

MINIMUM WEIGHT T, d-JOINS AND MULTI-JOINS

Michel BURLET Alexander V. KARZANOV

RR 929 -M-

Décembre 1993

MINIMUM WEIGHT T, d-JOINS AND MULTI-JOINS

Michel BURLET

Université Fourier Grenoble 1 BP 53x, 38041 Grenoble Cedex, France

and

Alexander V. KARZANOV

Institute for System Analysis of Russian Acad. Sci. 9, Prospect 60 Let Oktyabrya, 117312 Moscow, Russia *

Abstract. A T, d-join arises as a natural generalization of the notion of a T-join. Given a graph G = (V, E), a subset T of its vertices, and integers $d_s \ge 0$ for $s \in T$, a T, d-join is a set $B \subseteq E$ such that: (i) B is the union of (the edge sets of) some pairwise edge-disjoint paths P_1, \ldots, P_k in G connecting pairs of distinct elements of T, and (ii) for each $s \in T$ exactly d_s of these paths have the beginning or end at s.

We introduce some polyhedron D', described by linear inequalities, and show that $D = D' + \mathbb{R}_+^E$ is the dominant polyhedron for the set of T, d-joins. To this purpose we consider the problem of minimizing over D' a nonnegative linear objective function and prove that it is, in fact, equivalent to the minimum weight T, d-join problem.

We also give a description, via linear inequalities, of a polyhedron Q' such that $Q' + \mathbb{R}_+^E$ is the dominant polyhedron for the set of maximum multi-joins for G, T. Here by a multi-join we mean a set $B \subseteq E$ satisfying (i) as above, and a multi-join B is called maximum if the number k of paths is as large as possible.

Both results are derived from a minimax relation obtained in [9] for the parameteric minimum cost edge-disjoint T-paths problem.

Key words. Dominant Polyhedron, T-join, Edge-disjoint Paths.

^{*} This research was done while the second author was visiting IMAG Artemis, Université Fourier Grenoble 1 and was supported by "Chaire munucipale" from Mairie de Grenoble, France

1. Introduction

Throughout we deal with an undirected graph G = (V, E), a subset T of its vertices, called terminals in G, and a nonnegative integer-valued function d (of demands) on T. A T-path is a path in G connecting two distinct terminals. A set $B \subseteq E$ is called a T, d-join if it is representable in the form $B = \cup (P \in \mathcal{P})$ for some set \mathcal{P} of mutually edge-disjoint T-paths such that for each $s \in T$ exactly d_s paths in \mathcal{P} begin or end at s (considering a path as an edge set). Unless otherwise explicitly stated, we also assume that such a s is minimal with respect to inclusion under the above property; in particular each path in s is simple. Let s is s denote the set of s denote the set of s denote the set of s denote that

$$\sum (d_s : s \in T) \text{ is even}$$

(otherwise \mathcal{B} is obviously empty) and that some d_s is non-zero. If $d_s = 1$ for all $s \in T$, then |T| is even and we get the notion of a T-join [13]; such an object originally appeared in connection with the so-called Chinese postman problem [8,3].

It is well-known that the set \mathcal{B}_1 of T-joins admits the "dual description" as being the set of all minimal $B \subseteq E$ that meet every odd-terminus cut δX ; in other words, \mathcal{B}_1 and the set \mathcal{C} of (minimal) T-cuts form a blocking pair [6]. [For $X \subset V$, $\delta X = \delta^G X$ denotes the set of edges of G with exactly one end in X (a cut in G), and for |T| even, δX is called a T-cut if $|X \cap T|$ is odd.] Moreover, Edmonds and Johnson [5] proved the theorem that for any weighting $w: E \to \mathbb{R}_+$, the minimum weight w(B) of a T-join is equal to the maximum value of a w-packing of T-cuts; in other words, \mathcal{B}_1 has the MFMC-property (see [12] for the definition). [For $f: S \to \mathbb{R}$ and $S' \subseteq S$, f(S') denotes $\sum (f(e): e \in S')$.] In polyhedral terms, this means that the dominant polyhedron

$$D(\mathcal{B}_1) = \operatorname{conv}(\mathcal{B}_1) + \mathbb{R}_+^E$$

for \mathcal{B}_1 is formed by the vectors $x \in \mathbb{R}_+^E$ satisfying the system of inequalities

(1)
$$x(\delta X) \ge 1$$
 for $\delta X \in \mathcal{C}$.

[Here for a family $\mathcal{F} \subseteq 2^E$ of subsets of E, $\operatorname{conv}(\mathcal{F})$ is the convex hull of the incidence vectors $\xi_F \in \mathbb{R}^E$ of sets $F \in \mathcal{F}$, and for sets $X, Y \subseteq \mathbb{R}^E$, X+Y denotes their Minkowsky sum, i.e., the set of $z \in \mathbb{R}^E$ such that z = x + y for some $x \in X$ and $y \in Y$.] For a survey of the above-mentioned results see [11,7].

In the present paper we give a description of the dominant polyhedron $D = D(\mathcal{B}_d)$ for arbitrary demands d (Theorem 1). Such a description turns out to be somewhat more complicated than that for \mathcal{B}_1 . It comes from consideration of the minimum weight T, d-join problem: given a weighting $w: E \to \mathbb{Z}_+$, find a T, d-join B of weight w(B)

minimum, and applying to the latter a minimax relation for the parameteric minimum cost edge-disjoint T-paths problem obtained in [9].

From the result in [9] we also derive a description of the dominant polyhedron Q for the set \mathcal{B}^{\max} of maximum multi-joins for G, T (Theorem 2). Let $\nu = \nu(G, T)$ denote the maximum cardinality of a set of pairwise edge-disjoint T-paths in G. By a maximum multi-join we mean a minimal set $B \subseteq E$ such that the subgraph (V, B) contains ν pairwise edge-disjoint T-paths.

Note also that the above-mentioned parameteric problem can be solved in strongly polynomial time. This provides strongly polynomial algorithms to find optimal solutions to the minimum weight T, d-join problem and the minimum weight maximum multi-join problem (under nonnegative weights).

2. Theorems

We need some terminology and notation.

Definition. A pair $\phi = (X_{\phi}, U_{\phi})$ is called a *fragment* if $X_{\phi} \subseteq V$, $U_{\phi} \subseteq \delta X_{\phi}$, and the numbers $|U_{\phi}|$ and $d(X_{\phi} \cap T)$ have different parity, that is,

(2)
$$|U_{\phi}| - \sum_{s} (d_s : s \in X_{\phi} \cap T) \equiv 1 \pmod{2}.$$

In particular, U_{ϕ} has odd cardinality if $X_{\phi} \cap T = \emptyset$; such a fragment is called *inner*. Let \mathcal{F} denote the set of all fragments for G, T, d. Define the *characteristic function* of $\phi \in \mathcal{F}$ by

$$\chi_{\phi}(e) := 1$$
 if $e \in U_{\phi}$,
 $:= -1$ if $e \in \delta X_{\phi} - U_{\phi}$,
 $:= 0$ for the other edges in G .

We prove the following theorem.

Theorem 1. $\operatorname{conv}(\mathcal{B}_d) \subseteq D' \subseteq \operatorname{conv}(\mathcal{B}_d) + \mathbb{R}_+^E$, where D' = D'(G, T, d) is the set of vectors $x \in \mathbb{R}^E$ satisfying

- (3) (i) $x_e \ge 0$ for $e \in E$;
 - (ii) $x_e \leq 1$ for $e \in E$;
 - (iii) $x(\delta X) \ge d_s d(X \cap T \{s\})$ for $s \in T$ and $X \subset V$ such that $s \in X$;
 - (iv) $x\chi_{\phi} \leq |U_{\phi}| 1$ for $\phi \in \mathcal{F}$.

In particular, $D = D' + \mathbb{R}_+^E$.

[For $a, b: S \to \mathbb{R}$, ab denotes the inner product $\sum (a_e b_e: e \in S)$.] Note that in case $d = \mathbb{I}$ system (3)(iv) implies (1). Indeed, for $\delta X \in \mathcal{C}$ the pair $\phi = (X, \emptyset)$ forms a fragment (since $d(X \cap T) = |X \cap T|$ is odd). Then $x\chi_{\phi} \leq |U_{\phi}| - 1 = -1$ shows that $x(\delta X) \geq 1$.

Let e_P denote the pair of end vertices of a path P.

To see the inclusion $\operatorname{conv}(\mathcal{B}_d) \subseteq D'$, we observe that the incidence vector ξ_B of any T, d-join B belongs to D'. Indeed, (3)(i),(ii) are obvious, and (3)(iii) can be easily seen by considering a representation $B = \bigcup (P \in \mathcal{P})$. Fix a fragment ϕ . For $P \in \mathcal{P}$, $|P \cap \delta X_{\phi}|$ is odd if $|e_P \cap X_{\phi}| = 1$, and even otherwise. Hence,

(4)
$$|B \cap \delta X_{\phi}| - d(X_{\phi} \cap T) \equiv 0 \pmod{2}$$

(taking into account that $|\{P \in \mathcal{P} : s \in e_P\}| = d_s$ for any $s \in T$). Obviously, $|B \cap \delta X_{\phi}|$ and $\xi_B \chi_{\phi}$ have the same parity. Thus, $\xi_B \chi_{\phi} - |U_{\phi}| \equiv 1 \pmod{2}$, by (2) and (4). Now the evident fact that $\xi \chi_{\phi} \leq |U_{\phi}|$ for any 0,1-vector ξ in \mathbb{R}^E implies

$$\xi_B \chi_\phi \le |U_\phi| - 1,$$

that is, (3)(iv) holds for $x = \xi_B$.

We also show the following. For $W \subseteq E$ and $v \in V$ let $W_v = W_v^G$ denote the set of edges in W incident to v.

Statement 2.1. Let x be an integer vector in D', and let $B = \{e \in E : x_e = 1\}$. Then B contains a T, d-join \widetilde{B} , and $B - \widetilde{B}$ is the union of pairwise edge-disjoint circuits (considered as edge-sets).

Proof. By (3)(i),(ii), x is a 0,1-vector. We observe that $|B_v|$ is even for each $v \in V - T$. For if $|B_v|$ is odd for some $v \in V - T$ then for the inner fragment ϕ with $X_{\phi} = \{v\}$ and $U_{\phi} = B_v$ one has $x\chi_{\phi} = |U_{\phi}|$, contradicting (3)(iv). Also considering for $s \in T$ the fragment $\phi = \{\{s\}, B_s\}$ we conclude from (3)(iv) that $|B_s|$ and d_s have the same parity.

Next, form the graph H = (V', B') by adding to the graph (V, B) a new vertex s' and d_s parallel edges connecting s and s', for each $s \in T$. Let $T' = \{s' : s \in T\}$ be the set of terminals in H. By the above argument, every vertex $v \in V' - T' = V$ has an even degree in H. Furthermore, (3)(iii) and the construction of H show that $|\delta^H X| \geq d_s$ for any $s \in T$ and $X \subset V'$ such that $X \cap T' = \{s'\}$, and that this inequality holds with equality for $X = \{s'\}$. Hence,

$$\min\{|\delta^H X| \,:\, X\subset V',\; X\cap T'=\{s'\}\}=d_s \;\; \text{for any} \;\; s'\in T'.$$

Now the statement is implied by the following theorem due to Lovász [10] and, independently, Cherkassky [1]: if a graph G'' = (V'', E'') and a set $T'' \subseteq V''$ are such that the degree of every vertex in V'' - T'' is even, then there exists a set \mathcal{P}'' of edge-disjoint T''-paths in G'' such that for each $t \in T''$ the number of paths $P \in \mathcal{P}''$ with $t \in e_P$ is exactly $\min\{|\delta^{G''}X| : X \subset V'', X \cap T'' = \{t\}\}$ paths in \mathcal{P}'' .

In view of Statement 2.1, in order to prove the second inclusion in Theorem 1 it suffices to show that (i) if $\mathcal{B}_d = \emptyset$ then $D' = \emptyset$, and (ii) if $\mathcal{B}_d \neq \emptyset$ then the problem:

(6) given weights $w_e \in \mathbb{Z}_+$ of edges $e \in E$, minimize wx over all $x \in D'$,

has an integer-valued optimal solution x. Indeed, in case (i) we have $D = \emptyset = \emptyset + \mathbb{R}_+^E = D' + E_+^E$. In case (ii), varying w, we conclude that all vertices of $D' + \mathbb{R}_+^E$ are integral. Then, by Statement 2.1, these vertices must be the incident vectors of T, d-joins, whence the result follows. In particular, (6) turns out to be equivalent, in essense, to the abovementioned minimum weight T, d-join problem. We prove (i) and (ii) in the next section.

Now we state the theorem describing the dominant polyhedron Q for the set \mathcal{B}^{\max} of maximum multi-joins for G, T. A set K of pairwise disjoint subsets $Y_s \subset V$, $s \in T$, is called a T-kernel family if $Y_s \cap T = \{s\}$ for all $s \in T$. Let K = K(G,T) denote the set of T-kernel families for G,T. For $e \in E$ define $\zeta_K(e)$ to be the number of occurrencies of e in the cuts δY_s , $s \in T$, that is,

$$\zeta_K = \sum (\xi_{\delta Y_s} : Y_s \in K)$$

(thus ζ_K , the *characteristic function* of K, takes values only 0,1 or 2).

Theorem 2. $\operatorname{conv}(\mathcal{B}^{\max}) \subseteq Q' \subseteq \operatorname{conv}(\mathcal{B}^{\max}) + \mathbb{R}_+^E$, where Q' is the set of vectors $x \in \mathbb{R}^E$ satisfying

- $(7) (i) x_e \ge 0, e \in E;$
 - (ii) $x_e \leq 1, e \in E;$
 - (iii) $x\zeta_K \geq 2\nu$ for any $K \in \mathcal{K}$;
 - (iv) $x\chi_{\phi} \leq |U_{\phi}| 1$ for each inner fragment ϕ .

In particular, $Q = Q' + \mathbb{R}_+^E$.

Again, it is easy to show that the characteristic vector $x = \xi_B$ of every maximum multi-join B belongs to Q', thus proving the first inclusion in the theorem (the inequality in (7)(iii) follows from the fact that each T-path P meets at least two cuts δY_s for $Y_s \in K$). Next, arguing as in the proof of Statement 2.1 and using Lovász-Cherkassky'

theorem, one can see that for every 0,1-vector $x \in Q'$ there is a maximum multi-join B with $\xi_B \leq x$.

To prove the remaining parts in Theorems 1 and 2, we utilize one general result on minimum cost edge-disjoint paths, as follows. Consider a graph G' = (V', E') and a set $T' \subseteq V'$. For brevity, in the sequel we refer to a set of edge-disjoint T'-paths in G' as a packing. Let $w: E' \to \mathbb{Z}_+$ be a weighting. For a packing \mathcal{P} let $w(\mathcal{P})$ denote the total weight (or cost) $\sum (w(P): P \in \mathcal{P})$ of paths in \mathcal{P} . The parameteric minimum cost problem is:

(8) given $p \in \mathbb{R}_+$, find a packing \mathcal{P} that maximizes the objective function $\psi(\mathcal{P}, p) = p|\mathcal{P}| - w(\mathcal{P})$.

Clearly, if p is large enough (e.g., p = w(E') + 1) then (8) becomes equivalent to the problem: among all packings \mathcal{P} of maximum possible cardinality $|\mathcal{P}|$, find a packing \mathcal{P} whose total cost $w(\mathcal{P})$ is as small as possible. [Therefore, (8) is a generalization of the minimum weight maximum multi-join problem and, in fact, of the minimum weight T, d-join problem, due to a simple reduction as explained in Section 3.]

Let \mathcal{F}^0 denote the set of inner fragments ϕ for G', T' (i.e., $X_{\phi} \cap T' = \emptyset$). For functions $\beta' : \mathcal{F}^0 \to \mathbb{R}_+$ and $\gamma' : E' \to \mathbb{R}_+$, define the amortized cost function $w^{\beta',\gamma'}$ on E to be

(9)
$$w^{\beta',\gamma'} = w + \gamma' + \sum (\beta'_{\phi} \chi_{\phi} : \phi \in \mathcal{F}^{0})$$

(here χ_{ϕ} concerns E'). We say that (β', γ') is p-admissible if:

- (10) $w^{\beta',\gamma'}$ is nonnegative;
- (11) $\operatorname{dist}_{w^{\beta',\gamma'}}(s',t') \geq p$ for all distinct $s',t' \in T'$,

where $\operatorname{dist}_{\ell}(u, v)$ is the distance between vertices u and v in G' with length ℓ of edges, that is, the minimum length $\ell(P)$ of a path connecting u and v (the distances in (11) are well-defined because of (10)).

Theorem 3 [9]. For any $p \ge 0$,

(12)
$$\max\{\psi(\mathcal{P},p)\} = \min\{\gamma'(E') + \sum (\beta'_{\phi}(|U_{\phi}|-1) : \phi \in \mathcal{F}^{0})\},$$

where the maximum ranges over all packings \mathcal{P} and the minimum ranges over all packings \mathcal{P} admissible (β', γ') .

We shall also use the *optimality criterion* for problem (8): a packing \mathcal{P} and p-admissible (β', γ') achieve the equality in (12) if and only if the following "complementary slackness" conditions hold:

- (13) $w^{\beta',\gamma'}(P) = p$ for each $P \in \mathcal{P}$;
- (14) for $e \in E'$, $\gamma'_e > 0$ implies that e is covered by \mathcal{P} , that is, e belongs to some $P \in \mathcal{P}$;
- (15) for $\phi \in \mathcal{F}^0$, $\beta'_{\phi} > 0$ implies $\sum_{P \in \mathcal{P}} \chi_{\phi}(P) = |U_{\phi}| 1$.

This criterion can be seen by considering, for arbitrary a packing \mathcal{P} and a p-addmissible (β', γ') , the following expression:

$$\psi(\mathcal{P}, p) = \sum_{P \in \mathcal{P}} (p - w(P))$$

$$\leq \sum_{P \in \mathcal{P}} (\gamma'(P) + \xi_P \sum_{\phi \in \mathcal{F}^0} \beta'_{\phi} \chi_{\phi}) \qquad \text{(by (9))}$$

$$\leq \gamma'(E') + \sum_{\phi \in \mathcal{F}^0} \beta'_{\phi} \chi_{\phi} \sum_{P \in \mathcal{P}} \xi_P \qquad \text{(as the paths in } \mathcal{P} \text{ are edge-disjoint)}$$

$$\leq \gamma'(E') + \sum_{\phi \in \mathcal{F}^0} \beta'_{\phi} (|U_{\phi}| - 1) \qquad \text{(by (5))} .$$

3. Proof of Theorem 1

For $s \in T$ let \mathcal{X}_s denote the collection of pairs (s,X) such that $X \subseteq V$ and $s \in X \cap T$, and let $\mathcal{X} = \cup (\mathcal{X}_s : s \in T)$. Assign a dual variable γ_e to $e \in E$ in (3)(ii), $\alpha_{s,X}$ to (s,X) in (3)(iii), and β_{ϕ} to ϕ in (3)(iv). Given $\alpha: \mathcal{X} \to \mathbb{R}$ and $\beta: \mathcal{F} \to \mathbb{R}$, for $e \in E$ define

(16)
$$\widehat{\alpha}_e = \sum (\alpha_{s,X} : (s,X) \in \mathcal{X}, \ e \in \delta X), \qquad \widehat{\beta}_e = \sum (\beta_{\phi} \chi_{\phi}(e) : \phi \in \mathcal{F}),$$
and $\ell_e = w_e + \gamma_e + \widehat{\beta}_e.$

Then the linear program dual to (6) is:

(17)
$$\Omega(\alpha, \beta, \gamma) = -\gamma(E) + \sum_{(s, X) \in \mathcal{X}} (d_s - d(X \cap T - \{s\})) \alpha_{s, X} - \sum_{\phi \in \mathcal{F}} (|U_{\phi}| - 1) \beta_{\phi}$$

subject to

(i)
$$\alpha \geq 0, \ \beta \geq 0 \ \gamma \geq 0;$$

(ii)
$$-\gamma_e + \widehat{\alpha}_e - \widehat{\beta}_e \leq w_e, \quad e \in E.$$

Suppose that the set \mathcal{B}_d of T, d-joins is nonempty. Our goal is to find $B \in \mathcal{B}_d$ and α, β, γ satisfying (17)(i),(ii) so that the following relations hold:

(18) (i)
$$\alpha_{s,X} > 0$$
 implies $|B \cap \delta X| = d_s - d(X \cap T - \{s\});$

(ii)
$$\beta_{\phi} > 0$$
 implies $\chi_{\phi}(B) = |U_{\phi}| - 1$;

- (iii) $\gamma_e > 0$ implies $e \in B$;
- (iv) $\widehat{\alpha}_e < \ell_e$ implies $e \notin B$.

One can see that (18) gives the complementary slackness conditions for $x = \xi_B$ and (α, β, γ) , whence x is an integer optimal solution to (6), and we are done.

To find the desired objects, we form the graph G' = (V', E') by adding to G a new vertex s' and d_s parallel edges connecting s and s', for each $s \in T$. Let $T' = \{s' : s \in T\}$, and extend w by zero to the edges in E' - E. Clearly, each T', d-join in G' contains E' - E, and for $B \subseteq E$, the mapping $B \to B \cup (E' - E)$ yields a one-to-one correspondence between the set of T, d-joins in G and the set of T', d-joins in G'. By the above supposition, the set of T', d-joins in G' is nonempty.

Let $\mathcal{P}, \gamma', \beta'$ achieve the equality in (12) with a rather large p. Then $|\mathcal{P}|$ is as large as possible. Since $|\mathcal{P}|$ does not exceed |E' - E|/2 = d(T)/2, $B' = \cup (P \in \mathcal{P})$ is a T', d-join in G' and $B = B'|_E$ is a T, d-join in G. This B is just the desired T, d-join.

Next we explain how to obtain β and γ from β' and γ' . Consider a fragment $\phi \in \mathcal{F}^0$ with $\beta'_{\phi} > 0$. Note that (15) is equivalent to the fact that there is a unique element $u \in \delta^{G'} X_{\phi}$ such that

(19) either
$$u \in U_{\phi}$$
 and $\delta^{G'}X_{\phi} \cap B' = U_{\phi} - \{u\}$, or $u \notin U_{\phi}$ and $\delta^{G'}X_{\phi} \cap B' = U_{\phi} \cup \{u\}$.

Let \mathcal{F}_1 be the set of $\phi \in \mathcal{F}^0$ such that for each $s \in T \cap X_{\phi}$ (if any) all edges e connecting s and s' belong to U_{ϕ} (note that such an e is, obviously, in $\delta^{G'}X_{\phi} \cap B'$). From (19) one can see that for $\phi \in \mathcal{F}_1$, the pair $(X_{\phi}, U_{\phi} \cap E)$ forms a fragment, ϕ' say, for G, T, d; moreover, $\chi_{\phi'}(B) = |U_{\phi'}| - 1$. We denote ϕ' by $\sigma(\phi)$. The desired β is defined by

$$eta_{\phi'} = eta_{\phi}' \quad \text{for } \phi' = \sigma(\phi), \ \phi \in \mathcal{F}_1,$$

$$= 0 \quad \text{for the other fragments in } \mathcal{F}.$$

Then β and B satisfy (18)(ii). On the other hand, (19) shows that for each $\phi \in \mathcal{F}^0 - \mathcal{F}_1$, the set $U_{\phi} \cap E$ coincides with $B \cap \delta X_{\phi}$. Based on this property, we can

"destrey" such fragments, accordingly increasing the function γ on E. More precisely, we define γ on E by

$$\gamma_e = \gamma'_e + \sum (\beta'_\phi : \phi \in \mathcal{F}^0 - \mathcal{F}_1, e \in \delta X_\phi) \quad \text{for each } e \in B,$$

$$= \gamma'_e \quad \text{otherwise.}$$

By the above property, for $\phi \in \mathcal{F}^0 - \mathcal{F}_1$ and $e \in E$, $\chi_{\phi}(e) \geq 0$ if $e \in B$ and $\chi_{\phi}(e) \leq 0$ if $e \in E - B$. This and (14) imply that $\gamma_e > 0$ only if $e \in B$, and therefore (18)(iii) is true. Furthermore, we have

(20)
$$\gamma'_{e} + \sum (\beta'_{\phi} \chi_{\phi}(e) : \phi \in \mathcal{F}^{0}) = \widehat{\beta}_{e} + \gamma_{e} \quad \text{for } e \in B,$$
$$\leq \widehat{\beta}_{e} + \gamma_{e} \quad \text{for } e \in E - B,$$

defining $\widehat{\beta}$ as in (16) for our β . Let ℓ' stand for $w^{\beta',\gamma'}$ (see (9)). By (20),

(21)
$$\ell_e = \ell'_e \text{ for } e \in B \text{ and } \ell_e \ge \ell'_e \text{ for } e \in E - B.$$

It remains to define α . Consider $s' \in T'$. Introduce the set $Z_{s'}$ to be $\{v \in V' : \operatorname{dist}_{\ell'}(s',v) \leq p/2\}$ (recall that ℓ' is nonnegative, by (10)). From (11) it follows that if v is a common element for $Z_{s'}$ and $Z_{t'}$ with $s' \neq t'$ then $\operatorname{dist}_{\ell'}(s',v) = \operatorname{dist}_{\ell'}(t',v) = p/2$. Let $0 = \pi_0 < \pi_1 < \ldots < \pi_k = p/2$ be the sequence of all different values among $\operatorname{dist}_{\ell'}(s',v)$ ($v \in Z_{s'}$) and p/2. Define

(22)
$$X^{i} = \{ v \in Z_{s'} - \{s'\} : \operatorname{dist}_{\ell'}(s', v) < \pi_{i} \}, \quad i = 1, \dots, k.$$

Now the desired α on \mathcal{X}_s is defined by

(23)
$$\alpha_{s,X} = \pi_i - \pi_{i-1} \quad \text{for } X = X^i \neq \emptyset, \ i = 1, \dots, k,$$
$$= 0 \quad \text{for the other } (s, X) \text{'s in } \mathcal{X}_s.$$

Note that the construction of G' shows that $\operatorname{dist}_{\ell'}(s',v) = \operatorname{dist}_{\ell'}(s',s) + \operatorname{dist}_{\ell'}(s,v)$ for any $v \in Z_{s'} - \{s'\}$, where s is the vertex in T corresponding to s'. This implies that if $X^i \neq \emptyset$ then $s \in X^i$, so α is well-defined.

Claim. Let $P = (s' = v_0, e_1, v_1, \dots, e_r, v_r = t')$ be a path in G' connecting distinct terminals $s', t' \in T'$ such that $\ell'(P) = p$. Then:

- (i) $v_1 = s$ and $v_{r-1} = t$;
- (ii) for every $(s, X) \in \mathcal{X}$ with $\alpha_{s, X} > 0$, P intersects $\delta^G X$ at most once;
- (iii) for $i = 2, \ldots, r 1$, $\widehat{\alpha}_{e_i} = \ell'_{e_i}$.

Proof. (i) is obvious. To show (ii) and (iii), we observe that P is a shortest path for ℓ' (by (11)). Hence,

(24) for
$$i = 1, ..., r$$
,
$$\ell'_{e_i} = \operatorname{dist}_{\ell'}(s', v_i) - \operatorname{dist}_{\ell'}(s', v_{i-1}) = \operatorname{dist}_{\ell'}(t', v_{i-1}) - \operatorname{dist}_{\ell'}(t', v_i).$$

From (24) and the definition of $\alpha_{q,X}$ for q=s,t (see (23)) one can conclude that: (a) for $(q,X) \in \mathcal{X}_s \cup \mathcal{X}_t$ with $\alpha_{q,X} > 0$, δX contains exactly one edge among e_2, \ldots, e_{r-1} , and (b) for $i=2,\ldots,r-1$, $\ell'_{e_i} = \sum (\alpha_{q,X}: (q,X) \in \mathcal{X}_s \cup \mathcal{X}_t, \ e_i \in \delta X)$.

Next, for $q' \in T' - \{s', t'\}$ and i = 0, ..., r, one has $\operatorname{dist}_{\ell'}(q', v_i) \geq p/2$. For otherwise for some $z \in \{s', t'\}$ we would have $\operatorname{dist}_{\ell'}(z, q') \leq \operatorname{dist}_{\ell'}(z, v_i) + \operatorname{dist}_{\ell'}(q', v_i) < p$ because $\min\{\operatorname{dist}_{\ell'}(s', v_i), \operatorname{dist}_{\ell'}(t', v_i)\} \leq p/2$. Hence, none of $X \subseteq V$ with $\alpha_{q,X} > 0$ meets P.

These arguments prove (ii) and (iii). •

In view of (13), part (ii) in Claim easily implies (18)(i), and part (iii) together with (21) shows that $\widehat{\alpha}_e = \ell_e$ holds for all $e \in B$. Next, if $e \in E - B$ belongs to a T'-path of l'-length p in G' then $\widehat{\alpha}_e \leq \ell_e$, by (21) and (iii) in Claim. Finally, arguing as above, one can deduce that $\widehat{\alpha}_e \leq \ell'_e$ for any $e \in E$ that belongs to no T'-path of ℓ' -length p, and therefore $\widehat{\alpha}_e \leq \ell_e$. Thus, (18)(iv) is true.

This completes the proof for case $\mathcal{B}_d \neq \emptyset$.

Now suppose that $\mathcal{B}_d = \emptyset$. We first show that the polyhedron D'(G', T', d) is empty, where G' = (V', E') and T' are formed as above from G, T, d, and then, using this property, we show that D'(G, T, d) is empty as well. Let w be the all-unit function on E'. We shall show that the objective function $\Omega(\alpha', \beta', \gamma')$ in (17) is unbounded (considering G', T' instead of G, T). By the linear duality theorem, this fact will imply that $D'(G', T', d) = \emptyset$.

Let ν be the maximum cardinality of a packing for G', T'. Choose a rather large $p \in \mathbb{R}_+$ to ensure that $|\mathcal{P}| = \nu$ for an optimal solution to \mathcal{P} to (8). For $s' \in T'$ let $\mu_{s'}$ be the number of paths $P \in \mathcal{P}$ with $s' \in e_P$; then $\mu_{s'} \leq |E'_{s'}| = d_s$. Moreover, since $\mathcal{B}_d = \emptyset$, G' has no T', d-join, whence

(25)
$$2\nu = \sum (\mu_{s'} : s' \in T') \le d(T) - 2.$$

Let (β', γ') be p-admissible and achieve the minimum in (12). Then

(26)
$$p\nu \ge \psi(\mathcal{P}, p) = \gamma'(E') + \sum (\beta'_{\phi}(|U_{\phi}| - 1) : \phi \in \mathcal{F}^{0}).$$

The desired function α' on \mathcal{X}' is defined similarly to α in the proof for case $\mathcal{B}_d \neq \emptyset$ (here $\mathcal{X}' = \cup(\mathcal{X}'_{s'} : s' \in T')$, and $\mathcal{X}'_{s'}$ is the set of pairs (s', X) with $X \subseteq V'$ and

 $s' \in X \cap T'$). Namely, for $s' \in T'$ define X^i to be $\{v \in Z_{s'} : \operatorname{dist}_{\ell'}(s', v) < \pi_i\}$ (cf. (22)) and then define α' on $\mathcal{X}'_{s'}$ as in (23) (with s' instead of s). Repeating arguments as in the proof of the Claim, we observe that

(27)
$$\widehat{\alpha}'_{e} \leq \ell'_{e} \quad (= w_{e} + \gamma'_{e} + \widehat{\beta}'_{e}) \quad \text{for each } e \in E'.$$

Thus, $(\alpha', \beta', \gamma')$ is a feasible solution to (17) for G', T', d (assuming that β' is extended by zero on the fragments not in \mathcal{F}^0). Next, (23) (for α') shows that for each $s' \in T'$,

(28)
$$\sum (\alpha'_{s',X} : (s',X) \in \mathcal{X}'_{s'}) = p/2$$
, and $\alpha'_{s',X} > 0$ implies $X \cap T' = \{s'\}$.

Now, putting (25),(26) and (28) together, we have

$$\begin{split} \Omega(\alpha',\beta',\gamma') \\ &= \sum_{(s',X)\in\mathcal{X}'} (d_s - d(X\cap T' - \{s'\})\alpha'_{s',X} - \left(\gamma'(E') + \sum_{\phi\in\mathcal{F}^0} \beta'_\phi(|U_\phi| - 1)\right) \\ &\geq \sum_{s\in T} d_s p/2 - p\nu = p(d(T)/2 - \nu) \geq p. \end{split}$$

Since p can be chosen arbitrarily large, Ω is unbounded. Thus, D'(G', T', d) is empty.

It remains to prove that D'(G,T,d) is empty. Suppose that this is not so. Let x be a vector in D'(G,T,d). Define $x' \in \mathbb{R}^{E'}$ by

$$x'_e = x_e$$
 for $e \in E$,
= 1 for $e \in E' - E$.

We show that $x' \in D'(G', T', d)$, thus coming to a contradiction with the fact that D'(G', T', d) is empty. The inequalities in (3)(i),(ii) (for E') are obvious. Consider $(s', X) \in \mathcal{X}'$. If $s \notin X$ then $\delta^{G'}X$ contains all d_s edges connecting s' and s, whence $x'(\delta^{G'}X) \geq d_s \geq d_s - \sum (d_t : t' \in X \cap T' - \{s'\})$. And if $s \in X$, consider Y = X - T'. Let Z be the set of $t \in T - \{s\}$ such that $t \in X \not\supseteq t'$. Then:

$$x'(\delta^{G'}X) \ge x(\delta^{G}Y) + \sum (|E'_{t'}| : t \in Z) = x(\delta^{G}Y) + d(Z)$$

$$\ge x(\delta^{G}Y) + d(Y \cap T - \{s\}) - \sum (d_t : t' \in X \cap T' - \{s'\}).$$

Now the inequality as in (3)(iii) for x' and (s', X) follows from (3)(iii) for x and (s, Y).

Finally, consider a fragment ϕ' for G', T', d. Let Z be the set of $s \in T$ such that $|X_{\phi'} \cap \{s, s'\}| = 1$; then $E'_{s'} \subseteq \delta^{G'} X_{\phi'}$ for all $s \in Z$. Suppose that there is $s \in Z$ such

that some $e \in E'_{s'}$ is not in $U_{\phi'}$. Then $x'\chi_{\phi'} \leq x'(U_{\phi'}) - x'_e \leq |U_{\phi'}| - 1$. Thus, we may assume that $E'_{s'} \subseteq U_{\phi'}$ for all $s \in Z$. Consider the pair $\phi = (Y, W)$, where $Y = X_{\phi'} - T'$ and $W = U_{\phi'} - \bigcup (E'_{s'} : s \in Z)$. Then W is a subset of $\delta^G Y$. Moreover, obviously, $|U_{\phi'}| - \sum (d_s : s' \in X_{\phi'} \cap T')$ has the same parity as that of $|W| - d(Y \cap T)$. Hence, ϕ is a fragment for G, T, d. We have

$$x'\chi_{\phi'} = x\chi_{\phi} + x'(\cup (E'_{s'}: s \in Z)) \le (|W| - 1) + |U_{\phi'} - W| = |U'_{\phi}| - 1.$$

Thus, (3)(iv) is true for x' and any fragment for G', T', d.

This completes the proof of Theorem 1.

4. Proof of Theorem 2

We show that the problem:

(29) given $w: E \to \mathbb{Z}_+$, minimize wx subject to $x \in Q'$,

has an integer optimal solution x; in other words, (29) is, in fact, equivalent to the minimum weight maximum multi-join problem:

(30) minimize w(B) over all $B \in \mathcal{B}^{\max}$.

Assign a dual variable γ_e to $e \in E$ in (7)(ii), τ_K to $K \in \mathcal{K}$ in (7)(iii), and β_{ϕ} to $\phi \in \mathcal{F}^0$ (where \mathcal{F}^0 is the set of inner fragments for G, T). Then the program dual to (29) is

(31) maximize
$$-\gamma(E) + 2\nu \sum_{K \in \mathcal{K}} \tau_K - \sum_{\phi \in \mathcal{F}^0} (|U_{\phi}| - 1)\beta_{\phi}$$
 subject to

(i) $\beta \ge 0, \ \gamma \ge 0, \ \tau \ge 0;$

(ii)
$$-\gamma_e + \widehat{\tau}_e - \widehat{\beta}_e \le w_e$$
, $e \in E$,

where $\widehat{\beta}$ is defined in (16), and

$$\widehat{\tau} = \sum (\tau_K \zeta_K : K \in \mathcal{K}).$$

We may assume that $\nu > 0$; else $Q' \subseteq \operatorname{conv}(\mathcal{B}^{\max}) + \mathbb{R}_+^E$ is obviously true since \emptyset is a maximum multi-join (whence $\operatorname{conv}(\mathcal{B}^{\max}) = \{0\}$). We have to show that there exist $B \in \mathcal{B}^{\max}$ and β, γ, τ satisfying (31)(i),(ii) so that the following (complementary

slackness) conditions hold:

- (32) (i) $\beta_{\phi} > 0$ implies $\chi_{\phi}(B) = |U_{\phi}| 1$;
 - (ii) $\gamma_e > 0$ implies $e \in B$;
 - (iii) $\tau_K > 0$ implies $2\nu = \zeta_K(B) \ (= \sum (|B \cap \delta Y_s| : Y_s \in K);$
 - (iv) $\hat{\tau}_e < \ell_e$ implies $e \notin B$;

where $\ell_e = w_e + \gamma_e + \widehat{\beta}_e$ (see (16). Consider $\mathcal{P}, \beta, \gamma$ that achieve the equality in (12) for a rather large p (using notation without primes). Then $|\mathcal{P}| = \nu$, $B = \cup (P \in \mathcal{P})$ is a maximum multi-join, and B, β, γ satisfy (32)(i),(ii) (by (14),(15)).

Now the desired τ is determined in a way close to that of determining α in Section 3. More precisely, letting $Z_s = \{v \in V : \operatorname{dist}_{\ell}(s,v) \leq p/2\}$ for $s \in T$, form the sequence $0 = \pi_0 < \pi_1 < \ldots < \pi_k = p/2$ of all different values among $\operatorname{dist}_{\ell}(s,v)$ $(s \in T, v \in Z_s)$ and p/2. For $i = 1, \ldots, k$ define $K^i = \{Y_s^i : s \in T\}$ by

$$Y_s^i = \{ v \in V : \operatorname{dist}_{\ell}(s, v) < \pi_i \}.$$

Obviously, $s \in Y_s^i$, and for any distinct $s, t \in T$ the sets Y_s^i and Y_t^i are disjoint; so K^i is a T-kernel family. Now putting $\tau_{K^i} = \pi_i - \pi_{i-1}$ for $i = 1, \ldots, k$, and $\tau_K = 0$ for the other T-kernel families, we get τ that satisfies (31)(ii) and (32)(iii),(iv). Indeed, arguing as in the proof of the Claim from the previous section, we observe that, for a fixed i, every path $P \in \mathcal{P}$ from s to t traverses only cuts δY_s^i and δY_t^i , each being traversed at exactly one edge. Hence, $|B \cap Y_s^i| = |\{P \in \mathcal{P} : s \in e_P\}|$ for each $s \in T$, whence (32)(iii) follows. Also we observe that $\widehat{\tau}_e = \ell_e$ if e belongs to a e-path e with e-e-p, and e-e-e-e-otherwise; whence (31)(ii) and (32)(iv) follow.

5. Open problems

Theorem 1 shows the integrality of every vertex of the polyhedron D' = D'(G, T, d) that remains a vertex in $D' + \mathbb{R}_+^E$. These vertices are exactly the incidence vectors of T, d-joins. An open question: is it true that all vertices of D' are integral? Clearly the answer is affirmative if and only if problem (6) has an integer optimal solution for any objective function $w: E \to \mathbb{R}$ (then the set of vertices of D' is exactly the set of incidence vectors of $B \subseteq E$ such that B contains a T, d-join B' and the graph (V, B - B') is eulerian, by Statement 2.1).

Note that Theorem 3 (as well as the algorithm in [9]) concerns only a nonnegative w, and nothing is at present known for the case of an arbitrary w, which is crucial for

studying the vertices of D'. The minimum (arbitrary) weight T, d-join problem with $d \neq \mathbb{I}$ seems to be more sophisticated than the same problem for T-joins. It is well-known (see [11]) that if B is a T-join and B' is a T'-join then $B \triangle B'$ contains a $T \triangle T'$ -join, and that this property provides a simple reduction of the minimum (arbitrary) weight T-join problem to its nonnegative version $(S \triangle S')$ denotes the symmetric difference $(S - S') \cup (S' - S)$. A similar property does not remain, in general, true for an arbitrary d; there is a simple example with $T = \{s_1, s_2\}$, $d_{s_1} = d_{s_2} = 2$ and $T' = \{s_3, s_4\}$ that shows that for some T, d-join D and D-join D, the set D-D-go ontains no D-D-join, where D-D-go ontains no D-D-join, where D-D-go ontains no D-D-join, D-Join D-Joi

A similar question concerning the integrality of the vertices of the polyhedron Q' (related to the maximum multi-joins) is also open.

Another interesting open problem is to describe the dominant polyhedra D and Q via systems of linear inequalities rather than the Minkowsky sums as above. Can it be done explicitly? (To compare: the perfect matching polytop of a graph has a "good" description via inequalities [4], but arguments in [2] make it unlikely that such a description exists for the corresponding dominant polyhedron.)

References

- [1] Cherkassky, B.V.: A solution of a problem of multicommodity flows in a network. Ekonomika i Matematicheskie Metody 13 (1)(1977) 143-151 (Russian).
- [2] Cunningham, W., Green-Krotki, J.: Dominants and submissives of matching polyhedra. *Mathematical Programming* **36** (1986) 228-237.
- [3] Edmonds, J.: The Chinese postman problem. Oper. Research 13 Suppl. (1) (1965), p. 373.
- [4] Edmonds, J.: Maximum matching and polyhedra with (0,1) vertices. J. Res. Nat. Bur. Standards Sect. B 69B (1965) 125-130.
- [5] Edmonds, J., Johnson, E.L.: Matchings, Euler tours and Chinese postman. Math. Programming 5 (1973) 88-124.
- [6] Fulkerson, D.R.: Blocking polyhedra. In: Harris, B. (ed.) Graph theory and its applications, Acad. Press, NY, 1970, pp. 93-112.
- [7] Grötschel, M., Lovász, L., and Schrijver, A.: Geometric Algorithms and Combinatorial Optimization (Springer Verlag, 1988).
- [8] Guan, M.: Graphic programming using odd or even points. Chinese Mathematics 1 (1962) 273-277.

- [9] Karzanov, A.V.: Edge-disjoint *T*-paths of minimum total cost. Report No. STAN-CS-92-1465, Stanford Univ., Stanford, 1993, 66p.
- [10] Lovász, L.: 2-matchings and 2-covers of hypergraphs. Acta Math. Acad. Sci. Hungar. 26 (1975) 433-444.
- [11] Lovász, L. and Plummer, M.D.: Matching Theory (Akadémiai Kiadó, Bu-dapest, 1986).
- [12] Seymour, P.D.: On multi-colouring of cubic graphs, and conjectures of Fulkerson and Tutte. *Proc. Lond. Math. Soc.*, Ser.3 38 (1979) 423-460.
- [13] Seymour, P.D.: On odd cuts and planar multicommodity flows. *Proc. Lond. Math. Soc.*, Ser.3 42 (1981) 178-192.