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Abstract. A T, d-join arises as a natural generalization of the notion of a T-join. Given
a graph G = (V, E), a subset T of its vertices, and integers d; > 0 for s € T, a T, d-join is a
set B C E such that: (i) B is the union of (the edge sets of ) some pairwise edge-disjoint paths
Py, ..., P in G connecting pairs of distinct elements of T, and (ii) for each s € T exactly d,

of these paths have the beginning or end at s.

We introduce some polyhedron D', described by linear inequalities, and show that D =
D'+ ]Rf is the dominant polyhedron for the set of T, d-joins. To this purpose we consider
the problem of minimizing over D' a nonnegative linear objective function and prove that it

is, in fact, equivalent to the minimum weight T, d-join problem.

We also give a description, via linear inequalities, of a polyhedron @' such that Q' + ]Rf
1s the dominant polyhedron for the set of maximum multi-joins for G, T'. Here by a multi-join
we mean a set B C E satisfying (i) as above, and a multi-join B is called mazimum if the

number k of paths is as large as possible.

Both results are derived from a minimax relation obtained in [9] for the parameteric

minimum cost edge-disjoint T-paths problem.
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1. Introduction

Throughout we deal with an undirected graph G = (V, E), a subset T of its vertices,
called terminals in G, and a nonnegative integer-valued function d (of demands) on T.
A T-path is a path in G connecting two distinct terminals. A set B C E is called a
T,d-join if it is representable in the form B = U(P € P) for some set P of mutually
edge-disjoint T-paths such that for each s € T exactly d, paths in P begin or end
at s (considering a path as an edge set). Unless otherwise explicitly stated, we also
assume that such a B is minimal with respect to inclusion under the above property; in
particular each path in P is simple. Let B = B, denote the set of T, d-joins for G, T, d.
We assume that

Z(ds : s€T) is even

(otherwise B is obviously empty) and that some d, is non-zero. If d, = 1 for all s € T,
then |T'| is even and we get the notion of a T-join [13]; such an object originally appeared
in connection with the so-called Chinese postman problem [8,3].

It is well-known that the set By of T-joins admits the “dual description” as being
the set of all minimal B C E that meet every odd-terminus cut 6X; in other words, B,
and the set C of (minimal) T-cuts form a blocking pair [6]. [For X C V, §X = 66X
denotes the set of edges of G with exactly one end in X (a cut in @), and for |T| even,
6X is called a T-cut if | X NT} is odd.] Moreover, Edmonds and Johnson [5] proved the
theorem that for any weighting w : E — Ry, the minimum weight w(B) of a T-join
is equal to the maximum value of a w-packing of T-cuts; in other words, B; has the
MFMC-property (see {12] for the definition). [For f : § — R and §' C S, f(S’) denotes
>.(f(e) : e € S").] In polyhedral terms, this means that the dominant polyhedron

D(B1) = conv(B;) + R
for B; is formed by the vectors z € ]Rf satisfying the system of inequalities
(1) z(6X)>1 for 6X €C.

[Here for a family F C 2F of subsets of E, conv(F) is the convex hull of the incidence
vectors £ € RF of sets F € F, and for sets X, Y C RE , X +Y denotes their Minkowsky
sum, i.e., the set of z € R? such that z = z + y for some z € X and y € Y] For a
survey of the above-mentioned results see [11,7].

In the present paper we give a description of the dominant polyhedron D = D(B,)
for arbitrary demands d (Theorem 1). Such a description turns out to be somewhat
more complicated than that for B1. It comes from consideration of the minimum weight
T, d-join problem: given a weighting w : E — Z., find a T,d-join B of weight w(B)
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minimum, and applying to the latter a minimax relation for the parameteric minimum
cost edge-disjoint T-paths problem obtained in [9].

From the result in [9] we also derive a description of the dominant polyhedron
@ for the set B™** of maximum multi-joins for G,T (Theorem 2). Let v = v(G,T)
denote the maximum cardinality of a set of pairwise edge-disjoint T-paths in G. By
a mazimum multi-join we mean a minimal set B C E such that the subgraph (V, B)
contains v pairwise edge-disjoint T-paths.

Note also that the above-mentioned parameteric problem can be solved in strongly
polynomial time. This provides strongly polynomial algorithms to find optimal solu-
tions to the minimum weight T, d-join problem and the minimum weight maximum
multi-join problem (under nonnegative weights).

2. Theorems

We need some terminology and notation.

Definition. A pair ¢ = (X4,Us) is called a fragment if Xy, CV, Uy C §X4, and
the numbers |Uy| and d(X4 N T') have different parity, that is,

(2) Usl = (de : s€X4NT)=1 (mod 2).

In particular, Uy has odd cardinality if X4 NT = @; such a fragment is called inner.
Let F denote the set of all fragments for G,T,d. Define the characteristic function of
¢ € F by
xel€):=1 if e€ Uy,
=—-1 if e€ 6Xy — Uy,
:=0 for the other edges in G.

We prove the following theorem.

Theorem 1. conv(By) C D' C conv(By) + RE, where D' = D'(G,T,d) is the set of
vectors z € RF satisfying

(3) (3) ze 20 for e € E;
(i) 2z, <1 for e € E;
(iii) z(6X)>ds —d(XNT —{s}) fors €T and X CV such that s € X;
(iv) zxo S|Usl—1 for ¢ € F.



In particular, D = D' + Rf .

[For a,b: S — R, ab denotes the inner product 3 (acb. : e € S).] Note that in
case d = I system (3)(iv) implies (1). Indeed, for §X € C the pair ¢ = (X,0) forms a
fragment (since d(X N T) = |X N T| is odd). Then zx4 < |Us| — 1 = —1 shows that
z(6X) > 1.

Let ep denote the pair of end vertices of a path P.

To see the inclusion conv(B;) C D', we observe that the incidence vector Ep of
any T, d-join B belongs to D'. Indeed, (3)(i),(ii) are obvious, and (3)(iii) can be easily
seen by considering a representation B = U(P € P). Fix a fragment ¢. For P € P,
|PNéXg|is odd if [ep N X4| = 1, and even otherwise. Hence,

(4) |BNéXy|—d(X4NT)=0 (mod 2)

(taking into account that [{P € P : s € ep}| = d, for any s € T). Obviously, [BNéX 4|
and {pX¢ have the same parity. Thus, égx¢ — |Us| = 1 (mod 2), by (2) and (4). Now
the evident fact that {xg < |Uy| for any 0,1-vector £ in RZ implies

(5) {Bxy < |Ug| -1,
that is, (3)(iv) holds for z = ¢5.

We also show the following. For W C E and v € V let W, = W,,G denote the set
of edges in W incident to v.

Statement 2.1. Let z be an integer vector in D', andlet B={e ¢ E : z. = 1}.
Then B contains a T, d-join B, and B — B is the union of pairwise edge-disjoint circuits
(considered as edge-sets).

Proof. By (3)(i),(ii), « is a 0,1-vector. We observe that | B,| is even for each v € V —T.
For if |B,| is odd for some v € V — T then for the inner fragment ¢ with X = {v}
and Uy = B, one has zx¢ = |Uy|, contradicting (3)(iv). Also considering for s € T
the fragment ¢ = {{s}, B,} we conclude from (3)(iv) that |B,| and d, have the same
parity.

Next, form the graph H = (V', B') by adding to the graph (V, B) a new vertex
s' and d, parallel edges connecting s and s', for each s € T. Let T' = {s : seT}

be the set of terminals in H. By the above argument, every vertex v € V! = T' =V

has an even degree in H. Furthermore, (3)(iii) and the construction of H show that
6% X| > d, for any s € T and X C V' such that XNT' = {s'}, and that this inequality
holds with equality for X = {s'}. Hence,

min{|§#X| : X cV', XNT' ={s'}} =d, for any s' € T".
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Now the statement is implied by the following theorem due to Lovédsz [10] and,
independently, Cherkassky [1]: if a graph G = (V" E") and a set T C V" are such
that the degree of every vertex in V" — T" is even, then there exists a set P” of edge-
disjoint T"-paths in G" such that for each ¢t € T" the number of paths P € P" with
t € ep is exactly min{[6¢" X| : X C V", XNT" = {t}} pathsin P". o

In view of Statement 2.1, in order to prove the second inclusion in Theorem 1 it
suffices to show that (i) if B; = 0 then D' =0, and (ii) if B4 # 0 then the problem:

(6) given weights w, € Zy of edges e € E, minimize wx over all z € D',

has an integer-valued optimal solution z. Indeed, in case (i) we have D = § = §+RZ =
D'+ EZ. In case (i), varying w, we conclude that all vertices of D' + IRE are integral.
Then, by Statement 2.1, these vertices must be the incident vectors of T, d-joins, whence
the result follows. In particular, (6) turns out to be equivalent, in essense, to the above-
mentioned minimum weight T, d-join problem. We prove (i) and (ii) in the next section.

Now we state the theorem describing the dominant polyhedron @} for the set B™?*
of maximum multi-joins for G,T. A set K of pairwise disjoint subsets Y, CV,s € T,
is called a T-kernel family if Y;NT = {s} for all s € T. Let K = K(G,T) denote the set
of T-kernel families for G,T. For e € E define (x(e) to be the number of occurrencies
of e in the cuts éY,, s € T, that is,

(k=Y (&v, : Y, €K)

(thus Ck, the characteristic function of K, takes values only 0,1 or 2).

Theorem 2. conv(B™2X) C Q' C conv(B™**) + RE, where Q' is the set of vectors
z € R satisfying

(7) (i) 220, e€E;
(i1) z. <1, e€kE;
(iii) z(g > 2v for any K € K,
(iv) zxe <|Ug|—1  for each inner fragment ¢.

In particular, Q = Q' + IR_L; .

Again, it is easy to show that the characteristic vector z = {p of every maximum
multi-join B belongs to @', thus proving the first inclusion in the theorem (the inequality
in (7)(iii) follows from the fact that each T-path P meets at least two cuts 8Y, for
Y, € K). Next, arguing as in the proof of Statement 2.1 and using Lovész-Cherkassky’
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theorem, one can see that for every 0,1-vector z € Q' there is a maximum multi-join B
with (g < z.

To prove the remaining parts in Theorems 1 and 2, we utilize one general result
on minimum cost edge-disjoint paths, as follows. Consider a graph G' = (V', E') and
a set 7' C V'. For brevity, in the sequel we refer to a set of edge-disjoint T'-paths in
G' as a packing. Let w: E' — Z, be a weighting. For a packing P let w(P) denote
the total weight (or cost) > (w(P) : P € P) of paths in P. The parameteric minimum
cost problem is:

(8) given p € Ry, find a packing P that maximizes the objective function ¥(P,p) =
p|P| - w(P).

Clearly, if p is large enough (e.g., p = w(E') + 1) then (8) becomes equivalent to
the problem: among all packings P of maximum possible cardinality |P|, find a packing
P whose total cost w(P) is as small as possible. [Therefore, (8) is a generalization of
the minimum weight maximum multi-join problem and, in fact, of the minimum weight
T, d-join problem, due to a simple reduction as explained in Section 3]

Let 7° denote the set of inner fragments ¢ for G/, T" (i.e., X, N T' = 0). For
functions 8 : F° — Ry and 7' : E' — Ry, define the amortized cost function w® '
on F to be

(9) W =wty + Y (Bhxs : € F)

(here x4 concerns E'). We say that (§',7') is p-admissible if:

(10) w?""" is nonnegative;

(11) dist,er 4 (s',¢') = p for all distinct s',#' € T",

where dist¢(u,v) is the distance between vertices u and v in G' with length £ of edges,

that is, the minimum length £(P) of a path connecting u and v (the distances in (11)
are well-defined because of (10)).

Theorem 3 [9]. For any p > 0,

(12) max{4(P,p)} = min{y'(E') + > (By(IUs| — 1) : ¢ € FO)},

where the maximum ranges over all packings P and the minimum ranges over all p-
admissible (5',+').



We shall also use the optimality criterion for problem (8): a packing P and p-
admissible (8',7') achieve the equality in (12) if and only if the following “complemen-
tary slackness” conditions hold:

(13) w?7'(P) =p for each P € P;
(14) for e € E', +. > 0 implies that e is covered by P, that is, ¢ belongs to some P € P;

(15) for ¢ € F°, B} > 0 implies 3 pcp Xo(P) = |[Ug| — 1.

This criterion can be seen by considering, for arbitrary a packing P and a p-
addmissible (5',v'), the following expression:

¥(P,p)= > (p—w(P))

Pec?P

<Y ((P)+Er Y Bixs) (by (9))

PeP $EFO
<A~'(E")+ Z ByXs Z £p (as the paths in P are edge-disjoint)
$EFO PEP
<Y(EY+ Y B(Ugl =) (by (5)) -
PEFO

3. Proof of Theorem 1

For s € T let &, denote the collection of pairs (s,X) such that X C V and
s €XNT,and let X = U(X, : s €T). Assign a dual variable 7, to e € E in (3)(ii),
ag x to (s, X) in (3)(ili), and By to ¢ in (3)(iv). Givena: X - R and f: F — R, for
e € E define
(16) @e=) (osx : (5,X) €X,e€8X), Be=) (Boxsle): ¢ €F),
and €e=w6+7e+ﬁe.

Then the linear program dual to (6) is:

(17) maximize
e, B,7) = —7(E)+ Y (de=dXNT —{s}asx ~ Y (1Us| ~1)8s
(s,X)EX PEF



subject to
(i) a«20, >0 v2>0;
(i1) —7e+ae—335we, ec FE.

Suppose that the set By of T, d-joins is nonempty. Our goal is to find B € B and
a, 3,7 satisfying (17)(i),(ii) so that the following relations hold:

(18) (i) as,x >0 implies [BNSX|=d, —d(X NT — {s});
(i) By >0 implies x4(B) = |Ug| — 1;
(iii) 7. > 0 implies e € B;,
(iv) @, <4, implies e ¢ B.

One can see that (18) gives the complementary slackness conditions for z = ¢p
and (a, B,7), whence z is an integer optimal solution to (6), and we are done.

To find the desired objects, we form the graph G' = (V', E' ) by adding to G a
new vertex s’ and d, parallel edges connecting s and s', for each s € T. Let T' = {s' :
s € T}, and extend w by zero to the edges in E' — E. Clearly, each T", d-join in G'
contains E' — E, and for B C E, the mapping B — B U (E' ~ E) yields a one-to-one
correspondence between the set of T, d-joins in G and the set of T", d-joins in G'. By
the above supposition, the set of T, d-joins in G' is nonempty.

Let P,v', 8’ achieve the equality in (12) with a rather large p. Then |P| is as large
as possible. Since |P| does not exceed |E' — E}/2 = d(T)/2, B' = U(P € P)is a
T',d-join in G' and B = B'|g is a T, d-join in G. This B is just the desired T, d-join.

Next we explain how to obtain 8 and v from A’ and 4'. Consider a fragment

é € F° with By > 0. Note that (15) is equivalent to the fact that there is a unique
element u € 69 X4 such that

(19) either u € Ugs and 5GI.X¢. NB' = Ug — {u}, oru ¢ Us and 6GIX¢ NB' = Ug U {u}.

Let 71 be the set of ¢ € F° such that for each s € T N Xy (if any) all edges e
connecting s and s’ belong to Uy (note that such an e is, obviously, in 6§ X, N B').
From (19) one can see that for ¢ € F;, the pair (X4,Us N E) forms a fragment, ¢'
say, for G, T, d; moreover, x¢'(B) = |Ug| — 1. We denote ¢’ by o(¢). The desired 8 is
defined by

By =Py for ¢' =0(¢), ¢ € F,

=0 for the other fragments in F.

Then B and B satisfy (18)(ii). On the other hand, (19) shows that for each
¢ € F° — F1, the set Uy N E coincides with B N 6X4. Based on this property, we can
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“destrey” such fragments, accordingly increasing the function v on E. More precisely,
we define v on E by

7e='y;+2(ﬂf¢,:¢ef0—fl,e€6X¢) for each e € B,
=+,  otherwise.

By the above property, for ¢ € F° — F; and e € E, x4(e) > 0if e € B and
xs(e) < 0if e € E — B. This and (14) imply that 4. > 0 only if e € B, and therefore
(18)(iii) is true. Furthermore, we have
(20) v, + Z(,%XqS(e) :peF)=B.+v. for e€ B,

<B.+7v for ec E—B,

defining f as in (16) for our B. Let £ stand for w? "' (see (9)). By (20),

(21) ¢,=f, for e€eB and £, >¢ for ec E— B.

It remains to define a. Consider s' € T'. Introduce the set Z, to be {v € V' :
diste(s',v) < p/2} (recall that £' is nonnegative, by (10)). From (11) it follows that if v
is a common element for Z, and Zy with s' £ t' then disty(s',v) = diste (¢, v) = p/2.
Let 0 = my < m; < ... < 7 = p/2 be the sequence of all different values among
diste(s',v) (v € Zy) and p/2. Define

(22) Xi={veZy—{s'}: diste(s',v) <m}, i=1,...,k.
Now the desired a on X is defined by

(23) Qs X = T — Mim1 for X =X"#0,i=1,...,k,
=0 for the other (s,X)’s in Aj,.

Note that the construction of G' shows that disty (s',v) = disty (s, s) + diste (s, v)
for any v € Zy — {s'}, where s is the vertex in T corresponding to s'. This implies that
if X' # 0 then s € X', so « is well-defined.

Claim. Let P = (s' = vo,e1,v1,...,€r,vr = t') be a path in G' connecting distinct
terminals s',t' € T' such that £'(P) = p. Then:

(i) v1 = s and v,y =1t;
(ii) for every (s,X) € X with a5 x >0, P intersects §°X at most once;

(iii) for 1 = 2,...,7 = 1, @, = £,,.



Proof. (i) is obvious. To show (ii) and (iii), we observe that P is a shortest path for ¢
(by (11)). Hence,

(24) for :=1,...,r,
£, = diste(s', v;) — diste (', vim1) = diste (t', vi1) — diste (', v;).

From (24) and the definition of ay x for ¢ = s,¢ (see (23)) one can conclude that:
(a) for (¢, X) € A,UX; with ag x > 0, 6X contains exactly one edge among es, ..., €p.1,
and (b) fori=2,...,r =1, £,, = > (agx : (¢,X) € X, U Xy, e; € 6X).

Next, for ¢ € T' — {s',#'} and ¢ = 0,...,r, one has disty(¢',v;) > p/2. For
otherwise for some z € {s',1'} we would have diste (z,¢') < diste (2, vi)+disty (¢, v;) <
p because min{diste (s', v;), diste (', v;)} < p/2). Hence, none of X C V with a, x > 0
meets P.

These arguments prove (ii) and (iii). o

In view of (13), part (ii) in Claim easily implies (18)(i), and part (iii) together with
(21) shows that &, = £, holds for all e € B. Next, if e € E — B belongs to a T’-path
of I'-length p in G' then @, < £, by (21) and (iii) in Claim. Finally, arguing as above,
one can deduce that @, < £, for any e € E that belongs to no T"-path of Ilength p,
and therefore &, < ¢.. Thus, (18)(iv) is true.

This completes the proof for case By # 0.

Now suppose that By = . We first show that the polyhedron D'(G',T",d) is
empty, where G' = (V', E') and T" are formed as above from G,T,d, and then, using
this property, we show that D'(G, T, d) is empty as well. Let w be the all-unit function
on E'. We shall show that the objective function Q(e/,#',7'") in (17) is unbounded
(considering G', T" instead of G, T). By the linear duality theorem, this fact will imply
that D'(G',T',d) = 0.

Let v be the maximum cardinality of a packing for G',T'. Choose a rather large
p € Ry to ensure that |P| = v for an optimal solution to P to (8). For s’ € T" let g
be the number of paths P € P with s' € ep; then py < |E.| = d,. Moreover, since
By =0, G' has no T', d-join, whence

(25) w=> (uy : ' €T) <d(T) -2
Let (8',7') be p-admissible and achieve the minimum in (12). Then
(26) pv 2 $(P,p) =7(B') + D (By([Uel - 1) : 6 € F°).

The desired function o' on X' is defined similarly to « in the proof for case By # §
(here X' = U(X., : s € T'), and X}, is the set of pairs (s',X) with X C V' and
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s' € X NT"). Namely, for s' € T' define X* to be {v € Zy : diste(s',v) < m;} (cf.
(22)) and then define o’ on X, as in (23) (with s’ instead of s). Repeating arguments
as in the proof of the Claim, we observe that

(27) &l <l (=we+q.+8) for each e € E.

Thus, (a',4',7") is a feasible solution to (17) for G',T',d (assuming that 8’ is
extended by zero on the fragments not in F°). Next, (23) (for ') shows that for each
s'eT,

(28) Z(O{;;,X : (S,’X) € X.;’) = p/2, and a;',X > 0 implies X N T = {5'}_

Now, putting (25),(26) and (28) together, we have

', 8',7")
= > @—dXNT —{Dahx — (Y(E)+ Y BylUsl - 1))
(s", X)ex’ PpeEFO
> " dep/2—pv =p(d(T)/2-v) 2 p.
s€T

Since p can be chosen arbitrarily large, €2 is unbounded. Thus, D'(G',T",d) is
empty.

It remains to prove that D'(G,T,d) is empty. Suppose that this is not so. Let z

be a vector in D'(G,T,d). Define z' € RE by
.=z, for e€E,
=1 for e€ E'—E.

We show that 2’ € D'(G',T",d), thus coming to a contradiction with the fact that
D'(G',T',d) is empty. The inequalities in (3)(i),(ii) (for E') are obvious. Consider
(s',X) € X'. If s € X then 69 X contains all d, edges connecting s' and s, whence
(6 X)>dy>de—3(de : #' € XNT' —{s'}). Andif s € X, consider Y = X —T".
Let Z be the set of t € T — {s} such that t € X F ¢'. Then:

(69 X) 2 2(69Y) + » (IE;| : t€ Z) = 2(6°Y) + d(2)
>2(8°Y)+d¥Y NT—{s}) =) (d : ¥ €XNT —{s'}).

Now the inequality as in (3)(iii) for z' and (s', X) follows from (3)(iii) for  and
(s,Y).

Finally, consider a fragment ¢' for G',T",d. Let Z be the set of s € T such that
| Xgr N {s,s'}| =1; then E, C 6G X4 for all s € Z. Suppose that there is s € Z such
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that some e € E,, is not in Uy. Then 2'xy < #'(Ug) — 2!, < |Ug| — 1. Thus, we may
assume that E;, C Uy for all s € Z. Consider the pair ¢ = (Y, W), where ¥ = Xg =T
and W =Uy — U(E;, : s € Z). Then W is a subset of §°Y. Moreover, obviously,
[Ug| = 22(ds : 8" € Xy NT') has the same parity as that of |W|—d(Y NT). Hence, ¢
is a fragment for G,T,d. We have

.7:'X¢/ =ZTX4 +$'(U(E‘I§: 18 € Z)) < (IWI - 1) + quy - Wl = ,U:ﬁl — 1.

Thus, (3)(iv) is true for 2’ and any fragment for G', T, d.
This completes the proof of Theorem 1.

4. Proof of Theorem 2

We show that the problem:
(29) given w : E — Z, minimize wz subject to z € Q'

has an integer optimal solution z; in other words, (29) is, in fact, equivalent to the
minimum weight maximum multi-join problem:

(30) minimize w(B) over all B € Bmax,

Assign a dual variable 7, to e € E in (7)(ii), 7x to K € K in (7)(iii), and By to
¢ € F° (where F° is the set of inner fragments for &, T). Then the program dual to
(29) is

(31) maximize —y(E)+ 2v Z T — Z ([Us] —1)Bs subject to
KeK ¢EFO

(i) 820, y>0, 7>0;
(11) _7e+?e"§e.<_we, 6EE,

where 3 is defined in (16), and

T= Z(TKCK : Kek).

We may assume that v > 0; else Q' C conv(B™2¥) + ]Rf 1s obviously true since
0 is a maximum multi-join (whence conv(B™2%) = {0}). We have to show that there
exist B € B™** and 8,7, 7 satisfying (31)(i),(ii) so that the following (complementary
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slackness) conditions hold:

(32) (1) By >0 implies x4(B) = |Ug| —1;
(ii) 4. > 0 implies e € B;
(iii) 7x >0 implies 2v = (x(B) (= Y (IBN&Y,| : ¥, € K);
(iv) 7. <. implies e & B;

where £e = we + Ve + Be (see (16). Consider P, 8,~ that achieve the equality in (12)
for a rather large p (using notation without primes). Then |P|=v, B=U(P € P) is
a maximum multi-join, and B, 8, v satisfy (32)(i),(ii) (by (14),(15)).

Now the desired 7 is determined in a way close to that of determining o in Section
3. More precisely, letting Z, = {v € V : diste(s,v) < p/2} for s € T, form the sequence
0=m <m <...<m=p/2of all different values among disty(s,v) (s € T, v € Z;)
and p/2. Fori=1,...,k define K' ={Y? : s€ T} by

Yi={veV : distys,v) < m;}.

Obviously, s € Y, and for any distinct s,t € T the sets Y and Y are disjoint; so K*
is a T-kernel family. Now putting 74« = m; — mj—y for ¢ = 1,...,k, and 75 = 0 for
the other T-kernel families, we get 7 that satisfies (31)(ii) and (32)(iii),(iv). Indeed,
arguing as in the proof of the Claim from the previous section, we observe that, for
a fixed i, every path P € P from s to t traverses only cuts §Y and §Y}, each being
traversed at exactly one edge. Hence, |[BNY}|=|{P € P : s € ep}| foreach s € T,
whence (32)(iii) follows. Also we observe that 7, = £, if e belongs to a T-path P with
{(P) = p, and 7. < £, otherwise; whence (31)(ii) and (32)(iv) follow.

5. Open problems

Theorem 1 shows the integrality of every vertex of the polyhedron D' = D'(G,T,d)
that remains a vertex in D' + Rf. These vertices are exactly the incidence vectors of
T,d-joins. An open question: is it true that all vertices of D’ are integral? Clearly
the answer is affirmative if and only if problem (6) has an integer optimal solution
for any objective function w : E — R (then the set of vertices of D' is exactly the
set of incidence vectors of B C E such that B contains a T, d-join B' and the graph
(V, B — B') is eulerian, by Statement 2.1).

Note that Theorem 3 (as well as the algorithm in [9]) concerns only a nonnegative
w, and nothing is at present known for the case of an arbitrary w, which 1s crucial for
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studying the vertices of D'. The minimum (arbitrary) weight T d-join problem with d #
II seems to be more sophisticated than the same problem for T-joins. It is well-known
(see [11]) that if B is a T-join and B' is a T'-join then BAB' contains a TAT'-join,
and that this property provides a simple reduction of the minimum (arbitrary) weight
T-join problem to its nonnegative version (SAS’ denotes the symmetric difference
(S=S")U(S'=S5)). A similar property does not remain, in general, true for an arbitrary
d; there is a simple example with T = {s1,s2}, d,, = d,, =2 and T' = {s3,54} that
shows that for some T, d-join B and T"-join B’, the set BAB' contains no T, d"-join,
where T" = {s1,...,84},ds; =2 for i = 1,2 and d, = 1 for 7 = 3, 4.

A similar question concerning the integrality of the vertices of the polyhedron Q'
(related to the maximum multi-joins) is also open.

Another interesting open problem is to describe the dominant polyhedra D and
@ via systems of linear inequalities rather than the Minkowsky sums as above. Can
it be done explicitly? (To compare: the perfect matching polytop of a graph has a
“good” description via inequalities [4], but arguments in [2] make it unlikely that such
a description exists for the corresponding dominant polyhedron.)
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