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Edge-disjoint T-paths of minimum total cost f

Alezander V. Karzanov®

Abstract. Suppose that G = (V, E) is a graph and 7 is a subset of its vertices. Let I be
the maximum number of edge-disjoint T-paths (i.e. paths in G connecting distinct elements in T'). A
classical result in combinatorial optimization, due to Mader and, independently, Lomonosov, is that 1/

can be expressed, by use of 2 minimax relation, via a value determined by a family of certain cuts in

G.

We consider a more general problem in which, given nonnegative costs c(e) of edges € € E | one
requires to find  edge-disjoint 7 -paths Py, ..., P, such that their total cost Z(C(e) re€ P =

1,..., I/) is as small as possible.

We prove a minimax relation for this problem. Moreover, being “constructive”, the proof provides

a strongly polynomial algorithm to find paths as required.

1. Introduction

By a graph we mean an undirected graph with possible multiple edges. VG and
EG denote the vertex-set and the edge-set, respectively, of a graph G. When it leads
to no confusion, an edge with end vertices r and y is denoted by zy.

We deal with a graph G whose edges e € EG have nonnegative integer-valued costs
c(e) € Z+, and with a subset T C VG, called the set of terminals in G. A path P in G
with both ends in T is called a T-path; the value 3, . p c(e), the “cost of P, is denoted
by ¢(P). [We will often consider a path as an edge-set; for S C S and f : S — R,
f(S") denotes Y (f(e) : e € S').] Let v = v(G,T) denote the greatest number of
edge-disjoint T-paths in G. We consider the problem:

(1.1) find a set P consisting of v edge-disjoint T-paths in G so that their total cost
¢(P) :=")_ pep c(P) is as small as possible.
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E.g., if ¢ is all-unit on EG, (1.1) is the problem of finding v edge-disjoint T-paths
in G that cover the least number of edges. If ¢ is identically zero, (1.1) turns into the
well-known problem on maximum packing of (edge-disjoint) T-paths; Mader [Mal] and,

independently, Lomonosov [Lom] showed that v satisfies a certain minimax relation.

It turns out to be more convenient to pose a slightly more general problem, namely:

(1.2) given a nonnegative real p € Ry, find a set P of edge-disjoint T-paths in G that

maximizes the objective function

©(P,p) :=p|P| — c(P).

Evidently, if p is large enough, (1.2) becomes equivalent to (1.1); in particular, one
can take p = ¢(EG) + 1.

The main aim of the present paper is to establish a minimax relation for (1.2). To
state this, we need some definitions. Let ¢ = (X, U) be a pair consisting of a subset X
of inner vertices in G (ie. X C VG —T) and a subset U C 6X such that |U] is odd.
[Here 6X = 69X, the cut induced by X, is the set of edges of G connecting X and
VG —X.] We say that & is a fragment and denote X and U by X¢ and Uy, respectively.
Define

xo(e) =1 if e €Uy,
=—1 if e€déXy—Upy,
:=0 for the other edges in G

(the characteristic function of ¢). Let F be the set of all fragments for G,T. For
a:F = Ry and v : EG — Ry, define the amortized cost function cq 4 0n EG to be

(1.3) Capy =+ + D (aP)xs 1 § € F).
We say that (a,7) is admissible for p > 0 if: |
(1.4) cq, is nonnegative;
(1.5) X := ca - satisfies disty(s,s) > p for all distinct s,8'eT.
[disty(z,y) is the distance between vertices z and y in G with the edge length A.]

Statement 1.1. For any set P of edge-disjoint T-paths and (a, ~) admissible for p,
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(L6) #(P.p) SUEG) + ) (al0)(Ug] 1) : ¢ € F).
Proof. By (1.3) and (1.5), for P € P we have

p=c(P)SA(P)+ > a(d)xs(P).

pEF

Since the paths in P are edge-disjoint, 3 (y(P) : P ¢ P) < ~(EG). Hence,

?(Pip)= > (p=c(P) £ D" (1P)+ Y. a(d)xs(P)) < HEG)+ Y a(e) D xe(P).
P

PeP Pep scF ¢

From the fact that the paths in P are edge-disjoint it follows that Ypep Xo(P) <
|Us|- Moreover, since x4(P) is, obviously, even, while [Us| is odd, 3" pep x4(P) does
not exceed |Ug| — 1. This implies (1.6) (as a() is nonnegative). o

We prove the following theorem.

Theorem 1. For any p > 0,

(1.7) max{p(P,p)} = min{y(EG) + Y (a(¢)([Us| - 1) : ¢ € F)},

where the maximum is taken over the sets P of edge-disjoint T-paths, while the mini-
mum 1t taken over all (o,~) admissible for p.

Like many proofs of minimax relations in combinatorial optimization, the proof
of Theorem 1 utilizes the primal-dual method in linear programming. Also various
- combinatorial techniques are elaborated in the proof. Some tools involved appeal to
the matching theory. Some other ones come from [Kal] where it was proved that
the fractional relaxation of (1.2) (i.e. the corresponding minimum cost maximum
multi(commodity)flow problem) has a half-integral optimal solution (see also [Ka2)).
Theorem 1 will follow from an auxiliary theorem discussed in the next section, where
we also briefly outline the structure of the present paper and main stages of the proof.

In fact, the proof of Theqrem 1 will provide a strongly polynomial algorithm to
solve problems (1.2) and (1.1).



Remark 1.2. We shall see in Section 7 (Statement 7.3) that the minimum in (1.7)
can be achieved with an a such that |Uy| > 3 for all ¢ with a(¢) > 0. In other words,
in the above definition of a fragment ¢ we could add the condition that |Us| > 3.

2. Auxiliary theorem

We call P,a,v good for p if they achieve the equality in (1.7). From the proof
of Statement 1.1 it easily follows that P,a,v are good if and only if the following

(“complementary slackness”) conditions hold:
(2.1) A(P) =p for each P € P (hence, P is shortest for A := Ca,~> by (1.5));

(2.2) for e € EG, ~(e) > 0 implies that e is covered by P (i.e. e belongs to some
P e P);

(2.3) for ¢ € F, a(¢) > 0 implies 3" pep xo(P) = |Us| — 1.

If ¢ satisfies the equality in (2.3), we say that ¢ is saturated by P. Observe that
if ¢ is saturated then one of the two situations takes place:

(2.4) P covers exactly |Us| — 1 edges in Uy and no edge in §X4 — Uy; or

(2.5) P covers all edges in U, and exactly one edge in 0 Xy — Us.

(a) Ug ={e1,...,e7}, er =€y
Fig. 2.1

(See Fig. 2.1.) The edge in Uy that is not covered by P in case (2.4) as well as the
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edge in X, — U, that is covered by P in case (2.5) is called the root of ¢ and denoted
by eg. ‘
Let us consider p as a parameter in the problem which increases from 0 to oc.

Clearly, P = 0, = 0, = 0 are good for p = 0.

In what follows we refer to a set of edge-disjoint T-paths in G as a packing. Validity
of Theorem 1 is provided by the following result.

Theorem 2. Suppose that P, «,~ are good for p. Then one of the following is true:
g g
(i) there exists a packing P’ such that |P'| = |P|+ 1, and P, a,~ are good for p;

(i) there exist p' > p, o' : F — Ry and ' : EG — Ry such that forany 0 < ¢ < 1,
P, ag, e are good for (1—¢&)p+£p’, where ag := (1 —§)a+£€a’ and v¢ := (1 - &)y + £y

[In fact, the alternative takes place: either (i) or (ii) is true.]

Proof of Theorem 1 from Theorem 2. Supposing, for a contradiction, that Theorem
1 is false, let § be the maximum number such that (1.7) holds for every 0 < p < p.

Two cases are possible.

(a) The equality (1.7) holds for p. Choose P, a, so that they are good for p and
|P| is as large as possible. Then (ii) in Theorem 2 implies the existence of ' > P such
that (1.7) holds for any p” in the segment [p,p'], contrary to the definition of p.

(b) The equality (1.7) is wrong for p. Then p > 0, and (1.7) holds for an infinite
sequence p; < p2 < ... of numbers which tend to p. Choose good P;, o;,~; for p;. Since
the set of different packings consisting of simple paths is finite, we may assume that all
the P;’s are the same packing P.

For each i, (a;,y:) is a solution of the system L; formed by the linear constraints:
(1) @i 2 0;v; > 0; (ii) A := ca; . 2 0; (iil) A(P) = p; for each P € P; (iv) A(P) > p; for
each simple T-path P; (v) vi(EG) + Y (ci(9)(|Ug| = 1) : ¢ € F) = pi|P| — ¢(P). We
observe that the constraint matrices of L; are the same for all : while the right hand

side vector linearly depends on p;. As the p;’s tend to P, standard l.p. arguments imply

that there are solutions (e;,7;) of the L;’s which tend to some (a,7) € ]Ri. X ]REG.

Then P, a,~ are good for 7; a contradiction. e

Throughout the remaining part of the paper we assume that the cost function c is
positive, i.e. ¢(e) > 0 for all e € EG. This assumption will significantly simplify some
details of the proof. On the other hand, it leads to no loss of generality, as it is easy to

show by use of standard l.p. arguments.

The proof of Theorem 2 is presented in Sections 3-8. It starts in Section 3 with



introducing elementary, but important, notions and structures and describing their
properties; some of them occurred in [Kal,Ka2]. In Sections 4,5 we give a relatively
simple proof of Theorem 2 under the assumption that the current « is identically zero
(whence A := ¢4~ 1s positive since c¢ is positive and ~ is nonnegative). We distinguish
this special case to expose basic ideas of our combinatorial primal-dual approach to
the problem. The general case is studied in Sections 6-8. In this case edges e € EG
with A(e) = 0 are possible (we cannot, in general, avoid appearance of such edges.
even assuming the positivity of ¢); this makes the analysis more involved. In Section
6 we show validity of Theorem 2 provided that a number of additional conditions is
imposed, which specify the current P, a,~ as well as structures related to them (in fact,
to be able to prove Theorem 2 we are forced to strengthen this theorem; in particular,
we have to require that the graph induced by edges e € U(P € P) with A(e) =0 is a
forest). In Sections 7 and 8 we verify maintenance of these properties (i.e. satisfying the
imposed conditions) after the transformation of P or («, v); this part is most technical

and tiresome in the proof.

As mentioned above, the proof provides an algorithm for finding good P, a, v for an
arbitrary p. More precisely, in Section 9 we show that the algorithm finds, in strongly
polynomial time, a sequence 0 < p; < ... < pny of numbers and objects P;, a;, i
(t=1,...,N), an+1, YN+1 so that: (i) P =0,a = 0,7 = 0 are good for any p € [0, p1};
(i) for : = 1,...,N — 1 and p € [pi, pi+1], the packing P; and functions a and v are
good for p, where a (v) is the corresponding convex combination of a; and ;41 (Vi
and 7;+1); and (iii) |Pn| = v, and for any p > pn the packing Py and functions o and
~ are good for p, where a () is the corresponding nonnegative combination of oy and
an+1 (Yv and Yn41).

Finally, in Section 10 we explain that the final an41,7Nn+1 enable us to derive
optimal dual objects figured in the following theorem describing a minimax relation for
the “pure” (i.e. zero cost) problem (hereinafter for a subset A of vertices (edges) of a
graph G’, G’ — A denotes the graph obtained from G by removing (deleting) A).

Theorem 3 [Mal,Lom)].

1 .
v(G,T) = 5 min{) _ |6Y;| - n},
se€T

where the minimum ranges over all families of pairwise disjoint sets Y, CVG (s € T)
such that Y, N T = {s}, and n denotes the number of components K of the graph
G — (UserYs) such that |69(VK)| is odd.



3. Lines and potentials

Let A: EG — R+ be a function. Define

(3.1) p = py = min{dist(s,s’) : s,5' € T,s # s'}.

A potential w(v) = mx(v) of a vertex v € VG is the A-distance from v to T, i.e.
min{disty(v,s) : s € T}. Denote by T(v) = T»(v) the set of terminals s closest to v,
i.e. such that disty(v,s) = n(v). A T-path (possibly non-simple) of A-length exactly p
is called a T, A\-line, or, briefly, a T-line. A path that is part of a T-line is called a line.
Denote by ' = I'* the subgraph of G formed by the set of terminals and all vertices

and edges occurring in T-lines.

The vertices in I' are naturally partitioned into sets V, (s € T') and V*. Here V;
consists of all v € VT such that distx(s,v) < p/2; and V* := VI — UserVs; a vertex in
V'* is called central. Clearly, T(v) = {s} for v € V;, whereas |T(v)| > 2 and #n(v) = p/2
for v € V*. The following property is obvious.

Statement 3.1. Let L be a path from z toy in G.
(1) If z,y € V, UV*® then L is a line if and only if \(L) = |n(z) — n(y)|. |

(i) If z € Vs and y € Vy for distinct s,s' € T then L is a line if and only if
m(z)+m(y) + AML)=p. e

For z € VT denote by E(z) = Ex(z) the set of edges in I incident to x. Consider
an edge e = 2y € ET with A(e) > 0. We assign to (z, ) an attachment l(z,e) = [x(z,¢)
by the following rule:

(3.2) (i)ifz € V,UV®, y €V, and n(y) < 7(z), put I(z,€) :=s;
(ii) if z € V and either y € V,, or y € V, and 7(z) < m(y), put {(z,e) :=5.

It is easy to see that if [(z,e) = s then for every T-line L from s; to s, that meets
z,e,y in this order, s; is s; while if I(z,e) =3 then for L as above, s; is s. Note that
A(e) > 0 makes it impossible that z,y € V*.

Next, it is convenient to assume that the termunals are numbered by the integers
from 1 up to ¢ := |T|. Then T is identified with (1,t), and an attachment s € T for
(x,e) means the corresponding number in (1,¢); while we assume that the attachment
3 is identified with the number —s € (—t,—1). Hereinafter (i, ) denotes the set of
integers k # 0 such that : < k < j. For z € VI and s € (—t,t) define E,(z) := {e €
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E(z) : l(z,e) = s}.

Suppose that the function X is positive, i.e. AMe) > 0 for all e € EG. Then
every pair (z,e) (x € VT, e € E(z)) has an attachment s € (—t,t). Moreover, using
Statement 3.1 one can easily obtain the following description of the lines in terms of
attachments.

Statement 3.2. A path L = (z¢,€1,2; .-.,ex,Tx) In T is a line if and only if for
t=1,...,k — 1 the attachments [(z;, e;) and l(z;,€e;41) are different. e

Now return to consideration P, a,~ as above. Put \ := Ca,~ (see (1.3)). Assume
that A is positive and p = py (see (3.1)). If P, a,~ are good for p, and B is the set of
edges covered by P, then (2.1)-(2.2) imply that B C ET and

(3.3) ¥(e) =0 forall e € EG — B.

One of key ideas in the proof is that we can handle a set B of edges which can be
covered by some optimal packing P, rather than P itself. More precisely, let B C ET
be a set. For z € VT and s € (—t,t) define B(z) := BN E(z) and By(z) := BN E,(z).
We say that B is regular if

(3.4) (i) |B(z)| is even for all z € VT — T;
(ii) B saturates each ¢ € F with a(¢) >0, i.e. xo(B) = |Uy| - 1;

(iii) B is non-ezcessive for each £ € VI — T; this means that |Bs(z)| < 1|B(z)]
for any s € (—t,1).

In particular, the set of edges covered by P as above is, obviously, regular. It turns
out that for a regular set B the converse takes place. More precisely, let u#(B) denote
the number of pairs (s,e) such that s € T and e € B(s). We say that s € (—t,1) is
tight for € VT — T if |B,(z)| = |B(z)]/2.:

Statement 3.3. If B is regular then B has a representation of the form B = U(P € P),
where P is a packing consisting of (B)/2 T-lines and satisfying (2.3).

Proof. To prove the existence of P consisting of u(B)/2 T-lines, we use induction on |B|.
Let us design a path P = (z¢,e;1,1,...), starting from some zo € VI and ¢, € B(zy),
as follows. Suppose a simple path P’ = (zo,€1,21,..., ei, ;) has been constructed. If
z:=z; € T, put P := P’. Otherwise extend P’ by adding e = e;4, € B(z) so that:
(a) e # ei; (b) if s := I(z,e;) is tight for z then [(z,e) # s (e exists by(3.4)(1),(iii),
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under a natural assumption about P’). Statement 3.2 implies that the resulting path
P is a line. In particular, P is simple (as P is A-shortest and A is positive), whence P
is finite and its final vertex belongs to T. Moreover, in view of the latter property, we
may assume that zq € T, i.e. P is a T-line. By construction of P, the set B’ := B — P
obviously satisfies (i) and (iii) in (3.4), and now the result follows by induction. (2.3)

obviously follows from (3.4)(ii). e

Thus, B, a,v give an optimal solution for py whenever A := ¢, - is positive, B is
regular, and (3.3) holds. In general case, when edges e € EG with A(e) = 0 are possible,
1t 1s a more complicated task to define an attachment [(z,€) for such €’s as well as to
generalize the notion of a regular set in such a way that it ensures the property as in

Statement 3.3; we leave this up to Section 6.

In what follows we often call the edges in B bold, and the edges in ET — B thin.

4. Augmenting paths

In this and the next sections we prove Theorem 2 for the simplest case when o = 0.
Let A :=cq,4. Then A = ¢4+, hence ) is positive. Put p := p) (see (3.1)). Let B C ET',
be regular, and (3.3) holds. As it was shown in Section 3, B and ~ give an optimal
solution for p.

[Observe that if 0 < p < p. then P =0 (or B = ), « = 0 and y = 0 are good for
p. Furthermore, one can see that it suffices to prove Theorem 2 for p, P, a, v such that
p=px for A:i=cq 4]

We use notation as in Section 3. Define B® := {¢ € B : ~(e) = 0} and Z :=
ET — B. For z € VI' and s € (—t,t) define Z(z) := Z N E(z), Zs(z) := Z N E,(z),
B°(z) := B° N E(z) and BY(z) := B® N E4(z). An edge e € ET with vy(e) = 0 (i.e.
e € Z U B°) is called feasible (for a,7). Note that B can be changed only within the
set of feasible edges in order to maintain the complementary slackness condition (2.2)

(or (3.3)).

Consider a triple 7 = (e,v,€’), where v € VI' — T, and e, ¢’ are distinct feasible
edges incident to v. We say that 7 is a fork if

(4.1) there is no s € (—t,t) such that s is tight for v and e, €’ € Z,(v) U(B(v) — By(v)).

When it leads to no confusion, a fork (e, v, ¢’) may be denoted as (e, €’). One can see
that for (distinct) e, e’ € Z(v)UB®(v), (e,v,€') is a fork if and only if | B!(v)| < |B'(v)|/2



for any s € (—t,t), where B'(v) := B(v)A{e, e’} and B (v) := B'(v) N Es(v) (XAY
denotes the symmetric difference (X —Y)U (Y — X)). It is useful to list the cases when
(e,v,€') is a fork, namely:

(C1) if v € V; for some s € T then ¢, €’ belong to different sets Z,(v) and Z_,(v),
or different sets BY(v) and B2 (v), or different sets Z, (v) and B (v) for s’ € {s.—s}
(as in this case both s and ~s are tight).

(C2) if v € V* and B(v) = 0 then € € Z4(v) and € € Zq(v) for distinet 5,5’ €
(—t,t) (as in this case each s € (—t,t) is tight);

(C3)ifve V*, B(v) # 0, and no s is tight for v, then e, €’ are arbitrary;

(C4) if v € V*, B(v) # 0, and the set S of elements s € (—t,t) tight for v
is nonempty (clearly |S| < 2), then e,e’ form a fork except the cases when either
e,e' € Zy(v) for s € S, or e,e’ € B(v) — By(v) for s € S, or €, €’ belong to different sets
Z4(v) and B(v) — Bs(v) for s € S.

From (4.1) it easily follows that

(4.2) for any v € VI' — T and feasible e, €, e” incident to v, if neither (e, ¢€’) nor (€', €”)

is a fork then (e, e") is not a fork either.

A path P = (z¢,€1,21,...,€k,2k) in T is called active if: (i) all e1,...,ex are
distinct, (i) forz =1,...,k =1, z; € VI' = T and (e;, i, €i+1) is a fork, (iii) if 2z € T
then e; € Z. We say that an active P is primitive if for any 1 <7 < j < k such that
r; = z;, the triple (e;, z;, €;41) is not a fork, and P meets each of zo,z at most twice.
Clearly if vertices z and y are connected by an active path P, they can be connected
by a primitive path (e.g., consisting of certain parts of P). From (4.2) it follows that

(4.3) for a primitive path P = (z¢,ey,21,...,€k,zk) thereareno 0 <1 < j <r < k

such that =; = r; = z,.

Indeed, suppose that this is not so. Then (e;,ej+1) and (e, e,41) are not forks (oth-
erwise P is not primitive). Hence, (€j4+1,€r+1) is not a fork (by (4.2)). Now the fact
. that (ej,ej4+1) 1s a fork implies that (ej,er41) is also a fork (by (4.2)). Thus, P is
non-primitive.
A primitive T-path (zo, €1, 21,..., ek, k) is called augmenting if ex € Z. We say
‘that B’ C ET is obtained by the alteration along a path P if B' = BAP (considering
P as an edge-set).

Statement 4.1. If P is an augmenting path and B’ := BAP then B’ is regular,
w(B') = u(B) + 2, and (3.3) holds for B'.
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Proof. u(B') = u(B) + 2 and (3.4)(i),(ii) for B’ are obvious. (3.3) for B’ is true since
P uses only feasible edges. Let us prove (3.4)(iii) for B’.

Consider 2 € VI' — T. The inequality in (3.4)(iii) for B’ and z is obvious if P
passes z at most once. Otherwise P passes r twice, by (4.3); let z = z; = z; for
0 <1 <j <k Since P is primitive, 7 = (e;,€ej41) is not a fork. Then e;,¢;4; €
Zs(x) U (B(z) — Bs(z)) for some s € (—t,t) tight for z, B, by (4.1). This implies that
€i+1 € Bs(z) U (Z(z) — Z,(x)) since (e;, i, ei+1) is a fork. Similarly, e; € By(z) U
(Z(z) — Zs(x)) since (ej,xi,ej41) is a fork. Then s retains tightness for B’ and z.

Now the result follows from the obvious fact that if some 5 is tight for B’ and «z,

then B’ is non-excessive for z. e

Thus, in case a = 0, the existence of an augmenting path implies validity of (i) in
Theorem 2. In the next section we show that lack of the augmenting path implies (ii)

in this theorem.

Now we describe an approach to find an augmenting path or, if it does not exist,
to construct the set of vertices reachable by active paths beginning at T'; such a set will
play an important role in the transformation of (a,). We apply techniques similar, in
a sense, to that developed in the matching theory and even use terms from that area.

We grow in T, step by step, a digraph D = (VD,AD) with T C VD C VT. For
an arc a = (z,y) in D the underlying edge e, denoted by e, is a feasible edge in I'; we
may identify @ with the edge e labelled from z to y. A vertex in I belonging to D is also
called labelled. Let @y be the set of edges in I labelled in one direction, or I-labelled
edges, and let (), be the set of edges in I labelled in both directions, or 2-labelled ones.
The components of the subgraph of I' induced by Q; are called blossoms. Also a special
blossom of the form ({v},0) is possible, where v is a certain labelled central vertex (see
(4.4)(iv)); such a blossom is called elementary. The vertex-sets of the blossoms are

pairwise-disjoint.

For a blossom F denote by AF the corresponding arc-set. A labelled vertex which
does not belong to any blossom (belongs to a blossom) is called I-labelled (respectively,
2-labelled). A blossom F satisfies the following conditions:

(4.4) (i) F contains no terminal (VF C VT — T);

(ii) there is an arc ar = (z,y) € @ fixed that enters F (i.e. z ¢ VF 3 y), called
the root of F;

(ili) for each arc a = (z,y) € AF there is a directed path Pp, = (z0,a;,21,..., a,
xx) the part of which from z; to z4 is a path in F, a; = aF, ax = @, and Pr,
is active (considering Pr, as a path in I');
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(iv) if F is an elementary blossom ({v},0), and e = €%F, then there is no s € (—t.t)
such that s is tight for v, and e € Z,(v) U (B(v) — Bs(v)).

The digraph D satisfies the following conditions:

(4.5) (i) if a € AD leaves T then e® € Z;

(ii) for each 1-labelled vertex v € VD — T there is an arc a, € AD fixed that

enters v;

(ili) for each arc a € AD there is a directed path P, = (zo,a;,21,...,a, ) in D
such that: (a) P, is active, z¢ € T and ax = qa, (b) for each 1-labelled vertex
r;, a; = ag,, (c) if a; enters a blossom F then aq; is the root ap; (d) if some

arc a; belongs to a blossom F then P, contains the path Pr,, as a part.

For a path P = (z¢,€1,21,...,€k,2x) let P71 denote the reverse path (zy, e, ...,
zo); if @ = (vo,u1,V1,...,Um, V) is a path with vg = zi, let P-Q denote the concate-
nated path (zo,e1,21,..., €k, Tk, U1, V15 s Um, Um).

If there exists an arc a in D entering T, and e¢* € Z, then P, is an active T-path
(by (4.5)(i),(iii)), hence, we can extract an augmenting path from P, (we say that a
break-through takes place). Otherwise we attempt to increase D by a natural way.

(Al) Suppose that there is an unlabelled feasible edge ¢ = ry such that: (a)
z € VD; (b) z and y do not belong to the same blossom; and (c) eitherz € T,or z € T
and there is an arc a = (z,2) € AD such that (e®,z,€) is a fork. Then we add (z,y)
to D (so e becomes labelled from z to y). If y does not belong to the old D, we put
ay := (z,y). If, in addition, the case as in (4.4)(iv) (with v = y) occurs, then we form
({y},0) to be a new elementary blossom rooted at (z,y).

(A2) Suppose that there is a 1-labelled edge e = zy such that: (a) e is labelled
from y to z; (b) z and y do not belong to the same blossom; (c) there is an arc
a = (z,z2) € AD such that (e®,z,¢€) is a fork; and (d) the path P, does not contain the

arc a’, where d' is e labelled from y to z. Two cases are possible.

(i) P, and P, do not contain arcs b and b, respectively, such that e? = ¢*". Then
P, - (P,)™! is an active T-path, hence, a break-through happens.

(ii) P, = (zo,a1,21,...,0k,zk) and Py = (yo,b1,¥1,...,bm,ym) contain arcs a;
and b;, respectively, such that e® = eb. Let i be chosen maximum under this condition.
Represent P, as Py Ly -...- Pr- L, - Pry1, where all vertices in L, belong to the same
blossom F,(,), while all inner vertices and all arcs in P; do not belong to any blossoms
(here Py,..., P, are non-trivial paths, but Pr4; may be trivial). Similarly, represent P,
as P{-Lj-...-Py- L} - Py .., where L; lies in a blossom F,(,). From (4.5)(iii) it follows
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that if L, and L{, belong to the same blossom thenq=¢ and Py-Ly-...-Py_1-Ly—1- P

coincides with P{ - L} -...- P;_; - Ly_, - P;. Let q be chosen maximum under such a
property; if there is no common blossom for P, and P./, put ¢ := 0. Consider two
cases.

(a) a; belongs to L,. Then F,, = Fy(y). For each arc in Poiy,.... Py add
q (9) (9 q

to D the opposite arc; and similarly for each arc in P(;H,...,PAH. As a result,

Fa(q),...,F,,(,.),Fﬂl(qﬂ),...,Faf(h) together with the vertices and arcs of the paths

!/ !/ M
Pii1,..., Prya, Pq+1’ ..., Pj | merge into a new blossom rooted at AF, -

(b) a; belongs to Pyy1. Then a; = b;. For i/ =i+1,...,k, add to D the arc opposite
to ay (if it did not occur in D earlier). Similarly, for ' =j+1,...,m, add to D the arc
opposite to bj. All these arcs together with the blossoms Fy(g11)s-- s Fo(r): For(g+1)>

...y Fyr(n) merge into a new blossom rooted at q;.

One can see that the created blossom, formed in (a) or (b), satisfies (4.4)(i)-
(iii). Suppose that neither D can be increased by the above rules nor a break-through
happens. Then D has features similar, in a sense, to those occurring in the so-called
“Hungarian tree with flowers” in the matching theory [Ed]. More precisely, the following

are true:
4.6) Each edge € = zy € Z with z € T is labelled as leaving (but not entering) .
g

(4.7) Let z € VD — T be a 1-labelled vertex, and E*(z), E~(z), E""(x) be the sets
of feasible edges e = zy € E(z) labelled as entering z, labelled as leaving z, and
unlabelled, respectively; then:

(i) no pair of distinct edges in E*(z) U E""(z) forms a fork;
(ii) each pair e € E*(z), ¢’ € E~(z) forms a fork.

(4.8) for each blossom F all feasible edges in the cut 6T (V F) are labelled as leaving F
except ep := €°F, and eF is the only edge in this set that is labelled as entering F'.

[One can see that (4.6)-(4.8) imply that no augmenting path in T exists.] Proofs
of (4.6) and (4.7) are easy. To prove (4.8), we need the following statement.

Statement 4.2. Let e = zy be a feasible edge such that ¢ € VF ¥ y for some blossom
F, and € # ep. Then there exists an arc a = (u,z) € AF'U {ar} such that (e, z,¢€) is
a fork.

Proof. If F is an elementary blossom then (e®7,z,€) is a fork, by (4.4)(iv). For a
non-elementary F there is an edge ¢’ = zz € EF. We know that e’ is labelled in both
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directions. If (e,z,€') is a fork, we are done. Otherwise take the arc a’ = (z,z) € AD
with €2’ = e’, and consider the path Pr, = (2¢,0a;,21,...,ax, zi) asin (4.4)(iii); then
k > 2 and o’ = a;. Let €” be the underlying edge for the arc a := ay_;. Since (¢’,z,€")
is a fork and (e, z,€’) is not, (¢”,z,¢€) is a fork (by (4.2)), whence a is as required. o

Suppose that there is a blossom F and a feasible edge ¢ = zy different from ef so
that z € VF ¥ y and e is not labelled from z to y. Let a = (u, z) be as in Statement
4.2. If e is unlabelled then the arc (z,y) can be added to D according to (Al). And
if D contains the arc @’ = (y,z) then D can be increased according to (A2) (note that
P, does not contain a’ since e # er and P, uses exactly one edge in §' (V F), namely,
er). This contradiction proves (4.8).

Remark. One can show that search for an augmenting path in I' can be reduced
to the standard problem on finding an alternating path in a graph @ with a matching
M in it. As a consequence, (4.7)-(4.8) are derived from properties of the “Hungarian
tree with flowers” [Ed]. Such a @ is designed by replacing each vertex r in I' by a
special subgraph (depending on the set of forks for z). However, this approach would

make our description more intricate, and it is preferable to argue explicitly in terms of
T itself.

5. Transformation of (a, )

As before, we consider case a = 0 and use notation as in the previous section. We

assume that there is no augmenting path in T.

Each blossom F in I' generates the fragment ¢ for G,T with X, := VF and
(5.1) Up:=(BNéXyg)U{er}ifer € Z, and Uy :=(BNEXy)—{er}ifer € B

(cf. (2.4)-(2.5)). Then |Uy| is odd (by (3.4)(1)), B saturates ¢, and ep is the root ey of
¢. Let F be the set of these fragments.

The required o' and 4’ will be assigned to be a® and ¢ (for some £ > 0) defined
below. Let us fix ¢ € Ry. We put a®(¢) to be ¢ for all ¢ € F (and 0 for the remaining
fragments ¢ for G,T). For brevity, the value ) (a®(é)xg(e) : ¢ € F) is denoted by
ac(e).

To define +° is a more involved task. First of all we shall introduce (in (5.4)-(5.5)
below) a certain value p(z,e) = p®(z,e) € {0,e,—¢} for each z € VT and e € E(z).
This gives the function p = p on ET by
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(5.2) ple) == p(z,e) + p(y,e) for e=2zy € ET.

Then %¢ is defined by

(5.3) 1(c) = 7(e) + p*(e) — &*(e) + @) for c € B,
=0 for e € EG — B,

where, for our case, @(e) := 0 for all ¢ € EG.

Let L, N, M denote the sets of 1-labelled, 2-labelled and unlabelled vertices in T',
respectively. Clearly T'C L. Put

S 12
(5.4) p(z,e) = p*(z,e):=¢ forz € Land e € E(z), P
=0 forze€e NUM and e € E(z).

To define p(z, €) for the vertices in L, we need the following notion. For a vertex
v € VI = T and distinct edges e,e’ € E(v), we say that (e,v,¢’) is a pseudo-fork if
it satisfies (4.1) (thus, the difference with the definition of a fork is that e, e’ are not
required to be feasible).

Consider a 1-labelled vertex z € VI' — T, and fix some edge u labelled as entering
x. For e € E(x) put

(5.5) p(z,e) = p°(x,e) := —¢ if either e € Z and (u,z,e) is not a pseudo-fork,
' or ¢ € B and (u,z,e€) is a pseudo-fork;
:=¢ if either e € Z and (u,z,e) is a pseudo-fork,

or € € B and (u,z,e€) is not a pseudo-fork ;

letting by definition that (u,z,u) is not a pseudo-fork. To make the meaning of (5.5)

clearer, consider possible cases.

(L1) z € V, for some s € T. Then both s and —s are tight for . Suppose that
u € Zs(z)UB_,(z). Then p(z,e) = —c forall e € E,(z) and p(z,€) = ¢ for e € E_,(z).
Ifué€ Z_o(z)UB;s(z) then p(z,e) = —cforalle € E_,(z) and p(z,e) = ¢ for e € E4(x).
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(L2) z € V*. Since z does not form an elementary blossom, we observe from
(4.4)(iii) and (4.7) that there is s € T tight for z and such that each edge labelled
as entering z belongs to Z,(z) U (B%(z) — B%(z)), while each edge labelled from x
belongs to B%(z)U (Z(z) — Z,(z)). Then p(z,e) = —¢ for e € E4(z) and p(zx,€) = ¢ for
e € E(z) — Es(x).

Note that in definition (5.5) it does no matter what entering labelled edge is chosen
as u (by (4.7) and (4.2)).

Now we study properties of functions p®, ¢ and A¢ := cge ~e. Our goal is to prove
Yy prop P VY g P

the following two statements.

Statement 5.1. For a sufficiently small ¢ > 0, \* (e) and v° (e) are nonnegative for
anye € EG and 0 < ¢’ <.

1

Let €, (c2) denote the greatest € such that A (respectively, 7 ) 1s nonnegative

forany 0 < ¢’ <e.

Statement 5.2. For a sufficiently smalle, 0 < ¢ < €1, the equality p,.. = p+2¢’ holds
for any 0 < ¢’ <e.

Properties (4.7)-(4.8) show that some sorts of feasible edges need not connect
certain sets among L, M,{Xy : ¢ € F} or vertices in L. More precisely, for a feasible
edge e = zy:

(5.6) (i) if e is unlabelled and z,y € L then neither (u, z,e) nor (u',y, €) is a fork, where
u (u') is an edge labelled as entering z (respectively, y);

(i) if e is unlabelled, z € L and y € M then (u,z,€) is not a fork, where u is an
edge labelled as entering z;

(iii) e does not connect X4 (¢ € F) and M;

| (iv) if £ € L and y € Xy (¢ € F) then e is labelled; moreover, if e is labelled from
ztoy then e = €4;

(v) if e connects X4 and Xy (¢, ¢’ € F) then e is the root of exactly one of ¢, @'
(For if any of (i)-(v) is violated, the labelled digraph D can be enlarged.)

Proof of Statement 5.1. The assertion for A* is obvious since A(e) > 0 and |\¢(e) —
A(e)] = Ofe) for all e € EG.

To prove the assertion for ~¢, it suffices to examine an edge e = zy € B° (since
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v¢(e) = 0 for e € EG — B°, by (5.3), and y(e) > 0 for e € B — B°). First of all we

observe that
(5.7) for any labelled edge ¢’ = 2'y’, p*(e/) — a(e') + a(e') = 0.

Indeed, this is trivial if 2/,y" € X, for some ¢ € F, and easily follows from (5.5)
if both z',y’ are 1-labelled (then a*(e’) = 0 and p(z',¢') = —p(y',€’)). If 2 € L and
y' € Xy for some ¢ € F then ¢ = e, (by (5.6)(iv)); this yields that p(z’,¢') = e,
p(y',e’) = 0 and @°(¢') = ¢ hold in case ¢’ € Z, and that p(z',¢') = —¢, p(y',€') = 0
and a*(e’) = —¢ hold in case ¢’ € B, whence (5.7) follows. And if 2’ € X,, y' € X,
and €' = e, for distinct ¢,¢" € F then p(a’,e') = p(y',¢') = 0 and a°(¢') = 0 (as
e’ € Uy if and only if €' & Uy), and (5.7) is also true. Other cases for ¢/ are impossible
by (5.6).

Now consider e = zy € B°. (5.3) and (5.7) show that v(e) = ~v(e) = 0 if € is
labelled. The same equalities are obvious if 2,y € M. Assuming that e is unlabelled
and z is labelled, only the following cases are possible.

(i) z,y € L. By (5.6)(i).and (5.5), p(z,€) = p(y, e) = ¢, whence v¢(e) = 2¢ > 0.

(ii) z € L, y € M. By (5.6)(ii), p(z,e) = . Furthermore, p(y,e) = 0, by (5.4).
Hence 7v5(e) = > 0. o

Proof of Statement 5.2. Consider a simple T-path P = (o, €e1,21,..., €k, zr). We
have to show that for any € > 0, \*(P) > p + 2¢, and that this inequality holds with
equality for some P.

We say that a T-line Q@ = (vo,u1,v1,...,Um,Um) is strong if all u;’s are bold, and
fori=1,...,m~1,if s € (—t,1) is tight for v; then exactly one of u;, u;41 belongs to
B,(v;) (in other words, @ is strong if and only if @ is a member of a packing consisting
of u(B)/2 T-lines and covering exactly B, cf. Statement 3.3). We know that I" contains
at least one T-line (since p = px) and no augmenting path, therefore, B is non-empty,
whence, there is at least one strong T-line in T.

Next, if P is a T-line, put p(z;) = p°(2:) := p*(zi, €:)+p% (24, €i41), 0 =1,..., k—1.
Then p(P) is equal to p(zo,€1) + Zf;ll(p(x,-, ei) + p(zi, €i+1)) + p(zk, ex). Hence, by
(5.2) and (5.4),

(5.8) p(P)=2e+> (F(z:) : i=1,...,k—1).

Claim 1. If P is a strong T-line, then p*(z;) =0 fori=1,...,k — 1.
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Proof. This immediately follows from (5.4) if z; is unlabelled or 2-labelled. Let z = x;
be 1-labelled. Put [ := I(x,e;) and I’ := [(z,€,4+1). If ¢ € V, for some s € T then the
fact that one of [, 1, [ say, is s and the other, I’, is —s implies that p(z,e;) = —p(z. €i41)
(cf. (L1) above). Hence p(z) = 0.

Now suppose that z € V*. Then there is s € T such that s is tight for  and an
edge labelled as entering z is in Zs(z) U (B(z) — Bs(z)). The fact that P is strong
implies that one of ,1’, I say, is s and the other, !’, is different from s. This yields

p(z,e;) = —¢ and p(z,e,41) = € (cf. (L2)), whence p(z) =0. o

Claim 2. Let P be a T-line, and ¢ > 0. Fori =1,...,k — 1, p°(x;) is nonnegative,
and p*(z;) > 0 holds if and only if

(5.9) the triple (e;,;,ei+1) is such that: = = z; is an (ordinary) I-labelled central
vertex, and there is s € T such that s is tight for z, an edge labelled as entering
z; is in Z,(z) U (B(x) — Bs(z)), and €;,ei41 € E(z) — Es(z).

Proof. Again, it suffices to consider an ordinary l-labelled z = z;. As in the proof of
Claim 1, p(z) = 0 holds if exactly one of €;, ei41 belongs to E,(z), where s is tight for
z, and an edge labelled as entering z is in Z,(x) U (B(z) — Bs(z)). Thus, it remains
to consider the case as in (5.9) (taking into account that €;,e;41 € E,(z) is impossible
since P is a line). Then p(z,e;) = p(z, €i41) = € (cf. (L1)-(L2)), whence p(z) = 2¢ > 0.

®
Define

(5.10) T to be the set of unlabelled edges e = zy € Z such that either z,y € L,orz € L
and y € M.

Claim 3. Let e € ET', and ¢ > 0. Then

(5.11) 2(e) = Ae) +p°(e) ife€c ET -T;
> Me)+p°(e) ifeeT.

Proof. Put b:= X\¢(e) — Me) — p(e). Then



Thus, b=0if e € B (by (5.3)) or if € € Z and e is labelled (by (5.7) and the fact
that 4¢(e) = y(e) = 0). Also b = 0 holds if e € Z and both ends of ¢ are unlabelled
(since @%(e) = a(e) = 0). Let e = zy € Z be unlabelled and z be labelled. Then (5.6)
shows that e € T hence, v5(e) = ~(e) = @%(e) = 0 and b = —p(e). If 2,y € L then
(5.6)(i) and (5.5) imply p(z,e) = p(y.¢) = —¢. And if ¢ € L, y € M then, by (5.6)(ii)
and (5.5), p(z,e) = — and p(y,e) = 0. In both cases, p(e) < 0, whence the resuls

follows. e

Thus, by Claim 3, A*(P) = M\(P) + p*(P) = p+ p*(P) if P is a strong T-line, and
AS(P) > p + p°(P) if P is a T-line. Now we conclude from Claims 1,2 and (5.8) that

(5.12) A(P)=p+2 if Pisastrong T-line,
>p+2 if Pisa T-line.

Finally, if P is a T-path in G that is not a T-line then AM(P) > p, hence, there 1s
¢ > 0 such that A& > p+ 2¢ for 0 < &’ < e. Now the statement follows from finiteness
of the set of simple T-paths. e e

Statements 5.1 and 5.2 enable us to determine o',~’ as required in (ii) in Theorem
2. More precisely, put

(5.13) e* := min{e1,€2,€3},

where ¢; and &, were defined above (after Statement 5.1), and 3 is the largest ¢ as in
Statement 5.2. Then ¢* > 0.

Arguments above imply that B,o' := a4 := 7% are good for p' := py.
(= p+ 2¢*). Thus, Theorem 2 is valid for case a=0.

In conclusion of this section let us emphasize one result obtained in the proof of
Statement 5.2; it will be used in what follows.

(5.14) For a T, \-line P = (2o, €1,%1,-- -5 ex,zk), A (P) = A(P)+ 2¢ holds if and only if:
(i) p°(zi)=0fori=1,...,k—1,or, equivalently, P has no triple as in (5.9);
(i) A%(e:) = Aei) + pf(ei) for i =1,...,%, or, equivalently, P does not meet 7.
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6. General case

We now consider the case when edges e € EG with A(e) = 0 are possible, where
A 1= Cq,. These edges are called 0-edges, and their set is denoted by J. As before, ET
is partitioned into two subsets B (of bold edges) and Z (of thin edges). [Note that in our
case a T-line may not be a simple path; the notion of regularity of B will be specified
below.] We denote 3 := BN.J and ¢ := ZNJ. Let F denote the set {¢ € F : a(é) > 0}
(the support of ), and let for e € EG, @(e) denote Y (a(d)xsle) : ¢ € F).

As mentioned in Section 2, we need to impose a number of additional conditions on
B, a,~; taken together, they enable us to prove the existence of P’ or (a’,+’) as required |

in Theorem 2. First of all we assume that F and J satisfy the following conditions:

(6.1) for each ¢ € F, either e ¢ B and Uy = (B NdXy) U ey}, or ¢4 € B and
Up=(BNXy) —{eg}

(this is equivalent to saying that B saturates ¢, cf. (2.4)-(2.5), or (5.1));

(6.2) for each ¢ € F, €, is feasible, i.e.
(i) ey is contained in I', and
(i) v(ep) = 0;

(6.3) the sets Xy form a nested family, i.e. for distinct ¢, ¢’ € F, either Xy N Xy = @
or Xy C Xy or Xy C Xg;

(6.4) (i) if ¢1,...,6x € F and e € EG are such that X4, C ... C Xy, ande € 6X,,,...,
60Xy, then either e € Uy ,..., Uy, or e € Uy,,...,Uy,; in particular, if e = ¢4, for

some ¢ then eg, = ... = eg4,;

(ii) no sequence ¢y,...,¢x € F with k > 1 exists such that the sets Xy, are
pairwise disjoint, and eg4, € §Xg,,, for ¢ = 1,...,k (letting ¢pr41 1= ¢1);

(6.5) for each e € J, e is contained in I, y(e) = 0, and both ends of € are in VI' - T.

A component of the subgraph induced by 3 is called a 0-component. We observe
that each 0-component is a tree. Indeed, suppose that 3 contains a sequence Q =
(e1,€2,...,ex) of edges forming a circuit. Then for any ¢ € F, |Us N Q| > |(§Xy —
Us) N Q| (by (6.1) and the fact that Q@ C B), whence x4(Q) > 0. Hence,

Q) - <(Q) —1(Q) =&(Q) = Y (a(d)xs(Q) : b€ F) > 0.
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Since (@) > 0 and ¢(Q) > 0 (as c is positive), A(Q) > 0; a contradiction.

For e € J the facts that c(e) > 0, M(e) = 0 and ¥(e) = 0 (by (6.5)) imply that
a(e) < 0, therefore, there is ¢ € F such that e 86Xy — Ug. We impose a stronger

condition, namely,

(6.6) for any e € J and ¢ € F, e € Uy; in particular, for e € JNéXy4, e € Fif and only
if e = e4.

We say that ¢’ € F precedes ¢ € F (or ¢’ is a predecessor of ¢) if Xy C X, and
there is no ¢ € F such that Xgr C Xgn C Xy. The set of predecessors of ¢ is denoted
by Fy. Let F™** denote the set of ¢ € F preceding no fragment in F.

For ¢’ € F let Ty denote the graph that is the union of the edge e4 and the
subgraph of I' induced by X4 . Form the graph I'* from T by shrinking the set X,
for each ¢ € F™2* into a single new vertex, denoted by f, and then by deleting the
loops if appeared. Similarly, for ¢’ € F form T ¢ from 'y, by shrinking X4 into a
vertex fy for each ¢ € Fy, and then by deleting loops. We refer to such fs’s as non-
ordinary vertices, while the other vertices in I'™* (1":;,,) are called ordinary. When it is
not confusing, the image in I'* (I'3/) of an edge e € ET (e € ETy) that does not turn
into a loop under above shrinking is also denoted by e; in particular, the image in I'*
(I'g:) of the root €4 of ¢ € F™2x (¢ € Fy U{¢'}) is also denoted by e4. (6.3) and (6.6)
imply the following important property:

(6.7) let H be a 0-component, and let H* (Hj) be the image of H in T'* (respectively, Iy
for ¢ € F); then H* (H}) is either (i) a single vertex fy for ¢’ € Fmax (9" € Fy),
or (ii) an edge connecting fs and fg for some ¢', ¢" in Fmax (Fs), or (iii) a star
induced by an ordinary vertex z in I'* (T';) and edges of the form zf,,,... T g,
for distinct ¢,...,¢x in F™M2X (Fy).

(See Fig. 6.1.)

ﬂb' fg

(a) H (b) H
Fig. 6.1

Now we specify the notion of regularity for B. Consider a 0-component H. Clearly
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the potential 7(z) is the same for all vertices z in H and the vertices z reachable from
H by paths with all edges in J. Moreover, all these vertices are either in V* or in the

same V, for some s € T

Let BT := B — (3. For a subgraph @ in T denote by B(Q), 5(Q), B*(Q) the set of
edges in B, 8, BT, respectively, with exactly one end in Q; we write B(z)), 8(xz), Bt (x)
instead of B(Q), 8(Q), B*(Q) for Q = ({z},0). Note that if ) is a 0-component then
every edge e in B* has at most one end in @ (since e belongs to a A-shortest path).
We say that a set B C ET (satisfying (6.1)) is regular if it satisfies (3.4)(i),(ii) and the

following condition:

(6.8) if H' is either a vertex in VI — T or a subtree in a 0-component then B is non-

excessiwe for H'; this means that for any s € (—¢,t):

B (H)| < 5IBUE)| (= 5IB*(H")| + 318(H")).

Here B (H') is the set of edges e = zy € BY(H') with + € VH’ and l(z,e) = s.
[Recall that (—¢,t) does not contain 0. For e = zy € ET with A(e) > 0 the attachment
I(z,€) is defined as in (3.2).] Obviously, if H' € VI'— T and S(H') = () then (6.8) turns
into (3.4)(iii) for « := H'. If the inequality in (6.8) holds with equality, s is called tight
for H'. Note that if H' is a subtree in a 0-component H and H' # H then at most one
s can be tight for H' (since |3(H')| is nonzero).

Statement 6.1. B is regular if and only if B = U(P € P), where P consists of u(B)/2
simple edge-disjoint T, A-lines. (Cf. Statement 3.3.)

Proof. The part “if” is easy. To prove “only if” part, it suffices to show the following:
P Y p p g

(6.9) for a regular B and a 0-component H let H be the subgraph of ' induced by the
set EH U BY(H); then H is represented as the union of m := |Bt(H)|/2 simple
edge-disjoint paths P;,..., Py such that for each P; = (zo,€1,21, ..., €k, Tk):
k > 2, e1,ex € BY(H), the part of P; from z; to zj_; is a path in H, and
lzy,61) # l(zk=1,€k).

[For contraction of every 0-component results in the case considered in the proof of
Statement 3.3 in Section 3.] (6.9) can be proved by use the following result due to
Lovész [Lov] and Cherkassky [Ch]: let @ be a graph and 7' C V@, let every vertex
in VQ — T’ be of an even valency, and let U, denote the set of edges in @ incident to
v € VQ; then Q has ) . |Us|/2 edge-disjoint T'-paths if and only if

(6.10) |69X| > |U,| holds for any s € T' and X C V@Q such that X N T = {s}.
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In our case we put T” to be the set of all distinct s € (—¢.¢) such that s = [(x.¢)
for some ¢ € VH and e = zy € B*(z), and form Q from H by identifving each y as
above with the corresponding s. Then each vertex in V' — T” has an even valency, by
(3.4)(1). It is easy to see that (6.8) implies (6.10), and now the existence of edge-disjoint
paths Py,..., Py as in (6.9) follows from the above-mentioned result. Note that the
facts that H is a tree and that |B(z)]| is even for all z € V H imply that Py,..., P, are
simple and cover all edges in H. o

(It should be noted that paths as in (6.9) can be found in polynomial time.] The
regularity of B implies the following properties (6.11) and (6.12) for a 0-component H.

(6.11) Let s € (—t,t) be tight for a subtree H' C H, let e € EH', and let H,, H; be the
components of H' — {e}; then s is tight for exactly one H,.

Indeed,

0=2|B](H") - |B(H')
= (2|1B; (Hh)| + 2|By (H2)|) — (|B(H:)| + |B(H;)| - 2)
=2+ (2|Bf (H)| - [B(H))| : i =1,2)

Now (6.11) follows from the facts that 2|BJ (H;)| — |B(H;)| is non-positive (by (6.8))
and even (by (3.4)(i) and (6.5)).

(6.12) For any e = zy € EH there is at most one s € (—t,t) that is tight for some subtree
H' CHwithzg VH' > y.

To see this, consider paths Py,..., Py for H as in (6.9). If s is tight for some H'
as above then, obviously, there is a path P; (considered up to reversing it) that has the
first edge in BY (H) and passes y,e,z in this order. This shows that s is determined
uniquely (independently of H').

Property (6.12) enables us to associate with (z,¢e), e = zy € EH, an attachment
[(z,e) by the following rule:

(6.13) put l(z,e) := sif s is tight for some H' C H withz ¢ VH' 5 y, and put {{z,€) := 0
otherwise.

[So the special attachment 0 may appear for (z,e) with e € §.] For each edge e =
zy € ( we also put I(z,e) := 0. As before, for z € VI" and s € (—t¢,t) U {0} define
Ei(z) := {e € E(z) : l(z,e) = s}, Zs(z) := Z N Ey(z), By(z) := BN E4(z) and
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BY(z) := BN E,(z) (regarding the resulting attachments /(z,€)). It is easy to check
that

(6.14) (i) for e = zy € ET, (z,€) and I(y, ¢) are different unless {(z, ) = ly,e) =0;
(i) |Bs(z)] < 3|B(z)| for any z € VI — T and s € (~t, 1)

(cf. (3.4)(iii)). To illustrate rule (6.13), consider two possible cases for z € V H.

(Ql) # € V; for s € T. Then Il(a',¢') € {s,~s} for any ¢’ = 2’y € B*(H)
with ¢’ € VH, and both s and —s are tight for H. From (6.11),(6.12) it follows
that for any e = zy € EH one of {(z,€),I(y,e) is s and the other is —s. Moreover,
|Bs(z)| = |B_s(z)], i.e. both s and —s are tight for z.

(Q2) z € VH is central. Then for e = ry € EH, (z,e) receives an attachment in
S U {0}, where S := {s : s = (2',¢') for some ¢ = z'y’ € B¥(H) with 2’ € VH}.
Moreover, s € S is tight for z if and only if s is tight (in the sense of the original
attachments) for some subtree H' C H containing .

Some of above observations can be summarized as follows:

(6.15) let P be a set of u(B)/2 edge-disjoint T, A-lines such that B = U(P € P), let
P = (z0,€1,21,...,ex,2¢) € P, let i € {1,...,k — 1}, and let s := [(z;, ¢;); then
s >0 (i.e. s €T) implies zg = s, and s < 0 (i.e. —s € T) implies zz = —s.

Now our aim is to specify the notion of an active path. One trick enables us to
define such a path in a way quite similar to that described in Section 4. More precisely,
we extend the set J by adding for each e € J a parallel edge €’ of length A(e') = 0,
considering ¢’ as a thin edge (i.e. setting ¢’ € ¢). The edges e, ¢ are called mates (to
each other). Thus,

(6.16) for any pair {e, ¢’} of mates at most one of ¢, e’ belongs to B.

Speaking of I'* (I'},) we keep notations E(z), Z(z), B(z), Es(z) and etc. for z €
VI* (z € VT},) and the corresponding sets of edges in I'* (I'3/). For an ordinary
vertex z € VI'* (z € VI7,) the set of forks is defined as in (4.1). In particular, if
e € E(r) is such that I(z,e) = 0 (e.g., if e € () then (e,z,¢€') is a fork for any feasible
e’ € E(z) — {e} (taking into account that 0 ¢ (—t,t)). For ¢ € F™** (¢ € Fy) and
distinct edges e, ¢’ € Z(fy) U B°(fy) in I'* (T'y) we define

(6.17) (e, fg,€') to be a fork if and only if one of e, ¢’ is €.

A path P = (zg,€1,71,...,er,zi) in I'* is called active if: all edges e; are different
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and feasible; zy,...,24—1 € VI*—T;ande; € Zifzo €T (cf. the definition in Section
4). A primitive, augmenting path (in I'*) is defined as before. Note that (4.2) remains
true; hence, each vertex of I'* occurs in a primitive path P at most twice. Furthermore,

(6.17) implies that each non-ordinary vertex occurs in a primitive path at most once.

For ¢ € F define an active, primitive path in I'j in a similar way. We say that an
active path P = (o, €1,21,...,€;,2) In I'y is rooted if €1 = €4 and 21,... 24 € Xo
hereinafter X} denotes the set obtained from X4 by replacing each subset X4 (¢’ € Fy)
by the element fs . We impose the following important condition on reachibility in Ly

(6.18) (i) for each ¢’ € Fy there is a rooted primitive path Qg in '}, with the last edge
e and the last vertex fg;

(ii) for each ordinary z € X there is a rooted primitive path Q. in I'y with the

last vertex ;

(iti) for each ordinary z € X and s € (—t,t) such that s is tight for z there is a
rooted primitive paths 7 in I'} with the last vertex z such that |Bl(z)| =
(|B’(z)] — 1)/2, where B’ := BAQ?;

(iv) in addition, in case (i), @, meets z exactly once, and in case (iii), if the path
Q; meets z twice, and Q' is its part to the first occurrence of z, then Q'
does not satisfy the above equality (i.e. the paths in (ii)-(iii) are chosen to be

minimal, in a sense, for z).

(Here sets B(z) are defined with respect to the attacment [.)

Let I'* have an augmenting path P = (zo,€1,%1,...,€k,2;). Suppose that P
contains a non-ordinary vertex, ; = f, say, where ¢ € F™**, Let for definiteness
e¢ = e;, and let = be the end of e;4; in X3 Then we replace the part (e;,z;) of P by a
certain rooted primitive path Q in I ¢ Which has the last vertex r; such a @ is chosen
as in (1),(i1) or (iii) in (6.18). Repeating such a procedure while the current path has
a non-ordinary vertex, we eventually obtain a path P inT. In Section 7 we prove the
following key statement.

- Statement 6.2. For an augmenting path P in I'*, the non-ordinary vertices can be
replaced, step by step, by rooted primitive paths as in (6.18) so that for the resulting
path P in T the set B’ :== BAP is regular.

Thus, the existence of an augmenting path in I'* will imply validity of (i) in The-
orem 2.

Suppose that P meets Xy for some ¢ € F. In view of (6.17) and the fact that
all edges in P are different, P intersects 6X ¢ in exactly two edges u,u’ one of them,
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u say, 1s €4. This easily implies that (6.1) remains true for B’ (instead of B) and for
u' (instead of ey4); u’ becomes the root of ¢ with respect to the new set B’ of bold
edges. Next, let {¢, €'} be a pair of mates in J such that e,¢’ € §X,. We observe that
{e,e'}NB'| < 1,i.e. (6.16) holds for B'. Indeed, if e = u (= ¢;) then e € B (by (6.6)),
whence e € B'. And if ¢,¢’ # u then e,¢’ € Z (again by (6.6)); hence, e,e’ € B’ would
imply that €, ¢’ € P, and therefore {e,e'} = {u,u'}; a contradiction.

Note also that (6.6) trivially holds for B’ since Uy remains the same for each ¢ € F.

To search for an augmenting path in I'*, we grow a digraph D of labelled vertices
and edges in I'* in the same way as it was done for I in Section 4, i.e. according to rules
(Al1)-(A2) applied to I'* with the set of forks in I'* defined above. As a result, either
an augmenting path is found, or D together a set of blossoms satisfying (4.6)-(4.8) (for
['*) is constructed. As before, a labelled vertex z is called 1-labelled if it belongs to no

blossom (such an z can be ordinary or non-ordinary).

In the remaining part of this section we assume that no augmenting path in I'*
exists (this is equivalent to lack of a break-through in the process of growing D). We
show how (a,~) should be transformed, using properties (4.6)-(4.8) (for I'*) (note that
proofs of (4.7)-(4.8) are provided, in fact, by validity of (4.2)).

Let Q be the set of blossoms for D, and let 7"** denote the set of new fragments
that correspond to blossoms in Q. More precisely, each F' € Q generates a new fragment
¢’ for G, T, where Xy is the pre-image of VF in VG, ey := ep and Uy is defined as
m (5.1) (or (6.1)).

Suppose that for some ¢ € F™**, f; belongs to a blossom F € Q. Note that
the definition of an elementary blossom (see (4.4)(iv)) concerns ordinary vertices only.
Hence, there is an edge € € E(f,) labelled in both directions. Furthermore, (6.17) shows
that if ey is labelled as leaving but not entering e, then each edge €' € E(fy) — {e4}
is either unlabelled or labelled as entering but not leaving fs; so in this case f, cannot
belong to any blossom. Thus, either e4 is labelled in both directions (whence €4 is in
F'), or ey is labelled as entering but not leaving f4; in the latter case, €4 is just the root
ep of F. This shows validity of (6.4) for 7' := F U F"*". (6.2) and (6.3) are obvious
for F'.

Denote by F+ (F~) the set of fragments ¢ € F™2* such that f, is 1-labelled and
eq is labelled as entering (respectively, leaving) f4.

As before, o' and 4’ required in Theorem 2 will be assigned to be a® and ~¢ for a
certain € > 0. For ¢ € Ry, e-transformation of a consists of increasing a(¢) by ¢ for
¢ € Ft U Fre¥ (recall that a(é) = 0 for ¢ € F"*¥), decreasing it by ¢ for ¢ € F~,
and preserving it for the other ¢’s in F. The resulting function is just a®. The first

requirement for € is to provide a® to be nonnegative, i.e.
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(6.19) € < €0 :=min{a(¢) : ¢ € F}.

Let L be the set of 1-labelled ordinary vertices z in T'*. Let M consist of unlabelled
Llabeded vertices and vertices z € Xg such that ¢ € F™* and f, is unlabelled. Let
N := VT — (LU M); then the sets Xg for ¢ € FP™ U FT U F~ give a partition of N.

Put p*(z,€) as in (5.4) for z e TUN UM and as in (5.5) for 2 € L — T, and then
put p*(e) and ¥*(e) as in (5.2) and (5.3), respectively. We shall show that Statements
5.1 and 5.2 remain true for our case. The required o’ and v' are a® and ¢, respectively,
where ¢ is defined so that

(6.20) 0 <& < min{eg,e1,€2,€3};

here ¢¢ is as in (6.19); and ¢, €5, £3 were defined in Section 5. This provides validity of
(ii) in Theorem 2. [The reason why, in contrast to (5.13), we do not define, in general,
¢ to be equal to min{eo,...,e3} is explained in Remark 6.5 below.]

To prove Statements 5.1-5.2, we first point out some properties of edges in § X, for
¢ € F~; they follow from (4.7) and (6.17). We know that for ¢ € F~ (¢ € FtuFrew)
the only edge labelling as leaving (entering) Xy is the root e4. This implies that for a
feasible e € ET*:

(6.21) (i) if e connects z € L and f, for ¢ € F~ and e is labelled from fo to x then
€ = €y,

(ii) if e connects fy and fu for ¢ € F~ and ¢’ € F+ U F"¥ then e = e, if and
only if e = eg/; hence, for each ¢’ € EG connecting X4 and Xy, e € Uy if
and only if e € Uy;

(iii) if e is a labelled edge connecting fe and fy for distinct ¢, ¢’ € F~ then e is
the root of exactly one of ¢, ¢’; hence, e € Up if and only if e ¢ Uy

Note also that (5.6) holds if we replace there F by F+ U Frev,

To prove the part of Statement 5.1 concerning ~¢, it suffices to examine edges
e € B? in I'* which are incident to f¢ for some ¢ € F~. First of all, we observe that
(5.7) remains true. Indeed, this is so if ¢ = 2y’ belongs to no cut §X4 for ¢ € F-
(by arguments as in the proof of (5.7) in Section 5 where F should be replaced by
FrUF ™), Andifz' = fo for some ¢ € F~, consider three possible cases (taking
into account that p(z’,e') = 0 since z’ € N).
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(i) Let y' € L. If ¢ is labelled from z’ to y’ then ¢’ = e, (by (6.21)(i)). Hence,
g:=a(e')—a(e) = —¢, p(y',e') = —cincase ¢/ € Z; and ¢ = ¢, p(y’,¢’) = ¢ in case
¢’ € B. If ¢ is labelled from y’ to 2’ then €’ # e4. Hence, ¢ = ¢, p(y',€') = ¢ in case

¢ € Z,and g = —¢, p(y',¢') = —¢ in case ¢’ € B. In all cases (5.7) holds.

(ii) Let y' = fg for ¢’ € FT U F"¥. Then p(z',e') = p(y',e') =0 (as 2’y € N).
By (6.21)(i1), a®(¢) — a(¢) = —(a®(¢') — a(¢')), whence a®(e’) — a(e') = 0, and (5.7)
holds.

(111) Let y' = fo for ¢' € F~ — {¢}. Then p(a',¢') = p(y’,€') = 0, and (6.21)(iii)
implies that a®(e’) — @(e') = 0, whence (5.7) holds.
Return to e = zf, € B? for ¢ € F~. Taking into account that v*(e) = 0 if e is

labelled (by (5.3),(5.7)), it suffices to consider only cases in which e is unlabelled; then
e belongs to Us.

(a) z € L. Then ¢ := a°(e) — ale) = —e, p(e) = p(z,e) = €, whence, by (5.3),
v¥(e) =(e) + ple) —g=0+4¢ —(-¢) 2 0.

(b) y € NUM. Then p(e) = 0. From (6.21)(ii),(iii), one can see that ¢ < 0,
whence, by (5.3), v5(e) > 0.

To show the part of Statement 5.1 concerning A°, we have to examine certain edges
in J. For this and further purposes we need the following two statements.

Statement 6.3. Let e,¢’ € J be a pair of mates in I'* connecting z and y.

(i) If e,€¢’ € ( then either e,e’ are unlabelled, or labelled in both directions, or
labelled in the same direction, from z to y say; in the latter case, y = f4 for some
e F.

(i1) If e € 8 (and hence €' € () then either e, e’ are unlabelled, or labelled in both
directions, or labelled in opposite directions, say, e is labelled from y to x, while €' is

labelled from z to y; in the latter case, y = fg for some ¢ € F~.

Proof. (i) Let e, e’ € (, and let some of e, ¢’ be labelled; let for definiteness e be labelled
from z to y. Clearly for z = z,y and u € E(2), (u, 2, €) is a fork if and only if (u, z,¢€’)
is a fork (since [(z,€e) = l(z,€¢') = 0). Hence, e,€’ are labelled in the same direction
(or directions). Furthermore, if y is ordinary then (e,y,€’) is a fork, whence e, ¢’ are
labelled in both directions. Now, if € is not labelled from y to z then y = f4 for some
¢ € F™2* and we conclude that ¢ € F~ (since e € ( implies that e cannot be the root

of ¢, by (6.6)).

(ii) Let e € 3. We observe that for z = z,y, 7 = (e,2,€') is a fork. Indeed, if 2
is a non-ordinary vertex f, then e = ey (by (6.6)), and 7 is a fork, by (6.17). And if 2
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is ordinary then the facts that ¢’ € Z and I(2,€’) = 0 imply that (¢',z,u) forms a fork
for any feasible u € E(z). Thus, if some of €, ¢’ is labelled from z to y say, then the
other is labelled from y to z. Now let e be labelled from y to x but not from z to y.
Suppose that y is ordinary. Then z is a non-ordinary vertex fy . Considering an active
path P in T'* starting from T and passing e, and using the facts that y g T (by (6.9))
and that P meets fy at most once, we conclude that the edge u in P preceding € is
different from €’. Then (u,y,¢’) is a fork, hence, ¢/ must be labelled also from y to z;
a contradiction. Thus, y = f, for some ¢ € F™**, whencep € F7. o

Statement 6.4. Let e = zy € J be an edge in I'* such that at least one end of ¢ 1s
labelled and e belongs to no blossom in Q. Then e is labelled, from x to y say, and:

(i) if e € B then z = f4 for some ¢ € F~ (whence e = es), and either y € L, or
y = fo € F* (whence ey = ey ), or y is in a blossom F € Q (whence ¢4 = er);

(ii) if e € ¢ then y = f, for some ¢ € F~, and either z € L, or z = fer for some
¢' € Ft, orz isin a blossom F € Q.

(Figure 6.2 illustrates possible cases for e.)
+
rd 3
¢ L ) T
Q‘P:: ¢! €¢= eF'

¢ _ _
X= f‘#v ‘Pégr- ¥ T

%z](q” 4,‘6(}" T Fa

¢ oxt ) T
Fig. 6.2

Proof. Let ¢’ be the mate of e. We know that at least one of u € {e,€e'} is in ¢ and
that v has a labelled end; this implies that u is labelled itself. Next, since u belongs
to no blossom, it is labelled in one direction only. Now the result easily follows from
Statement 6.3. e
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It should be noted that from Statement 6.4 it follows immediately that

(6.22) if e € J belongs to §(VF) for a blossom F € Q, and ¢’ is the fragment in F"%
corresponding to F then e ¢ Uy, i.e. (6.6) is true for ¢'.

To see nonnegativity of A°, we have to examine edges in J. Moreover, it suffices
to examine edges e = zy only as in Statement 6.4 (since if € is in a blossom or both
z,y are unlabelled then A*(e) = A(e) = 0). A straightforward check-up shows that
A%(e) = 0 for each sort of edges e indicated in (i),(ii) of this statement, except the
case when € € (, ¢ € L and y = f, for ¢ € F7; in the latter case we have A°(¢) =
A(€) = Ale) = @%(e) — @(e) = ¢ > 0 (as a*(9) = a(6) — ).

Thus, Statement 5.1 is valid. As to Statement 5.2, one can see that the only

difference in comparison with the proof given in Section 5 is that in (5.11) one should
replace T by T U T', where

(6.23) T’ is the set of unlabelled edges ¢ = zy € Z such that z € X, for ¢ € F~ and
-eithery€e Morye Lory € Xy for ¢' € F~ — {o}.

For e as in (6.23) we have (i) v°(e) = 0 (as e € Z); (ii) p(e) = 0if y € M or
y € Xy (as z,y € M UN); (iil) p(e) = p(y,e) = —e if y € L (by (5.5)); and (iv)
a(e) —ale)isequal toeify e MUL,and 2¢ ify € Xy (as e ¢ Uy and e ¢ Ug).
This yields A*(e) > A(e) + p*(e) for e € T', and now to prove Statement 5.2 we apply
arguments similar to those given in Section 5. It should be noted that, by Statement
6.1, each element of B belongs to a strong line.

Thus, (ii) in Theorem 2 is valid for the general case (under assumptions (6.1)-
(6.6),(6.8),(6.16),(6.18)). Note that maintenance of some of these properties after the
transformation of (a,~) has been already checked (e.g., validity of (6.6)), while that of
the others will be shown in Section 8. In Section 7 we prove Statement 6.2 and examine

some of above-mentioned properties after the transformation of B.

Let us emphasize once again one important property shown above:

(6.24) if e € ET is labelled or has both ends in X for some ¢ € F U F"¢" then A°(e) =
A(e) + p*(e) and v*(e) = y(e).

Remark 6.5. The above transformation of (a,v) may result in appearance of
fragments ¢ € F™** with o/(¢) > 0 for which (6.2) is violated for the new o, 7" and I"
(as we explain later, this is possible only if f5 € M). In Section 8 we show that o' and
~' can be “improved” in a certain way so that for the resulting functions (6.2) becomes
true. Briefly speaking, instead of the transformation (a, ) — (a’,') as above, we will

30



make a slightly different transformation (a,~) — (a",~"), where o' can differ from a’
only on fragments ¢ with X4 € M, and 4" can differ from ~' only on edges e with
at least one end in M. Such a transformation will cause additional restrictions on the
maximal appropriate ¢ (yet remaining ¢ positive). The exact upper bound for ¢ will be
given in (8.26) [The choice of maximum possible ¢ is important for the algorithm to be

polynomial.|

7. Proof of Statement 6.2

Let P be an augmenting path in I'*. Assume that the fragments in F are numbered
as é1,...,6n so that Xy, O Xy, implies 2 < j. Put F; := {¢j,...,¢n}. Let I be
obtained from I' by shrinking X, for each ¢ € F;*** into a single vertex fy; thus,
I! = I'*. Let P, and TV*+! stand for P and T', respectively. Forj=2,...,N+1, we
design an “augmenting path” Pj I by extending the previous path P;_; in -1 the
final path Py41 will be just the path P as required in the statement. Let BU) denote
the set BAP; inT. Let z) B3 (I stand for ET — BW JnBW J-— B() respectively.
When it leads to no confuse, the image (projection) of B in the graph IV will be also
denoted by B{). It will be convenient to consider also the graph I'° := I'* and the null
path Pp; then B(® is the original set B.

Let us fix some j. In case j > 0, if the current P; does not pass through fg., we
obviously put P41 := Pj. Otherwise, assuming eg; and u; to be the edges incident to
fg; that are passed by P;, the path Pj4 is designed from P; by replacing the vertex
fs; in it by a rooted path Q@ = Q) (among those indicated in (6.18)) in I'y, whose
last vertex is the end of u; in X7, (Q is considered without its first edge ey, ).

Consider a 0-component H of the subgraph in I induced by 3. Let H* be the
projection of H to TJ: we call H* a O0-component in 7 (for B()), Let H be the graph
obtained from H* by adding the edges e € BU) — 87 such that e has an end at an
ordinary vertex of H*. Using (6.7) and (6.18)(i), one can see that, independently of
choice of Q9 fori =1,...,7 — 1, the following is true:

(7.1) H* is a tree, each non-ordinary vertex fg in H* is a leaf in it (i.e. is of valency
at most one), and each ordinary vertex of H* has an even valency in H.

A connected subgraph H' of H* all vertices of which are ordinary is called a proper
subtree of H*; sometimes we will consider the maximal proper subtree of H*, denoting
it by H~. [Figure 7.1 illustrates H*, H™ and ﬁ] An edge e € EH™ is called inner
for H*; the edges in EH — EH™ are called outer for H*. [In particular, e € EH* 1s
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outer if e is incident to a non-ordinary vertex.] For a proper subtree H' let BWin ("
(respectively, BU)°U"'(H')) denote the set of inner (respectively, outer) edges for H*
with exactly one end in H'; for s € (—t,1), Bg“"“‘ denotes the set of ¢ = zy € BUIout
with x € VH' and {(z,€) = s.

We proceed by induction on j, starting from j = 0. We assume by induction that

for the current j the following hold:

(7.2) BY) is non-excessive for each ordinary vertex z ¢ T of I contained in no 0-

component;

(7.3) for each 0-component H* in IV, BY is non-excessive for any proper subtree H’
for H*; this means that for any s € (—t,1),

|B§j)out(Hl)‘ < _;_IB(]')(HI” (= %'B(j)in(H,)l + %‘B(j)OUt(H’)I).

As usual, we say that s is tight for H' if the inequality in (7.3) holds with equality;
one can see that (6.11)-(6.12) are true (with H™~ instead of H). Note that for j = 0,
(7.2)-(7.3) obviously follow from (6.14)(ii), and that for j = N +1 (7.2)-(7.3) are
equivalent to (6.8) for B’ = BAP.

fs ﬂb’

H

H* H~
Fig. 7.1

First of all we examine the first, particular, step of the induction where the role of Q)
plays the path P.

Claim 1. (7.2)-(7.3) are valid for j = 1.

Proof. Let = ¢ T be an ordinary vertex in I'% = I'*. Consider possible cases.

(R1) P does not pass z. Then (7.2) for z or (7.3) for H* containing z is obviously
true (taking into account that H* is a star as in (6.7)(ii1), whence P meets no vertex
in H*).
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(R2) P passes z. Let W be the set of edges in P incident to z; then B (zx) =
B(z)AW. We observe that B (z) = (B(z) = W)U (((z)NW). I A (z) = 0 then x
belongs to no 0-component for I'* and B (). And if 8V (z) is nonempty then, obviously,
it is just the edge-set of a 0-component H* for I'* and B each edge of H* is of the
form z fy for some ¢’ € F™*, and the maximal proper subtree H~ of H* is ({z}.,0).
Now (7.2) for z and B(") (in the former case) or (7.3) for H* and B (in the latter case)
follow from the primitivity of P (by applying arguments as in the proof of Statement
4.1 and taking into account that for each e € BM(z), if l{z,e) = s then e € B (2)
(in particular, I(z,e) =0 and e € Bél)om(x) fore e ((z)NW)). e

Now we assume that j > 1. To prove (7.2)-(7.3) for j + 1 we distinguish two cases,
depending on whether or not P; passes through fs,.

Claim 2. Let P; do not meet f,,. Then (7.2)-(7.3) hold forj' :=7+ 1.

Proof. Let ¢ := ¢;. It suffices to examine the case when eg € 47 (and therefore,
ey € () and to show validity of (7.3) for 4" and the 0-component H* for Y’ containing
es. Let z (y) be the end of ey in X7 (respectively, in VI — X;). Clearly, H* is the
union of the 0-component h; for IV and B9 that contains e, and the 0-component ho
for '} and B that contains e, (he is the projection to I'; of a 0-component for I and
B). If £ = f4 for some ¢' € Fy (see Fig. 7.2(a)) then H* coincides, in essense, with
h1, and (7.3) for j' and H* immediately follows from that for j and h;.

Fig. 7.2

Now suppose that z is an ordinary vertex (see Fig. 7.2(b)). Then h; is a star with the
edge-set K that consists of eg and the edges in of the form z fy for ¢’ € Fy (if any).
Clearly, BUDoU (H*) = (B (hy) U Ehp) — {eg}. Consider s € (—t,t) and a proper
subtree H' of H*.

(i) If H' C h; then BU)(H') = BY(H'). We observe also that BUeut(H') =
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BUout(H') — {e4}; whence By eut C BY°"' Thus the inequality in (7.3) for H',s,j
implies that for H',s, ;'

(i) f H' C hy (i.e. H' = ({z},0)) then the inequality in (7.3) for H', s, j' obviously
follows from (6.14)(i1).

(i) H' contains ¢ and y. Then the graph H' — {ey} consists of two components,
one of them, H, say, is a proper subtree of hy, and the other, H,, a proper subtree of h,
(i.e. Hy = ({z},0)). Put w; to be 1if i(y,e4) = s and 0 otherwise; similarly, put w, to
be 1if{(z, e4) = s and 0 otherwise. Obviously, |BUY(H")| = |B(f)(H1 )|+ |B(z)|—2, and
|BY U (HY)| = [BY°" (Hy) |+ |By(2)| — w1 —wo. Let q = 2|BY "' (H")| - |BU (H')].
Then

g = (2BO°Y(H,)| + 2|By(2)] = 21 — 25) — (|BY ()] + |B(z)]| - 2)
= (21BY" (Hy)| - |BY(Hy))) + (21B(2)] - |B(2)]) = 201 — 2w +2.

Suppose that ¢ > 0. We know that ¢, := 2|B§j)°"t(H1)| — |BY(H,)| and ¢ :=
2|B,(z)| — |B(z)| are non-positive (by (7.3) and (6.14)(ii)) and even. Hence, g1 = ¢2 =
wy = wy = 0. In particular, s is tight for z and B. Then, according to rule (6.13),

I(y, e4) must be equal to s, whence w; = 1; a contradiction. e

Now we assume that P; passes through the vertex fg (¢ = ¢;) using edges e4 and
u. Let z (y) be the end of u in X} (respectively, VI7 — {fs}). Ifu € J then u € (,
by (6.6) (as u # eg), wence, u € 37, and u is an outer edge for a 0-component  in IJ.

For such a u we define the number o, to be

(7.4) 0y :=s if y is an ordinary vertex in IV and s € (—t,t)
is tight for some proper subtree of h that contains y;

=0 otherwise.

We choose the path Q = Q) according to the following rule (using notation as in
(6.18)):

(7.5) (i) if z is a non-ordinary vertex fg, put Q := Qg;
(ii) if u € Z — ¢ (and therefore, u € BU) — 89), we put @ to be Q3 if s := [(z,u)
is tight for z and B; and to be @), otherwise;

(iii) if v € B — f (and therefore, u € ZU) — (3), we put Q to be Q% if there is
s € {—t,t) such that s # I(z,u) and s is tight for z and B; and to be

otherwise;
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(iv) if u € ¢ (and therefore, u € 37), we put Q to be Q7 if 0, # 0 and o, is tight
for r and B; and to be @, otherwise;

here (ii)-(iv) concern an ordinary z in I'* ; as mentioned above, case u € 3 is impossible.
¢ 9

We have to prove (7.2)-(7.3) for j' := 7 + 1. It suffices to examine certain vertices
in X} and the set H of 0-components H* for I and BU") that meet X, Let T denote
the graph obtained from E; by adding the edge u (and the vertex y), and let P’ be the
part of Pj; contained in I (i.e. P’ is the extension of Q by the elements u,y added to
its end). Note that if e4 € J then ey € (tfori=j,5+1 (as eg € 8, by (6.6)); hence

e4 belongs to no 0-component for IV or TV,

Let u ¢ J. Then each H* € H lies in IV — {ey}. Furthermore, (6.18) and (7.5)(i)-
(iii) show that P’ is a primitive path in I for B (assuming the corresponding “minimal
self-intersecting” property for z to hold; here (6.18)(iv) is important). Now (7.2) (for
j' and corresponding vertices in X) and (7.3) (for j' and H* € H) can be shown by
use of arguments as in the proof of Claim 1.

Now let v € J. Then u € ¢, whence u € 87 and u is contained in a 0-component
H* € H. By arguments above, the only point which needs to be explained is that
(7.3) holds for j and this H*. One can see that if z = f4 for some ¢’ € Fy then H*
coincides, in essense, with the 0-component for [V and BY) that contains u, and (7.3)
for 7' and H* is trivial.

Suppose that z is ordinary. Let hj (hy) be the subtree of H* induced by the
edges outside I'} (respectively, in f) Then h; Uhy = H* and hy N hy = ({z,y},u).
Furthermore, one can see that hs is a star induced by u and edges z f4 for some ¢’ € Fy.

To check (7.3) for ;' and H*, we apply arguments similar to those in the proof of Claim
2.

More precisely, first of all let us define attachments !'(z, €) by

(7.6) U(z,e) :=1(z,e) if e€ E(z)—{u},

=0, If e=u.
Using (7.6) together with properties (6.18)(ii)-(iv) and (7.5)(iv) for @, one can
check that
(7.7) z is non-excessive for B' := BAP' and !'.

Suppose that there is a proper subtree H' of H* and s € (—t,1) such that
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g :=2|BYu (H")| — |BYI(H')| > 0.

This is impossible for H' C h; (because in this case, BU)(H'Y = BY(H') and
BUevt(g'y ¢ BU(H')) and for H' = ({},0) (since (7.7),(7.6) and the fact that
[(z,u) = 0 imply that z is non-excessive for B’ and {). Hence, H' contains both x and
y. Let Hy (H2) be the component of H' — {u} that contains y (respectively, z). Put
wy to be 1if I(y,u) = s and 0 otherwise, and similarly, put wy to be 1 if I'(x,u) = s
and 0 otherwise. By arguments as in the part (iii) of the proof of Claim 2,

0 < g=(2[BY°""(Hy)| + 2| B} ()| — 2wi — 2wz) — (|BY(H1)| +|B'(2)| - 2)
= (2|BY°" (Hy)| - |BY (H1)|) + (2IB,(2)] = |B'(2)]) — 2w1 — 2wy +2

(where B{(z) is defined with respect to I'). This implies ¢; = ¢z = w1 = wy = 0, where
q = 2|B£])°"t(H1)] — |BY)(H,)| and ¢, := 2|B’(z)| — |B'(z)|. Since ¢y =0, s is tight
for H;, whence o, = s (by (7.4)) and l'(z,u) = s. Hence, w; = 1; a contradiction.

This completes the proof of Statement 6.2. o o

Let B’ be the set obtained from B by the alteration along the “augmenting path”
P as above, i.e. B’ := BAP. We have to check that the conditions imposed in Section
6 on B, o, are satisfied for B, a,v. (6.1)-(6.5) are trivial, (6.6) and (6.16) were shown
in Section 6. (6.8) is provided by Statement 6.2. It remains to check (6.18).

Put Z':= ET —B', 3 := B'NnJ and (' := Z' N J. Let I’ denote the attachment
function for I' and B’ (recall that such a function is assigned uniquely; in particular,
I'(z,€) for e € 8" is defined by rule (6.13) applied to 0-components H for 3'). We know
that I'(z,e) = l(z,¢) if e ¢ J, and '(z,e) = 0 if e € {’. Also the following is true:

(7.8) let e = zy € ET* (e = zy € ET, — {ey} for ¢ € F) belong to both § and §, and
let = be ordinary in ['* (respectively, I'}); then I'(z,€) = I(z,€).

Indeed, observe that y must be a non-ordinary vertex fg in I'* (I'}), and P does
not meet X4 (since e € 3 implies that e = eg and e € N B implies that P does not
pass €). Thus, the 0-components for B and for B’ that contain e coincide within Iy
By (6.13), the attachments for (z,e) depend only on certain subtrees lying in these
subgraphs, whence l'(z,€) = l(z,€).

Statement 7.1. Let ¢ € F. Then (6.18) is valid for B' and I'.

Proof. 1t falls into several parts. In what follows by Bj(x) and Z,(z) we mean the sets
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{e € B'(z) : I'(z,e) = s} and {e € Z'(z) : I'(z,€) = s}, respectively, in contrast to the
notations By(z) and Z,(z) concerning B, Z and l. For B” € {B,B'} and I" ¢ {LLI'} we
say that a path is B”,l"-active (or B”,l"-primitive) if it is active (or primitive) with
respect to B” and I"; we may omit B” or I” in these terms if it leads to no confuse. Also
we use the terms B", ["-fork (B"-fork, ["-fork) and B",["-tight (B"-tight, {"-tight) for
the corresponding objects.

We first consider the case when P does not meet Xg. Then B’ and B coincide
within I'y. In particular, each 0-component H for B with all vertices in Xo 1s a 0-
component for B’, whence '(z,¢) = I(z,¢) for any ¢ = 2y € EH. However, if ¢4 € 3
then the 0-components H and H' containing e4 for B and B’, respectively, may differ
outside I'y. Let h be the subgraph of H in I'y (recall that I's contains e4), and H* be
the projection of & to 3.

Let v be the end of ¢4 in X 4- If v is non-ordinary then EH* consists of the only
edge e4. Moreover, for each (z,e) with an ordinary z € X the attachments [ and !’
are the same, whence (6.18) for B’ and ¢ immediately follows.

If v is ordinary then H* is a star induced by e, and edges vfg for some ¢’ € Fy.
In view of (7.8), the only pair (z,¢) (z € X3) for which I'(z,€) # l(z,¢€) is possible is
(v,e4). Let q := I(v,e4) and ¢’ := I'(v,e4). If ¢ = ¢, we are done. So assume that
g # q'. We observe that

(7.9) if s € (~t,t) — {¢'} is l'-tight for v then s is I-tight for v

(since |B'(v)| = | B(v)| and B}(v) C B,(v) for s # ¢'). (7.9) implies that if 7 = (ep,v,€)
is an [-fork then 7 is an !’-fork as well.

Now we consider x € X » and design a path coming z as required in (6.18) for I'. We
first assume that = # v. Consider a rooted [-primitive path Q = (2o0,€1,%1,..., €k, Tk)
mn 1";, with z; = z; then ¢ = ey and r; = v. If Q) meets v exactly once then Q is
l'-active (as (e1, 1, e2) is an I'-fork by the above argument). Suppose that v = z; for
some 1 < i <k. If 7 = (e;,xi,ei41) is an I'-fork then Q is I-active. Suppose that 7 is
not an '-fork. Then e;,ei41 € Z;,(v) U (B(v) — B!,(v)), where s’ € (—t,t) is I'-tight
for v. Since 7 is an [-fork, (7.9) implies that s’ = ¢’. Hence, (e4,v,€i41) is an I'-fork,
and Q' = (zo,€1,1,€i41,Tit1,. .., €k, Tk) is an I'-active path. These arguments easily
imply the existence of a rooted primitive path as required in (6.18) for ¢, I’ and z.

Let z = v. If no s’ € (—t,t) — {¢'} is I'-tight for v then, obviously, the path
Q = (zo0,e4,v) (where e4 = xov) is as required in (6.18)(ii) or (6.18)(iii) for I’ and =z.
Finally, if such an s exists then the path required in (6.18)(iii) for z,!’, s’ is just the
rooted [-primitive path Q;l

We now begin to study the case when P meets X4. Let u be the edge in 6X4 N P
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different from €4, and let vy be the end of u not in I'}. Form T by adding to Iy the
edge u and the vertex vg. Denote by P the projection of P to I'; we may assume that €,
(u) is the first (last) edge of P. We know that P is B, [-primitive, and that u becomes
the new root of ¢ when B turns into B’. Thus, a rooted path Q for ¢, B’,!' means a
corresponding path whose first edge is u; it is convenient to call such a Q a u-rooted

path, whereas a rooted path for B will be called, if needed, an e4-rooted path.

Consider an ordinary vertex z in Xj. Taking into account (7.8), we have

(7.10) for e € E(z), !'(z,€) can differ from I(z,€) only if e is a 0-edge in P; and:
(i) if e € (N P then e € ' and {(z,¢) = 0;
(ii) if e € BN P then € € (' and I'(z,¢) = 0.

For s € (—t,t) define B,(z) := {e € B(z) : I'(z,e) = s} and Zo(z):={e€ Z(z) :
I'(z,e) = s}. By (7.10),

(7.11) B,(z) C By(z) for any s € (—t,1),
which obviously implies that
(7.12) B is non-excessive for z with respect to I'.

We need two auxiliary assertions.

Claim 1. Let n = (z,9,z,¢, fo,€,,9',2') be a part of P such that z is ordinary,
¢' € Fy, € =€y, e € B, and € is the mate of e. Then:

(i) there is s € (—t,t) such that s is B,l-tight for z, l(z,e) = s, and g,¢' €
Zs(z) U (B(z) — Bs(z));

(i1) s as in (i) is B',l'-tight for z, and l'(z,€') # s.

(See Fig. 7.3 for an illustration.)

Proof. (i) Since P is B,l-primitive and meets = twice, (g,z,g’') is not a B,[-fork,
whence, by (4.1), there exists s € (—t,t) such that s is tight for z, and ¢,9’ € Z,(z) U
(B(z) — Bs(z)). [Note that if, first, case ¢ = u € ( occurs, second, in the process
described in the proof of Statement 6.2 the fragment ¢ was treated when the end of
g different from z had become an ordinary vertex, and, third, o, # 0 (see (7.4)),
then we assume by definition that (2, g) := oy; and similarly for ¢’. Properties (iii)

and (iv) ensure the above inclusion for g,¢’.| Since (e,z,g) is a B,l-fork, we have

e € (Z(z) — Zs(z)) U Bs(z). Now e € B implies e € B,(z).
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(ii) Using (i), one can see that |D| = |B'(z)|/2, where D := {e" € B'(x) : l(z.€") =
s}. Note that if g € Z,(x) then g € B/(z), and similarly for ¢’. Furthermore, for each
e’ € E(z) — {g,e,¢€,g'}, we have l'(z,e") = l(z,€"), by (7.10). Thus, D C B(z),
whence D = B'(z) (since B’ is non-excessive for z and I'). Now ¢’ ¢ D (as I(z,¢') = 0)
implies that I'(z,€¢’') # s.

Fig. 7.3

Claim 2. Let ¥ = (w,d,z,¢, fg,€',z,d' ,w') be an (eg-rooted) B,l-primitive path in
Ty, where ¢' € Fy, e = ey, € € 3, and €' is the mate of e. Let e,¢’ belong to P. Then
= (d,z,d") is a B,l'-fork.

Proof. Let n and s be as in Claim 1. Then [(z,e) = s. Since % is primitive and meets
z twice, (d,z,d") is not a B,l-fork. Hence, there is s’ € (—t,t) such that s' is B, [-tight
for z, d,d' € Zy(z)U (B(z) — By (z)), and e € By(z). On the other hand, e € B,(z).

Hence s’ = s.

Suppose that 7 is not a B, !’-fork. Then there is g € (—t,t) such that ¢ is B, ['tight
for z, and d,d' € Z,(z) U(B(z) — By(z)). We know that By(z) C By(z) (by (7.11)).
Hence, By(z) = ﬁq(:c), and q is B, [-tight for z. Note that s is not B, [’-tight for z (as
e € By(z) and I'(z,€) = 0). Thus, ¢ # s. Finally, since (e,z,d) is a B,l-fork, we have
e € By(z); a contradiction with the fact that e € By(z). o

Next, for £ € X let I'(z) be the graph obtained from T by adding a new vertex T
and a new edge h = h, connecting z and F; we regard h to be a feasible thin edge. If z
is an ordinary vertex in V, for s € T, put S; := {s,—s}, and if z is an ordinary central
vertex, put Sy :=T. If z = fy for ¢’ € Fy, we assume that A ¢ Uy and Sz :=T. It is
easy to see that (6.18) (for ¢, B,!) is equivalent to the following property:

(7.13) for any z € X and s € S; there is an eg-rooted B, [-primitive path @z,s in I'(z)
with the last vertex %, where the attachment I(z, k) is defined to be s.

39



A similar equivalence takes place for ¢, B',l’. Fix some x € X} and s € 5;. We

have to show that there is a u-rooted B’', ’-primitive path @;3 in I'(z). To do this, take
an eg-rooted B, [-primitive path Q) = @z,s asin (7.13). Note that l(z,h) = l'(x,h) # 0.
We first associate with @ the path w'(Q) formed from @ by removing some its parts

and replacing some edges, as follows:
(7.14) (1) for 1 <1 < k, if €;,€e;41 are mates in J belonging to P and z; is non-ordinary,
we remove €;, I;, €;4+1 from (J;
(il) unless the case as in (i) occurs, if e; € ( N P, we replace e; by its mate ¢’.
Clearly ey is the first edge of w'(Q). Using (7.11) and Claim 2, one can check that
w'(Q) is an eg-rooted B,!’-active path in I'(z) with the last vertex Z.

Let w(Q) be a B, !'-primitive path w(Q) formed from w'(Q)) by removing “super-
fluous” circuits (if any). The required path @; s will be obtained by combining certain

parts of P and w(Q).

Put D := w(Q)AP (considering D as an edge-set). Clearly D has even valency in

all vertices except T and vg, where vg is the end of u not in X4. We observe that

(7.15) B'AD = (BAP)A(w(Q)AP) = BAw(Q) =: B.
(here B, B’ are considered to be restricted to I). Since w(Q) is B,!’-primitive,
(7.16) for any ordinary y € Xj — {z}, B is non-excessive for y and I'.
We also know that

(7.17) for any ordinary y € X, B’ is non-excessive for y and I'.

Let D(y) denote the set of edges in D incident to y. We need the following.

Claim 3. Let y = fy for ¢' € Fy, and let €, be the root of ¢' with respect to B'. If
D(y) # 0 then D(y) contains ey,, and |D(y)| = 2.

Proof. The claim is obvious if y is not in P or of y is not in w(@Q). So we may assume
that y is a common vertex of P and w(Q). Let €, €’ be the edges in P incident to y, and
g,¢' be the edges in w(Q) incident to y. From the definition of w(Q) it follows that g
and ¢’ are different and one of them, g say, is eg:. Also one of e, €', € say, is egr. Then
e’ = ey, and {e,e'}\{g,g'} is either {¢,g'} (if &' # g') or @ (if &' = g'), as required. o

Now we design a path R = (vo,u1,v1,...) whose edges are in D, starting from vg
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as above and u; = u. Suppose that a B’ I’-primitive path R = (vo,uy,v1,....u;.v;)
has been already designed. Let y := v;.

(1) Hy = fg for ¢’ € Fy then, by Claim 3, there is an edge € = yz in D(y) that is
not in R. Extend R by adding e (as u;4+1) and z (as vi+1).

(i1) Let y be ordinary. One can see from (7.16),(7.17), the primitivity of R and the
fact that |D(y)| is even that there is an edge e = yz in D(y) such that e is not in R and
(us,y,€e) is a B',l'-fork. Extend P by adding ¢ =: u;41 and z =: v;4;. If there is j < i
such that v; = y and (u;,y,€) is a B’,!'-fork, we delete from R (and simultaneously

from D) the circuit formed by wj41,...,u;, thus maintaining the primitivity of R.
Clearly that eventually we reach the vertex Z. Then R is the required _Q; s

This completes the proof of Statement 7.1. e e

Thus, all conditions imposed in Section 6 on B, a,~ remain valid for B’,a,. In

the rest of this section we present two more statements.

Recall that each fragment ¢ € F was created, at some moment, from a blossom F
appeared in the labelling process as described in Section 4 and specified in Section 6.

We have to sheck correctness of (6.18) for such an initial ¢.

Statement 7.2. (6.18) is valid for a fragment ¢ at the moment when it is created from
a blossom F'.

Proof. If F is an elementary blossom ({z},0) and er = zy is its root then the path
Q@ = (y, er, z) satisfies (ii) and (iil) in (6.18) ((iii) obviously follows from (4.4)(iv).

Let F' be a non-elementary blossom. Then for each z € X there is an edge
e; = zy € EF labelled in both directions. Since e is labelled from z to y, and e; # ep,
there is an edge e2 = zy € EF labelled from z to z and such that 7 = (e;,z,ez) is a
fork. Let @1 (Q2) be a primitive rooted path in I'j with the last vertex z and the last
edge ey (respectively, ez).

If £ = fg for some ¢’ € F4 then ey = e; for some 1 € {1,2} (as 7 is a fork);
so @i is Qg as required in (6.18)(i). Let z be ordinary. It is easy to see that Q1, Q-
can be chosen so that at least one of them, ¢); say, does not meet x twice. Then
satisfies (6.18)(ii),(iv). Finally, suppose that s € (—t,t) is tight for z. Since 7 is a
fork, e; € Bs(z) U (Z(z) — Z4(z)) for some ¢ € {1,2}. If Q; has no inner vertex v
such that v = z then Q; is as required in (6.18)(iii),(iv). And if such a v exists, it is
easy to see that either @); or its part from the beginning to the first meeting v satisfies

(6.18)(iii), (iv). ®
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Finally, we demonstrate one more application of Statements 6.2 and 7.1; it was
mentioned in Remark 1.2 in the Introduction.

Statement 7.3. |Uy| > 3 for any ¢ € F.

Proof. By induction we may assume that if F, # @ then |Us| > 3 for each ¢’ € F,.

To the contrary, suppose that |Uy| = 1. Consider two cases.

(i) eg € Z. Then Uy = {ey} and 6 X4 N B = 0, whence B(z) = 0 for each z € X,,.
Furthermore, 73 = (). For otherwise the fact that |Us| > 3 for ¢’ € Fy would imply
that 6 Xy N B # 0, whence B(z) # () for some ¢ € X. Let z be the end of e4 in X,
and let s := I(z, e4); then s # 0 (since ey & J). Moreover, s is tight for z (as B(x) = §).
Consider the path Q3 = (2o, €1,2,...,¢ek,zk) as in (6.18) (for B,!); here e; = es and
zx = z. Then (e, x,e4) is in a line (since I(z,ex) # s), and ex € J (since both ends
of ey are in Xy, and F4 = ). Hence, the path (zo,e; = €4,21,..., ek, Tk, €4,70) is a
line, which is impossible.

(ii) ey € B. Since |Ug| = 1, |[6X4NB| = 2. Therefore, the edges in B having at least
one end in Xy form a simple path P = (zo,€1,21,...,6k,2¢) in [ with z,,..., 241 €
Xg and e; = eg. Then 6Xy3 NP = {ey,er}; let x := zx_q. Since ey € Uy, we have
ex € J, whence s := [(z,¢e;) # 0.

Let ¢’ € F™** be such that Xy C X4 (possibly ¢’ = ¢). Let u := ey (possibly
u = €g), and let y (2) be the end (in T') of u that is not in (respectively, in) X4 . Let
us form a new graph T from T, as follows.

(a) Add a new thin edge h connecting r as above and the terminal so such that
so=sifs>0(ie. s€T)and sp =—sif s <0.

(b) Partition u into two edges u; = yv and uz = vz in series, considering them
as bold (thin) if u is bold (thin) and considering v as an ordinary vertex in I'*. We
assume uz to be the new root of ¢/. For i = 1,2 assign lengths A(u;) in such a way that
A(u1) + AMuz) = Mu), and assign appropriate attachments for (v, u;).

(c) Add a new thin edge hy connecting v and some terminal s; € T. We choose s;
in such a way that (hi,v,us) forms a fork (this, obviously, can be done).

The lengths A(h) and A(h1) should be assigned so that h and h; belong to T-lines
of T (and every T-line of T' should remain a T-line in T').

We observe that P = (s;,h1,v,uz, fg', h, so) is an augmenting path in the corre-
sponding graph T+ Applying Statement 6.2 to I and P, we obtain an “augmenting”
path P inT such that B’ := BAP is regular. Now return to ¢, and consider the set B”
of elements of B’ having at least one end in X4. Clearly e and h are the only edges of
5X¢ belonging to B”, and h is just the root of ¢ with respect to B’. Moreover, since
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ex and h have a vertex in common, there are no other edges in B”. This implies that
Fy is empty (for if ¢" € Fy then B" N X4 # 0, whence v € Xy so h is the root of

¢", and we have |Ug/| = 1; a contradiction.)

If s > 0 then I(z,er) = l(z,h) = s, by the choice of sg, whence I'(z,ex) = I'(z,h) =
s. So s is excessive for z and B’ (as |B.(z)| =2 > 1 = |B'(z)|/2); a contradiction. Let
s < 0. Then ek, h belong to a T-line, and s is tight for v and B’. Take the h-rooted
B’-primitive path Q) = (yo,d1 = h,y1 = v,d2,y2,...,dq,y; = v) for ¢ (existing by
Statement 7.1); let Q be its part from y; to y,. Clearly ¢ > 1. Furthermore, A(d;) > 0
for : = 2,...,q (since both ends of d; are in X4, and F, = (). Hence, Q is a line of a
non-zero A-length; this is impossible since y; = y,. o

8. Correctness of the a,y-transformation

We use terminology and notation as in Sections 5 and 6; in particular, o', ', N, p/,
I'" denote a®,¥%,co/ v, P = p+ 2¢, TN, respectively, for a (sufficiently small) ¢ > 0
(see (6.20)).

A T-line P in T (or T, A-line P) is called non-broken if A*(P) = p+2¢ for € > 0 (in
other words, P remains a T-line in I''). In particular, every strong T-line is non-broken
(see (5.12})), whence each edge in B belongs to a non-broken T-line. Moreover, it was
shown that

(8.1) A T-line P = (zg,€1,21,...,€k, &) In [ is non-broken if and only if P contains
neither an edge in 7 U7 nor a triple (e, z:, €i+1) as in (5.9), where 7 and 7' are
defined in (5.10) and (6.23).

Statements 8.1 and 8.3 below show the existence of non-broken lines of a special
kind; they will play an important role as being key tools in the proofs that some
conditions imposed in Section 6 are preserved under the e-transformation of (o, ). Let
us say that Q@ = (vo,u1,v1,...,Um,Vm) 15 a rooted line for a fragment ¢ if Q is a line
inT, us = ey, and vy,...,vn € Xy. Let F' 1= F U FPeV,

Statement 8.1. Let ¢ € F', and z € Xy. Then at least one of the following is true:
(1) there is a strong T-line P containing z;

(i1) there are two strong T-lines P, P' and a line Q such that: all vertices of ) are
in X4, Q contains z, one end of Q is in P and the other in P’;
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(ii1) there are a strong T-line P and a rooted, line Q) for ¢ such that: Q contains
z, and the last vertex of () is in P.

Proof. If B(z) # () then (i) holds. In particular, (i) is true if |[X,| = 1 (then (6.18)
easily implies that B(z) # 0). So we may assume that B(z) = {.

Observe that if there is a path n in I" from z to z’ in which all vertices are in X,
and all edges are 0-edges, then statement is valid for z if and only if it is valid for z'.
Note also that if all edges in T'y are 0-edges then e, € B (by (6.6)), and the result
follows (taking into account that I'y is connected, by (6.18)).

Thus, w.l.o.g. we may assume that there is an edge e = zy € ET', with A(e) > 0.
Consider a line R = (z0,dy,21,...,dq,2¢) In Ty such that: (a) y=z;_1,e=d;, z =z
for some ¢; (b) dy,dy € J; (c) the number a(R) of edges of R that are not in J is as
large as possible subject to (a),(b). Let W be the set of vertices connected with z,; by
paths in T'y having zero A-length. We assert that

(8.2) (i) B(z) # 0 for some z € W; or

(i1) ¢ > 7 and d; = ey.

Indeed, suppose that neither (i) nor (ii) in (8.2) is true. Then each z € W is in
Xg (since if z is the end of ey not in X4 then (1) or (ii) in (8.2) must be true). Let
s = l(z4,dy); then s # 0 (since dy € J), and s is tight for every z € W (since B(z) = 0).
Choose ¢’ € F U {¢} such that Xy N W # 0 and Xy N W = 0 for each ¢” preceding
¢'. Let z € Xy N W, and let n be a path in I'y of zero A-length connecting z; and z.

By the choice of ¢, no edge u = zz' € J with 2/ € Xy exists (as u € J would
imply that z' € X4 for some ¢" preceding ¢’). Take the path Q] as in (6.18)(iii)
for ¢', z,s; let u be the last edge in Q%. Since B(z) =0, u € Z(z) — Z,(v), whence
s’ = l(z,u) # s. Moreover, A\(u) # 0 (for if u € J, the only possible case is when
u = eqy; then u € B, contrary to (8.2)(i)). Hence, we can extend R by adding, after
2q,.the path n and the edge u, forming a line R’ with a(R’) > a(R); a contradiction.

Applying similar arguments to zp and d;, we conclude that at least one of the
following is true: (*) B(z') # 0 for some z' € X4 such that there is a zero A-length
path i’ in Ty from 2’ to zo, or (**) d; = e4. Note that the case d; = d; = ey is possible
only if e € B (for €4 € Z would imply A(eg) > 0, whence R cannot be a line). Now

the result obviously follows. e
Arguments as in Section 3 imply the following two elementary facts.

(8.3) f n=1n"-n" and p = p'- " are two T, )-lines having a common vertex that is the
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last vertex of both 1’ and u' then at least one of the following is true: (i) n’ -y
and p' - 7" are T, M-lines, or (i) ' - (¢')~! and (n")~! - 4" are T, \-lines.

(8.4) Let P = (z0,€1,21,...,€k,7) and Q = (Vo,U1,V1,y ..., Um, V) be two lines in T
such that zo,vp € T, ex = uy, and A(ex) > 0. Then:

(1) if Zx—1 = vy, then P(zo,zk-1) - Q7! is a T, M-line;

(ii) if zx = v then A(P) = A(Q); if, in addition, A\(P(zo,zx_1)) < p/2 then

o = V9.

Let us say that a line is strong if it is a part of a strong T-line. Statement 8.1 has
the following consequence.

Statement 8.2. Let ¢ € F'. For any vertex z € X, (any edge ¢ € ET,) there exists
a T, A-line ¢ = 1y - 1, - 3 in such that: either

(1) ¥1 and 43 are strong, v, contains z (respectively, €), and all vertices of 1,

are in Xgy; or

(ii) 43 is strong, and 1, is a rooted line for ¢ containing x (respectively, e).

Proof. For each z € X4 there is an edge € in Ty incident to z, therefore, it suffices
to prove the statement for an edge e € ETy. If e € B, we take as 1 a strong T-line
containing e. Let e € Z, and let z,y be the ends (in I'y) of e; we may assume that
z € Xy. Choose a T-line 7 passing y, e,z in this order. From (8.3) and Statement 8.1
one can deduce that there is a T-line p = p; - p - u3 such that: py contains z, and
either () w1, us are strong, and all vertices of py are in Xy; or (**) s is strong, and
p2 is a rooted line for ¢. Represent n and p in the forms n =7n'- 7" and u = p' - p”,
where z is the last vertex in both ' and p'. By (8.3), there is a T-line w =1’ - wy - ws
such that: either w; is strong and all vertices of w; are in Xy; or wy ! is a rooted line

for ¢.

Represent w in the form w’ - w"”, where the first vertex and edge of w” are y and
e, respectively. Applying Statement 8.1 to y and using (8.3), we observe that there is
a T-line £ = £; - & - {3 such that ¢, contains y, and either (¥') £;,&; are strong, and all
vertices of £, are in Xg; or (*+') £3 is strong, and 5 is a rooted line for ¢.

Represent ¢ in the form £ = ¢'- £”, where y is the last vertex of ¢', and apply (8.3)
tow™ = (w")7! - ()"t and £ = ¢ - ¢". As a result, we get a T-line ¥ = 1; - ¢, - ¥y
such that either v is as required in (i) or (ii), or %2 = (vo,u1,v1,...,uk,vk) lies in
I'y, contains e, and satisfies vo = vx and u; = ur = e4. The latter is possible only if
Aleg) = 0, whence e4 € 3, and the result easily follows. e
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Statement 8.3. Each 1-labelled edge ¢ belongs to a non-broken T-line.

Proof. We may assume that e € Z. It is convenient to consider the graph I'® obtained
from I'* by shrinking every blossom F € @ (or the set X, for the fragment ¢ € F"¥
corresponding to F') into a vertex fj.

Consider an active path R = (zo,e1,21,...,€x,7x) in ['° beginning at T and
containing e; let ¢ = e;. Let R = (z;_1,€j,2;,...,€q,74) be the maximal part
of R such that ;7 <1 < ¢, ej,...,¢, € Z and the vertices z;41,...,T4-1 are or-
dinary in T, One can see that R’ is a line, €41,...,64-1 & J, and the triples
(ej,25,€j41),.-.,(€q—1,Tq—1,€4) are not as in (5.9). In addition, we may assume that

R is chosen so that ¢ = k (i.e. R is of the form R"” - R') and ¢ — j as large as possible.

We first design a path R as follows. Let v = zj_;. If j =1 (i.e. 29 € T), put
RY := R (= R'). Otherwise consider possible cases.

(C1) v is ordinary in I'°. Then u := €;_; is in B (by the maximality of R’ in R).
Let P be a strong T-line containing u, and let P = P; - P,, where v is the last vertex of
Py. 1t is easy to see that at least one path ) among P; - R’ and P; ! - R' is a line, and
the corresponding triple in @ containing v is not as in (5.9). Then we put R% := Q.

(C2) v = fg for ¢ € F~. Then e; = ey4 (as ¢; is labelled from v to z;). Let z be the
end of ¢; in X4. Apply Statement 8.2 to ¢, e4. Then there exists a T-linen =ny-n2-n3
such that 7 is strong, and n; ! is a rooted line for ¢. Applying (8.4)(ii) to 1 - 72 and
R’ (for which e, is a common edge with A(es) > 0) shows that R® := ' - R’ is a line,
where 1’ is 1y - 2 without the last edge and vertex.

(C3) v = fy for ¢ € F* U F"¥. Let z be the end of ¢; in X4. We again apply
Statement 8.2 {to z) and arguments as in (C1l) or (C2). As a result, there is a line
R" = Q- R’ such that R" has neither edges in 7 U 7" nor triples as in (5.9), and

(8.6) (i) either R" has the first vertex in T}

(i) or the first edge of R" is e4 and the first vertex of R” is not in X.

If (i) occurs, we put R° to be R”. And if (ii) occurs, we may assume that ey € Z
(otherwise we proceed as in (C1)). Then we apply arguments as above to R” (rather
than R'). [Note that R” is a part of an active path R starting from T since e is labelled
as entering X4.] Since I(e4) > 0 (as ey € Z), the A-length of R” is greater than that of
R'. Thus, using a simple induction, we can conclude that there is R® such that

(8.7) RPis a line of the form Q- R’ beginning at T and containing neither edges in T U7’

nor triples as in (5.9).
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Now we extend R° to get a T-line R! of the form R°-Q’. By the maximality of
q — j and the fact that v’ := z, ¢ T (otherwise R would be an augmenting path), one
of the following holds: (a) v’ is ordinary and B(v') # 0; (b) v’ = f, for ¢ € F'. Using
arguments similar to given in (C1)-(C3) above (exchanging the roles of ¢ € F~ and
¢ € FT UF %), we finally construct a T-line containing ¢ and having neither edges in

T U T’ nor triples as in (5.9). Then this line is non-broken, as required. o
q

Summing up Statements 8.2 and 8.3 and using (8.3), we get the following important

properties:

8.8) each edge e € ET that is labelled or is in I for some ¢ € FTUF~ UF Y belongs
@

to a non-broken T-line, and therefore, € is contained in the new graph I'.

Let F be the set of ¢’ € F' such that X4 C X, for some ¢ € F+ U F~ U Frev,
(8.8) shows validity of (6.2)(i) for I and every ¢ € F. Furthermore, by (6.24), v'(eg) =
v(es) = 0 for such a ¢, i.e. (6.2)(ii) is also true for ¢ and ~'. However, (1) or (i1) in
(6.2) may not be true, with respect to 4’ and I", for ¢ in H := F' — F, as mentioned
in Remark 6.5. We call such a ¢ bad.

We develop an improvement procedure for o’,~' the aim of which is to make H
free of bad fragments. First of all we need some preliminary observations. Let L, N, M
be the sets defined in Section 6. Then X4y C M for any ¢ € H. Define Zp to be
the set of edges in Z connecting M and L U N. Analysis in Sections 5,6 shows that
Zy €T UT'; more precisely,
(8.10) if e = zy € Zpr and = € M then:
(i) either y € L, or y € Xy for ¢' € F~ and e ¢ Uy (in particular, e # ey );

(ii) A'(e) = Me) + p(e) +e.
The equality (ii) can be interpreted as follows:

(8.11) let P be a T-line in I containing an edge e € Zps; then N(P) > p' +¢ (= p+ 3¢),
and this inequality holds with equality if and only if P contains no edges in T U T’

except e and no triples as in (5.9).
Another fact coming from analysis in Section 6 is that

(8.12) if ¥/(eg) > 0 for some ¢ € H with e4 € B then eg = zf4 is an (unlabelled) edge
with either £ € L or z = f for some ¢’ € F~; this implies that v'(ey) = €.

Let us say that ¢ € H with ey € B (respectively, ey € Z) is a fragment of B-type
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(respectively, Z-type). Improvement procedure consists of the operations (i)-(iv):

(i) choose a certain subset H' C H™2* (of not necessarily bad fragments). where

%max = H m J_‘max;
(ii) for each fragment ¢ € H' of B-type, put

(8.13) o"(6) = a'(d) ¢
V(b e8) 1= (e4) —
v'(p,e) :=4'(e) + &  for each e € Uy;

(iii) for each fragment ¢ € H' of Z—type, put

a'(¢) — g
v'(e) + ¢ for each e € Uy — {es};

(8.14) o"(9)
7" (e, €) :

(iv) put a”(¢') to be a'(¢') for the remaining ¢"’s in F’, and for ¢ € ET, put

(8.15) ~"(e) :== (7" (¢ e) ++4"(¢',€))/2 ife €8Xy4,6Xy for two ¢,¢" € H',
= ~"(¢,€) if e €dXy for exactly one ¢ € H/,

= v'(e) otherwise.

Put A" := ¢ 4». From (8.13)-(8.15) one can see that

(8.16) A'(e) = XN(e) for any e € B; in other words, the procedure does not change the
length of any bold edge;

(8.17) if ¢,¢' € H' are such that e4 € §Xy4 and e4 # €4 then v7(ey) = v'(eg) = v(ep)
and M(cs) = X(eg) = Meg):

(8.18) if ¢ € H' and ey ¢ 6 X4 for any ¢’ € H' — {¢} then:
(1) v"(es) = ¥'(ep) — € whenever ey € B;
(i) A(eg) = N(eg) — € whenever e4 € Z.

In particular, (8.16) shows that each strong T-line remains non-broken (i.e. its
M\'-length is p') when we come from o',' to a”,~".
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The core of improvement procedure is the rule for choosing H' described in (8.22)
below. First of all we introduce a relation < on pairs in H™2*. We set ¢ < ¢’ if there
is a sequence ¢ = ¢y, ba, ..., ¢r = ¢' of distinct elements of H™** with k > 2 such that
es; € 6X4,_, for i = 2,... k. This gives a quasi-order on H™** in which for distinct
$,¢' € H™2 both ¢ < ¢’ and ¢’ < ¢ take place if and only if €4 = €4/, In view of
(6.4)(ii). Thus, each week component K = (K, <) of the digraph on H™** defined by
the relation < satisfies the following:

(8.19) there is one ¢ € I (called the source of K') with ey & 6 X for any ¢’ € H™* —{¢},
or there is a pair {¢,¢'} C K (of sources of K) with e; = ey such that: for each
#" € H™** ¢" € K if and only if ¢ < ¢" (respectively, ¢ < ¢ and ¢’ < ¢").

We say that K = (K, <) is a one-, or bi-source fragment-tree; for ¢"” € K denote
by o(¢") the sequence ¢ = ¢1,¢3,...,¢r = ¢", where ¢ is a source of K, ey, € 6Xy,_,
fori=2,...,k, and es & §X4, (in bi-source case). We need two statements. Let I'(K)
denote the union of graphs I'y, for ¢ € K.

{
Statement 8.4. Let K be a bi-source fragment-tree with the sources ¢, ¢'. Let ¢" € K,
and e be an edge in T yn. Then there is a T-line w = wy - wg - w3 in T’ such that w; and

ws are strong, and we lies in I'(K') and contains e. In particular, w is non-broken.

Proof. Let o(¢") = (¢1,...,¢6x = ¢"), and let for definiteness ¢; = ¢. Let ¢ =
Wy - ¥p - 3 be as in Statement 8.2 applied to ¢" and e. If ¢ is as in (i) of that
statement, we are done (with w := ). So we may assume that % is as in (ii) of that
statement, and that ey € Z (for if egn € B then we can replace in ¥ the part ¥,
together with the first edge e4» of ¥, by the corresponding part of a strong T-line

containing ey, whence the result follows). Two cases are possible.

(i) k= 1,ie ¢" =¢. Take ' = ¢ -1 - 3 as in Statement 8.2 for ¢' and g -
Then e4 = ey is the first edge of ¥ and the first edge of 1. Note that Meg) > 0 (as
ey € Z). Now applying (8.4)(i) to (2 - ¥3) ™" and (¥5 - ¥3)7" , we get w as required.

(ii) k > 1. Let « be the end of ey in Xy, ,. By Statement 8.2 for ¢r—, and z,

there is a T-line = pq - po - p3 such that yg is strong, u; contains z, and either y; 1s

" strong and all vertices of p; are in Xy,_,; or yo is a rooted line for ¢g—;. Apply (8.3)
to v and p, which have the vertex z in common. We obtain a T-line o' = o} - b - 4
such that 1} is strong, ¥} contains € and lies in I'y, UT'y, _, , and either (%) ¢! is strong,
or (*+) the first edge of ¥} is eg,_,. In case (x), we finish with 3’ to be w as required.
In case (**), we continue the process by considering 1’ and the fragment ¢x_2, and so
on. Clearly, eventually we either construct the required w = wy - wy * w3 (with ws lying
in Ty, U...UTy, for some i > 1) or obtain a T-line n = 11 - N2 - 3, where n3 1s strong,
while 7, contains e, is contained in T'y, U...UTy,, and has ¢4 as the first edge. Then
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we apply arguments as in case (i) above. o

Using similar arguments and (8.4)(ii) it is easy to show the following (it is left to
the reader).

Statement 8.5. Let ' be a one-source fragment-tree with the source ¢. Then:

(i) for any edge e in T'(K), there is a T-line w = wy - wo - w3 in I such that w3 1s
strong, wz contains e, and either (%) w; is strong, wy lies in ['(K') and does not use €4;
or (¥x) wy lies in T(K), the last edge of wy is €4, and the last vertex of w; is in Xy; in
the latter case, ey € Z;

(ii) for any two edges e,¢' in I(K), if w = w1 - w; - w3 and w' = W} - wh - w} are
T-lines as in (i) for e and €', respectively, and if case (++) occurs for both w and ',

then wy =w]. o

We say that the path w; as in (*x) above (which is common for all corresponding
e, by (ii)) is a tail for a one-source K with the source ¢ such that es € Z. By (8.4), we
can take as a tail any line P = (%0, €1,Z1,...,€k,zk) in T such that zo € T, ex = €¢
and zx is in X.

Now we wish to classify the fragment-trees. Let X! (K'?) be the set of one-source
(respectively, bi-source) fragment-trees, and let K (Kz) be the set of K € K! whose
source ¢ is of B-type (respectively, Z-type). We saw above that if e, € B then case
(*) in Statement 8.5 occurs for any e € ET(K). This and Statement 8.4 show that

(8.20) for any ¢ € H such that Xy C X4 and ¢’ belongs to a fragment-tree K € k2 UKp,
each e € 'y belongs to a non-broken T-line w; moreover, the edges of w that are
not in I'(K) belong to B.

For ¢ € F denote by vy (24) the end (in T) of €4 that is in (respectively, not in)
Xy. Let ¢ € H™* be a fragment of B-type with '(e4) > 0. Since z4 ¢ M (by (8.12)),
¢ is the source of a one-source fragment-tree K in Kg. The set of such K’s is denoted
by ICE. Let IC% be the set of K € Kz with the source ¢ such that ey € Zy (where Zy
is defined in (8.10)).

Consider K € Kz with the source ¢. For a tail P = (zo,¢€1,21,...,¢ek,z;) of K,

(8.21) put m(P) to be the maximal index i < k such that z; ¢ M or B(x) # 0 or z;
belongs to X4 for some ¢ € H; and let u(P) denote the edge €m(P)+1 in P (then
u(P) € Z).

Now we recursively design a subset IC} of Kz, starting from IC} := K%, as follows:
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The core of improvement procedure is the rule for choosing H' described in (8.22)
below. First of all we introduce a relation < on pairs in H™2*. We set ¢ < ¢’ if there
is a sequence ¢ = ¢1, Po,...,¢0r = ¢ of distinct elements of H™2* with k£ > 2 such that
e; € 6Xg,_, for e = 2,... k. This gives a quasi-order on H™?* in which for distinct
&,¢" € H™** both ¢ < ¢’ and ¢' < ¢ take place if and only if €5, = ey, in view of
(6.4)(i1). Thus, each week component K = (K, <) of the digraph on H™** defined by
the relation < satisfies the following:

(8.19) there is one ¢ € K (called the source of K') with e, ¢ §X 4 for any ¢’ € H™** —{¢},
or there is a pair {¢,¢'} C K (of sources of K) with e4 = e, such that: for each
" € H™**, ¢" € K if and only if ¢ < ¢" (respectively, ¢ < ¢" and ¢’ < ¢").

We say that K = (K, <) is a one-, or bi-source fragment-tree; for ¢"” € I denote
by o(¢") the sequence ¢ = ¢1,,...,0r = ¢", where ¢ is a source of K, ey, € 6X4,_,
fori=2,...,k,and ey & 6 Xy, (in bi-source case). We need two statements. Let I'(A)
denote the union of graphs I'y for ¢ € K.

Statement 8.4. Let K be a bi-source fragment-tree with the sources ¢, ¢'. Let ¢" € K,
and e be an edge in I'yn. Then there is a T-line w = w; - wy - w3 In I' such that w; and

ws are strong, and w, lies in I'(K’) and contains e. In particular, w is non-broken.

Proof. Let o(¢") = (é1,...,6r = ¢"), and let for definiteness ¢; = ¢. Let ¢ =
Y1 - Y2 - P3 be as in Statement 8.2 applied to ¢” and e. If ¥ is as in (i) of that
statement, we are done (with w := ). So we may assume that 1 is as in (ii) of that
statement, and that esn € Z (for if e4n € B then we can replace in ¢ the part i,
together with the first edge ey of 1, by the corresponding part of a strong 7T-line
containing e, whence the result follows). Two cases are possible.

(1) k =1, 1.e. ¢" = ¢. Take ¥’ = 1] - ), - 9} as in Statement 8.2 for ¢’ and € -
Then ey, = €4 is the first edge of ¥, and the first edge of ¥5. Note that A(eg) > 0 (as
ey € Z). Now applying (8.4)(i) to (¢2 - 3)™" and (¥4 - ¥4)~! , we get w as required.

(ii) k > 1. Let z be the end of ey in Xy, ,. By Statement 8.2 for ¢r_; and =z,

there is a T-line u = yq - pg - p3 such that us is strong, y, contains z, and either yq is

* strong and all vertices of uy are in X4, _,; or s is a rooted line for ¢x—1. Apply (8.3)
to ¢ and p, which have the vertex z in common. We obtain a T-line ¢’ = 1] - ¢ - 3
such that 1} is strong, 1), contains e and lies in 'y, UT'4,_,, and either (x) %] is strong,
or (*+) the first edge of ¢} is eg4,_,. In case (x), we finish with ¢’ to be w as required.
In case (**), we continue the process by considering ¥’ and the fragment ¢4_2, and so
on. Clearly, eventually we either construct the required w = w; * wy - w3 (with wy lying
in Ty, U...UTy, for some : > 1) or obtain a T-line n = n; - n2 - 73, where n;3 is strong,
while 77; contains e, is contained in I'y, U...UTy,, and has e, as the first edge. Then
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we apply arguments as in case (i) above. o

Using similar arguments and (8.4)(ii) it is easy to show the following (it is left to
the reader).

Statement 8.5. Let K be a one-source fragment-tree with the source ¢. Then:

(i) for any edge e in T'(K), there is a T-line w = wy - ws - w3 in I such that w; is
strong, wy contains €, and either () wy is strong, wy lies in T(R') and does not use ¢;
or (¥x) wy lies in T(K'), the last edge of wy is ey, and the last vertex of wy is in X; in
the latter case, ey € Z;

11 fOI' any two ed es € €I 1.1'.1 F I\" s wa = W1 W2 - W3 and (.()/ = w’ . w’ . w’ are
y £ ’ 1 2 3
T‘HHCS as I.I] 1 fOI' € and e’, respective]y, and lf case (*%x) occurs fOI' bOth w and w’,

then wy = wj.

We say that the path w; as in (**) above (which is common for all corresponding
€, by (ii)) is a tasl for a one-source K with the source ¢ such that ¢4 € Z. By (8.4), we
can take as a tail any line P = (zo,€1,21,...,€k,2¢) in I such that zo € T, ¢} = €
and zx is in Xg4.

Now we wish to classify the fragment-trees. Let X' (K?2) be the set of one-source
(respectively, bi-source) fragment-trees, and let Xp (Kz) be the set of K € K! whose
source ¢ is of B-type (respectively, Z-type). We saw above that if e, € B then case
(*) in Statement 8.5 occurs for any e € ET(K). This and Statement 8.4 show that

(8.20) for any ¢ € H such that X, C X4 and ¢’ belongs to a fragment-tree K € K2UK g,
each e € I'y belongs to a non-broken T-line w; moreover, the edges of w that are
not in I'(K) belong to B.

For ¢ € F denote by vg (z4) the end (in T') of e4 that is in (respectively, not in)
X¢. Let ¢ € H™** be a fragment of B-type with v'(e4) > 0. Since z4 ¢ M (by (8.12)),
¢ is the source of a one-source fragment-tree K in Kg. The set of such K’s is denoted
by IC;. Let K% be the set of K € Kz with the source ¢ such that e¢ € Zpm (where Zy
is defined in (8.10)).

Consider K € Kz with the source ¢. For a tail P = (zo,€1,21,...,¢ek,7x) of K,

(8.21) put m(P) to be the maximal index ¢ < k such that z; € M or B(z) # 0 or z;
belongs to Xy for some ¢ € H; and let u(P) denote the edge ep(p)41 in P (then
u(P) € Z).

Now we recursively design a subset K} of K z, starting from K% =K%, as follows:
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(8

(8

22) if K € Kz — K% is such that for every its tail P the edge u(P) belongs to either

Zy or 6X g4 for ¢’ € K' € I'CE UKF, then we add K to K7 ; repeat until such a I

does not exist.
The set K EUIC; is just the above mentioned H’ to which we apply the improvement
procedure (see (8.13)-(8.15)).

For a fragment-tree I’ let Z(K) denote the set U(z, : ¢ € K), where z, :=
ZN(0Xy —{ep}). First of all it is easy to check that

23) (i) v"(e¢) = ¥'(€4) —¢ = O for all bad fragment ¢ of type B, and 7" (e4) = V'(ep) =

0 for the remaining fragments of type B in H (cf. (8.17),(8.18)(i));

(i) A(eg) = A(eg) — € for the source ¢ of each K € K}; if K € K% then
A(eg) = Meg) + p(eg) (cf. (8.10)(ii));

(iii) among the edges in Z (for I') with at least one end in M, the set of edg:es e
for which A"(e) > N(e) is just U(Z(K) : K € K} UKJ; moreover, for such
an e, A"(e) = X(e) + ¢ (respectively, \"(e) = N'(e) + 2¢) if e belongs to z, for
exactly one (respectively, two) ¢ € UK : K € KFUKZ);

(iv) for the remaining edges e € ET, X'(e) = X (e).
Define K}, :=Kz — IC} and K :=Kp — ICE.

Statement 8.6. For any K € H — (K} UKY) and e € I'(K), there is a non-broken
T-line ) containing e, i.e. \"(Q) = M (Q) = p'.

Proof. In view of (8.20), it suffices to examine K € K/ only. Let ¢ be the source of
K. By (8.21)-(8.22), there exists a tail P = (z¢,€1,21,...,ex,zt) for K such that for
T i= Ty (p), either (i) z is an ordinary vertex in M with B(z) # 0, or (ii) z € Xy for
some ¢' € K' € K5 UK’ UK? (note that K’ = K is possible). Let P’ be the part of
P from z to zx. Consider e € I'(K). Let w = w; - w; - w3 be as in Statement 8.5. If (%)
takes place, we are done. Otherwise we may assume that w, = P.

In case (i), take a strong T-line p = p1 - pa, where z is the last vertex of ;. Then
at least one path Q among p; - P’ - wy - wsy and py ' - P’ - ws - wy is a T-line (by (8.3)).
Now the obvious facts that x € M and A\’(e') = A(¢) for all ¢’ € P’ imply that Q is
non-broken.

In case (ii), there are two possibilities for u := u(P), namely, u = e4 or u € Z(¢').
Suppose that u = eg. Then ¢’ is the source of K/, and K' € K', (since u € Z and
Tm(P)+1 18 not in U(Xgn : ¢ € K')). Take a T-line w’ = w] - wj - wj as in Statement
8.5 for K’ and eg. Since u is a common edge of T-lines w and w’, and A(u) > 0, the
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path Q := (w}) ™! - (wh)™1 - P’ wy - w3 is a T-line (by (8.4)). Moreover, X'(e") = A(€’)
for all ¢’ € P’. Hence, @) is non-broken.

Now suppose that u € Z(¢') (recall that Z(¢') does not contain ey ). If K’ €
KpUK?Z, the result is easy. Let K’ € K';. Apply Statement 8.2 to ¢’ and z, and then
apply (8.3) and, possibly, Statement 8.5. The only nontrivial case arises when we get
a T-line ¥ of the form vy - ¥ - 13, where ¥ is a tail for K/, ¥, lies in T'(A”'), and
Y3 = P’ -wsy - ws. On the other hand, by Statement 8.5 for A’ and ey, where ¢” is the
source of K', there is a T-line w’ = w] - w) - w} as in (*x). Since both ¢, and wy are
tails for K/, we may assume that 1); = w}. Moreover, since K’ ¢ IC}, we may assume
that ¢, satisfies the property similar to that described above for P. So we can apply
to K', ey and 1 arguments similar to those for K, e,w; and so on. One can see that
eventually we find either a T-line @ as required, or a non-simple T-line Q' having a
circuit C which contains ey, where ¢* is the source of some K* € K. The latter is
impossible since A(eg+) > 0. o

One observation will be useful in what follows:

(8.24) let Ko, K} € K}, let ¢f be the source of K|, and let P be a tail of Ko such that
u(P) € §X 4 for some ¢ € K; then u(P) # egr -

Indeed, suppose that u(P) = e4. Let w = w; - w; - w3 be a T-line as m case ()
in Statement 8.5 applied to Ko and e4,, where ¢¢ is the source of K. Assuming that
w; = P and that P’ is the part of P with the first edge e4; and the last edge eg,, we
observe that by the rule (8.22) neither Ko nor K} can be added to the current K7; a

contradiction.

Statement 8.7. Let K € K}, and e € ET(K). Then there exists a T-line Q in I' such
that Q contains e, and \'(Q) = p'.

Proof. In view of Statement 8.5, it suffices to consider the case when e = ey for the
source ¢ of K. Rule (8.22), property (8.24) and standard arguments as above show
that there is a T-line @ in T of the form

Q=m p1 N2 H2 . "Nr" Hr,

and there is a sequence Ky, Ks, ..., K, = K of fragment-trees with the sources ¢, o9,

..., ®r = ¢ such that:

(1) ’27~'-’K1‘6K} andKlG’C-Z*—UK:E,

(ii) for i = 1,...,7 = 1,  lies in I'(K;); while pp = p- ', where y lies in T'(K) and
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¢ is strong;

(iii) for i =2,...,r, thepath P, :=my -ty 10 - prg - ... - n; 1s a tail of Kj;; the first edge
of ni, u; say, is u(F;) (see (8.21)), and u; € Z(K;-1);

(iv) either (a) n; is strong, or (b) the last edge of 1 is e4,, K1 € K}, and 1, is a tail
of Ky;

(v) if case (b) in (iv) occurs then the edge uq := u(n;) is in Zpy.

In case (iv)(b), let n; = n- 7, where the first edge of 1’ is u;. Then the last vertex
z of n is not in M, whence, by (8.8), we may assume that 7 belongs to a non-broken
line; furthermore, we may assume that the corresponding triple in 7; containing x is
not as in (5.9). In view of (8.11), we can see that

(8.25) N(Q)=p if case (a) in (iv) occurs,

=p'+¢ if case (b) in (iv) occurs.

For i1 = 2,...,r, we have \"(u;) = X(u;) + ¢ and N'(e4,) = MN(eg,) — €, by
(8.23). Hence, A"(ni) = N(m;) for i = 2,...,r.

t=1,...,r,and A"(m) = A'(m1) in case (a) in (iv). Finally, in case (b) in (iv), we have
A(egy) = N(eg,) — € (by (8.23)(ii)), whence M (m1) = A(m) — e. We now conclude
from (8.25) that \"(Q) =p'. e

Furthermore, \"(u;) = A(y;) for

Statement 8.8. For any T-line P = (zg,€y,21,...,¢ex,2¢) in T, M (P) > p'.

Proof. Let U be the set of elements e; such that e; = ey, where ¢ is the source of
some K € K}. Let W be the set of pairs (z;,e;) or (zi,eiy1) such that z; € X4 and
ei € Z(K) (respectively, e;y1 € Z(K)) for some ¢ € K € KF UK. Let Y be the set
of elements e; such that e; € Zy. By (8.23) and (8.10)(ii),

MN(P)=N(P)+elW|—¢|U| > p' +e|Y| +e|W| - €|U|.

We show that Y| + [W| — |U| > 0, whence the result will follow. To see this,
consider e; € U. Let e; = e4 for the source ¢ of K € IC'E, and let for definiteness
vg = z; (where v(¢) is the end of €4 in Xg4). The part P’ of P from 2 to z; is a tail
of K; let  := z,,(p) (see (8.21)). Since K € K%, for u := u(P’) one of the following
is true: (i) u € Zy, or (ii) u € Z(K') for some K' € K3 UK} (taking into account
(8.24)).
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In case (1), we bring €; to the element u of Zy;, and in case (ii), we bring ¢; to the
pair (z;_1,€;), where e; = u. This gives a mapping 7 of U into ¥ U W. Moreover, it

1s easy to see that 7(e) # 7(¢’) for distinct e,¢’ € U. Hence, |Y|+ |[W|—|U] > 0. e

This statement shows that for a sufficiently small ¢ > 0 the corresponding \”
satisfies the inequality distyi(s,s’) > p' (= p + 2¢) for all distinct s, s’ € T. Thus, we
make the transformation (a,v) — (a”,~") correct by taking ¢ to be

(8.26) ¢ := min{&g,1,2,€3,E4,€5},
where £g,...,e3 were defined in Sections 5§ and 6, and:
(8.27) g4 :=min{a(¢) : peH =KFUKE) ,

(8.28) €5 is the supremum of &' < £; such that (8.22) defines the same set IC}.

Remark. In fact, imposing (8.28) to restrict ¢ is redundant. More precisely, using
arguments as in the proofs of Statements 8.6-8.8, one can deduce that if /C} is changed
when we reach some ¢’ then the further growth of ¢ should cause violation of the above
distance inequalities (because a new T-line necessarily arises when ¢’ is reached); this

means that €5 > ¢3. We leave it to the reader to check this phenomenon in details.

In what follows the corresponding objects arising when we come from «, v to o, v"
will be denoted with two primes, e.g., F” denotes the support of a”, I'' denotes I,
and etc. Let H" be the set of ¢ € F” with X4 C M, and let N be the union of N
and the set of vertices 2 € M such that B(z) # 0 or z € X4 for some ¢ € H". We
say that a T-line P in T is A'-non-broken (A"-non-broken) if A'(P) = p’ (respectively,
AH(P) — pl).

The immediate corollary from the above considerations is that (6.2) is true for

F'" T ~". Also from the proofs of Statements 8.6-8.8 one can conclude that
(8.29) for any ¢ € H",

(i) each edge € in I'y belongs to a A”-non-broken T-line (and hence, e is in I'');

(i1) each z € X4 belongs to a A”-non-broken T-line P = P - P; such that z is the
last vertex of P;, and for at least one i € {1,2}, \""(e) = A'(e) for all edges e
in P,'.

In order to examine some conditions from Section 6 we need one auxilliary assertion
(Statement 8.9). First of all we observe that (8.8) can be strengthened as
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(8.30) each edge e in T that is labelled or is in I'y for some ¢ € F*UF~ U F"™ (respec-
tively, each vertex z € L U N) belongs to a A'-non-broken line P = (zo,€1,27....,
ek, Tk ) such that \'(e;) = N (e;) for i = 1,..., k; in particular, P is \"-non-broken.

Indeed, let P = (z¢.€y,21,...,€r,2k) be a A'-non-broken line with ej =e IfP
does not meet M then A”(e;) = A'(e;) for all i. Otherwise there is an edge €; connecting
LUN and M; one may assume that ¢ > j and z; € M. Since P has no edge in 7 U7,
€i € Zm, whence e; € B. Then, in view of (8.3), we can replace in P the part P(zi,zy)
by a corresponding part of a strong T-line passing z; so that the resulting T-line P’
is again A’-non-broken. This argument shows that a A’-non-broken P containing e can
be chosen so that each edge of P with at least one end in M belongs to B. Then
A"(e') = N(€') for all edges ¢’ of P.

Statement 8.9. Let € N.

(i) If P = (zo,€1,21,...,€x,%k) is a \"-non-broken T-line passing z, and Q is its
part from xo to z, then \"(Q) = MQ) +¢;

(i) #"(z) = w(z) + €.

Proof. (ii) immediately follows from (i). It suffices to check (i) for some particular A"-
non-broken P passing z; then (i) would easily follow for any \”-non-broken P passing
z, in view of (8.3). We first consider case z € N. Let r := z; for P as in (8.30). We
know (cf. (5.14)) that M'(e;) — Me;) = p(ej) for j = 1,...,k, and 5°(z;) = 0 for
J=1,...,k — 1. Hence,

1—1

M(Q) = MQ) = N(Q) = MQ) = p°(Q) = p*(z0,€1) + Y_ 7°(2;) + p°(z, &)

j=1
= p*(zo,e1) + p°(z,ei) =€ + p°(z,¢;) = €.

(since p*(z',€') = 0 for any =’ € N).

Now let z € N — N. If B(z) # 0 then we may assume that P is a strong T-line
passing ¢ and use arguments as above (taking into account that A"(e) = M (e) for all
edges e in P, and that p(z,¢e’) = 0 (since z € M)). Finally, if z € X4 for some ¢ € H",
consider P = P; - P; as in (8.29)(ii). Let for definiteness \"(e) = X(e) for all edges in
Py, =: Q. By arguments as above, A"(Q) — A\(Q) =¢. o

This statement has an analogue for z € L; it will be used in the next section.

Statement 8.10. Let x € L. If P = (xo,€1,21,...,€k,Zk) is a X' -non-broken T-line
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passing z, and Q is its part from zg tox = x;, then N (Q)~\Q) = e+p°(z,€i) € {0,2¢}.

Proof. We have N(Q) — MQ) = p*(z0,€1) + p°(z,€i) = ¢ + p°(z,¢€;), and p*(x,€;) €
{—¢e,e} (by (5.5)). e

Now we check one key condition from Section 6.

Statement 8.11. (6.6) is true for F” and J" (where J" := {e € EG : \'(e) = 0}).

Proof. Let e = vz € J”. If both v and z are in X4 for some ¢ € F” then e € J, and
the result immediately follows from (6.6) for F and J. Hence, we may assume that
e € 6X, for some ¢ € F"™**; let for definiteness v € X4. Since c(e) > 0 and A’(e) =0,
we may assume that e € Uy for this ¢. We have seen in Section 6 that (6.4) is valid for
F', so it is valid for F” too (since F” C F'). Thus, e ¢ Uy for all ¢’ € F" such that
Xg¢ C X4. If there is no qﬁ’ F" such that z € X4/, we are done. So we may assume
that such a ¢’ exists; then! X¢ N X4 = 0. We have to show that e ¢ Ugy. By (6.4), it
suffices to consider ¢’ with maximal X4 (i.e. ¢’ € F"™*),

(1) Let e € B. Since v,z € N UM, we have A’(e) = A(e) (by Statement 8.9 and
the fact that e is in a strong T-line). Hence, ¢ € J. If both ¢, ¢’ are in F then the
result follows from (6.6) for F and J. Suppose that some of ¢, ¢’ is in F"*%. Then at
least one end (in I'*) of e is labelled. Now by Statement 6.4(1), e = e4 = ey, whence
€ Q U¢l.

(i1) Let e € Z. Suppose, for a contradiction, that e € Uyg. Then e = e4. Hence,
e is a feasible edge in ' (by (6.2) if ¢’ € F, and by forming a blossom if ¢ € F"V).
Also we must have A(e) > 0 (by (6.6) for F and J). Consider possible cases.

(a) v,z € M. Then there are a fragment-tree K and ¢;,¢; € K such that Xy C
Xy, and Xy C X4,. The fact that ey = e # ey implies that either ¢; = ¢2, or
€4y = € # €4,. In both cases, A(e) = M (e) = \'(e), whence A(e) = 0; a contradiction.

(b) [{z,v}NM]| = 1. Since e is feasible, the only possible caseis $ € F~ and ¢’ € H.
Then Xg C X4, where ¢” is the source of some K € K%. We have X (e) = Ae) +¢
(see (8.10)(ii); here p* = 0) and A”(e) = A'(e) — €, whence A(e) = 0; a contradiction.

(¢) z,v € N. Since ¢ is feasible and Uy F € € Uy, there are ¢; € F+ U F"*¥ and
$2 € F~ such that Xy C X4, and Xg C Xy, ; for some i € {1,2}. This implies that
A(e) = X(e) = A'(e), whence e € J. Then e € Uy,_; (by (6.6) for F and J), whence
e & Uy (by (6.4)); a contradiction. e

It remains to check (6.5),(6.8),(6.16) and (6.18). (6.16) for J” is trivial. To see
(6.5), consider an edge € = zy € EG with \"(e) = 0 (i.e. e € J"). Since c(¢) > 0 and
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7"(e) = 0, e must belong to X, — U, for some ¢ € F”; let for definiteness r € X,.
By (8.29) or (8.30), there is a T-line P in T passing . Replacing in P the vertex z
by the sequence z,€,y,¢,z we get a T-path P’ for which A\”(P’) = \"(P), whence ¢ is
in I'". Next, obviously, v"(e) =0 if e € Z. And if e € B then 4"(e) = 0 is implied by
(6.6) and (6.2)(ii). Finally, suppose that one end of €, z say, is in T. We know that
no terminal belong to a blossom in Q (for otherwise an augmenting path in I' would
exist). Hence, z € L. Since \"(e) = 0 and = € T, there is ¢ € F” such that y € X,.
By Statement 8.9 (applied to y), 7"(y) = n(y) + € > 0. On the other hand, 7" (z) = 0
(as € T) and A(e) = 0 show that 7”(y) = 0; a contradiction. Thus, (6.5) for a’,~"
is valid.

To show (6.8), consider a representation B = U(P € P) as in Statement 6.1 (for
Iy A). It is easy to see that no P € P can contain a triple as in (5.9) (otherwise some
P’ € P passing x would have both ends at the same terminal). Hence, each P € P is
strong, so P consists of T-lines for I'", A”. Now part “if” in Statement 6.1 applied to

B,P, )" says that B is regular with respect to \” (and the corresponding attachments
I'"). Thus, (6.8) is valid.

The final stage in the proof of Theorem 2 is the following.

Statement 8.12. Each ¢ € F" satisfies (6.18) (for B,a",+").

Proof. We know that the graphs I'y and I'y are the same (and similarly for T % and
I'"%); moreover, the sets of feasible edges in I'y and I'; are the same. Consider z € X7.
If z = fy for ¢' € Fj = F4 then, obviously,

(8.31) for edges e, €’ in I'} incident to z, if 7 = (e, x,¢’) is an I-fork then 7 is an I"-fork

(since the root €4 is not changed, and the attachments are not important in this case).
Let z be ordinary in X e We assert that

(8.32) if e = zy is an edge in I such that (x) y € X}, or () e € B and e # ey, then

I"(z,e) = l(z,¢), )

assuming by induction that a similar property is valid for any ¢’ € F with X4 C X,.
(1) If e € ¢ then e € (", whence I"(z,¢e) = l(z,e) = 0.

(ii) Let either y € X and Ae) > 0, or y ¢ X3 and A(e) > 0, or y ¢ X3,
e € B and e # e4. Then A(e) > 0 and \’(e) > 0. Choose a A\’-non-broken T-line
P = (zo,€1,71,..., €k, k) containing e; let for definiteness ¢ = z; and y = z;1;. Put
s := z9, 8 := 2 and Q := P(s,z). Then r is in one of V,,V,,V*. By Statement
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8.9, A"(Q) = MQ) + &. This implies that if A(Q) is equal to (less than, greater than)
p/2, then \"(Q) is equal to (respectively, less than, greater than) p’/2. Hence, x is in
V, (respectively, Vo, V*) if and only if z is in V]’ (respectively, V[, V"*). Next. since
Ale) >0 and y = ziq1, dista(s, z) < distr(s,y). This implies that if z is in Vi (V. V)
then I(z,e) is —s (respectively, s',s’). Similarly, if z is in V" (V] V") then "(x.¢€) is
—s (respectively, s',s’). Hence, I"(z,e) = I(z,€).

(iii) Let ¢ € 3. Then y € X4 and e = ey for some ¢ € Fp. Let H and H"
be the 0-components for § and 3", respectively, that contain e. Let H; (Hy) be the
component of H — {e} (respectively, H" — {e}) that contains y. Then H; lies in I'yr,
and therefore, H; coincides with H{'. Moreover, from (8.32) for ¢’ it follows that for
any z € VH; and ¢ € (—t,1) the sets B (s)(z) and B:I'+(z) are the same. Since {(z,¢€)
is determined by the subtrees H' of H; together with the sets B (z) for z € VH', and

similarly for I"(z, €), we conclude that I"(z,e) = {(z,€).

Thus, (8.32) is true. Let v be the end of e4 in Xj. Clearly, (8.32) implies (8.31)
for an ordinary z different from v. Hence, (8.31) holds for all z € X — {v}. If (8.31)
is true for z := v (e.g., if v is non-ordinary) then the statement obviously follows. So
assume that z := v is ordinary, and e = eg. If A(e) > 0 and A”(e) > 0, one can show
that ["(z,e) = l(x,€) by applying arguments as in (ii) above. Then (8.31) holds for v,
and we are done.

Suppose that s := l(z,e4) and s’ := 1"(z, e4) are different, and that at least one of
A(eg), \'(eg) is zero. The latter implies that ey € B. By (8.32), we have,

(8.33) B"(z) = B(z); B{(z)=Bi(z) —{es}; By(e)=By(z)U{es};
and By (z) = By(z) for any g € (—t,t) — {s,s'}.

_ This shows that if s’ is not I"-tight for « then (8.31) holds. So we may assume
that s’ is I"-tight for z. (8.32)-(8.33) imply that, for an edge e in I'} incident to z, if
7 = (e4,,€) is an [-fork then 7 is an ["-fork. Now the existence of paths as in (6.18)
(for I") is shown by a similar method as in the first part of the proof of Statement 7.1.

This completes the proof of Theorems 2 and 1. e ¢

9. Complexity of the algorithm
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The above proof provides an algorithm for solving problem (1.2) (as well as (1.1)).
It starts with B =0, a =0, v = 0 and p = py (for A := ¢4 ,4) and, on an iteration,
either (1) it transforms B into B’ with u(B') = u(B) + 2, or (ii) it transforms the
current o, into o', 4" so that p’ := pyv > py (where N’ := con 4, and (a”,5")

is obtained from (a’,~') as described in the previous section). Let us say that the

k]

iteration 1s positive (negative) if (1) (respectively, (ii)) happens. Since u(B') < 2|EG
the number of positive iterations is O(|EG|). Thus, to show that the algorithm is finite,
and moreover, polynomial, we have to estimate the number of negative iterations going
in succession (without interruption by a positive iteration). We prove that this amount
is bounded by a polynomial in [V G| + |EG|. Hence, for an arbitrary p the algorithm
finishs after executing a polynomial number of iterations (in fact, we assume that p
is large; then the algorithm stops, on a negative iteration, whenever ¢ as in (8.26)
becomes infinite). We also shall explain that an iteration can be executed in a strongly

polynomial time. So it will provide that the whole algorithm is strongly polynomial.

Consider a negative iteration, using terminology and notation as in the previous
section. The core of the proof that the number of consecutive negative iterations is

bounded by a polynomial is the following.

Statement 9.1. Let u be a 1-labelled edge in T'*. Then u is labelled in T"'" either in
both directions or in the same direction as in I'*.

Proof. Since u is labelled in I'*, there is an active path R in I'* containing u. We show
that there is an active path R’ in I'"* that passes u in the same direction as R does.
We know that if an edge e is labelled in I'™* then e is feasible with respect to a”,v" (i.e.
e is in I'""" and 4”(e) = 0), and that A\"(e) = M (e). The folloving is obvious:

(9.1) if 7 = (e, fg,€') is a fork in T'* such that e, ¢’ are labelled, and either ¢ € F7, or
é € F~ and a(¢p) > ¢ (i.e. ¢ € F") then 7 is a fork in I''";

(9.2) if ¢ € F**V, and e € 6X4 — {ey} is a labelled edge in T'*, then (e4, fo,€) is a fork

- *
in I

(93)if g € F7, a(¢) = ¢ (ie. ¢ ¢ F"), and e € X, — {es} is a labelled edge
in T'*, then there is a sequence (e;,z1,€2...,2k,ex) such that e; = ey, ex = ¢,
Zi,...,Tk € X;, and each (e;, z;,€e:41) is a fork in T,

[The latter follows from (6.18) for o”,~". For brevity we say that a triple (e,z,¢’) is a
fork in T* (I'"*) if it is a fork for B, a,~,! (respectively, for B,a',v",1").] Therefore,

it suffices to prove the following.
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Claim. Let z € L. Let W (W') be the set of edges in T incident to z and labelled
as entering (respectively, leaving) z. Let e = zy € W and ¢’ = zz € W'. Then

T = (e,z,€e') is a fork in T"".
Proof. Since z does not form an elementary blossom (see (4.4)(iv)),

(9.4) there is s € (—t,t) such that s is B,l-tight for , W C Z,(z) U (B(z) — Bs(z))
and W' C (Z(z) — Z4(z)) U Bs(z).

Consider a representation B = U(P € P) as in Statement 6.1 (for I'). Then each
P € P is N-non-broken, and A"(h) = X (k) for any edge h in P. Let P’ be the set of
P € P passing z. From (6.15) it follows that each P € P’ meets both B' := B,(z) and
B? := B(z) — B,(z).

For P € P’ let sp (tp) denote the first (last) vertex in P, and let P; (P%) denote
the part of P from sp to z (respectively, from z to tp). We may assume that P meets
B! earlier than B?, i.e. PN B! # . Since s is tight for z, the only possible cases are
(cf. (6.15)):

(9.5) (i) s >0,z € V,UV* and for any P € P’, sp = s and tp # s;

(ii) 8" := —s >0,z € Vg, and for any P € P', tp = &' and sp # s'.
This implies that

(9.6) for any P, P’, both Py - P} and P] - P; are X'-non-broken T-lines in T, and hence,
they are \’-non-broken T-lines.

Note also that

(9.7) for any A\”-non-broken T-line P’ = (zo,e1,21,.. ., €k, Tk) with z = z;, I"(zi,€i) #
I"(z;,ei+1) unless I"(z;,e;) = I"(zi,ei41) = 0; in particular, this is true for any
P eP.
{
Return to e, ¢’ as in the hypotheses of the claim.

Case 1. e e’ € B. By (9.6), we may assume that some P € P contains both e, €'.
Suppose that 7 is not a fork in I'"*. Then there is ¢ € (—t,t) such that

-~

98) [k eB(x) : I"(z,k) = ¢}| = |B(@)|/2, "(z,€) #q and I"(z,€) #q.
This implies that there exists P’ € P’ — {P} containing two edges h,h’ € B(z) such
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Case 2. e,e’ € Z. If M'(e) = 0 then ["(e) = 0, whence 7 is a fork in I'; and
similarly for €¢’. So we may assume that e,e’ ¢ (. We assert that

that ["(z,h) = "(z,h’) = ¢; a contradiction with (9.7).

(9.9) there is a A\”-non-broken T-line R = (vo,u1,v1,...,Um,vm) With u; = €, v; = .

!
Ui41 = €.

Indeed, by (8.30), e (¢’) belongs to a A'-non-broken T-line Q (respectively, D) in
T with A\’(h) = N (h) for all edges h in Q (respectively, D). Let @ = @1 - Q2 and
D = D, - Dy, where € and z (¢’ and z) are the last edge and vertex in Qi(respectively,
D). By (8.3), at least one of the following is true: (i) R := (1 -Di' and R := Q3 - Dy
are T-lines in T'; (1) R := @; - D, and R' := D, - Q2 are T-lines in I'. Note that in
both cases \/(R) + X'(R') = \"(Q) + \'(D) = 2p’ implies that A"(R) = \"(R') = p’.
Thus, if (i) occurs, R is as required in (9.9). Suppose that (ii) occurs. Then A(Q1) +
MD3) = MR) = p= MND) = AD1) + M D) implies that A(Q1) = M(D); and similarly
A (Q1) = M'(D1). On the other hand, \"(Q;) = X (Q1) = A(@1) (in view of Statement
8.10 and the fact that p*(z,e) = —¢, by (5.5)), while A"(Dq) = X (D1) = MD1) + 2¢
(since p*(z,€') = €, by (5.5)); a contradiction. Hence, (ii) is impossible, and (9.9) is

true.

Since I"(xz,¢e) # 0 # I"(z,€') (in view of e,€¢’ € ("), and e, ¢’ belong to a T-line R
in T, we conclude that I"(z,e) # I"(z,€') (by (9.7)). Then 7 is a fork in I'"'".

Case 9. e € B and ¢ € Z. Consider P = P, - P, € P’ containing e (to be the
last edge of P;), and a path D = D, - D, containing €', where D is as in Case 2.
Let Ry := Dy -Pl"1 and Ry := D; - P;. By arguments as in Case 2, for at least one
i € {1,2}, R; is a \"-non-broken T-line. Applying Statement 8.10 and (5.5), we get
A(Dy) = MDy) + 2¢ and M'(Py) = A(Py) + 2¢ (as p*(z,e) = € = p°(z,€')), whence
M(R;) = MRy) + 4e. This shows that Ry cannot be a T-line simultaneously in T' and
T, Therefore, i = 2. Suppose that 7 is not a fork in I'*. Then e € B(z) — By (z) and
e € Z](z) for some q € (—t,t) tight for z, B,1". Let e be the first edge in P,. Then
¢’ € By(x). Hence, I"(z,¢') =1"(z,€") = q # 0; this is impossible (by (9.7)) because
R, is a T-line in T"*,

Case 4. e € Z and ¢ € B. Consider a path @ = Q; - Q2 as in Case 2 and the
path P = P, - P, € P containing ¢’ (to be the first edge of P2). Let Ry := Q1 - P2 and
Ry := Qp - P["'. Then for at least one 7 € {1,2}, R; is a \"-non-broken T-line. By
Statement 8.10 and (5.5), \'(@1) = M@1) and N'(P;) = A(P,) (as p°(z,e) = —¢ =
p¢(z,€')), whence \'(R;) = A(R1). Therefore, i = 2. Now using arguments as in Case
3, we show that if 7 is not a fork in I'"* then I"(z,e) = I"(z,€") =g # 0, whence €” is
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the last edge in P;. Hence, R; cannot be a line in T"*. o
This completes the proof of Statement 9.1. e e

Consider two concecutive iterations, i-th and ¢ + 1-th ones, of the algorithm.
Let both iterations be negative. We denote by aj,v;, A;, T, Fj, F**%, H™** the cor-
responding objects at the beginning of j-th iteration, and L]-,AQ,M]-,ff,fj_,sj,si

(r =0,...,5) the corresponding objects found on this iteration. Define

ny := |Lil;
ny =Y (1Xol* : ¢ € FY UFY);
ny =Y (1Xs* : ¢ € F7 UHP™).

and define n},nj,nj to be the corresponding numbers for ¢ + 1. From Statement 9.1

one can deduce that:

(i) each z € L; is contained either in L;4; or in a blossom found on :4-1-th iteration
(i.e. x € X4 for some ¢ € FIEV);

(ii) for each ¢ € F;" UFPeY, either ¢ € F}1,, or f4 is contained in a blossom found
on 7 + 1-th iteration (i.e. Xy C X4 for some ¢ € FIFV).

This implies that

(9.10) ny + ng < nj 4+ nj, and ny + ny = nj + ny holds if and only if L; = L4y,
Fro=FUFreY and Frey = 0.

1

Next, since a;4+1(®) < a;(¢) for any ¢ € F~ U H™2X]
(9.11) nj < ng, and n3 = n3 holds if and only if F,; = F; and HIY = HI**.

1

Thus,

(9.12) ny 4 ne — ng < nj +ny — nj.

We assert that this inequality must be strict. Indeed, by definition of &' (see (8.26))
at least one of the following events happens on i-th iteration:

(E1) for some ¢ € F~ UH™**, a(¢) becomes zero (i.e. ai(¢) > ait1(¢) = 0);
(E2) for some e € ET, A(e) becomes zero (i.e. Aij(e) > Aiy1(e) = 0);
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(E3) for some e € ET, ~(¢) becomes zero (i.e. yi(e) > yit1(e) = 0);

i

(E4) some new T-line appears in the current I’

(taking into account the Remark concerning ¢ in Section 8). Each of events (E1)-
(E4) makes it impossible to take e greater than the corresponding ¢, (r € {0,...,5})
stipulating this event (this is trivial for (E1)-(E3) and can be easily shown for (E4)). On
the other hand, the equality in (9.12) would mean that the “configuration” (defined by
FHUF"e¥, F~, and the set of 1-labelled edges) remains the same. This implies that we
could apply to («a;,7i) the transformation with € + ¢**!, instead of ¢': a contradiction

with the maximality of ¢t.

Since |n} +nj —ng| < |VG|+|VG/?, the number of consecutive negative iterations
is (O(]VG|?), as required. (in fact, one can show that this amount is O(|V G|), however,

this is not important for us here).

As to the running time required to execute one iteration, the only point which needs
some explanations is how to compute the value min{es, £}, where z := min{eo, ¢, ¢,
€4}. We refer to [Kal,Ka2] where a similar task is solved by a simple method in strongly
polynomial time. (Roughly speaking, we first try ¢ := €. If p := py¢ turns out to be
less than p + 2¢, we search for a T-path P in G for which A\*(P) = p, and try again
with ¢’ (< ¢) such that A\* (P) = p+ 2¢’, and so on. One can show that the required €3
will be found in a polynomial (in |V G|) number of applications of such a procedure.)

10. Proof of Theorem 3

Consider a, v, \,I'; F, L, N, M on the final iteration, i.e. when ¢ = oo occurs. Then
F~ = 0. Fix a large positive real ¢, and consider objects (denoting them with primes)
arising when we transform (a,7) into (o := a®, 7' := +*). We observe that

- (10.1) v'(e) > v(e) and M'(e) > A(e) for any e € EG

(for if, e.g., 7'(e) < ~(e) then the choice of ¢ to be large enough would imply that
~'(e) < 0).

Next, obviously, every T, \'-line P = (o, 1,21,...,€k,2) (in IY = I'*) is a non-
broken T, A-line (in T'), and vice versa. For such a P we have p'(z;) = 0 for i =
1,...,k— 1, and X(e;) = Ae;) + p'(ej) for j = 1,...,k (where p’ and p’ stand for p°
and p*, respectively). In view of p'(xo,e1) = p'(zk, ex) = € and N (P) = A(P) + 2¢, this

implies that there are 0 <: < 5 < k such that:
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(10.2) P2y, eq01) = —p'(xg,60) =€ for ¢=0,....7
p(zq,eq) = —p'(Tqs€q+1) for g=7,...,k;

=¢£
p'(rq,eq)zp'(xq,eq+1)=0 for q:i+17'-'7j_1:,

or, equivalently, 7 (j) is the maximum (minimum) index such that N (P(zo,zi)) =
M P(zo,x;)) (respectively, N'(P(z;,zk)) = MP(zj,zk))). Note that

(10.3) M(e) = Ae) foreach e€ EG — ET'

since M'(e) > Ae) for e € EG — ET’ would imply that ¢ € Uy for some ¢ € F :=
F+ U Frev which is impossible. For s € T define Wy to be the set of z € VIV such
that there is a line P’ from s to z for which M (P') = A(P’). Let Y, be the union of Wy
and the set of vertices z € VG such that z is reachable from W, by a path having all
its edges in EG — ET". We assert that {Y, : s € T} achives the equality in Theorem 3.

First of all, from (10.2),(10.3) and the fact that ¢ is large it follows that

(10.4) (i) W, C V2
(i1) W, C L;
(i) Y, NV = Wy;
(iv) the sets Y, are pairwise-disjoint;
)

(v) each T-line P in I meets Y, at most once, and if P meets §Y, then s is an
end of P.

Let B = U(P € P), where P consists of p(B)/2 edge-disjoint T-lines. (10.4)(v)
shows that the number £, of edges e € 8Y, such that e € B 1s equal to the number of
paths in P with one end at s. Hence,

(10.5) |P| = %Z({s : s €T).

Now consider an edge e = zy ¢ B with z ¢ Y > y. By (10)(iii),(v), e € ET’, and
there is a T-line P = (2o, €1,21,..-,€k,Tk) With 2o = s passing y, e,z in this order; let
e = e; (then z = z;). By (10.4)(i),(ii), !'(y,e) = —s and y € L, therefore, € is labelled
from y to z. The case z € L is impossible (for if z € L, we would have p'(z,€) = —¢
(by (5.5)), whence X' (P(zo,2)) = A(P(zg,z)) and z € W). Thus,
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(10.6) e=e; for some ¢ € F.

Let G’ be the subgraph of G induced by Y := VG — U(Y, : s € T)., and let K be
the component of G’ containing the above vertex z. To complete the proof of Theorem
3, it suffices to show that

(10.7) e is the only edge in §(V K) that is not in B.

To see (10.7), consider a fragment ¢’ € F and an edge u = vz € §Xy — {es}
with v € Xy.

(1) Let w € Z. Then u ¢ Uy, whence &'(u) < a(u) (where &' stands for @¢). On
the other hand, we have 0 < M(u) = A(u) +@'(u) — a(u) (as v'(u) = v(u) = 0). Hence,
a'(u) = a(u). This is possible only if u = e4 for some ¢” € F.

(i1) Let v € B. Since p'(v,u) = 0 and p’'(u) > 0, p'(z,u) > 0. If p'(z,u) > 0
then z € Vs for some s’ € T, in view of (10.2). Suppose that p'(z,u) = 0. Then
A(u) = M u), whence, in view of (5.3) and the fact that u € Uy, v'(u) > y(u) is
possible only if u € X4+ — Uy for some ¢ € F —{¢'}. So u is the root of ¢".

Now return to e and ¢ as above, and consider the set H of ¢’ € F such that either
¢' = ¢ or there is a sequence ¢1,...,¢x such that ¢ = ¢', ¢ = ¢ and ey, € Xy,
fori=1,...,k—1. Let K' :== U(Xy : ¢’ € H). Arguments in (i) and (ii) above easily
imply that K’ coincides with the set VK, whence K satisfies (10.7). o

References

(Ed] Edmonds, J., Paths, trees, and flowers, Canadian J. of Mathematics 17 (1965)
449-467.

[Ch] Cherkassky, B.V: A solution of a problem on multicommodity flows in a
network. Ekon. Mat. Metody 13 (1)(1977) 143-151 (Russian).

[Kal] Karzanov, A.V., A minimum cost maximum multifiow problem, in: Combi-
natorial Methods for Flow Problems (Inst. for System Studies, Moscow, 1979, iss. 3)
138-156, in Russian.

[Ka2] Karzanov, A.V., Minimum cost multiflows in undirected networks, Report
RR 849-M-, IMAG ARTEMIS, Grenoble, 1991, 22p; submitted to Mathematical Pro-
gramming.

65



[Lom] Lomonosov, M.V., On packing chains in a multigraph, Unpublished manu-

script, 1977.

[Lov] Lovész, L.: On some connectivity properties of Eulerian graphs. Acta Math.
Akad. Sci. Hung. 28 (1976) 129-138.

[Mal] Mader, W., Uber die Maximalzahl kantendisjunkter A-Wege, Arch. Math.
30 (1978) 325-336.

[Ma2] Mader, W., Uber die Maximalzahl kreuzungsfreier H-Wege, Arch. Math.
31 (1978) 387-402.

66



