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Abstract. We deal with a graph G = (V,E), a subset T C V, a function ¢: £ — Z,
and a symmetric function p : T x T — Z,. Suppose that we wish to find a partition
I of V into |T| sets X, t € T, such that each X; contains t and the sum of numbers
u(st)c(e) among the edges e of G connecting sets X, and X, in II is as small as possible.
When g is all-unit, this is a version of the minimum graph partition problem (referred
also as the minimum multi-cut problem) and it is known to be strongly NP-hard. On
the other hand, it has been shown that the problem is polynomially solvable if x is the
distance function of the complete bipartite graph with parts of 2 and » = |T'| — 2 nodes.
This is just the minimum (2, r)-metric problem considered in the present paper.

We prove that the multicommodity flow problem which is dual of the minimum
(2,7)-metric problem has an integer optimal solution whenever c is inner Eulerian, i.e.,
each cut in G not separating T has an even capacity with respect to ¢. Moreover, such
a solution can be found in strongly polynomial time.

Also we consider structural and polyhedral aspects concerning the general case
of the metric minimization problem and give some results on metrics g for which the
minimum value of the objective in this problem is the same as in its fractional relaxation.
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1. Introduction

Let G = (V, E) be a graph with nonnegative integer weights c(e) of edges e € E,
and T C V a subset of nodes. By the minimum graph partition problem (also referred
as the minimum multi-cut problem) we mean the problem of finding a partition II of
V such that each member of II contains exactly one element of T and the sum of
weights of edges connecting different sets in II is as small as possible. It is known that
this problem is NP-hard even if ¢ takes value 1 on all edges [3]; moreover, it remains
intractable if |T'| = 3. On the other hand, its special case with |T'| = 2 is efficiently
solvable as being the minimum cut problem for which plenty of polynomial algorithms
are known.

Now suppose that we are interested even in a more general problem in which a
graph I’ with node set T is given and it is required to find a partition IT as above
minimizing the sum of ¢(e)d" (uv)’s over the edges e connecting sets S, 5’ € II, where u
(v) is the element of TNS (resp. TNS’') and d" (uv) is the distance in T between u and v.
In other terms, we wish to find a mapping v of V to T such that v(v) = vforeachv € T
and 3 (c(zy)d" (v(z)y(y)) : zy € E) is minimized. It turns out that such a problem is
solvable in polynomial time for some interesting special cases of I'; in particular, if ' is
the complete bipartite graph K>, with parts of 2 and r nodes (|T| = 2 +r) [5]. In the
latter case the problem is referred as the minimum (2,r)-metric problem.

We start with terminology and notations. By a metric on a finite set V we mean
a nonnegative real-valued function m : V' x V — R satisfying

(i) m(z,z) =0 forz € V;
(i) m(z,y) = m(y,z) for z,y € V (symmetry);
(iii) m(z,y) + m(y, z) > m(z,z) for z,y,2z € V (triangle inequalities).

The value of m on a pair (z,y) is called the distance from z to y. Note that we
allow zero distances between different elements (i.e., in fact we deal with semi-metrics).
Because of (i) and (ii) it is convenient to assume that m is given on the set of edges of
the complete undirected graph Ky = (V, Ev) on V, using notation m(e) or m(zy) for
e = zy € Ey. The set of metrics on V, denoted by My, forms a (convex) polyhedral
cone in the ( “{')-dimensiona.l euclidean space RZV whose coordinates are indexed by
edges of Ky.

Let 4 be a metric on a subset T C V. A metric m on V is called a 0-eztension of
i to V if there is a mapping v of V to T such that < is identical on T (y(v) = v for
v € T) and for z,y € V, m(z,y) equals u(y(z),7(y)). In particular, m coincides with
pon T. Such a v determines the partition I = IT, of V into sets y~'(v) (v € T); so m
is zero within each member of II and a constant (depending on S, S’) between elements



of different members S, S’ of II.

A sort of metrics comes up when we are given a connected graph I' = (T, W) with
T C V. By a 0-extension of I' we mean a 0-extension m of its distance function denoted
by dF. Two special cases are important for us. [Here, for a graph G = (V,E) and a
subset X C V, §(X) = §9(X) denotes the set of edges of G with one end in X and the
other in V — X; if §(X) is nonempty, it is called a cut of G; §(X) separates nodes u
and v (or disjoint subsets A, B C V) if [{u,v} N X| =1 (resp. X N (AU B) € {4, B}

Ezample 1. T is the complete graph K, with p nodes. Then m is called a multi-cut
metric. If p = 2, m is a cut metric and corresponds a cut separating the two nodes of
T.

Ezample 2. T is the complete bipartite graph K, , with parts of p and r nodes.
Then m is called a (p,r)-metric.

We consider the minimum O-eztension problem defined as follows.

(1.1) Given a graph G = (V,E), a subset T C V, a metric 4 on T (or a connected graph
I' = (T,W)), and a weight function ¢ : E — Z,, find a 0-extension m of pu (resp.
') to V that minimizes ¢ - m.

(We denote by a - b the inner product ) (a(e)b(e) : e € S) of functions a and b within
the common part S of the domains of @ and b.) If T is K, we obtain the minimum
multi-cut problem mentioned above, or the minimum cut problem when p =2. If ' is
K, r, (1.1) is specified to be the minimum (p, r)-metric problem.

U

Fig. 1
For some reasons it makes sense to consider also the fractional relazation of (1.1):

(1.2) Given G,T, ¢, (or I') as above, minimize ¢ - m over the metrics m on V satisfying
m(uv) = p(uv) for all u,v € T.

Let 7 and 7* denote the minima of ¢ - m in (1.1) and (1.2), respectively. Clearly
T > 7*. In general, this inequality needs not be equality. E.g., if G is as in Fig. 1,
T = {s,t,u}, T = Kr and ¢ = 1, then 7 = 2 whereas 7* = 3/2. The simplest case
with 7 = 7* arises when I' = K,. Indeed, there is a simple procedure to transform an
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optimal solution (0.s.) m of (1.2) with ' = K, into a cut §(X) separating the nodes
of I so that ¢ m = ¢(6(X)) (see, e.g., [2]). (For a function g : § — R and a subset
5’ C 8, g(S’) denotes Y (g(e) : e € §’).) It turned out that a similar property is true
for (2,r)-metrics.

Theorem 1.1 [5]. If'= K, , then 7 = 7",

Moreover, in this case also there is a simple procedure to transform an o.s. m of
(1.2) into the desired (2, r)-metric . More precisely, let {s1,s2} and {t1,...,t,} be the
parts of nodes in I'. Define

(1.3) Si={z eV :m(s;z) =0}
T,={zeV :m(s1z)+mzt;)=1} -5, i=1,...,7;
S, =V—(51UT1U...UT,.).

It is shown in [5] that II = (S, S2,T1,...,T,) is a partition of V, that each S; (T;)
contains s; (resp. t;), and that if m' is the (2,r)-metric on V induced by II then
¢-m' = ¢-m. This construction provides a strongly polynomial algorithm to solve the
minimum (2, r)-metric problem. This is because for an arbitrary u € Mr, (1.2) can be
written as the linear program:

(1.4) minimize ¢-m  subject to

m 2 0;
: VI\ .. : -
m satisfies the (|V| - 2) 0 triangle inequalities;

m(uv) = p(uwv) for u,v €T.

Since the constraint matrix M in (1.4) consists of O(|V[*) rows and O(|V|*) columns
and all entries of M are 0,41 or -1, a version of the ellipsoid method in [10] finds an
0.s. m to (1.4) in strongly polynomial time. Now if g = d¥2+, we can find a minimum
(2,7)-metric according to (1.3).

Next, the minimum cut problem is dual to the classic maximum flow problem.
There is a similar duality relation between (1.2) and a certain problem on multicomm-
odity flows. To state this problem, consider G, T, p,c as above. A simple path in G
connecting different nodes in 7T is called a T-path. A multicommodity flow, or, simply,
a multiflow, for G,T is a pair f = (P, ) consisting of T-paths Pi,..., P along with
nonnegative real numbers Ay, ..., Ax. Define

(1.5) fe= Z(Ai : P; contains e) for e € E;
fuo = Z()\i : P; connects u and v) for u,v €T.
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Considering ¢ as an edge capacity function, we call f c-admissible if
(1.6) e <e(e) for all e € E.

The value of f with respect to g, or the u-value of f, is Y (u(uv)fuo @ w,v € T),
denoted by (u, f). The weighted mazimum multiflow problem is:

(1.7) Given G, T, u,c, maximize (u, f) among all c-admissible multiflows f for G, T

Let v* denote the maximum of (g, f) in (1.7), and v the maximum of (u, f) if
we admit only the integer multifiows f (i.e., with all A;’s integral). Clearly (1.7) is a
linear program, and if we associate with the inequalities in (1.6) dual variables m(e),
the program dual of (1.7) consists in minimizing ¢ -m over m : E — R, such that
m(P) > p(uv) for each u,v € T and each path P in G connecting » and v. (When
writing m(P), we consider a path as an edge set.) Now decreasing m on some edges,
if needed, and then extending it to Ev in a natural way, we obtain a metric feasible to
(1.2). This implies v* = 7*, so we may think of (1.7) and (1.2) as a pair of mutually
dual programs. This minimax relation between metrics and multifiows was originally
established by Lomonosov [8].

As to the integer version of (1.7), v < v* is obvious, and this inequality may be
strict. E.g., for the case in Fig. 1, v = 1 and v* = 3/2. Nevertheless, Lovisz [9] and,
independently, Cherkassky [1] proved that if 4 = d(K}) and c is inner Eulerian, then
v = v*. Here an (integer-valued) function ¢ on E is called inner Eulerian if c(6({z}))
is an even integer for each z € V — T. In case I' = K3, the equality v = v* needs not
hold either. We prove the following theorem.

Theorem 1.2. Ifp = d(K,,,) and c is inner Eulerian, then v = v* (and therefore,

v=r")

This paper is organized as follows. Theorem 1.2 is proved in Section 2. The proof
is based on a splitting-off method and it provides a strongly polynomial algorithm to
find an integer optimal multifiow in the inner Eulerian case. The algorithm is described
in Section 3. It should be noted that this algorithm uses the ellipsoid method to certify
feasibility of the splitting-off operations applied. In the concluding Section 4 we consider
the general case of 4 and study the phenomenon when, for y fixed, the minima 7 and
7* in problems (1.1) and (1.2) coincide for any G and c¢. We give some necessary and
some sufficient {but not simultaneously necessary and sufficient) conditions on p to
provide 7 = 7* to hold. Also some structural and polyhedral aspects of the metric
minimization problem are discussed there and open questions are raised.

2. Proof of the theorem
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We show that if 4 = d¥2r and c is inner Eulerian, then v = 7. The proof
borrows some ideas from [5]. W.l.o.g. we may assume that G = (V, E) is complete, i.e.,
E = FEy; for adding to G a new edge with zero capacity does not affect our problems
and remains ¢ inner Eulerian. In the proof we will transform the function ¢, and in order
to distinguish between the values of v (7,v*,7*) for different capacity functions we use
notation v(c') (resp. 7(¢'),v*(¢'),7*(c’)), where ¢’ is a function on Ey in question.

Let £ denote the set of 0-extensions of u to V. A metric m € € is called tight for
cif ¢- m = 7(c); the set of tight m’s is denoted by K(c). Let

ne)= Y Y clzy).

€V -T yeV—{z}

We use induction, assuming that the equality v(c') = 7(c’) holds for each inner
Eulerian ¢’ on Ev such that either |[K(¢")| > |K(c)|, or |K(¢")| = |K(c)| and n(c") < n(c)
(note that |K(c)| £ |€] and € is finite for V fixed). The base case n(c) = 0 is easy.
Indeed, in this case c-m equals c- u for any 0-extension m, and the multifiow f formed
by the elementary paths P,, (of one edge) connecting distinct u,v € T along with
weights Ay, = c¢(uv) has p-value ¢ u, whence v(c) = 7(¢). So, in the sequel we assume
that n(c) > 0.

Consider z € V —T for which Q(z) = {y € V —{=z} : ¢(zy) > 0} is nonempty. We
may assume that |Q(z)| > 2. Indeed, if Q(z) consists of a single element y, let ¢’ be
obtained from ¢ by decreasing ¢(zy) by 2. Then ¢’ is inner Eulerian and nonnegative
(as ¢(6({z})) = c(zxy) is even and nonzero). One can see that there is m € £ such
that ¢’ - m = 7(c’) and both z and y belongs to the same set in the partition of V
induced by m, i.e., m(zy) = 0. Then ¢’ - m = ¢- m, which implies 7(¢’) = 7(c). Clearly
K(c) C K(c) and 5(c) > 5(c’), and the result follows by induction.

Let ® be the set of pairs of distinct elements of Q(z). For a pair {y,2} € &, we
can apply the splitting-off operation that transforms c as follows:

(2.1) cd(e)=c(e)—1 for e=zy,zz,
=c(e)+1 for e=yz,
=c(e) for e€ Ey — {zy,zz,yz}.

Clearly ¢’ is nonnegative and inner Eulerian. For any metricmon V,c-m—¢'-m =
m(zy) + m(zz) — m(yz) > 0. Therefore, 7(c') < 7(c). We say that {y, 2z} is feasible if
7(¢') = 7(c). In this case we can apply induction since (c’) = n(c) — 1, and the fact
that c-m > ¢/ -m > 7(c) for any m € € implies K(c) C K(c'). By induction there
exists a ¢’-admissible integer multifiow f’ such that (g, f’) = 7(c’). It is easy to see
that f’ can be transformed into a c-admissible integer multiflow f with (g, f) = (u, f').
Hence, v(c) > {u, f) = 7(c), which implies ¥(c) = 7(c), as required.
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Our aim is to show that there exists at least one feasible pair in &, from which the
theorem will follow by the above argument. Let {s;,s,} and {t;,...,t-} be the parts
of T = K.

Claim 1. Foranym € £, c-m — 7(c) is even.

Proof. Consider the partition Il = (5;, S3,T3,...,Tr) of V induced by m (with s; € S;
and t; € T;). Let p be the cut metric corresponding to the cut §(X) for X = §, U 5.
Then m + p takes value 0 or 2 on each edge, whence ¢ (m + p) is even. Now the claim
follows from the fact that for any cut metric p' corresponding to a cut in G separating
{s1,5;} from {t,...,t,}, the number ¢ p —c- p’ is even (because c is inner Eulerian).
0

Claim 2. Foreachm € £, A =c-m—c' -m equals 0, 2 or 4. Moreover, if A = 4
then m(xy) = m(z2) = 2 and m(zz) = 0 (and therefore, both y and z belong to the
same member of the partition of V induced by m).

Proof. We have A = m(zy) + m(zz) — m(yz). Observe that the length of any closed
path with respect to a (2, r)-metric is even. This implies that A is even. Next, m(uv) <
2 for any u,v € V. Hence, A € {0,2,4}. If A = 4 then the only possible case is when
m(zy) = m(zz) = 2 and m(yz) = 0. .

The infeasibility of {y, 2} € ® is equivalent to the existence of m € £ such that for
¢’ asin (2.1) ¢’ - m is strictly less than 7(c). From Claims 1 and 2 it follows that

(2.2) if {y, 2z} € ® is infeasible, then for each m € £ with ¢’ - m < 7(c), either
(i) m is tight and m(zy) + m(zz) = m(yz) > 0, or
(i) c-m =7(c)+2, ¢'-m = 7(c) — 2 and m(zy) + m(zz) — m(yz) = 4.
In what follows we assume that each pair in & is infeasible and will attempt to

come to a contradiction. First we show that there exists {y,z} € ® for which only (ii)
in (2.2) takes place.

By Theorem 1.1, 7(¢) = 7*(c) = v*(¢). So, there is a c-admissible multiflow
f=(Pi...,Pe;X1,..., M) with (g, f) = 7(c); we assume that A\; > 0fori=1,... k.
An edge e is called saturated by f if f¢ = c(e). Let g; be the pair of end nodes of P;.
Claim 3. Let {y,z} € ® and m € K(c). Then:

(i) if m(zy) > 0 then zy is saturated by f; and similarly for zz;

(ii) each path P; is shortest for m, i.e., m(P;) = p(g:).



Proof. (i) and (ii) immediately follow by considering the complementary slackness
conditions for (1.2) and (1.7). More precisely,

k k
v*(c) = E hin(gs) < Z Aim(P;)
=Y fme) < Y cleymle) = 7 (0.

ecFE ecE
Since v*(c) = 7*(c), equality holds throughout, whence (i) and (ii) follow. .

An immediate corollary from Claim 3 is as follows.

Claim 4. Let {y,z} € ® be such that xy is not saturated by f or there is a path in
f that contains zy and zz. Let m € K(c). Then m(zy) + m(zz) = m(yz). .

Thus, there is {y, 2} € & for which no metric as in (2.2)(i) exists. We fix one of
such {y,2}’s. A metric m as in (2.2)(ii) is called critical for ¢ and {y, z}.

Consider the capacity function ¢ = 2¢. Clearly 7(¢) = 27(¢). Furthermore, by
(2.2)(ii), any metric m € £ with m(zy) + m(zz) > m(yz) satisfies ¢- m > 7(¢) + 4.
Hence, {y, 2} becomes feasible for C, i.e., the function ¢’ formed from ¢ by the splitting-
off operation with respect to {y, 2} satisfies 7(¢') = 7(¢) = 27(c). Let m be critical for
c and {y,z}. Then

¢-m=7(c)+4 and € -m=7(C).

Thus, K(c') strictly includes K(¢) = K(c). Obviously, ¢ is inner Eulerian. By
induction there is an integer ¢’-admissible multifiow h with (m,h) = 7(¢’). This & is
transformed in an obvious way into a ¢-admissible integer multifiow g = (Py,..., P;
Al,---,A%). Then the multiflow f formed by the same paths P; and the numbers
Ai=2./2,i=1,...,k, is c-admissible and half-integral, and (g, f) = 7(c). Repeating
paths in f, if needed, we may assume that each A; is 1/2. At least one P; must pass
through z (otherwise each pair in ® is, obviously, feasible).

For two nodes u and v in a path P, truncating P at {u,v} is an operation that
replaces in P the part between u and v by the edge uv. Consider a path P; that passes
through z; for definiteness let P; use edges e = zy and ¢’ = zz.

Claim 5. The edges e and e’ are saturated by f.

Proof. Consider m € £ critical for c and {y,z}. As above, let ' be obtained from ¢ by
the splitting-off operation w.r.t. {y,z}. Let h be the multifiow obtained from g as above
by truncating P; at {y,z}. Since A} = 2); = 1, h is ¢’-admissible. Also {u,h) = 7(¢)
and m is tight for ¢. By Claim 3 applied to ¢,h,m,e,e’, we have h* = &(e) and

he' = &(e’). This implies that f¢ = ¢(e) and f¢ = c(e'). )
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By Claim 5 there are paths P; and P, (I, ¢ # i) which contain e and €', respectively.
Let a; (b;) and a4 (b,) be the first (resp. last) node in P; and Py, respectively. We may
assume that a;,y,z,b; follow in this order in P, and a4, 2, z, b, follow in this order in
P,.

Claim 6. 4a; =a,.

Proof. Consider a metric m € £ critical for {y,z} and the partition I = (S,,5,,T7,
...,T;) of V induced by m. Let ¢ be obtained from ¢ by the splitting-off operation
w.r.t. {y,z}, and let h be the multifiow obtained from g by truncating P; at {y, z}.
Then h is ¢-admissible, (u,h) = 7(¢'), and m is tight for €. By Claim 2 applied to
¢,c,m,z,y,2, either z € S; and y,z € Sj, or z € T; and y,z € Ty for distinct j, ;'
Assume the former, the other case is similar. By (ii) in Claim 3, the path P is shortest
for m. Since pu(a;b;) < 2 and m(zy) = 2, we observe that m(e) must be zero for each
edge of P, different from zy. Hence, a; and y belong to the same set in II, i.e., a; € §;.
Similar arguments for P, yield ay € S;. Since S; contains exactly one element of T', we
conclude that a; = a,. Y

Now we finish the proof as follows. We assume that f is chosen so that f is half-
integral, (i, f) = 7(c) and Y (f¢ : e € Ev) is as small as possible. Also we may assume
that for each path P; in f all inner nodes of P; are not in T (otherwise split P; into two
T-paths, which does not decrease the p-value), and that some path P; has at least two
edges. Let y,z, z be the first, second and third node in P;, respectively; thenz € V -T.
Let Pi,a;,b; and Pg,a4,b, be as above for our y,z,2. By Claim 6, a; = ag = y (as
y € T). So, P; and P, have the same first nodes and go through the edge zz in opposite
directions. This implies that we can replace P; and P; by two paths which have the
same first node y, have the last nodes as in P; and P, and use the same edges except
zz. This contradicts the minimality of Y (f¢ : e € Ev) and completes the proof of
Theorem 1.2. o0

3. Algorithm

The splitting-off techniques used in the proof of Theorem 1.2 gives rise to an
algorithm for finding an integer c-admissible multifiow f with (g, f} = 7(c) for p = d¥z-
and an inner Eulerian ¢. If ¢ : E — Z, is not inner Eulerian we can apply the algorithm
to the capacity function 2¢ to obtain a half-integral o.s. for c. As before, it is convenient
to assume that G is complete.

The algorithm consists of two stages. The first stage consists of [V — T| iterations,
each of which treats a node # € V — T. At a current step of the iteration that works
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with z, we choose a pair {y,z} € V — {z} with b = min{c(zy),c(zz)} > 0 (for the
current ¢) and finds the maximum o € Z such that a < b and 7(¢’) = 7(c), where ¢
is defined by

(3.1) c'(e)=cle)—a for e=zy,zz,
=cle)+a for e=yz,

=c(e) for e € Ey — {zy,zz2,yz}

(i.e., ¢’ is obtained by performing « splitting-off operations (2.1) with the same {y, z}).
Then we make ¢’ the new current ¢, choose a new pair {y’,2'}, and so on. We need
not consider the same pair {y, 2} twice during the iteration because, after the first
application of the splitting-off operation (3.1) to {y,z}, the corresponding number o
for the new function ¢ becomes zero and, obviously, it remains zero up to termination
of the iteration. Since the problem for each current ¢ has an integer o.s., the iteration
always terminates, after O([V|?) steps, with the situation when ¢(zv) can be non-zero
for at most one v € V — {z}. Putting c(zv) := 0 obviously preserves 7(c) and remains
¢ inner Eulerian. Thus, upon termination of the iteration we can remove the node z
from the set V.

The first stage finishes when the current V is T. For the resulting ¢ the optimal
multifiow f is obvious. The second stage restores the desired o.s. for the initial V' and
¢ in a natural way, by considering the nodes z and pairs {y,z} in the order reverse to
that occurred in the first stage.

Now we explain how to find « efficiently. First we examine o to be the number b
as above. For the resulting ¢’ compute 7*(¢') = 7(¢') by solving linear program (1.4).
If 7(¢') = 7(c), we are done. Otherwise, by arguments in Section 2, there exists a
metric m € £ such that m(zy) + m(zz) — m(yz) € {2,4} and ¢'-m = 7(c') < 7(c). Let
e = 7(c) — 7(c'). We now examine o to be b, = b — |¢/4]| (where |a] is the greatest
integer not exceeding a). Compute 7(c"’) for the corresponding ¢”. One can see that
if 7(c") equals 7(c), then a = b, is as required, and if not, then for any metric m € £
with ¢” -m = 7(c”) the only case m(zy) + m(zz) — m(yz) = 2 is possible. This implies
that in the latter case the desired a is b, — €/2, where € = 7(c) — 7(c").

Hence, for each {y,z} handled at a step of an iteration, computing the above
number a is reduced to solving (1.4) at most twice. Since (1.4) is solvable in strongly
polynomial time and the total number of steps throughout the algorithm is O(|V|3),
the algorithm runs in strongly polynomial time.

Remark. Though being strongly polynomial, the above algorithm is not “combin-
atorial” because it uses the ellipsoid method. For I' = K , also “purely combinatorial”
algorithms to solve (1.1) and (1.7) (with f integral in the inner Eulerian case) can be
constructed so that they run in pseudo-polynomial and even weakly polynomial time.
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However, no “purely combinatorial” strongly polynomial algorithm for the problem in
question is known at present.

4. Generalizations and open problems

Let ¢ be an tnteger metric on 7. We call 4 minimizable if for any graph G = (V, E)
with V' O T and function ¢ : E — Z,, the minima in (1.1) and (1.2) coincide, 7 = T*.
The distance functions dX¥2 and d¥2- give examples of minimizable metrics. It is
interesting to characterize the set of all minimizable metrics. This problem is still open
and at present we are able to present only some partial results in this area. It turns
out that the set of minimizable metrics is rather large; in particular, it contains d' for
any tree I', as we show later.

First of all it suffices to consider positive metrics p (i.e., with p(uv) > 0 for distinct
u,v € T) because it is easy to see that a 0-extension of x4 is minimizable if and only if
4 is minimizable itself. Also u can be considered up to proportionality.

The property of being minimizable can also be stated in polyhedral terms (in
Statement 4.1 below). Let P = P, v be the set of metrics m on V 2 T such that
m(uv) = p(uv) for all u,v € T. Since P is the solution set of the linear system in
(1.4), P is a polyhedron. Let m € P. We call m an eztension of p to V if there is no
m' € P such that m' < m (i.e.,, m’ # m and m'(uv) < m(uv) for all u,v € V). This
means that m belongs to the boundary of the dominant polyhedron D, v = P + Rf"
(= { € R : z > m some m € P}). The extensions of x can also be described in
terms of shortest paths, namely,

(4.1) m € P is an extension of y if and only if for any z,y € V there are s,t € T such
that m(sz) + m(zy) + m(yt) = p(st).

(The part “only if” follows from the obvious fact that if for some z and y, m(sz) +
m(zy) + m(yt) > up(st) for any s,t € T, then one can decrease m on some pairs
preserving the distances on T'.)

If m is a vertex of D, v, m is called u-primitive. In other words, m is u-primitive
if m is an extension and there are no m’,m” € P different from m such that m =
Am' + (1 — X)m" for some 0 < A < 1. Let W = W, v denote the set of y-primitive
metrics on V.

Consider a 0-extension m of u. Obviously, m is an extension. Moreover, m is u-
primitive. This is because for m’,m"” € P and 0 < X £ 1such that m = Am’+(1-XA)m",
m' must coincide with m (as m’(zy) = 0 for z and y contained in the same member of
the partition of V' induced by m and m'(uv) = p(uv) = m(uv) for u,v € T).
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By standard linear programming arguments, W admits a “dual description” as
being the minimal set of metrics m on V such that for any ¢ : Ey — Z,, the fractional
problem (1.2) has an optimal solution within W. This implies the following.

Statement 4.1. A metric u on T is minimizable if and only if for any V 2O T the
set W, v consists of the 0-extensions of 4 to V and only them.

(The part “only if” is implied by the fact that for any vertex m of D, v, there is
¢: Ey — Z, such that ¢-m < ¢-m' for any other vector m’ in P.)

The next statement suggests a way to construct new minimizable metrics from
other ones. Let T’ and T"' be subsets of T such that 7" UT"” = T and 7' NT" consists
of a single element s, and let p, x' and u” be metrics on T, T’ and T", respectively.
We say that p is the 1-sum of u’ and g’ if u coincides with u’ on T”, coincides with p"
on y, and for u € T’ and v € T, p(uv) = p'(us) + p'"(sv).

Statement 4.2. If both p’ and y' are minimizable then u is minimizable as well.

Proof. Consider a y-primitive metric m on a set V.2 T. Let V' consist of all z € V
such that either z € 7', or € V =T and m(uz)+m(zs) = u(us) for some u € T'; and
let V' =(V -=V'YU{s}. Then T’ C V' and T" C V". Let m' (m") be the restriction
of m to V' (resp. V"”). We assert that m is the 1-sum of m' and m”, i.e.,

(4.2) for any y € V' and z € V", m(yz) = m(ys) + m(sz).
Choose u,v € T such that
(4.3) m(uy) + m(ys) = u(us) and m(vz) + m(zs) = p(vs)

(such a u exist by (4.1) for the pair {s,y}, and similarly for v). Since z € V", we have
v € T", and by the definition of V' we may assume that u € T'. Now (4.3) together
with pu(us) + p(sv) = p(uv) imply that the sequence u,y, s,2,v forms a shortest path
for m, whence (4.2) follows.

Consider m;,my € P, v+ and 0 < A < 1 such that m' > g = dm; + (1 — A)ma.
For i = 1,2, let m;(y'2') equal my(y'z’) for y',2' € V', m"(y'2') for y/,2' € V",
and m;(y's) + m"(s2') for y € V' and 2/ € V”. One can see that each m; is a
metric and m;(uv) = p(uv) for all u,v € T. Moreover, (4.2) and m' > g imply
m > A, + (1 — A)f,. Since m is p-primitive, the latter is possible only if m; = m.
Hence, m’ = m, so m' is y'-primitive. Similarly, m"” is p"-primitive. Now the facts
that m' is a 0-extension of u' and m" is a 0-extension of u” easily imply that m is a
0-extension of u. °

Since the metric d¥2 is minimizable, d' is minimizable for any tree I' (as d' can
)
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be obtained by a sequence of 1-sum operations from copies of d¥ 2).

Next we give a number of necessary conditions on a metric to be minimizable. In
fact, they are stated in terms of forbidden submetrics. We need one statement of a
general form.

Statement 4.3. Let u be a metric on T, and y' its restriction to a subset T' C T.
Let m' be a y'-primitive metric on a set V' D T’ such that V'NT =T'. LetV = V'UT.
Then m' can be extended to a u-primitive metric on V.

Proof. Define m by m(zy) = m/(zy) for z,y € V', m(zy) = p(zy) for z,y € T, and
m(zy) = min{m(zs) + p(sy) : s € T'} for z € V' and y € T — T'. One can check
that m is a metric. Let m > Am; + (1 — A)m, for some extensions m;,my of x and
0 < A < 1. Since m' is u'-primitive, the restriction of m; to V' coincides with m'.
Then m = m;, whence the result follows. °

From Statement 4.3 it follows that

(4.3) for p,p',m' as above, if y is minimizable, then there is a mapping v : V' — T such
that v is identical on 77 and m/(zy) = u(vy(z)y(y)) for all z,y € V.

This property has three consequences described in Statements 4.4-4.6.

Statement 4.4. If u is minimizable then the length u(C) of any circuit C of the
graph Kr is even.

Proof. Suppose that u(C) is odd for some circuit C. Then there are vg,v1,v2 € T
such that for ¢; = p(vi—1vi41), i = 0,1,2, the number ¢ = ¢y + ¢; + ¢ is odd (taking
indices modulo 3). Let yu' be the restriction of g to TV = {v,v1,v2}, and let V' =
T' U {z}. Define m'(2v;) = (i1 + ¢i+1 — ¢:)/2. Then m/(v;z) + m'(zv;) = p(v,v;) for
0 <1< j <2, which implies that m extended by u(v;v;) on the pairs v;v; is a metric.
Moreover, one can see that m' is u/-primitive. Now, if g is minimizable then for v as
in (4.3), we have u(v;y(z)) = m/(zv;). But at least one of m'(zv;)’s is not integral (as
g is odd) while y is integer-valued; a contradiction. °

Statement 4.5. If y is minimizable then for any vg,v;,vs € T there is s € T such
that pu(v;v;) = p(vis) + p(sv;) forall 0 <i < j < 2.

Proof. Apply (4.3) to V' and m’ as in the proof of Statement 4.4. o

Statement 4.6. Let p be a metric on T, and y’' its restriction to a subset T' C T.
Suppose that there is a positive y'-primitive metric m' on a set V' with |V'| > |T)|.
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Then u is not minimizable.

Proof. Suppose that u is minimizable and consider 4 as in (4.3). Since |V'| > |T|,
there are distinct =,y € V’ such that y(z) = 4(y), and therefore, m'(zy) = 0; a
contradiction with the positivity of m'. )

Statements 4.4-4.6 enable us to eliminate many metrics y. For simplicity we now
consider only graph metrics 4 = d'. Suppose that d' is minimizable. Statement 4.4
shows that I' is bipartite; moreover, by Statement 4.5, " is 3-closed (in the sense that
for any three nodes in T' there are three shortest paths between the pairs of these
nodes that meet a common node). Statement 4.6 implies that I" cannot contain certain
isometric subgraph (I C T is called isometric if the distances in I'' between its nodes
are the same as in I'). E.g., let I be the circuit C¢ with six nodes, say, sq,...,58s
(going in this order in Cs). It was shown in 5] that d°¢ has infinitely many positive
primitive extensions m'. [An extension m’ for d% can be constructed as follows: for a
positive integer k, let H be the graph whose nodes correspond to the vectors (p,q,r)
for p,q,r = 0,...,k and whose edges correspond to the pairs {(p,q,7),(p’,¢’,r')} such
that either [p—p'|+|g—¢'|+|r—7'| =1orp'—p = ¢ —q = ' —r = 1; identify s0,...,55
with (k,0,0),(0,k,0),(0,0,k),(0,k, k), (k,0,k),(k,k,0), respectively; then the desired
m' is d¥ [k.] Therefore, I' contains no isometric 6-circuits. Also one can construct
infinitely many positive primitive extensions for Cy, with k > 4, for the graph Kj h
obtained from Kj 3 by deleting one edge, and for the graph K Z obtained from Kj 4 by
deleting two non-adjacent edges (we do not describe these constructions here). Thus,
I’ contains neither isometric 2k-circuit for k > 3, nor isometric subgraph Kj ;, nor
isometric subgraph K;_ Z

Let diam(T") denote the diameter of I’ (the maximum distance between its nodes).
If T is bipartite and diam(T') = 2 then I is a complete bipartite graph K, .. We know
that g = d¥»+ is minimizable if p = 2. On the other hand, if p,r > 3 then there
are non-integral positive y-primitive extensions (cf. [6]); in particular, such a g is not
minimizable.

Conjecture. Let diam(T") > 3. Then dT is minimizable if and only if ' = (T, W) is
3-closed, contains no isometric subgraph K3 3, and there is no 7' C T (with |T'| > 1)
such that the restriction of d* to T’ is proportional to dT for I’ = Cy; with k > 3 or
I'=K;3 or T/ = K; .

Now return to the multifiow problem (1.7). Is it true that if a metric u is
minimizable and a capacity function ¢ is inner Eulerian, then (1.7) has an integer
0.s.? This is true for g = d¥2+ (by Theorem 1.2) but in general the answer is unknown
even if 4 = d* and T is a tree.
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Another open question: is it true that if x4 is not minimizable, then problem (1.1)
is NP-hard? (The answer is affirmative if g = d¥» for p > 3.)

In conclusion we discuss the denominator behavior in one sort of metric packing
(or decomposition) problems. Let x be an integer minimizable metricon T C V, and m
an integer metric on V such that m(uv) = ku(uv) for all u,v € T, where k € Z,. From
Statement 4.1 applied to m' = m/k it follows that there exist 0-extensions my,...,my
of p to V and rationals Ag,...,An > 0 with A\; +... + Ax = k satisfying

(4.4) m(zy) > Aimy(zy) +... + Anmy(zy) for 2,y €V,
=Am(zy)+... + Anmn(zy) for z,y € T.

When m is an extension, the inequality in (4.4) turns into equality, i.e., m,...,mn

along with A1,...,\n give a decomposition of m into weighted 0-extensions of .

If 4 is the distance function of K, with node set {s,t}, then each 0-extension is a
cut metric on V corresponding to a cut separating s and t, and (4.4) can be satisfied
with all );’s integral (e.g., by using a sorting procedure on V according to the distances
from s). A similar property holds if u = d¥:+ and m(C) is even for every circuit C
in Ky, as shown in [7]. An open question: does such a property remain true for every
minimizable u and m as above with m(C) even for all circuits C?
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