken modulo 7). For if (14) is violated for some i then shrinking
i — 1 and ¢ into one element yields an equivalent problem with smaller w. Properties

(12)-(14) imply

(15) Tr—1cl and T,€Dfori=2,...,d—1.

In what follows X,Y denote the crossing sets in a current R that Red chooses to
uncross; X', Y’ denote the sets obtained by uncrossing X,Y; and R, L', D’ denote the
corresponding objects that arise after the answering move of Blue and then by deleting
the sets of the resulting family which are laminar to all other sets. For such an R’ we
denote by r(R’') the number of maximal subsets ,j which are separated by no member

of R. If ' = »(R') < » then contracting corresponding subsets in W results in a
family R” on an r'-element set. Obviously, w(r’', R") < w(r, R), and therefore, we can
immediately apply induction.

First we suppose that {1} ¢ §*. Then Red takes X =2,7 — L and Y = {1,2} to
uncross. Since Y —X = {1} € S* and S* is cross-closed, we have XNY = {2} € §* and
XUY =W — {r} € S*. Red takes just X NY and X UY as X' and Y”, respectively.
Since both X’ and W — Y’ are singletons (so they are not in R’) and one of X,Y
vanishes after the move of Blue, we conclude that at least one of the pairs {2,3} and
{r — 1,7} is separated by no member of R'. Hence, r(R’) < r, and the result follows
by induction.

Thus we may assume that {1} € §*. We may also assume that
(16) if d = r — 1 then {r} (and therefore, 1, — 1) belongs to S*.

Indeed, suppose that {r} ¢ S*. Since d = r — 1, L consists of only {1,r} and
its complement. Therefore, D consists of 1,7 and its complements for ¢ = 2,...,r — 2.
Then renumbering 1,2,...,r as 7, — 1,...,1 yields an isomorphism of R. Now we
have {1} ¢ §* and obtain the case above.

Let k be the maximal number such that 1 < k < d and {k} € S*.
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Claim. (i)k>2. (i)Ifk<dthenZ=Fk+1,d¢gS".

Proof. From (14) and the fact that S* is cross-closed we deduce that any minimal
nonempty set in S* is a singleton. Therefore, {i} € S* for some 2 < 7 < d (as
2,d € R), which implies (i). Next, if k < d and Z € S* then thereis a j € Z such that
{7} € 8*. Then k < j < d, contrary to the maximality of k.

Consider three possible cases. In each case Red takes as X the set 2,d.

Casel. k=d. LetY =1,d-1,X'=X~-Y andY' =Y — X. Then Y € D (by
(15)), X' = {d} € $* and Y’ = {1} € S*. Red makes uncrossing X,Y — X' Y'. If
Blue returns X then Y ¢ R’ and no set in R’ separates d — 1 and d, whence #(R') < r.
And if Blue returns Y then X ¢ R', whence £’ = £ — {X, X} and |£'| < |£|. In both
cases, we get w(r(R'),R’) < w(r,R) and apply induction.

Case 2. k=2. LetY = {1,2)}, X' = XNY and Y’ = XUY. Then X' = {2} € S*
and Y’ = 1,d € §* (by (11) and (16)). Red makes uncrossing X,Y — X', Y’. Then,
after the move of Blue, at least one of the following situations takes place: (i) no set in
R' separates 2 and 3, or (i) £’ = £ — {X,X}. The result follows by induction.

Case 8. 2<k<d LetY =Tk, X' =XNnY,Y =XUY and Z =k +1,d.
By the Claim, Z = X — Y is not in §*. Therefore, both X’ (=2,k)and Y' = X UY
(= 1,d) are in S*. Make the uncrossing operation X,Y — X', Y’. Suppose that Blue
returns Y. Then X ¢ R’ and X’ € R, whence |£'| = |L|. Since d(R') =k < d =d(R),
the result follows by induction.

Now suppose that Blue returns X. Then X, X’ € R'; therefore, £’ = L',U{X',_X-l},
and we cannot apply induction immediately. Nevertheless, we can use the property
that

(17) k and k + 1 are separated in R’ by only 2,% and its complement

(since 1,k vanishes by uncrossing). Consider the sets X = 2.% and Y = I,k—1in R'.
Bothsets X' = X -V (= {k}) and ¥’ = ¥ — X (= {1}) are in §*, so Red can apply to
R’ the next uncrossing operation X,¥ — X', ¥'. Let R" be the family obtained after
the move of Blue. Two cases are possible.

(i) Blue returns Y. Then X ¢ R”, and now there is no set in R” separating k and
k + 1, in view of (17).

(ii) Blue returns X. Then ¥ ¢ R", therefore, no set in R” separates k — 1 and k.

In both cases, we have r(R"”) < r and apply induction.
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4. Proof of Theorem 3

In view of Statement 2.3, Theorem 3 is implied by the following lemma.

Lemma 4.1. Let g be a nonnegative integer-valued function of which support forms
a cyclic family on a set W = {1,...,r}. For rule (4), Red has a strategy to win in time
polynomial in » and log ||g|-

Proof. Let h and R be the current function and its support before a move of Red. We
know that R is cyclic and ||A] < ||gl| (by (5))-

Red plays as follows. He fixes a set X € R such that A(X) is maximum provided
that 2 < |X| < r — 2; if such an X does not exist, R is already laminar, and we are
done. He takes this X and an arbitrary Y € R (Y } X) to uncross, then he takes X
and another Y’ (Y’ J| X), and so on until a function &’ is obtained such that A’'(X) =0
or all members of the support R’ of h' are laminar to X. We call this sequence of moves
a big iteration. Let Rx = {Y € R:Y [ X}. Consider possible cases.

Case 1. h(X) > th(Rx), where h(Rx) stands for 3 5(h(Y) : Y € Rx). Then
K(Y) =0 forall Y € Rx (and no new set Y’ such that ¥’ f X and A'(Y') > 0 can
appear, by Statement 1.1). Therefore, all members of R’ are laminar to X. Thus, we
can split the game for R’ into two games, one with the family R; ={Y e R' : Y C X
or W -Y C X} and the other with R, ={Y e R" : X CYor X CW-Y}. In
fact, we may assume that the former (latter) game deals with a cyclic family on the
set W, (respectively, W) obtained from W by contracting the elements of W — X
(respectively, X). Then |W;| < r (i = 1,2) and [W,| + [W:| = r + 2. Furthermore, if
|[W;| < 3 then R; is obviously laminar. Using these, it is easy to show by induction on
|W| that the total number of big iterations (for families on W and those occurred on
reduced sets) at which Case 1 takes place is bounded by a polynomial in r.

Case 2. h(X) < +h(Rx). For e € Ew, let y(e) be the sum of h(Y)’s among
Y eRwith2<|Y|<r—-2ande € 69Y), andlet B =3 (v(e) : e € Ew), where
G = (W, Ew) is the complete graph on W. Let 7'(e) and §' be the corresponding
numbers for A’.

Obviously, B < r?||h||. Since the sets X,X vanish at the big iteration, we deduce
from (5) (with v(e) and +'(e) instead of F(e) and f'(e)) that 8’ is at most 8 — 4h(X).
Furthermore, the maximality of R(X) implies that 8 < |Ew||R|A(X) < r*h(X) (taking
into account that |R| < 2, as R is cyclic). Therefore,

(18) B < B(1 - 4/r%).

Suppose that Case 2 occurs in k consecutive big iterations, and let 8o and f; be
the values of § at the first and last of these iterations, respectively. We may assume
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that 8, > 1. Then (18) together with 8y < r?||g|| (for the initial g) implies that k is
bounded by a polynomial in » and log ||g||, whence the lemma easily follows.

An open question. Can Red win in polynomial time in non-symmetric analogs of
games (1) and (4)?

Acknowledgement. I am thankful to Eva Tardos for correcting some errors in
the original version of this paper and many useful suggestions.
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