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Abstract. In this paper we survey some earlier and recent results in the field of
combinatorial optimization and network flow theory that concern problems on minimum
cost maximum value multiflows (multicommodity flows) and minimum cost maximum
packings of edge-disjoint paths.

We deal with an undirected network N consisting of a supply graph G, a commodity
graph H and nonnegative integer-valued functions of capacities and costs of edges of
G, and consider the problems of minimizing the total cost among (i) all maximum
multifiows, and (ii) all maximum integer multiflows.

We discuss the denominators behavior in optimal solutions to problem (i), in terms
of the commodity graph. The main result here is that if H is complete (i.e. partial flows
between any two terminals are allowed) then (i) has a half-integral optimal solution.
Moreover, there are polynomial algorithms to find such a solution.

The main theorem concerning (ii) gives an explicit combinatorial minimax relation
in case of H complete. This is a far generalization of a minimax relation obtained by
Mader and, independently, Lomonosov for maximum number of edge-disjoint paths
connecting arbitrary pairs among prescribed vertices. Also there exists a polynomial
algorithm when the capacites are all-unit.

The minimax relation for (ii) with a complete H enables us to describe the domin-
ant polyhedra for the sets of so-called T, d-joins (extending the notion of a T-join) and
multi-joins of a graph. Also other results are reviewed.

We finish the paper with considering an analog of (ii) for openly disjoint paths and
posing open problems.
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hedron
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1. Definitions, problems, results

Suppose that we are given vertices sq,..., Sk, t1,...,t in a graph G, and we wish
to find pairwise edge-disjoint paths Py,...,P. such that: (i) each P; connects s; and
t; for some j; (ii) the number r of paths is as large as possible; and (iii) the sum of
length of these paths is as small as possible, subject to (i),(ii). When can this problem
be efficiently solved? It is known, due to [10], that the problem is, in general, NP-hard
for k = 2 even if we drop condition (iii). On the other hand, it turns out that the
desired paths can be found in polynomial time if the pairs {s{,#:},...,{sk,tx} form
(the edge-set of) a complete graph. The latter result follows from some of the theorems
and algorithms on minimum cost multicommodity flows and edge-disjoint paths that
we survey in this paper.

We start with some definitions and conventions. Throughout, unless otherwise is
explicitly stated, by a graph we mean an undirected graph without multiple edges and
loops; VG and EG denote the vertex-set and edge-set of a graph G. An edge with end
vertices u and v is denoted by uwv.

We deal with a network N = (G, H, ¢, a) consisting of a supply graph G, a commod-
ity graph H with VH C VG, a capacity function ¢ : EG — Z, and a cost function
a: EG — Z, (Z, is the set of nonnegative integers). The edges of H indicate the
pairs of vertices of G that are allowed to connect by flows.

From the combinatorial viewpoint, it is more convenient to think of multicommod-
ity flows as functions on certain paths. Let P = P(G, H) be the set of simple paths in
G connecting vertices s and ¢ with st € EH. Then a (c-admissible) multicommodity
flow, or, briefly, a multiflow, is a nonnegative rational-valued function f : P — Q
satisfying the capacity constraint

(1.1) ¢f(e) = Z(fp :e€ PeP)<c(e) forall e EG

(hereinafter we often consider a path as an edge-set). The sum of fp's over all P € P
is called the total value of f and denoted by val(f). We denote by v* = v*(G, H,c)
the maximum total value of a multiflow f, and f is called mazimum if val(f) = v*.
Similarly, considering the set of (c-admissible) integer-valued multiflows f : P — Z,
we define a mazimum integer multifiow and the number v = ¥(G, H, ¢). Clearly v < v*.

We also associate with a multiflow f its total cost a; that is 3" (a.(/(e) : e € EG),

or S (a(P)fp : P € P), where a(P) is the cost of P. (For a function g: S — R and
a subset §' C S, g(S’) stands for ) (g. : e € S’).)

In this paper we discuss two problems:
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(1.2) Find a mazimum multiflow f with a; as small as possible;
(1.3) Find a mazimum integer multifiow f with a; as small as possible.

Thus, (1.3) is the integer strengthening of (1.2), while (1.2) is the fractional
relaxation of (1.3). We will refer to (1.2) ((1.3)) as the fractional (resp. integer)
problem. We may assume that H has no isolated (i.e., zero degree) vertices; VH is
called the set of terminals of the network and denoted by T. A path in G connecting
two distinct terminals is called a T-path.

When a = 0, we obtain the pure maximum and maximum integer multiflow
problems. When ¢ = I and a = 1, (1.3) turns into the problem on edge-disjoint
paths of minimum total length that we mentioned above. The examples below recall
well-known facts and reveal possible behavior of problems (1.2) and (1.3) with respect
to commodity graph H. Here and later on for X C VG, 6§(X) = §%(X) denotes the
set of edges of G with exactly one end in X, called the cut in G induced by X. We say
that 8(X) separates vertices u and v (or sets Y,Z C VG) if one of them is (entirely)
contained in X and the other in VG — X. If ¢(6({v})) is even for each v e VG - T, ¢

is called inner Eulerian.

Example 1. EH consists of a unique element st. Then (1.2) is the undirected
minimum cost maximum (single-commodity) flow problem, and by classical theorems
in network flow theory (see, e.g., [12]), v* equals the minimum capacity ¢(86(X)) of a cut
§(X) separating s and t, and (1.2) has an integer optimal solution (0.s.); in particular,
v = v*. Moreover, there are many polynomial and strongly polynomial algorithms to
solve (1.3) (see [1,16] for a survey).

Example 2. T = {s,t,s',t'} and EH = {st,s't'}. In case a =0, (1.2) turns into
the (undirected) maximum two-commodity flow problem, and it has a half-integral 0.s.
[18] (or an integer o.s. in the inner Eulearian case [33]). However, we shall see later
that in the general case of a, one cannot guarantee that (1.2) has an o.s. with bounded
denominators. In its turn, (1.3) is strongly NP-hard, as it is NP-hard for ¢ =0 and
¢ = 1 [10].

Example 3. H is the complete graph K7 with vertex-set T, and || 2 3. In
other words, flows connecting any two distinct terminals are allowed. We refer to a
multifiow for G, K1, ¢ as a T-multifiow. Lovész [28] and, independently, Cherkassky [4]
established two results on T-multifiows. First, 2v* is equal to the sum over s € T of
the minimum capacities of cuts separating s and T — {s} (this minimax relation was
originally stated in [26]). Second, if ¢ is inner Eulerian then there exists a maximum
T-multifiow that is integer-valued (and therefore, a half-integer maximum 7-multiflow



for arbitrary integral capacities). Also there are strongly polynomial algorithms to
find such a multifiow [4,19,13] (in [19] this is reduced to solving log |T| maximum flow
problems). The maximum integer T-multiflow problem turned out to be much more
complicated. An outstanding result, due to Mader [30] and, independently, Lomonosov
[27], is that there is a minimax relation involving v, which can be written as

(19) v = 5 min{ 3" (8(¥) = 1},

seT

where the minimum is taken over the collections {Y; : s € T'} of pairwise disjoint sets
Y, C VG with Y, NT = {s}, and 7 is the number of components K occurring when the
Y.'s are removed from G and such that ¢(6(VK)) is odd.

The case H = K7 will be most important in this paper.

We now outline results on problems (1.2) and (1.3).

1. A natural question arises: what is the smallest natural number that is a multiple
of all denominators in some optimal solution to (1.2)? It seems to be hopeless to attempt
to determine such a number for every instance of problem (1.2). Nevertheless, it turned
out that this can be done in terms of commodity graph H. For a fixed H, define o(H),
the fractionality of problem (1.2) with H, or, briefly, the fractionality of H, to be the
minimum natural number k such that for any network (G, H,c,a) problem (1.2) has
an optimal solution f for which kf is integer-valued. If such a k does not exist, we say
that H has unbounded fractionality, denoting this as ¢(H) = oco.

For example, o(H) =1 if |[EH| = 1. More generally, p(H) = 1 for any complete
bipartite graph H, by the multi-terminal version of the min-cost max-flow problem
[12]. On the other hand, it is easy to show that ¢(H) > 2 for all other graphs H. The
next result is less trivial: if H = K7 then (1.2) has a half-integral o.s. [20]; hence,
(K1) = 2if |T| > 3. This fact was proved by considering the following slightly more
general parameteric problem which combines both objectives figured in (1.2):

(1.5) given p € Q,, mazimize the linear objective function pval(f) — a; among all
multiflows f for G,Kr,c.

Obviously, (1.5) becomes equivalent to (1.2) (with T = K7) when p is large enough
(one shows that p = 2a¢(EG)c(EG) +1 is sufficient). The above-mentioned result is an
immediate corollary from the following theorem.

Theorem 1 [20]. If H = K7 then for any p € Q, problem (1.5) has a half-integral
optimal solution f.

As a consequence, we also conclude that p(H) = 2 for any complete multi-partite
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graph H with k > 3 parts (recall that H is complete multi-partite if there is a partition
{T,..., Ty} of T such that {s,t} € EH if and only if s € T} and t € T; for i # 7)-
For we can add to G new vertices ti,...,t; and edges t;s (s € T;) with rather large
capacities and the same rather large costs; then any optimal solution for the resulting
network with the complete graph on {t1,...,%;} as commodity graph yields in a natural
way an optimal solution for the original network.

The complete multi-partite H’s exhibit just all cases when the fractionality is
bounded.
Theorem 2 [21]. If H is not complete multi-partite then p(H) = co.

This theorem is reduced to examination of few instances of H, in view of the

following fact.

Statement 1.1. If H' is an induced subgraph of H then p(H') < ¢(H).

Proof. Given a network N’ = (G',H’,¢',a'), form graph G by adding to G’ the
elements s € VH — VH' as isolated vertices, obtaining network N = (G, H,c,a).
Then N and N’ have the same sets of optimal solutions, and the result follows. e

There are exactly three minimal, under taking induced subgraphs, graphs that are
not complete multi-partite, namely, Hy, Ha, H; drawn in Fig. 1. By Statement 1.1,
Theorem 2 follows from the fact that ¢(H;) = oo, 1 = 1,2,3. We explain why the
fractionality of these H;’s is unbounded in Section 3.

So— ot S t S ¢
SIO—___—-OtI S'I:t' g t’

Fig.1
2. The program dual to (1.5) can be written as

(1.6) minimize ¢y  subject to
vE QEG and dist,44(s,t) > p forall s,t €T, s #t,
where for £ : EG — Q,, dist,(u,v) denotes the {-distance between vertices u and v,
i.e., the minimum £-length £(P) of a path P in G that connects u and v.
Example 4. Let G be the graph shown in Fig. 2a, and let T' = {s1,...,56},

¢ = 1 and a = 1. There is a unique optimal T-multifiow, namely, that takes value 1/2
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on six paths of cost two as drawn in Fig. 2b, and zero on the other T-paths. Suppose
p = 7. Then a (unique) optimal v to (1.6) takes value zero on the edge uv and 2.5 on
the other edges.

(@) 515 cg56 (b)

Fig. 2

The original proof of Theorem 1 given in [20] was constructive, provided by a
pseudo-polynomial algorithm. Being within frameworks of the primal-dual l.p. method,
this algorithm is based on the parametric approach, like that used in the classical
algorithm of Ford and Fulkerson [12] for the min-cost max-flow problem, but now
in more complicated context. In fact, it finds optimal primal and dual solutions
simultaneously for all p € Q. More precisely, it constructs, step by step, a sequence
0=py <p; <p2<...<pu of rationals, a sequence® = fo, f1,..., far of half-integral
T-multifiows and a sequence® = v,,0 = 71,72, -+,7M, Yam+1 of functions on EG such
that: (i) fori =0,...,M —1and 0 <e <1, f; and (1 — e)y; + e7vip1 are 0.5, to
(1.5) and (1.8), respectively, with p = (1 — €)p; + epi41; and (ii) for 0 < & < 00, fur
and Yyas + evar41 are o.s. to these programs with p = pas 4 €. In particular, fis is a

maximum T-multiflow.

The crucial idea in [20] is that, at an iteration, the new f and y can be obtained by
solving the usual maximum flow problem in an auxiliary digraph, the so-called double
covering over a certain subgraph of G. A shorter, non-algorithmic, proof of Theorem 1
was given in [22]; it is also based on double covering arguments. We outline this proof

in Section 2.

Two more results were obtained in [22]. Tt was shown that the dual problem (1.6)
has a half-integral o.s. whenever p is an integer. Also a strongly polynomial algorithm
to find a half-integral o.s. to (1.2) with H = Ky was developed there. However, this
algorithm is not purely combinatorial as it uses (once) the ellipsoid method; we outline
this in Section 2.

Recently Goldberg and the author [14] designed two polynomial algorithms for
finding a half-integral o.s. to (1.2) with H = Kp. Both algorithms are purcly
combinatorial and they handle within the original graph G itself rather than the double

covering. One of these applies scaling on capacities, while the other scaling on costs
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(cf. [11,6] and [32,2] for the min-cost max-flow problem).

3. Apparently most significant results in the area we discuss were recently obtained
for the integer problem (1.3) with H = K7. W.l.o.g. we assume that the capacities are
all-unit (since, for an arbitrary ¢ € ch, splitting each edge e into ¢, parallel edges
of the same cost a. makes an equivalent problem). As before, it is convenient to deal
with a parameteric problem, namely,

(1.7) given p € Q,, mazimize the objective function y(p, D) = p|D| — a(D) among all
sets D of pairwise edge-disjoint T-paths in G,

where a(D) stands for ¥ (a(P) : P € D). Note that the objective function in (1.6)
gives an upper bound to ¥(p, D), namely, ¢(p,D) < v(EG) for any v as in (1.6).
Simple examples show that there can be a gap between max{+(p, D)} and min{v(EG)}.
Nevertheless, one can modify 7 in a certain way so that we get an exact upper bound.
In other words, there is an explicit combinatorial minimax relation involving #(p, D).
To state it, we need some definitions. We refer to a set of pairwise edge-disjoint T-paths
as a packing.

Definition. A pair ¢ = (X;,U,) is called an inner fragment if Xy, C VG - T,
U¢, g 6(X¢), and |U¢,I is odd.

Let F° denote the set of inner fragments. Define the characteristic function x¢ €
Z"% of ¢ by

(1.8) Xo(e) =1 if e €Uy,
=-1 1ife€ 5(.X4,) - Uy,

=0 otherwise.
Given B: F° - R, and v : EG — Ry, define the function £ = £%7 on EG as
(1.9) t=a+7+Y (Boxs : 6 €F°)
We say that (8,7) is p-admissible if:

(1.10) ¢% is nonnegative;

(1.11) distgs,+(s,t) > p for all distinct s, € T
Theorem 3 [23]. For any p >0,
(112)  max{y(p, D)} = min{y(EG) + Y (Bs(|Us| —1) : ¢ € F*)},

7



where D ranges over all packings and (8, ) ranges over all p-admissible pairs.

For instance, if G, T, ¢,a,p are as in Example 4 then any o.s. D to (1.7) consists of
three T-paths covering all edges of G. The equality in (1.12) is achieved by assigning
Bs, = By, = 1/2, Yu» = 0 and v, = 2 for the other six edges e of G, where ¢, 2
are the inner fragments with Xy, = {u}, Uy, = {us; : i = 1,2,3}, Xy, = {v} and
Uy, = {vs; : i =4,5,6}.

The inequality < in (1.12) is easy. Indeed, for a packing D and a p-admissible
(8,~) we have:

(1.13) ¥, D)= Y (p - a(P))

PeD
< S ((P)+ Y Bexe(P)) (by (1.11))
PED SEFO
<~(EG)+ Z B Z xo(P) (as the paths in D are edge-disjoint)
¢eF®  PED
<~(EG)+ Z Bs(|Us| = 1) (as |Ug|is odd and x4(P) is an even < [P NUyl).

QEFT

The proof of equality in (1.12) is more sophisticated and it uses numerous combina-
torial arguments; a sketch of this proof is outlined in Section 4. Note that, being
constructive, the proof gives rise to a strongly polynomial algorithm to solve (L.7),
or a pseudo-polynomial algorithm for an arbitrary integral c. In particular, it gives
a polynomial algorithm to compute v(G, K7, ). The algorithm in [23] is also based
on the parameteric approach, and it constructs a sequence 0 = pyp < p1 < p2 <
... < pu of rationals, a sequence # = Dy, Dy,..., Dy of packings and a sequence
0 = (Bo,7), (Bi, M), -+ (Brr41,71141) of pairs so that M is a polynomial in VG|
and: (i) fori =0,...,M—-1and0<e <1,D; and (1 —€)B;+eBiv1, (L —€)vi +€7ig1)
are optimal (i.e., they achieve the equality in (1.12)) for p = (1 — €)p; + €pi41; and
(i) for 0 < € < 00, Das and (Bar + €Bum41, 70 + €Yar41) are optimal for p = pyr + €.
Furthermore, one shows that (8141, Ym+1) can be transformed into optimal cuts é (Y5)
(s € T) figured in (1.4).

Relation (1.12) and the algorithm can be obviously extended to a complete multi-

partite H. On the other hand, the following is true.

Theorem 4. If H is not complete multi-partite then (1.3) is NP-hard even forc = 1
and a =0.

To see this, it suffices to consider the minimal (under taking induced subgraphs)
H’s that are not complete multi-partite, i.e., Hy, Ha, H3 as in Fig. 1. The theorem for
H, is just the corresponding result in [10]. This implies the theorem for H> and Hj.
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For, given a natural k, the problem to decide whether k¥ < v(G, Hy, 1) is reduced to
computing v(G', H!, ) with i = 2 or i = 3, where G’ is formed from G by adding new
vertices t;,...,t4 and k parallel edges connecting s; and ¢; (j = 1,...,4), and Hj is
the graph with VH! = {t;,...,t4} and EH = {tt, : s;s, € EH;}.

4. Theorem 3 has interesting applications. Suppose we are given a graph G’, a set
T' C VG’ and a function d : T' — Z4 ( of demands) such that d(T") is even. We call a
set B C EG' a T',d-join if it is representable in the form B = U(P € D) for some set
D of mutually edge-disjoint T”-paths such that for each s’ € T’ there are exactly d
members of D beginning or ending at s'. We usually assume that B is minimal under
this property and denote the set of 7", d-joins by B;. We consider the minimum weight
T, d-join problem:

(1.14) given w : EG' — Z., find a T',d-join B of weight w(B) minimum.

If d = 1 then |T'| is even and we get the well-known notion of a T"-join; such
an object originally appeared in connection with the Chinese postman problem [17,7].
Edmonds and Johnson [9] proved that the minimum weight w(B) of a T'-join is equal
to the maximum value of a (fractional) w-packing of T"-cuts (6 (X) is called a T"-cut
if | X NT'| is odd). In polyhedral terms, this means that the dominant polyhedron

D(B,) = conv(By) + ]R,EGI
for B; is formed by the vectors &’ € IRfG’ satisfying 2/(6(X)) > 1 for all T'-cuts
§(X). (Here for a family £ of subsets of a set E, conv(L) is the convex hull of the
incidence vectors £, € R” ofsets L € L, and for sets X,Y C RE, X + ) denotes their
Minkowsky sum {z : 2=z +ysomez € X and y € y}) Also there are some other
“nice” properties of 7"-joins and T"-cuts and strongly polynomial algorithms to solve

(1.14) with d = . For a survey, see, e.g. [29,15].

In case of arbitrary d € ZI', problem (1.14) becomes more involved. However,
we can reduce it to (1.3) with H = K7 and then apply results on the latter. More
precisely, let G be obtained from G’ by adding, for each s’ € T, a new vertex s and
ds parallel edges ss’. Let T = {s : s' € T'} and ¢, = 1 for all e € EG. Assign the
cost a. to be w, if e € EG’, and 0 if e € EG — EG'. Clearly, By # 0 if and only if
2v(G, K1, 1) = d(T"), in which case the algorithm for (1.7) yields an optimal solution
to (1.14). Moreover, we explain in Section 5 that Theorem 3 enables us to derive a
description of the dominant polyhedron for B, (Theorem 5 below).

Definition. A pair ¢ = (X4,Uy) is called a fragment for G',T',d if X4 C VG,
U, C 65'(X,), and the numbers [Uy| and d(X4 NT") have different parity, that is,

(1.15) Ug| =S (dw : 8’ € X4NT) =1 (mod 2).
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In particular, if X,NT" = 0, it turns into the above definition of an inner fragment.
The characteristic function of a fragment is defined as in (1.8) (concerning G'). The
set of fragments is denoted by F.

Theorem 5 [3]. conv(B,;) C D’ C conv(By) + RfG’, where D' is the set of vectors
«' € RFG satisfying :
(1.16)i) 0<z,<1 for e€ EG';

(i) 2'(6(Y)) > dy —d(Y NT' = {s'}) for s € T' and Y C VG’ with s' € Y;

(iii) z'xe <|Usl—1 for g €F.

In particular, D' + RP® is the dominant polyhedron for B,.
P +

We are also able to describe, in a similar way, the dominant polyhedron of the
set B"** of maximum multi-joins for G',T'. Here by a mazimum multi-join we mean
a minimal set B C EG' such that the subgraph (VG’, B) contains v = v(G’, K, )
pairwise edge-disjoint T"-paths.

Definition. A collection K = {Y,/ : &' € T’} of pairwise disjoint sets Y,» C VG’
with Y NT' = {s'} is called a T'-kernel family.

Let K be the set of T'-kernel families. For e € EG’ define {x(e) to be the number
of occurrencies of e in the cuts §(Y:), &' € T (thus (x(e) is 0, 1 or 2).

Theorem 6 [3]. conv(B™**) C Q' C conv(B™) + REG', where Q' is the set of
vectors z' € R"C satisfying

(1.17) i) 0<z,<1 for e€ EG;

(ii) ¢y >2v for K € K;

(iii) *'xg <|Ugl—1 for each inner fragment ¢.
In particular, Q' + Bi is the dominant polyhedron for B™>*.

This paper concludes with Section 6 where we describe an extension of Theorem
3 to openly disjoint T-paths and pose some open problems.

2. Proof of Theorem 1.

We now outline a proof of Theorem 1; for details, see {22]. Let f and « be o.s. to
(1.5) and (1.6), respectively. We have to show the existence of a half-integral o.s. f' to
(1.5). W.lo.g. we assume that a, > 0 for all e € EG (as validity of the theorem for all
positive a’s implies that for all nonnegative a’s, by obvious perturbation arguments).
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Define the length function £ on EG to be a + «v; then £ is positive. Applying the
L.p. duality theorem to (1.5)-(1.6), we observe that feasible f and v are optimal if and
only if they satisfy the (complementary slackness) conditions:

(2.1) fp > 0 implies £(P) = p; in particular, P is an £-shortest path;
(2.2) 7. > 0 implies {/(e) = ¢, (i.e., e is saturated by f).

We may assume that min{dist,(s,t) : s,t € T, s # t} equals p (as if it exceeds
p then f =0 by (2.1), and we are done). Let P® = P%(£) be the set of T-paths of
{-length exactly p. Take the subgraph G® = G°(£) of G that is the union of 7" and all
paths in P°. Let dist(-,-) stand for dist,(-,").

Consider v € VG®. The potential n(v) of v is the distance from v to T, i.e.,
dist(v,T) = min{dist(v, s) : s € T}. Denote by T'(v) the set of terminals s closest to v,
i.e., dist(v, s) = w(v). Obviously, m(v) < p/2 and: (i) if 7(v) < p/2 then T(v) consists
of a unique terminal; (i) if #(v) = p/2 then |T(v)| > 2. In case (ii), the vertex v is
called central; let V* be the set of central vertices. Thus, VG" is partitioned into the
sets V* and V, = {v € VG° : T(v) = {s}}, s € T. The positivity of £ provides the
following properties.

(2.3) Let e = uv be an edge in G with u,v € VGP. Then e belongs to G” if and
only if, up to the permutation of u and v, either (i) u € V,, v € V,UV* and
7(v)—m(u) = £, for some s € T, or (ii) u € Vi, v € V; and 7(u) +7(v)+ L. = p
for some distinct s,t € T in particular, no edge of G® connects two central
vertices.

(2.4) Let P = (vp,€1,v1,...,€k, V%) be a path in G° connecting distinct terminals
s = vp and t = vp. Then P € P? if and only if there is 0 < ¢ < k such that
Voyeee Vi € Vi3 Vigayen v € Vi m(vg) < ... < w(v;); w(viga) > ... 7(vi);
and either v; ;1 € V*, or v;41 € V; and m(vig1) > (vig2).

Property (2.3) enables us to construct I' = (VT, AT'), called the double covering
digraph over G°, as follows. Split each v € V'G" into 2|/T(v)| nodes v} and v2 (s € T(v)).
If T'(v) = {s}, we may denote v: as vi. The arcs of I' are designed as follows:

(i) for e = uv € EG® with u € V,, v € V; UV"* and 7(u) < n(v), split e into two arcs
(ul,v}) and (v2,u2);

(i) for e = uv € EG® with u € V, and v € V; (s # t), split e into two arcs (u;,v7) and

(v, ul);
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iii) for v € V* make arcs (v!,v?) for all distinct s,t € T'(v).
s 71

(See Fig. 3; here T = {s,t,q}, p = 4, and the number on the edges indicate values

of E.) Arcs in (i) and (ii) are provided with capacities c., and arcs in (i) with capacity
oo; we use the same notation ¢ for the capacities in I'. We think of T' = {s' : s € T}
as the set of sources and T? = {s® : s € T'} as the set of sinks of T".

t i

'—L
TN~

¢ T

Define o(v!) = v3~%. Then for each arc b = (uz,v,’) € AT, (vf_j,u;"'i) is also an

arc in T, denoted as o(b); therefore, o gives a (skew) symmetry of I'. We extend g to

Fig. 3

the dipaths of I' in a natural way.

Next, the construction of T yields a natural mapping w of VI'U AT to VG "UEGY;
it brings a node ¢! to v, an arc (y}, z/) asin (i) or (ii) to the edge yz, and an arc (v!,v})
as in (iii) to the central vertex v. We naturally extend w to a mapping of the dipaths
of T into paths of G®. Then (2.4) and the construction of T' imply the following key

property:

(2.5) (i) any dipath P in T is disjoint from P’ = o(P), and the path w(P’) is reverse
to w(P);

(ii) w yields a one-to-one correspondence between P" and the set of T! to T?
dipaths in T'.

Now we use this correspondence to get a relationship between the multiflows that
are functions on P°® and flows in I'. By a (c-admissible 7" to T?) flow in T' we mean a
function h : AT — @ satisfying the conservation condition:

divi(y)i= Y. hyo— 9. hiy forall ye VI —(T'UT?),
zi(y,z)EAT z:(z,y)EAT

and the capacity constraint h, < ¢p forall b € AT
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A routine fact is that a flow h as above can be represented as the sum of elementary
flows along dipaths (note that T' is acyclic). That is, there are T' to T? dipaths
P,,...,P,, and rationals o1,...,a, > 0such that } (a; : b € P;) = hy, for b € AT'; we
call D = {(P;,;)} a decomposition of k. Such a D induces the function g = g® on P°
by setting g.(p,) = a;/2 fori =1,...,m and gp = 0 for the remaining members P of
PO, We observe that for any b € AT with e = w(b) € EG®,

1 1
(26) (9(e) = (b + o)) < 5(66 + o)) = o

hence, g is a c-admissible multifiow. Conversely, let g : P® — @, be c-admissible.
Define the function A = h9 on AT so that for b € AT, hy, is the sum of values g,(p)
over all T' to T? dipaths P in T that contain b or o(b). Then h is a flow, and for
b € AT with e = w(b) € EG" we have

(2.7) hy = ho) = ¢¥(e)-

Now we are able to prove Theorem 1. Given f as above, form the flow & = h/ in
T. Let E* = {e € EG" : 7. > 0}. Then each e € E* is saturated by f (by (2.2)),
whence hy, = ¢, for b€ A := w~1(E*) (by (2.7)). Since all capacities in T are integral,
there exists an integer c-admissible flow k' with h} = hj, = c; for all b € A*. Choose a
decomposition D = {(P;,o;)} of ' with all ¢;’s integral. Let f' = gP. By (2.6), f'is
a c-admissibbe function on P°. Moreover, f’ is half-integral and it saturates all edges
in E+. Thus, f' and v satisfy (2.1) and (2.2), so f' is the desired o.s. to (1.5).

In conclusion of this section we explain how to find a half-integral o.s. to (1.5)
(and therefore, to (1.2) with H = K7) in strongly polynomial time. Again, we may
assume that a is positive. For if Z = {e : a. = 0} # 0, we can replace a by a’ defined
by @/, =1 for e € Z and a,, = (2¢(Z) + 1)a. otherwise; using the fact that there are
half-integral o.s. for a and for a’, one can check that any half-integral o.s. for a’ is an

o.s. for a as well.

We first find an o.s. v to (1.8) by use of the version [34] of the ellipsoid method [25]
(it takes time polynomial in n = [V'G| since the size of the constraint matrix behind
(1.6) is a polynomial in n). Second, we form G° for given p and £ = a + <y (by solving
corresponding shortest paths problems) and construct I' over G°. Third, we find an
integer flow h in T with the restrictions hj = ¢, for b € A* (such an h must exist).
Now an integer decomposition of h determines the desired half-integer multifiow for G.

3. Unbounded fractionality

As mentioned in the Introduction, to prove Theorem 2 it suffices to show that
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¢(H) = oo for the commodity graphs H = H, Ha, Hy as in Fig 1. Following (21], we
design “bad networks” N = (G, H,c,a) for these H’s.

Let k be an odd positive integer. Take k disjoint paths (vi,eb,vi,... e, ,vi,),
i =1,...,k. Connect vj- and vj-“ by edge u3 for all i, such that i —j =1 (mod 2).
Add vertices s,t,s",t',y,2,y¥', 2 and edges

(i) sy’tz9 s,yl’t,z,;

(ii) yvi and zvi, fori=1,...,k;

(iii) y'v} for each odd j, and z’vf for each even j,

obtaining the graph G. Assign capacity k — 1 for edges s'y’,t'2’, and 1 for the other
edges of G. Assign the edge costs as follows:

0 for tz and eéj, ,7=1,...,k;

1  for all edges uj and the remaining edges ej;

k  for s'y’,t'2' and the edges as in (ii) and (iii) ;
2k for sy.

Fig. 4

(See Fig. 4 for k& = 3; the numbers on edges indicate non-zero costs.)We identify
s,t,8',t' with the corresponding vertices of the graph H € {H;, Ha, H3} in question;
therefore {st,s't'} C EH C {st,s't', ss’,st'}.

For i =1,...,k, let P; (L;) be the simple path going through the vertices s,y, vt
..y Uhy, 2,1 (respectively, s’,y',v{,i_],véi,vgi,v%i_],...,vé’i__ll,vé’i_l,vé’i,z’,t'). We as-
sign the multifiow f by fp, = 1/k, f1, = (k—1)/k (i =1,...,k) and fo = 0 for the
other paths Q in P(G, H). A straightforward examination shows that:

(i) f satisfies the capacity constraints and val(f) = k, whence f is a maximum
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multifiow in N (since v* cannot exceed the half-sum of the capacities of edges sy, tz,
s’y t'2', that is k);

(ii) the cost of any path in P(G, H) is at least 5k — 1, and it equals 5k — 1 for the
P.’s and L;’s and for only these paths in P(G, H);

(iii) f is a unique maximum multifilow which takes zero values outside {Pi,...,Pr,
Li,..., L}

Thus, problem (1.2) for our network has a unique o.s. f, and this f has components
with denominator k. Since k can be chosen arbitrarily large, ¢(H) = oco.

4. Sketch of the proof of Theorem 3

We outline the principal ideas of the proof, mostly attempting to give an impression
of the approach rather than to go into particular details; for the complete proof, we
refer the reader to [23]. As before, w.l.o.g. we assume that a is positive.

Given p, we say that a packing D and a p-admissible (3, «) are good if they achieve
the equality in (1.12). Obviously, D = @ and (8,7) = (0,0) are good for p = 0. We
grow p from 0 through oo and show the existence of good D, 3, for every value of p.
More precisely, by use of standard arguments, Theorem 3 is reduced to the following

theorem.

Theorem 4.1.  Suppose that D, 3, are good for some p. Then one of the following

is true:
(i) there exists a packing D' with |D'| = |D| + 1 such that D', 8,7 are good for p;

(ii) there exist p’ > p and (8',7") such that for any 0 < { <1, the packing D and
functions (1 — £)8 + €8’ and (1 — £)y + ¢+' are good for (1 — £)p + £p'.

The key idea in the proof of Theorem 4.1 is that in place of packings we can handle
certain subsets of edges of G. Let £ = £%7 be as in (1.9).

Definition. Given a p-admissible (3,7), a set B C EG is called regular if it is
representable in the form B = U(P : P € D) with a packing D consisting of simple
T-paths P of £-length £(P) equal to p.

For E' C EG and v € VG let E'(v) denote the set of edges in E’ incident to v.
The value val(B) of a regular B is defined as 1 3 (|B(s)| : s € T); clearly, val(B)
equals the cardinality of a packing D behind B, unless p = 0. We say that B, 3,~ are
good (for p) if D, 3,7 are good. Considering the inequalities in (1.13), we observe that

15



B, 3,7 are good if and only if they satisfy the (complementary slackness) conditions:
(4.1) v, > 0 implies e € B;
(4.2) By > 0 implies x4(B) = |Uy| — 1 (¢ is saturated by B).
Let Uy denote §(Xy) — Uy. The equality in (4.2) is possible in two cases, namely,

(4.3) either (i) B contains all but one element in U, and none in Uy, or (ii) B contains
Uy and exactly one element in U.

This only element of U, — B in case (i), and of B — U, in case (ii) is called the
root of (saturated) ¢ and denoted by r4. In the proof of Theorem 4.1 we impose some
additional conditions (inductive assumptions) on B, 3,y we deal with. Let F= {¢ €
FO . B, > 0}. The first group consists of four conditions:

(A0) for ¢ € F, ryisin G° and Vry =05

(A1) {X, : ¢ € f} is a nested family, i.e., for distinct ¢, ¢’ € F, either XoNXy =0
or Xy C Xy or Xy C Xy;

(A2) for ¢1,¢2 € F with Xy, C Xg,, the set Uy, N 6(Xy,_,) is contained in Uy, _,,
i = 1,2 (or, equivalently, if 74, € §(X4,_,) for some i then 74, =ry,);

(A3) thereareno ¢y,...,¢r € F with k > 1 such that the sets X, are pairwise disjoint,
and To; € 6(X¢')i+1 )’ 1= 1, ceey k (letting ¢k+l = ¢] ).

Consider the subgraph G" of G that is the union of 7" and all (not necessarily
simple) T-paths of £-length p. The regularity of B implies B C EG". Let J = {e €
EG : {. = 0} (although @ is positive, £, = 0 is possible since x4 takes negative values
on Uy). Define

B '=BnJ ad B*=B-J
The second group of conditions concerns J, namely,
(A4) fore = uv € J, eisin G°, v, = 0, and both u,v are not in T
(A5) JNU, =0 for any ¢ € F; in particular, e € B N §(X,) if and only if e = rg.

A component of the subgraph induced by B? is called a 0-component. By (A4),
the 0-components are disjoint from 7. Also each 0-component is a tree. Indeed, if B?
contains a circuit C then for any ¢ € F°, [Uyn C| > [Uy N C| (because of (4.3)
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and the relations |[C N §(Xy)| > 2 and C C B), whence x4(C) > 0. Therefore,
£(C) - a(C) —7(C) = T (Bsxs(C) : ¢ € F%) > 0. Since ¥(C) > 0 and a(C) > 0, we
have £(C) > 0; a contradiction.

The current B is transformed into a new regular set B’ of bigger value by use of a
certain augmenting path. To construct such a path, we first introduce the important
notion of attachments and exhibit their properties. We identify T with the set of
integers from 1 through |T'| and denote the set {-|T|,...,—1,1,...,|T|} by (T). Let

Z=EG"-B, 2°=2ZnJ and 2Zt=2Z-J

For the vertices in G” define the potentials m and sets V* and V;, (s € T) as in
Section 2 with respect to our £. For v € VG° and e = uv € EG® with £, > 0 we assign
the attachment o(v,e) € (T} by the following rule:

(4.4) (1) f v e V,UV®, u €V, and n(u) < 7(v), set a(v,e) = s;
(ii) if v € V, and either u ¢ V;, or € V;, and w(u) > 7(v), set ofv,e) = —s.

If e = uv € Z°, we assign for (v,e) the special attachment a(v,e) = 0. To assign
attachments for edges in B" is more sophisticated. Obviously, both ends of e € J (and
therefore, the vertices of a 0-component) have the same potentials and belong to the
same set among the V,’s and V*. For a subgraph Q of G° let B(Q) (B*(Q)) denote the
set of edges in B (resp. B*) with exactly one end in Q. For s € (T) define B} (Q) to
be the set of edges e = uv € B*(Q) with v € VQ and a(v,e) = s. It will be convenient
to think of a vertex v € VG® — T with B%(v) = 0 as a (trivial) 0-component. The next
lemma easily follows from (2.4) if B® = @; in general case, the part “only if” is also
easy (using the fact that when shrinking the edges in J we get the case as in Section
2), while the part “if” is slightly more involved and it is proved by induction on |B].
We say that E' C EG is inner Eulerian if |E’(v)| is even for each v € VG —T.

Lemma 4.2. B C EG" is regular if and only if B is inner Eulerian and

(4.5) |BY(Q")| <|B(Q')|/2 for any 0-component Q, subtree Q' C Q and s € (T).

If the inequality in (4.5) holds with equality, we say that s is tight for Q'. E.g., if
v € V, is a trivial 0-component, then {B} (v), B¥,(v)} gives a partition of B(v), and s
and —s are tight for v. Moreover, one can see that:

(4.6) (i) if s is tight for Q' then for any e € EQ’, s is tight for exactly one of two
components of Q' — {e};

(ii) for a 0-component @ and e = uv € EQ, there is at most one s € (T') such
that s is tight for some subtree Q' C Q containing u but not v.
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Property (4.6)(ii) enables us to assign attachments to the edges in B":

(4.7) for a 0-component Q and e = uv € EQ, set a(v,e) = s if s € (T) is tight for
some subtree Q' C Q with v ¢ V Q' 5 u, and a(v,e) = 0 otherwise.

For v € VG° let E(v) stand for EG(v). For s € (T) U {0} define
E,(v)={e€ E(v) : a(v,e) =s}, B.,(v)=BNE,(v) and Z,(v)=2ZnNE,(v).
Using (2.4) and (4.6)(i), one can check that the resulting attachments satisfy:

(4.8) (i) for e = uv € VG®, a(v,e) # a(u,e) unless a(v,e) = ofu,e) = 0;
(i) |B,(v)| < |B(v)|/2 forany v € VG" — T and s € (T);

(iii) let P = (vg,eq,v1,...,€x,v;) be a simple T-path with all edges in B; then
B — P is a regular set of value val(B) — 1 if and only if for any consecutive
0 <i < j < k with non-zero & = a(v;,e;) and & = a(vj-1,e;), one has
a#d.

In order to define an augmenting path we need to introduce the key notion of a
fork, using the above attachments. Let F™** be the set of ¢ € F with X, maximal;
by (A1), the sets Xy, ¢ € F™**, are pairwise disjoint. For each ¢ € F™** shrink in
G" the subgraph (X,)q0 induced by X into vertex vy, forming the graph G*. These
vy’s are called the fragment-vertices, whereas the other (non-shrunk) vertices in G* are
called ordinary; we keep the same notation for the corresponding edges in G® and G*.
Consider a vertex v € VG* — T and distinct edges e,e’ in G* incident to v. We say
that 7 = (v,e,€’) is a fork if

(4.9) (i) v is ordinary and there is no s € (T') tight for v with e,e’ € Z,(v) U (B(v) -
B,(v)); or

(ii) v is a fragment-vertex vy and one of e, e’ is 7.

We observe that (4.9)(i) means that making BA{e,e'} preserves the regularity
(ie., (4.8)(ii)) at v (A denotes the symmetric difference). Similarly, for ¢ € F make
the graph G from (X} U{rs} by shrinking (X ¢ ) into vertex vy for each ¢ € Fy,
letting Fy be the set of ¢’ € F with maximal Xy C X4. Let X o denote the image of
X, in G4. We define the forks in G as in (4.9) (concerning triples in G).

Next, one trick is used to make the desired augmenting paths non-self-intersecting
on edges. Namely, we slightly modify G by adding, for each e € J, a parallel edge
e/, called the mate of e; we consider e’ as an element of Z with . = 0. Accordingly,
we correct G* and the Gy's. This slightly extends the set of forks in (4.9); e.g., for
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e = uv € J and its mate ¢/, (v,e,e’) is a fork. Note that if r4 € J then the mate of
r¢ vanishs in G4. We keep notations E(v), Z(v), E,(v) and etc. for the corresponding
sets in the new G°.

Let E denote {e € GE® : v, = 0}, the set of feasible edges. A path P = (v, e1,v1,
...,€k, V) in G* is called active if: (i) eq,...,e; are distinct and feasible; (i) vo € T,
e1 € Z,v1,...,v5_1 € T;and (iii) (vi,e;,ei41) is a fork, i = 1,...,k—1. Such an active
P is called minimal if (v;,e;,e;41) is not a fork forany 1 <i < j <k with v; = v;
(otherwise we could cancel in P the part from v; to v;, getting again an active path).
If, in addition, vi € T and e, € Z, P is called augmenting in G*. An active path in
Gy is defined by replacing (ii) by the conditions e; = 74 and v; € X;. It is an easy
exercise to show (using, e.g., (4.14) below) that if P is a minimal active path then

(4.10)(i) there are no 0 < i < j < ¢ < k such that v; = v; = vg;

(ii) each fragment-vertex can be passed by P at most once.

An augmenting path P’ in G° is constructed from an augmenting path P in
G* as follows. If all vertices in P are ordinary then P is already the desired P’.
Otherwise we repeatedly apply the replacement procedure, letting that the following
“strong reachability” condition is imposed: for B and each Gy,

(A6) (i) each fragment-vertex vy in X is reachable by an active path with the last
edge Tols

(ii) each ordinary v € X is reachable in G by an active path L,; moreover, for
each s € (T) tight for v (if any), there is a minimal active path L to v such
that |B”(v)| = (|B"(v)| — 1)/2, where B" = BALj, and By is defined with
respect to the old attacments.

(Moreover, the paths required in (A6) can be efficiently found.) We arbitrarily choose in
P a fragment-vertex v, and consider the edges e, e’ of P adjacent to vy (cf. (4.10)(ii)).
By (4.9)(ii), one of these, e say, is ry; let w be the end of ¢’ in Xj. We replace in
P the vertex vy by a certain minimal active path L (without r4) in G coming to w.
If w = vy for some ¢' € Fy, we take as L the path as in (A6)(i). If w is ordinary,
we take as L the path L,, or L? as in (A6)(ii) (we omit here the rule how to choose
the “attachment” s). We repeat the procedure for the new path P (and a maximal
fragment in F° — {¢}), and so on until no fragment-vertex in the current path exists.
Then the resulting path is just the desired P’, and we transform B into

B' = BAP'.

(If P’ contains the mate e’ of an original edge e but not e itself, then (A5) implies that
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e € Z, and we exchange the role of ¢’ and e. And if P’ contains both an original edge
e and its mate €/, then e must be the root of some fragment ¢ with ¢’ € §(X), whence

e € B; in this case e occurs in B’.)

We observe that, irrelatively of the choice of active paths as in (A6)(ii), for each
¢ € F, either P’ does not meet the cut §(X4) or P’ intersects it twice, passing r4 and
another edge e. Obviously, in the latter case ¢ remains saturated (x4(B’) = |Uy| — 1),
and e becomes the new root of ¢ if e is not the mate of ry, else the root preserves.
Thus, (4.2) remains true. (4.1) for B’ is also true since the edges of P’ are feasible. It is
easy to see that (A0)-(A5) continue to hold. Also B'is, obviously, inner Eulerian, and
val(B') = val(B) +1 (as both edges of P’ meeting terminals are in Z, by the definition
of an augmenting path in G®). The next lemma is crucial to show the regularity of B'.

Lemma 4.3. (4.5) holds for B' w.r.t. the (-components and attachments induced
by B'.

In the simplest case when @’ is a trivial 0-component v in G* and £, > 0 for all
e € B'(v), this obviously follows from the definitions of attachments (cf. (4.4)) and
forks (cf. (4.9)(1)). If Q' is an ordinary vertex w with similar properties occurred in
the above description of the replacement procedure, the statement is provided by an
appropriate choice of an active path in (A6)(ii). The proof for remaining cases of Q' is
more complicated. One should apply induction on the number of replacement and use
(4.6)(ii) and the property (provided by (A5)) that, for ¢ € F and a 0-component Q for
B, if Q meets X, then either Q entirely lies in (X )0 or it has a unique common edge
(namely, ry) with §(Xg).

Finally, one can prove (it is not straightforward) that (A6) preserves for B’ and the
corresponding roots and attachments. This completes the consideration of alternative
(i) in Theorem 4.1.

To search an augmenting path in G* (extended, as before, by the mates), one
applies an efficient labelling method similar, in a sense, to that used for finding alternat-
ing paths in matching problems. During the labelling process, which grows in a certain
way a digraph on feasible edges, a feasible edge e = uv € E can be either unlabelled, or
labelled in one direction, from u to v say, or labelled in both directions, from u to v and
reversely; let E"", E', E? denote their current sets, respectively. If e = uv is labelled
to v, we say that v is labelled.

The process is organized so that, at any moment, for an edge e = uv labelled from
u to v there is an active path containing u,e, v in this order and with all edges already
labelled in forward direction. It terminates when (i) some edge e = uv € Z withv € T
becomes labelled from u to v, or (ii) one can no longer label edges so that the set of
labelled vertices enlarges or in the subgraph induced by E? the collection of vertex-sets
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of components changes. In case (i), we get an augmenting path.

We now assume that the process terminates with case (ii) (but not (i)). A vertex
v € VG* — T is called 1-labelled if it is incident to an edge in E' but none in E?; for
such a v denote by E™(v) (E°"!(v)) the set of edges in E'(v) labelled to (resp. from)
v. A component of the subgraph induced by E? is called a pre-fragment. We also
introduce a special kind of pre-fragments. Namely, for an ordinary 1-labelled vertex v
and an edge e € E™(v), if e € Z;(v) U (B(v) — B,(v)) for each s € (T') tight for v, then
we consider the graph ({v},0) as an elementary pre-fragment (one can see that such a
v is central). The following structural properties are analogs, in a sense, to ones of the
so-called “Hungarian tree with blossoms” for matchings:

(4.11) each e = uv € Z with u € T is labelled from u to v but not from v to u;
(4.12) if v is 1-labelled then each pair {e € E™"(v),e’ € E°"*(v)} and none of the
pairs in E'" (v) U E*"(v) forms a fork;

(4.13) for each pre-fragment F all feasible edges in 6(V F') are labelled as leaving F
except one, er say, labelled as entering F'.

(To show (4.12) and (4.13), one can use the following easy corollary from (4.9):

(4.14) for v € VG® and e,€,e” € E(v), if neither (v,e,e’) nor (v,e',e") is a fork

then (v,e,e”) is not a fork either.)

Our goal is to find 8’ and 4’ as in alternative (ii) in Theorem 4.1. Each pre-
fragment F yields the fragment ¢ = ¢(F) with X, that is the preimage of VF in G°,
and:

(4.15) Uy = (BNé(Xy))U{er} ifer € Z, and Uy = (BN6(Xy))—{er} if er € B

(for er as in (4.13)). Since B is inner Eulerian and VF NT = 0, ¢ is well-defined;
obviously, ¢ is saturated by B, and ep = ry.

Let F"*¥ be the set of fragments created from the pre-fragments (these fragments
are to be added to F when 8 will change). Note that (A0),(A1) and (A3) are trivially
true for F U F"*¥, while (A2) follows from the observation that if a (non-elementary)
pre-fragment F would contain a fragment-vertex vy so that ey is incident to vy but
it is not the root of ¢', then (in view of (4.9)(ii)) none of the edges in E(vy ) could be
labelled in both directions, contradicting the definition of F'.

Let Ft (F~) denote the set of ¢ € F™** such that v, is 1-labelled and r¢4 € E™" (vy)
(respectively, ry € E®"*(vy)). Let F' = F+ U F"*. We shall transform § into 8’ = §°
by increasing 8 by € on F' and decreasing by € on F~, with some ¢ € Q, such that
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0 < e <min{By : ¢ € F~} (which ensures the nonnegativity of 3').

We now explain how to transform < into 7' = 4*; thereby, for a sufficiently small
€, the new length function ¢ = £* = a++' + > (Blxs : ¢ € F), number p' = p* =
min{disty (s,t) : s,t € T,s # t} and the graph G'® concerning p’ and ¢ will satisfy:
(4.16) p' =p+2;

(4.17) G contains B.

First, we partition VG® into four sets T, L, M, W, where

L consists of the ordinary 1-labelled vertices not forming pre-fragments;
M consists of the preimages of unlabelled elements of VG* — T
W=VG’-(TULUM)

(then the sets X for ¢ € F' U F~ give a partition of W). Second, fix some edge .,
in E™"(v) for each 1-labelled vertex v. For v € VG® and e € E(v) define the number

p(v,e) = p*(v, e) as follows:

(4.18)(i) for v € W U M, set p(v,e) = 0;
(i) for v € T, set p(v,e) =¢;
(iii) for v € L and e € Z, set p(v,e) = ¢ if (v, h,,e) is a fork, and —e otherwise;
(iv) for v € L and e € B, set p(v,e) = —¢ if (v, h,,€) is a fork, and ¢ otherwise.

(Using (4.12) and (4.14), one shows that p(v,e) does not depend on the choice of hy;
recall that (v, k., h,) is not a fork.) For e = uv € EG" define

(4.19) p(e) = p(u,e) + p(v,e),
and then define ¥’ by

(4.20) v, =, + p(e) + B(e) — B'(e) for e € B,

=0 for the remaining edges e in G

where B(e) = ¥ (Bsxs(e) : ¢ € F) and F'(e) = L(B,xs(e) : ¢ € F). Thus, (4.1)
holds for +'.

The proof that the B, 8',+" have the desired properties falls into a number of steps.
First of all one shows the p’-admissibility of (8',7') and the regularity of B w.r.t. p’, £’
This follows from three lemmas; here ¢’ is a sufficiently small positive real.

Lemma 4.4. ~° and £° are nonnegative for any 0 < e < ¢'.
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Lemma 4.5. Let P = (vg,e1,v1,...,€k, V) be a path in a packing D representing
B. Then £(P)=p-+2¢ forany 0 < e < ¢

Lemma 4.6. (4.16) holds for any 0 < e <¢'.

Let us comment on some points in their proofs. To prove Lemma 4.4, it suffices
to consider an edge e = uv € B with 4, = 0. The proof depends on occurrencies of
u and v in the sets T', L, W, M. Considering the possible cases for a labelled edge, one
can obtain the important property that

(4.21) if e is labelled then p(e) + B(e) — B'(e) = 0;

which implies that v, = 4, = 0 for such an e (e.g., if e is labelled from u to v and
u,v € TUL, then 3'(e) = B(e) = 0, and (4.18) shows that p(u,e) = —e and p(v,€) =¢).

If e is unlabelled then, in view of (4.12) and (4.13), the possible cases are: (i)
w,v € TUL; (i) u € TUL and v € WU M; (iii) u,v € M or u,v € X, for some
¢ € FUF™; (iv) u € Xy, e € U, for some ¢ € F~ and either v € M or v € Xy
for some ¢ € F~ — {¢}. In case (i), p(u,e) = p(v,e) = ¢; in case (i), p(u,e) = ¢,
p(v,e) = 0, B(e) - E’(e) > —¢; in case (iii), p(e) = B(e) - B’(e) = 0; in case (iv),
p(e) =0, B(e) — B'(e) € {e,2¢}. Thus, 4, > 7. holds in all cases.

To see Lemma 4.5, put ¢; = p(v;, ;) + p(vi,ei41), 1 =1,...,k — 1. Then, by (4.20)
and (4.18)(ii),

1=1

k k-1 k-1
e(P)=£(P) =3 ple) = p(vaser) + Y ai + p(virer) =26 + Y as.
i=1 i=1

We observe that g; = 0 for each i. Indeed, if v; € WUM then p(v;,e;) = p(v;, e541) = 0.
And if v = v; € L then the membership of P in D and the fact that v does not
form an elementary pre-fragment yield that there is s € (T') tight for v and such that
h, € Z, U (B(v) — B,(v)), one of e;,e;41 is in B,(v) and the other in B(v) — B,(v).
This implies p(v,e;) = —p(v,e;41), whence ¢g; = 0.

In the proof of Lemma 4.6, w.l.o.g. one may assume that G° contains at least one
T-path. Then B # @ (otherwise there would exist an augmenting path), so there is a
T-path P with £5(P) = p + 2¢ (by Lemma 4.5). We have to show that £°(P) > p + 2¢
holds for any simple T-path P = (vy,e1,v1,...,€k, vt ) in G. This is obvious if £(P) > p.
And if ¢(P) = p then P lies in G°. Arguing similarly to as in the proof of Lemma 4.5,
one shows that ¢; > 0 for i = 1,...,k — 1. Furthermore, one shows that 5 > £, + p®(e)
for any e € EG". Hence, £°(P) > p + 2¢.

To complete the proof for case (ii) of Theorem 4.1, we have to show maintaining
(A0)-(AB) when transforming (8,~). Some of them (e.g., (A1)-(A3)) are obvious, while
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some other ones take considerable efforts to prove (e.g., property (A6) the proof of which
includes, in particular, showing that G'° contains as a subgraph the graph (X ) for all
¢ € F'UF~ with ,3;, > 0). This is sophisticated and most technical part of the entire
proof. Furthermore, it is important to notice that, under the above transformation
of (8,7), condition (A0) does not remain automatically true for some ¢ € F with
X, € M. If this happens, one applies an additional transformation of 3’ on some ¢’s
with Xy € M and of 4’ on some edges incident to vertices in M, after which (A0)
becomes true. We do not go into details of such a transformation, referring the reader
to [23].

The proof of Theorem 4.1 provides an algorithm to solve (1.3) with H = K7 and
¢ = II. An iteration of the algorithm either (i) increases the value of the current regular
set or (ii) transforms the current (3, ) so that p increases. The number of iterations of
type (i) is v < |EG|. At an iteration of type (ii) we choose ¢ as large as possible provided
that the resulting 5’,',£' are nonnegative and p’ = p® equals p + 2¢. If such an ¢ is
infinitely large, we are done (the current B gives an o.s. to the whole problem). It turns
out that the maximal choice of ¢ ensures that the number of consecutive iterations of
type (ii) is O(n?), where n = |V G|. This follows from the important claim that if there
happen two consecutive iterations of type (ii) and both iterations do not change the
set 7 then the set of labelled vertices at the first iteration is strictly included in that
at the second one. As a consequence, the total number of iterations is a polynomial in
n. Moreover, one shows that an iteration can be executed efficiently. This implies that
the running time of the algorithm is strongly polynomial.

5. T,d-joins

We outline the proof of Theorem 5 given in [3], using corresponding notations from
Sections 1,2 and 4.

To see the first inclusion in this theorem, we observe that the incidence vector
t' = £p of any T',d-join B is contained in D’. Indeed, (i) in (1.16) is obvious, and
(ii) and (iii) are easily seen by considering a representation B = U(P € D) as in the
definition of B.

To prove the second inclusion, we show that (1.14) is, in essense, equivalent to the
problem

(5.1) given a weighting w : EG' — Z,, minimize wz' over allz’ € D'.

More precisely, we show that (i) if By = @ then D’ = @, and (ii) if By # 0 then
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(5.1) has an integer o.s. z'. Then the inclusion is obvious if (i) takes place. And in
case (ii), we observe that the support B’ = {e : 2, > 0} of 2’ contains a T",d-join B”
(whence £ < 2’ implies 2’ € conv(By) + IR_':"G'), and the desired inclusion is obtained
by varying w.

To see that B’ contains a T, d-join, let us form the graph G by adding to G’ a
new vertex s and a set &, of d, parallel edges connecting s and §', for all s’ € T'. We
think of T = {s : s’ € T'} as the set of terminals in G. Let B be the union of the sets
€, (s € T) and B'. Then B is inner Eulerian for G,T. For if |B(v)| is odd for some
v € VG — T then the pair ({v}, B'(v)) is a fragment ¢ for G',T",d (cf. (1.15)), and
we have ¢’y = |B'(v)| = |Uy|, contradicting (1.16)(iii). Next, (1.16)(ii) easily implies
that for each s € T and Y € VG with Y N T = {s}, the cut 67(Y) meets at least
d, edges of B. Now, by Lovasz-Cherkassky’s theorem mentioned in Example 3 in the
Introduction, the graph (V G, B) contains d(T")/2 edge-disjoint T-paths, whence the
result follows.

Suppose that B, # 0. For s’ € T' let ), denote the set of pairs (s',Y") such that
Y CVG and s e YNT',and let Y = U(Yy : 8’ € T'). Assign dual variable o,y
to (s,Y) in (1.16)(ii), B} to ¢ in (1.16)(iii), and 7, to e € EG’ (corresponding to the
constraint z, < 1). We have to show that there exist a T”,d-join B’ and functions
c:Y->Q., 8 :F->Q., 7 :EG — Q, that satisfy:

(5.2) — 4. +5(e)=B'(e) Sw. for e € EG';

(5.3) v > 0 implies e € B’;

(5.4) oyy >0 implies |B'N§(Y)| =dy —d(Y NT' — {s'});
(5.5) By > 0 implies xy(B') = |Ug| — 1;

(5.6) e € B' implies -+, +&(e) - 3’(6) = We;

where for e € EG’, &(e) denotes Y (o.v : (s/,Y), e € §(Y)) and B'(e) denotes
>.(8,xs(e) : ¢ € F). One can see that (5.2) gives the constraints of the program dual
to (5.1), while (5.3)-(5.6) exhibit the complementary slackness conditions; therefore,
satisfying (5.2)-(5.6) means that 2’ = {p' is an o.s. to (5.1), as required.

We construct B’, g, 3',~' from D, 3, that achieve the equality in (1.12) for G, T as
above, a rather large p, and the costs a, = w, fore € EG' and a. = 0 fore € EG—EG'.
The desired B’ is the restriction of B = U(P € D) to EG’ (the choice of p ensures that
B’ is a T',d-join). We now explain how to design o,’,v, using (4.1),(4.2) and the
facts that B is in the subgraph G® and that e ¢ Bforalle € £;,s € T.

Let F; be the set of inner fragments ¢ € F° for G, T such that £, C U, whenever
s € T and s’ € X,. Clearly the “projection” w(¢) = (X¢,Uy N EG’) of each ¢ € F is
a fragment for G',T’,d. We define

(5.7) By =By for ¢ =w(d), d € Fy,
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=0 for the other fragments ¢’ in F.

Then (5.5) is true. On the other hand, for ¢ € FO — F; with 8, > 0, we have
U, N EG = B'né§(X,) since 74 is not in G’ (cf. (4.3)). Based on this property, we
define 4’ by

7::='7e+Z(,3¢3¢’€-7:0—.7'~1,€€5(X¢,)) for e € B,
=7, (=0) for e€ EG' - B,

This together with (5.7) gives (5.3) and

(5.8) v+ B(e) =7, + B(e) for e€c B,
>4, +pB(e) for ec EG'— B’

(as Boxes(e) <0 for ¢ € FO — F, and e € EG' — B'). It remains to define o. Consider
£ = %7 (see (1.9)) and s € T. Clearly, dists(s,s’) < disty(s,v) for any v € VG'. Let
Ty < T < ... < 7 = p/2 be the sequence of different numbers among p/2 and all
dist(s,v) that are smaller than p/2, where v ranges over VG’ (possibly k = 0). Form
the sets

Yi={veVG : disty(s,v) <7}, i=1,...,k

(then s € Y for any i), and define the desired o on Y,/ by

(5.9) Opy =T — Timq for Y=Y i=1,...,k,
=0 for the other (s',Y)’sin Y.

One can see the following.

Claim. (i) Let P be a path in G connecting distinct s,t € T and with {(P) = p, and
let P’ be its part from s’ to t'. Then for every (¢',Y) € Y with a4y > 0, P’ does not
meet Y if ¢ # s,t and it intersects 6(Y) at most once for ¢ = s,t;

(ii) for any e € EG’, G(e) < £, and the equality holds if e is in EG®.

This claim together with (5.8),(5.9) and the fact that £(P) = p for any path in the
packing D representing B implies (5.2),(5.4) and (5.6). This completes the proof for
case By # 0.

In case B, = 0, one proves that for w = 1 the program dual to (5.1) has unbounded
objective, thus showing that D’ is empty. For details, see [3].

Remark. Theorem 6 on maximum multi-joins can be proved in a similar way.
We should apply Theorem 3 to G’ itself, and take 3 and v achieving the minimum in
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(1.12) as values of dual variables corresponding to (1.17)(iii) and the second inequality
in (1.17)(i), respectively. To determine the required values of variables, say 7, dual to
(1.17)(ii), we range all different numbers 7y < m < ... < m; = p/2 among p/2 and
dist,(v,T) < p/2 for v € VG'. Then for i = 1,...,k we form the T'-kernel family
Ki={Y} :s €T} by setting Y} = {v € VG’ : disty(¢',v) < 7} and define 74: to
be m; — w;—1.

6. Generalizations, open problems

Generalizing (1.4), Mader [31] established a minimax relation that expresses the
maximum number of pairwise openly (vertex) disjoint T-paths. It turns out that
Theorem 3 can be also extended to the openly disjoint case. More precisely, we deal
with an edge cost function a as before, and consider the problem:

(6.1) given p € Q,, mazimize the objective (p, D) = p|D| — a(D) among all sets of
pairwise openly disjoint T-paths in G,

To state a minimax relation involving 1, we need some definitions and notations.

(i) For E C EG, let V(E) denote the set of vertices that are incident to edges in
both E and EG — E (the border of E).

(ii) A triple ¢ = (X4, Eg, Ag) is called a v-fragmentif Xy CVG-T, (Xy,Ey)isa
connected subgraph of G, Ay C V(Ey), and |Ay| is an odd > 3. The set of v-fragments
is denoted by V. For ¢ € V we denote V(X ) — Ay by Ay, and define the characteristic
function of ¢ on EG by setting, for an edge e = uv,

xo(e)=1 ifu€Adyand v ¢ X,
=-1 ifuedyand v¢g Xy,
=2 ifu,v€Ayand e¢g Ey,
=-2 ifu,v€Ayand e¢ Ey,

=0 otherwise.

(iii) We say that a T-path P = (vp,e1,v1,...,€k, V) touches a v-fragment ¢ at a
vertex v € X, if for some 0 < i < k, v = v; and both e;,e;4; is not in Ey. The number
of indices i such that v; € A, and P touches ¢ at v; is denoted by w(P, ¢).

(iv) For a function v on VG and an edge e = uv let ¥, denote v, + v,. For a
function 8 on V the function ¥ (8sx¢ : ¢ € V) (on EG) is denoted by B.

(v) Given §:V — Q, and v: VG — Q,, we define the function £ = 27 on EG
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to be ¢+ B + 7 and call the pair (3,v) p-admissible if:

(6.2) (i) v» =0 forall v €T}
(ii) £ is nonnegative;

(iii) the f-length of every T-path P is at least p + 2 Z(ﬁd,w(P, $): peV).

Without loss of generality we assume that no edge e of G connects two terminals
(for otherwise we can replace such an e by two edges in series with c. as the sum of
their costs).

Theorem 6.1 [24]. max{y(p,D)} = min{2v(VG) + 3 (Bs(|4s| — 1) : ¢ € V)},
where D ranges over all sets of pairwise openly disjoint T-paths and (8, ~) ranges over
all p-admissible pairs.

In conclusion of this paper we point out some questions which are still open.

1) Is it possible to construct a “purely combinatorial” strongly polynomial algor-
ithm for finding a half-integral o.s. to (1.2) with H = K7? As mentioned in the
Introduction, there have been only found “purely combinatorial” (weakly) polynomial
algorithms and a strongly polynomial algorithm using the ellipsoid method.

2) Is it true that, whenever p is an integer, the minimum in (1.12) in Theorem
3 is achieved by 3, that are half-integral? It looks plausible, however, the proof in
[23] tells nothing about the fractionality of dual solutions (perhaps a more meticulous
analysis of that proof could give affirmative answer).

3) Is it possible to describe the dominant polyhedron D(Bg) for the set of T",d-
joins via an explicit system of linear inequalities rather than the Minkowsky sum as
in Theorem 5? Are the (absolute values of) left hand side (L.h.s.) coefficients for the

facets of D(B;) bounded? Similar questions are raised for D(B™**). (To comparison:
the perfect matching polytop of a graph has a “good” description via inequalities and
with all Lh.s. coefficients in {0,1}, due to classical results of Edmonds [8], but it
was shown in [5] that Lh.s. coefficients for some facets of the corresponding dominant
polyhedron can be large and arguments there make it unlikely that a “good” description
via inequalities does exist for this polyhedron.)

4) In Section 5 we saw that all integer vectors in the polyhedron D’ as in Theorem 5
correspond to inner Eulerian sets of edges that contain at least one T, d-join. Moreover,
all vertices of D’ that remain vertices in D' + RfG’ are integral and they give the
minimum list of optimal solutions to (1.14) (or, equivalently, to (5.1)) when w ranges
over all nonnegative weightings. There are two questions which seem to be closely
related: (i) is it true that all vertices of D’ are integral, and (ii) can an integer o.s. to
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(5.1) be be found efficicntly for an arbitrary w? (Similar questions arise for maximum
multi-joins.) The former question is answered negatively, as shown by the example in
Fig. 5. Here 7' = {s,t,q} and d, = d; = d; = 2. One can see that the vector z’ taking
value 1/2 on edges eq,...,es and 1 otherwise is a vertex of D’ (such an z’ appears as the
only o.s. to (5.1) when e, ..., es are weighted by 1 and the remaining edges by -2). On
the other hand, the complexity status of the integer version of (5.1) with an arbitrary
w is unknown. (At this point there is en essintial difference between T, d-joins and
T-joins. A nice property of the latter is that if B is a T-join and B’ is a T'-join of the
same graph then BAB’ contains a TAT’-join, and this provides a simple reduction of
the minimum weight 7-join problem with arbitrary weights to its nonnegative version
(see [29]). A similar property is not, in general, true for 7', d-joins.
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