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HALF-INTEGRAL FLOWS IN A PLANAR GRAPH
WITH FOUR HOLES

Alexander V. Karzanov

Institute for Systems Analysis of Russian Acad. Sci.
9, Prospect 60 Let Oktyabrya, 117912 Moscow, Russia !

Abstract. This paper contains an improved and shorter proof of the main theorem in [Ka3].

Suppose that G = (VG, EG) is a planar graph embedded in the euclidean plane, that
I,J,K,O are four of its faces (called holes in G), that 81300y 8ryl1yeeey By are vertices of G
such that each pair {3,',t,'} belongs to the boundary of some of I,J, K, O, and that the graph
(VG,EGU {{s1,%1},..:s{8ryr}}) is eulerian.

We prove that if the multi(commodity)flow problem in G with unit demands on the values of
flows from 8; to t; (¢ = 1,...,7) has a solution then it has a half-tniegral solution as well. In other
words, there exist paths Pf ’ Plz ’ le ’ Pzz, very P,!, P,? in G such that each Pij connects 8; and ;, and
each edge of 7 is covered at most twice by these paths. (It is known that in case of at most three holes
there exist edge-disjoint paths connecting 8; and ¢;, ¢ = 1,...,7, provided that the corresponding

multiflow problem has a solution, but this is, in general, false in case of four holes.)

1. Introduction

Throughout, we deal with an undirected planar graph G; speaking of a planar
graph we mean that some of its embeddings in the euclidean plane R? (or the sphere
S?) is fixed. V@ is the vertex set, EG is the edge set of G (multiple edges and loops
are admitted), and F = Fg is the set of faces of G. A subset H C F of faces of G,
called its holes, is distinguished. Let U = {{s1,%1},...,{sr,tr}} be a family of pairs
(possibly repeated) of vertices of G such that each {s;,t;} is contained in the boundary
bd(I) of some hole I € H.

Problem (G,U, k): given an integer k > 1, find paths P},...,Pf,...,PL,..., Pk

in G such that each Pij connects 8; and t;, and each edge of G occurs at most k times

in these paths.

i The original version of the paper was done while the author was visiting IMAG ARTEMIS
(Université Fourier Grenoble 1, BP53x, 38041 Grenoble Cedex, France) and supported by “Chaire

municipale” granted by Mairie de Grenoble. The present version was done while visiting DIMACS
(Rutgers University, NJ, U.S.A.) in July 1993.




If no restriction on k is imposed, the problem is denoted as (G,U)*; thus (G, U)*
is the fractional relaxation of (G, U, 1), or the multi(commodity)flow problem with unit
capacities of the edges of G and unit demands on the values of flows connecting pairs
in U. We prove the following theorem.

Theorem 1. Let |H| = 4, and let the graph (VG,EGU U) be eulerian, that is,

(1.1) |6X|+ |{i : 6X separates s; and ;}| is even for any X C VG@G.

Let (G,U)* have a solution. Then (G,U,2) has a solution as well; in other words, there
exist P!, P?,P},PZ,..., P}, P} such that each P} is a path in G connecting s; and t;,
and each edge of G is covered at most twice by these paths.

[For XCV, 6X = §G X denotes the set of edges of G with one end in X and the
other in VG — X; a nonempty set 6X is called a cut in G; we say that §X separates

vertices z and y if exactly one of z,y is in X.] An obvious necessary condition for
solvability of (G,U, k) for arbitrary G, U,k is the cut condition:

(1.2) each cut §X in G separates at most |6X| pairsin U.

The following theorem is well known.

Okamura’s theorem [Ok]. If |H| = 2 and if (1.1) and (1.2) hold then (G,U,1) has a
solution (that is, there exist edge-disjoint paths Py,...,Pr in G such that P; connects
s; and ti).

(A similar result for [H| = 1 is proved in [OkS].) The cut condition is, in general, not
sufficient for the solvability of (G, U, k) if |H| = 3. Nevertheless, the following is true.

Theorem 2 [Ka2]. Let |H| = 3, and let (1.1) and (1.2) hold. The problem (G,U,1)
has a solution if for any 2,3-metric m on VG the following inequality holds:-.

(1.3) S (m(e) : e€ EG) 2 S (mlsiyts) 1 i=1,000,7)

[ By a metric on a set V we mean a real-valued function m on V x V satisfying
m(z,z) =0, m(z,y) = m(y,z) and m(z,y) + m(y,z) 2 m(z,z) for all z,y,z € V. We
say that m is induced by (H,o), where H is a graph and o is a mapping of V into
VH, if m(z,y) = dist® (o(z),o(y)) for all z,y € V. Here distG’(:v',y’) denotes the
distance in a graph G' between vertices z' and y'. When it is not confusing, we say
that m is induced by H or m is induced by o. If o(V) = VH and H is the complete
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graph K, on two vertices (the complete bipartite graph K, 3 with parts of two and
three vertices) then m is called a cut-metric (respectively, a 2,3-metric).] Note that
satisfying (1.3) with any metric m on V@ is necessary for the solvability of (G, U, k)
for arbitrary G, U, k because if Pij ’s give a solution of (G, U, k) then

r k T
E m(e) 2 %ZZZ(m(e) i e€ P,’) > Zm(s,-,t,-)

e€EG i=1 j=1 i=1

(we write e € P/ considering a path as an edge-set). Thus, if [H] < 3, (1.1) holds, and
(G,U)* has a solution then (G,U,1) has a solution as well. Such a property does not
remain, in general, true for || = 4, as shown in [Ka2]. Hence, for |H| = 4 Theorem 1
provides the least (in terms of ) value of k for which (@, U, k) has a solution in the
eulerian case. Another feature of case |H| = 4 is that more exotic metrics are involved
in the solvability criterion for (G,U)*. We say that a metric induced by a bipartite
planar graph H with |Fg| = 4 is a 4f-metric.

Theorem 3 [Kal]. For |H| = 4, (G,U)* is solvable if and only if (1.3) holds for every
m that is a cut-metric or a 2,3-metric or a 4f-metric.

The proof of Theorem 1 will rely essentially on a strengthening of the fractional
version of Theorem 2 and a strengthening of Theorem 3 (Theorems 4 and 5 below);
they describe classes of 2,3- and 4f-metrics sufficient for verification of solvability of
(G,U)*. To state these, we need some terminilogy, conventions and simple facts about

multiflows and metrics.

First, the faces of a planar graph are considered as open regions in the plane. An
edge e with end vertices « and y is identified with the corresponding curve in the plane
(z and y are usually not included in the curve); when it leads to no confusion, e is
denoted by zy. A path (circuit) P = (zo,€1,21,...,€k,zx) (where z;’s are vertices
and e;’s are edges) is denoted by z¢z; ...z and called an zy — zx path; P is often
considered up to reversing and, if P is a circuit, shifting cyclically. |P] is the number
k of edges in P;if |[P| = 0, P is called trivial. A path P from z to y is called an =z — y
path; if both = and y are in the boundary of a face F' we say that P is an F-path. The
boundary bd(F) of a face F is identified with the corresponding (possibly not simple)
circuit. For g : E — R and E' C E, g(E') denotes ) (g(e) : e € E'); in particular,
we write g(P) for a function g on the edges of a graph and a path (or circuit) P,
considering P as an edge-set.

Second, consider a planar graph G' with a set H' of holes. For F € Fgr let Wr
denote the set of pairs {s,t} of vertices in bd(F), and let Wy := U(Wp : F € H').
Suppose we are given a family U’ of pairs in Wy, and functions ¢’ : EG' — Q_ (of
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capacities of edges) and d' : U' — Q. (of demands). Denote by P(G',s,t) the set of
simple paths in G connecting vertices s and ¢. Let P(G',U") := U(P(G', s,1) : {s,t} €
U'). We denote by (c',d’) the multifiow problem: find a function f : PG, U') - Q.
satisfying:

(1.4) fo =) (f(P) : ec PeP(G,U")) < () forall ec EG';
(1.5) Y (f(P) : PeP(G,s,t) =d(s;t) forall (s,t) €U’

(when ¢ and d' are all-unit, (c', d') turns into (G',U’)*). We say that f satisfying (1.4)-
(1.5) is a (¢', d')-admissible multiflow. Applying Farkas lemma to the system (1.4)-(1.5)
and then making easy transformations, one can obtain the following criterion (this is

valid for arbitrary G',U’,¢',d’ [Lo]):

(1.6) Solvability criterion: (c',d') is solvable if and only if the inequality ¢'(m) < d'(m)
holds for any metric m on VG', where ¢/(m) := Y cge €' (e)m(e) and d'(m) :=
E(a,t)eU' d'(s,t)m(s,1).

Third, we say that a metric m on VG’ is bipartite if m is integer-valued and the
length m(C) of every circuit C in G' is even (in particular, every cut-, 2,3- or 4f-metric
is bipartite). A bipartite m is called H'-primitive if there are no non-zero bipartite
metrics m' and m" on VG' such that m(e) > m/'(e) + m'(e) for all e € EG' and
m(s,t) < m'(s,t) + m"(s,t) for all {s,t} € Wy. A simple observation is that in
criterion (1.6) it suffices to consider the H'-primitive metrics rather that all metrics
m on VG'; in other words, if (c',d') is unsolvable then ¢'(m) < d'(m) holds for some
H'-primitive m.

Fourth, let m be a metric induced by o : VG' — VH, where H is a bipartite
planar graph with |Fg| = |H'|. As a rule, we shall deal with the situation when o
yields a certain topological correspondence of the face structures for G' and H. More
precisely, o can be extended to a continuous mapping of R? into itself so that:

(1.7) (i) for any point z € R? each of the sets c~'(z) and R? — 6~%(z) is connected,
and o0~1(z) is compact;

(ii) each hole F € H' is mapped homeomorphically to a face of H;
(iii) for each edge e = zy € EG' the path (z, ¢,y) is mapped homeomorphically to

a simple path in H unless it is mapped to a single point.

In this case we say that m is consistent. For convenience we also assume that o preserves
orientation clockwise in R?. From (i)-(ii) and the fact that |[Fg| = |H'| it follows that
o gives a one-to-one correspondence of the holes in G' to the faces in H, and that the
unbounded face of G' is a hole. It was shown in [Kal] that
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(1.8) if |H'| = 3 (|H'| = 4) then any H’-primitive 2,3-metric (respectively, 4f-metric) on
VG’ is consistent.

Suppose that |H'| = 3. Let m be a consistent 2,3-metric induced by ¢ : VG' —
VK3, and let {y1,y2} and {z1,22,2z3} be the parts in VK, 3. Denote by II(¢) the
(ordered) partition (Si,S2,53,T1,T2) of VG', where S; := 6™!(2;) N VG' and T :=
o~ 1(y;)N VG Let ®; denote the closed region o~!(z;) in R%. One can see that there
is a labelling I, I3, I3 = Iy of the holes such that (see Fig. 1.1):

(1.9) ®: Nbd(I,) = 0 if and only if p = #; and the space (o) :==R* - (L UL UL U
®, U $, U ®3) consists of two disjoint regions, one containing 7; and the other
containing T5. '

Y1

X1 X3

y2

(@) Ky3

Fig. 1.1

Theorem 4 [Kal|. Let |H'| = 3, and let m be an H'-primitive 2,3-metric induced by
oc: VG — VKy3. Let O(o) = (51,532,95:,T1,T2) and I ,I,I; be defined as above
(taking into account that m is consistent, by (1.8)). Then:

(i) all sets in II(o) are nonempty;

(ii) for i = 1,2, 3 the subgraph (S;} in G' induced by S; is connected, and S; meets
both bd(I,_l) and bd(I‘.H) .

In particular, no edge of G' connects Ty and T>.

In Section 2 we show how Okamura’s theorem and Theorem 4 are applied in order
to prove that in the eulerian case a solvable problem (G,U)* with |H| = 4 has a 1/4-
integral solution; this proof is relatively easy. Using this, we then prove Theorem 1.
This proof involves more intricate arguments and is given throughout Sections 3-5.
In particular, at. many stages of the proof we appeal to the fact that, besides being
consistent, a primitive 4f-metric possesses a spectrum of structural properties and its
value on an edge is at most four (compared with the cut-metrics and 2,3-metrics, which




take their values in {0,1} and {0,1, 2}, respectively; note also that the set of graphs H
inducing primitive 4f-metrics m is infinite, thus values of m on pairs of vertices that are
not edges of G can be large). These properties are exposed in the following theorem.

Theorem 5. Let |H'| = 4, and let m be an H'-primitive 4f-metric induced by o :
VG' — VH. Then m(e) < 4 for each e € EG'. Moreover, if m(e) = 4 for some edge
e = zy then:

(i) H is homeomorphic to Ky;

(ii) the image by o of the path (z,e,y) is a shortest path Lo = bybybsbsby in H
which belongs to the boundary of a unique face, J say, in H;

(iii) each shortest z — y path in H with z,y € bd(f) — {b1,b2,b3} lies in bd(J);
(iv) for each TeFy—{J }, no sbortest"f-path contains both by and by;

(v) if each of by,bs belongs to a shortest I-path for the same I € Fzr — {J}, and
b € {bo,bs} is not in bd(I), then (a) every shortest I-path containing b separates J
from K and O, and (b) no shortest I-path contains an edge in bd(K) N bd(0), where
Fu ={I,7J,K,0}.

Here we say that an I-path L separates faces J and K if they lie in different components
of R? — (I U L). Though this result is very important to get Theorem 1, the proof of
Theorem 5 is very technical and we do not give it here, referring the reader to [Ka3,
Section 3|. Figure 1.2 illustrates an H'-primitive metric m with m(e) = 4 for some e,
and properties (i)-(v); here H = {I,J, K,O}, m is induced by a mapping of VG' to
V H and its values on the edges of G’ are indicated.

2. EXISTENCE OF A QUARTER-INTEGRAL SOLUTION




Let [H| = 4, and let (G,U)* = (¢, d) have a solution f : P(G,U) — Q,, where ¢
and d are the all-unit functions on EG and U, respectively. It is convenient to think of
f as consisting of four flows fr (F € H), where fr is the restriction of f to the F-paths
in P(G,U) (one may assume that no member of U belongs to the boundaries of two
holes). Denote by £ = L(f) the set of paths P € P(G,U) with f(P) > 0 (the support
of f). Similarly, Lr = Lr(f) denotes the support of fr; thus {LZI,EJ,[.K,.CO} is a
partition of L.

A path P € LF (F € H) divides the space R* — F into a pair R(P) of closed regions
whose intersection is P and union is R?> — F. We say that f 1s non-crossing if any two
paths P € Lr and P' € L for F # F' do not cross, that is, P’ is contained entirely
in some of the members of R(P). Applying to f standard uncrossing techniques, it is
easy to show that

(2.1) if (G,U)* has a 1/k-integral solution then it has a 1/k-integral non-crossing solu-
tion.

In what follows we assume that f is non-crossing. Consider two different holes F
and F'. Remove from the sphere S? the hole F, its boundary and the paths in Lp.
Then F' occurs in a component Z of the resulting space. Define Dppr = Dpp:(f) to
be S? — Z. Easy topological observations using the fact that all paths in Lp are simple
show that Dpp: is homeomorphic to a closed disc, i.e., the boundary Crp = Crp(f)
of Dpp: is a closed non-self-intersecting curve. Moreover,

(2.2) Crp is a simple circuit in G, and f& > 0 holds for each edge e € Cpp- that is not
in bd(F), where fg =Y (f(P) : e € P € Lr(f))-

(An equivalent definition: Dpp: is the largest region in S? that does not contain F'
and whose boundary is in the union of bd(F) and U(P € LF).) Since f is non-crossing,
Dpp: and Dpip are obviously openly disjoint, i.e., Dppr N Dmp = Crppr N Cpip.
Furthermore, for F"' € H — {F,F'}, if F" C Dpp: then Dppr U Dpp = 82, while if
F'" N Dpp = 0 then Dppn and Dpnp are openly disjoint and Dpp+ =-Dgg:. This
justify introducing the following notion, which plays the central role in the proof of
Theorem 1.

Definition. Given.a non-crossing f, a maximal subset B C H such that Dgp
and Dp/r are openly disjoint for any two distinct F, F' € B is called a bunch.

Clearly 2 < |B| £ 4. For F € B we denote Drp: and Crpr by Dp and Cr,
respectively (these do not depend on F' € B — {F}). The family of |B| circuits Cp
(F € B)is denoted by C(B) (in case B = {F, F'} the circuits Cr and Crs may coincide).




Also denote by Gr, Hr, and Ur the subgraph of G' contained in Dp, the set of holes
F € H in Dp, and the set of pairs {s,t} € U such that {s,t} € Wz for F € Hp,
respectively. Obviously,

(2.3) for a bunch B, the space S — U(DF : F € B) contains no hole, and each edge e
of G occurs in at most two members of C(B).

Fix a bunch B. We may assume that for each F € B, CFr has an edge with some
F' € B — {F} in common. Indeed, if this is not so for some F, consider the problems
(Gr,Ur)* and (G',U")*, where G' = (VG,EG — EGr) and U' = U — Up. Clearly
every path in £ is entirely within some of Gr and G', therefore the corresponding
restrictions of f give solutions for these problems. Since |Hr| < 3 and |[H — Hr| <3,
by Okamura’s theorem or Theorem 2, each problem has a half-integral solution (not
necessarily integral as (VGF, EGr U Ur) may not be eulerian). Combining these, we
get a half-integral solution for (G,U)*, and Theorem 1 follows. By similar arguments,

we may assume that

(2.4) for any 0 # B' C B, Urep'Cr and Urpep—p'Cr have an edge in common.

Later on we assume that a non-crossing f and a bunch B are chosen so that:

(2.5) (i) | B] is as great as possible;
(i) S((JHrl)? : F € B) is minimum subject to (i);
(iii) the number of faces in U(Dp : F € B) is minimum subject to (1)-(ii).
In particular, a bunch B (for some f) with {|Hp| : F € B} = {1,1,1,1} is

preferable to choose than one with {1,1,2}, and {2,2} is preferable than {1,3}. Let
Fr stand for 3(f& : F' € Hr).

Lemma 2.1. For each F € B there exists a function hr on EGF such that:
(i) kr(e) € {0,1,1} for each e € Cr and hp(e) = 1 for the other edges e in GF;
(i) if e is a common edge for Cr and Cp (F,F' € B) then hr(e)+ hri(e) <1;

(iii) each problem (hrp,dr) is solvable; here dp is the all-unit function on UF.

This lemma shows the existence of a 1/4-integral solution for (G,U)*. Indeed,
for each F' € B the function 2hr is integral, hence the problem (2hr,2dr) has a
half-integral solution. So (hr,dr) has a 1/4-integral solution. Taken together, these

solutions form an admissible solution for (G,U)*.
Proof of Lemma 2.1. Choose functions hr (F € B) so that (ii)-(iii) hold, hr is
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all-unit on EGFr — CF, and the value y(h) := } 5 |@F| is as small as possible, where

={e € Cr : hr(e) ¢ {0,3,1}}. Such functions exist since we can take as hp(e)
the value ?:—,- for e € CF, and 1 for the other edges e of Gr. One has to prove that
v(h) = 0. Suppose that y(h) > 0.

For F € Blet Qf (QF) be the set of edges e € Qr with hr(e) > 1/2 (respectively,
hr(e) < 1/2). We perform balancing hr’s (simultaneously for all F € B); this means
that for some € € Ry each hr is transformed to h%, where

(2.6) hi(e) :=hr(e)—c if e€ QF;
:=hp(e)+e if e€ QF;

:= hp(e) for the remaining e’s in Gp;

Take € to be maximum provided that for each F' € B, (a) ¢ < hp(e) —1/2 for e €
Qt; (b) € < 1/2 — hp(e) for e € Q; and (c) (h%,dr) has a solution gp. Clearly
h%(e) + hé.(e) < 1 for each edge e common for Cr and Cw (F,F' € B). Also
v(h¢) < v(h), whence ¥(h®) = 4(h), by the choice of h. Furthermore, one can see that
combining the gr’s we get a multiflow which has a bunch B’ not worse than B in the
sense of (2.5). By the maximality of ¢, there is F' € B such that for any A > ¢ the
problem (h%.,dr) has no solution for some ¢ < &’ < A. Two cases are possible.

Case 1. |Hr| < 2. Applying Okamura’s theorem, we observe that for every
g’ > ¢ there is X' C VGF such that h5(X') < dp(X'), where h%(X') stands for
Y (h5(e) : e € 6X') and dp(X') stands for |{{s,t} € Ur : §X' separates s and t}|
(letting § X' := §9* X'). Hence, there is X C VGF such that

£(X) = dp(X) and h§(X) < dp(X) for any €' > e.

Without loss of generality, we may assume that §X is a simple cut, i.e., §X meets
at most twice the boundary of every face in Gr. In particular, [§X N Cr| < 2 (as Cr
is the boundary of a face in Gr). Then [6X N Cr| = 2; let X N Cp = {e,€e'}. Since
dr is an integer and h%(e") is an integer for each € € §X — {e,e'}, h%(X) = dr(X)
implies that ¢ := h%(e) + h%(e') is an integer. Hence, either hS (e) + h%(e') = %, or
one of e, e’ is in @} and the other in Q5 7. In both cases we have h;' (X) = h%(X) for
any €'; a contradiction.

Case 2. |Hp| = 3. Then |B| = 2; let for definiteness B = {I,K}, F = I and

Hr = {I,J,0}. Apply Theorem 4. Arguing as above, we conclude that there exists

(i) X C VG such that h§(X) = dr(X) and k% (X) < dr(X) for any ¢’ > ¢, or (ii) an
‘Hy-primitive 2,3-metric m on VG such that

Rhé(m) = df(m) and kS (m) < di(m) for any €' > e,
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‘where hf(m) = 3 (hi(e)m(e) : e € EG) and di(m) := 3 (m(s,t) : {s,t} € Ur) (cf.
(1.6)). By arguments as in Case 1, (i) is impossible.

Thus (ii) takes place. Consider the partition II(¢) = (S1, 52, 52,T1,T3) of VG as
in Theorem 4 (where m is induced by ). Since Cf is the boundary of some face F
in Gt and each subgraph (S;) is connected, Cr can pass across exactly one component
of (o) (defined in (1.9)), say, the component ; that contains T. Next, if there is
an edge e € Cr connecting v € S; and v € S; (¢ # j), we could slightly transform
G and m by replacing e by a pair of edges in series, ¢’ = uz and €’ = zv say, and
by adding z to T3 (and, accordingly, placing z in the region Q;); it is easy to see that
the new graph and 2,3-metric maintain the above properties. Thus, one may assume
that each edge in C; connecting different sets in II(¢) connects just T; and some S;.
Let £ = (e1 = uivy,...,ex = urvx) be the sequence of such edges in Cr, and let
the vertices u1,v1,...,U%k, V¢ occur in this order in C;. Note that there are no two
consecutive edges ej,ejiy in € such that v;,u;41 € T and uj,vj41 € S; for some
¢ € {1,2,3}. For otherwise, assuming for definiteness that i{ = 1 and letting Z to be
the component in (7}) that contains the part of Cr from v; to ©j41, we observe that
the partition (T1 — VZ,T,,S1 UV Z,S,,S3) corresponds to a 2,3-metric m' such that
h§(m') < h§(m) and dp(m') = dp(m), which is impossible. Now the latter property
together with the fact that each (S;) is connected implies that £ < 6 and for each
i = 1,2,3 there is at most one j such that u; € S; and v; € T1. Consider three cases.

(1) k = 2. Then a contradiction is shown in a similar way as in Case 1.

(b) T

Fig. 2.1

(ii) ¥ = 6. Let for definiteness vi,uz € Sy, vs,us € Sz and vs,us € S3; see Fig.
2.1a. Denote by Z; (Z2; Z3) the set of vertices in the component of the space ; — F
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that contains the part of C7 from vy to us (respectively, from ve to uy; from v2 to uz).
Then {Z1,22,Z3} is a partition of T1. Shrink S; to a single vertex s;, Z; to a vertex
zj, and T} to a vertex tz, obtaining the graph I' drawn in Fig. 2.1b.

Let T be the natural mapping of VG to VT, and let m’ be the metric on VGy
induced by 7. It is easy to see that m'(e) = m(e) for each e € EGr and m/(p,q) =
m(p,q) for each {p,q} € Ur. One can also check that m' = pxq) + Px(2) + Px(3)
where for i = 1,2,3, X(i) = 77({8i,2i—1,2i41}) (letting z4 = 2z, and z = z3), and
p = px' denotes the cut-metric on VG defined as p(z,y) :=1if |[X'N {z,y}| =1, and
p(z,y) = 0 otherwise. Then h$(X(i)) = dr(X(¢)), i = 1,2,3. Moreover, for at least
one i we have % (X(3)) < dr(X(3)) (for €' > ¢€); a contradiction.

(a) (b} H
Fig. 2.2

(iii) k = 4. Fix a solution f' to (hf,dr) (f' concerns Gr). Let for definiteness
v1,uz € S; and v3,us € Sz; see Fig. 2.2a. Let Z, (Z2) be the set of vertices in the
component of §; — F that contains the part of C from v, to us (respectively, from v,
to u;). Consider the mapping 7: VG — V H that brings the sets S1,S53,S53,T2, Z1, 22
to the vertices 1, 82, 83,12, 21, 22 (respectively) of the graph H drawn in Fig. 2.2b. Let
m' be the metric on VG induced by 7. Then m/(e) = m(e) for each e € EGr and
m/(p,q) = m(p,q) for each {p,q} € Ur. This implies that h§(m') = di(m'). An easy
consequence of this equality is that if f' is a solution of (h%,dr) (f' concerns Gr) then
any path P € L(f') must be shortest for m'.

On the other hand, it is easy to see that the vertex z; does not belong to any
shortest path connecting vertices in 7(bd(J)) or in 7(bd(0)), while s3 does not belong
to any shortest path connecting vertices in 7(bd(I)). This implies that the circuits
Cy1(f') and Cor(f') cannot separate I and K, while Crs(f') cannot separate J and
O. Form a solution f for (G,U)* by combining the flows f' and fx. From said above
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it follows that for F there is a bunch B' such that either |B'| > 3, or |B'| = 2 and
{|HF| : F € B} = {2,2}. In each case B’ contradicts to the choice of B in (2.5).

This completes the proof of the lemma. o

For hr and dr as above a cut 6X in Gp is called tight if hp(X) = dp(X).
Throughout the rest of the paper we assume that f,B and hp’s as in Lemma 2.1 are
chosen so that

(2.7) Z hp(CF) is minimum subject to (2.5).
FeB

In particular, (2.7) implies that

(2.8) h(e) = 3[2Fy] for any e € Cr, F € B

Statement 2.2. Let F € B and |Hr| < 2. Then for each e € Cr with hp(e) > 0, (i) e
belongs to a tight cut in GF, and (i) fz = hr(e), where fp is a solution to (hr,dr).

Proof. (ii) follows from (i) since hp(X) = dp(X) implies that all edges of 6X are
“saturated” by fp. Suppose that (i) is false for some e. Decrease hr by 1/2 on this e,
obtaining a new function A% on EGF. Since hp is half-integral, Ap(X) = hp(X)-1/2 >
dr(X) for any X such that e € 6X. Hence, (h,dr) has a solution (by Okamura’s
theorem), and we get a contradiction with (2.5) or (2.7).

In the proof of Theorem 1 the functions hr will play more important role than a
multifiow f behind them; roughly speaking, these functions p.rovide a splitting of the
graph (or the all-unit capacities on its edges) into two or more pieces in order to solve
then the corresponding easier problem in each piece separately. In fact, throughout the
proof we are trying to show the existence of some hr’s with a “nice property” which
enables us to find half-integral solutions for the corresponding pieces. The following
expose a kind of such a property.

Statement 2.3. Let some F € B be such that either hp(e) = 1/2 for all e € CF or
hr(e) € {0,1} for all e € Cp. Then (G,U)* has a half-integral solution.

Proof. Consider the problems (hr,dr) and (¢',d'), where ¢'(e) := 1—hp(e) fore € EGF
and d'(s,t) := 1 — dp(s,t) for {s,t} € U (assuming that hr and dr are extended by
zero to EG — EGF and U — Up, respectively). Clearly both 2hp(X) — 2dp(X) and
2¢/(X) —2d'(X) are even for any X C V. Hence (2hr,2dF) and (2¢',2d’) have integral
solutions, and the result follows. e
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3. PROOF OF THEOREM 1. EXCLUSION OF |B| =2

Similar to the proof of Theorem 2 given in [Ka2], the proof of Theorem 1 utilizes
the integral and fractional variants of the so-called “splitting-off method”, but now in
a more complicated context. We first discuss how such a method works in our case.

Without loss of generality we assume that: G is connected; all s,,...,s8,,%1,...,%r

are distinct and of valency 1 (since one can add to G new vertices s!,t! and edges

{s},8:},{t},t:} and consider the pairs {s},¢.} instead of {s;,%;}’s). Let T := {s1,..., s,
t1,...,2,}. Also one may assume that each inner vertex z (i.e., z € VG —T) is of
valency 2 or 4 (othierwise one can repeatedly transform G at z as shown in Fig. 3.1;

this does not change, in essense, our problem).

g
;

Fig. 3.1

We assume that Theorem 1 is false and consider (G,U) to be a counterexample
to it with |V G| minimum (under the above properties). Then G has neither loops nor
inner vertices of valency 2.

For z € VG let E(z) denote the set of edges of G incident to z and ordered
clockwise in the plane. Consider z € VG — T and two consecutive edges e = zy and
¢’ = zz in E(z). The triple 7 = (e,z,¢€') is called a fork. Denote by G, the graph
obtained from G by adding a new edge (or a loop) e, connecting y and z. Define the
function w, on EG, by

wr(u):=1 for u=e,¢,
=-1 for u=e,,

:=0 otherwise.

For 0 < ¢ <1, let ¢, denote the function on EG, taking the value 1 — ¢ on e and ¢/,
€ on er, and 1 on the edges in EG — {e,e'}. We say that ¢ is feasible if (¢, ,d) has a
solution; e.g., € = 0 is feasible. The maximum feasible € < 1 is denoted by a(r).

Suppose that there is a fork 7 = (e,z,€e') with a(7) = 1. Then one can split off
e, at z preserving solvability of the problem. More precisely, let G' arise from G by
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deleting e,e’ and adding er. Since |[EG'| = |[EG| — 1 and (G',U)* is solvable, it has a
half-integral solution; this is easily transformed into a half-integral solution to (G,U)*.

Thus, a(r) < 1 for all forks 7 in G. Consider a fork T = (e, z,¢'); let e = zy and
e’ = zz. Since (¢r,,d) has no solution for a(r) < ¢ < 1, there is an H-primitive cut-,
2,3-, or 4f-metric m on VG, = VG such that c,.(m) — d(m) < 0 (by Theorem 3 and
arguments in Section 1). Define w,(m) := m(e) +m(e') — m(e,); then w(m) > 0 (since
m is a metric). Clearly ¢;.(m) = ¢(m) — ew,(m), and now c(m) > d(m) (as (c,d) is
solvable) implies that w,(m) > 0. Hence,

(3.1) er) = min{(c(m) — d(m))/w,(m)}, where the minimum is taken over all H-
primitive cut-, 2,3- and 4f-metrics m for which w,(m) > 0.

An ‘H-primitive m that achives the minimum in (3.1) is called critical for .

Statement 3.1. ¢(m) — d(m) and w.(m) are even for any cut-, 2,3- or 4f-metric m.

Proof. Let C be the circuit formed by the edges e, €', e,. Since w,(m) = m(C) (mod 2)
and m is bipartite, w,(m) is even. Next, the graph (VG, EGUU) is eulerian, therefore
it is represented as the union of pairwise edge-disjoint circuits Cy,...,Cj. Then ¢(m)—
d(m) = ZLI m(C;) (mod 2). Since each m(C;) is even, c(m) — d(m) is even. o

We know that for any u € EG, m(u) < 1if m is a cut metric, m(u) <2ifmisa
2,3-metric, and m(u) < 4 if m is an H-primitive 4f-metric (by Theorem 5). Hence,
(3.2) wr(m) € {0,2} if m is a cut metric;

€ {0,2,4} if m is a 2,3-metric;
€ {0,2,4,6,8} if m is a 4f-metric.

Summing up (3.1),(3.2) and Statement 3.1, we observe the following.

Statement 3.2. Let 0 < a7) < 1, and let m be a metric critical for . Then:
(1) m is not a cut-metric;
(ii) if m is a 2,3-metric then a(r) = 1/2 (cf. [Ka2]);

(iil) if m is a 4f-metric then «(t) € {{,3,3,%,3}, and in case a(r) = 3/4 the

equalities m(e) = m(e') = 4 and m(y,z) = 0 hold. o

The case a(r) = 3/4 will be of most interest for us in many stages of the proof.

Now we continue considerations begun in Section 2. Let us fix f, B and hp
(F € B) satisfying (2.5),(2.7) and the properties as in Lemma 2.1. In view of (2.4) and
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Statement 2.3, for any F' € B the circuit Cr has at least one common edge with Cp
for some F' € B — {F}, and Cr has edges u,u’ with hp(x) = 1/2 and hp(u') € {0,1}.
We first eliminate one simple case.

Statement 3.3. For distinct F,F' € B there are no edges e € Cr and ¢’ € Cp+ such
that hr(e) = hpi(e') = 0 and either e = ¢’ or e and €' are adjacent.

Proof. Suppose that such e, ¢’ exist. By (2.2), e € bd(F) and bd(F') (as ff = fen =0).
Let e = ¢'. Delete e from G, forming G'; then the holes F and F' merge into one new
face. Clearly f gives a solution for (G',U)*. Since we get the (non-eulerian) three hole
case, (G',U)* has a half-integral solution, whence (G,U)* has a half-integral solution;

a contradiction.

Now let e and e’ be distinct and incident to a vertex z. Clearly G can be splitted
at z in such a way that the holes F and F' merge into one face of the resulting graph
@', and f gives a solution for (G',U)*. Now apply arguments as above. o

In the rest of this section we show that case |B| = 2 is impossible for the minimal
counterexample in question. Cases |B| = 4 and |B| = 3 will be excluded in Sections
4 and 5, respectively, and thus Theorem 1 will follow. We use the following two key
lemmas (they will be important for next sections as well).

Lemma 3.4. Let I be a maximal nontrivial path in Cr N Cp (F,F' € B). Then
either hy(e) = hpi(e) = 1/2 for all e € L, or hp(e) = 0 for all e € L, or hp:(e) = 0 for
alle € L.

Lemma 3.5. Let F, F' € B, and let P = (vg,€1,v1,...,¢€k,v;) and P' = (vg,€1,01,. ..,
€q)Vg) be paths (possibly circuits) in Crp and Cp, respectively, such that vy = vy,
e1 = €}, ez # €, and vy = v;. Let the region bounded by P and P' (outside Dr and
Dy ) contain no hole. Then at least one of hr(e1) and hr(e1) is not 1/2.

Assuming that these lemmas are valid, consider case |B| = 2. Let for definiteness
B = {I,J}. I Cr = Cy then (G,U)" has a half-integral solution by Lemma 3.4 and
Statement 2.3. So assume that Cg is different from Cj, and let {P,..., Pr} be the
set of maximal nontrivial paths in Cyr N Cy. If for some i € {1,...,k} and e € F;,
hi(e) = hy(e) = 1/2 then these equalities hold for all e € P; (by Lemma 3.4) and
now lemma 3.5 leads to a contradiction. Otherwise there is N C {1,...,k} such that
hi(e) = 0 for all e € P;, i € N, and hy(e) = 0 for all e € P, i ¢ N. Define capacities
¢ on EG and capacities ¢ on EG — (EG[ — Cr) by

(3.3) c'(e):=0 if ec P; and i€ N, and c'(¢):=1 otherwise,

15




c'(e):=0 if e€ P; and i ¢ N, and c"’(e):=1 otherwise.

Then c¢'(e) > hi(e) for e € Cr, ¢""(e) = hy(e) for e € Cy, and c'(e) + ¢""(e) = 1 for
e € CrN Cjy. Since ¢ is integral and |H| < 3, the problem for ¢’ and Uy has a half-
integral solution, and similarly for ¢" and Uj;. Combining these we get a half-integral
solution to (G,U)*; a contradiction.

To prove Lemmas 3.4 and 3.5, we need some preliminary observations.

Following [Ka2], for a fork T = (e,z,e') we introduce the number §(7) which, as
we shall see later, gives a lower bound for a(7) and is easier to handle than a(7):

lfe _ %fe' (= 1-— _;_(fe,u + fe,u' + fe’,u + fe',u.'))’

(34)  B(r)=1+F -3

where E(z) = (e,€e',u,u'), and for edges p and ¢, f7'? denotes ) (f(L) : L € £,p,q € L).
By symmetry,

(3.5) Ble,z,e') = B(u,z,u’).

Statement 3.6 [Ka2]. 8(7) < o(7).

Proof. Let for definiteness f¢ > f¢. Define the function ¢’ on EG, as: c(e) =
fe—foc's de) = f¢ — fo; (er) i= 14 fo¢ — f¢; and ¢'(w) := c(w) for the other
edges w. An easy transformation of f gives a solution to (c¢',d). Put ¢" := ¢, g(r) and
€ := (f° — f¢')/2. One can check that c"(w) — ¢'(w) is equal to ¢ for w = €',e,; —¢
for w = e; and 0 for the other w € EG,. Since € > 0, ¢'(m) > ¢'(m) for any metric m,
whence the solvability for (¢',d) implies that for (c”,d).

Remark 3.7. Statements 3.2 and 3.6 imply that for a fork 7 if 8(7) = 3/4 then
a(r) = B(r). Moreover, from the proof of Statement 3.6 one can see that in this
case f can be transformed locally, within the edges e, €', e,, to give a solution f' to
(¢r,3/4,d). More precisely, let f¢ > ffandPel. Ifed P, put fi(P):=f(P). If
e,e' € P then P is transformed into P’ with f'(P') := f(P) by replacing {e,e'} by
er. If e € P F €, create the path P' from P by replacing e by {¢',e,}; put f'(P) :=
FPY(3fe + 55 = £o)[(5° = £°°) and f/(P') == f(P)(3f° = 3£)/(F* = ).
One can check that f' is (¢, 3/4,d)-admissible. By Statement 3.2, there is a primitive
4f-metric m critical for 7; then ¢, 3/4(m) = d(m). These observations yield two useful

properties:

(3.6) each edge w € EG, with m(w) > 0 is saturated by f' (i.e., (f')” = ¢;,3/4(w)) and
every path P € L(f') is shortest for m;
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(3.7) if f¢ > f¢' then fozl' F € H with fg > f§, each of ()%, (f')%, (f')F is nonzero;
if, in addition, fi® = 0 then every path in Lp(f') passing e, contains e'.

The following statement appeals to (1.7), evident topological observations and the
fact that all paths in £(f') are shortest for m'; we leave its proof to the reader.

Statement 3.8. Let f' be a (non-crossing) solution for some G',c',d', and let B be
a bunch for f'. Let ¢'(m') = d'(m’') for some consistent 4f-metric m' on V@' induced
by o : VG' — VH. Next, let Cr be a circuit in C(B), and let C be its image (by
o extended as in (1.7)) in H. Then C is a simple circuit, and Cr separates holes
F',F" € H' in G’ if and only if C separates the faces o(F'),a(F") in H. o

This statement together with (1.7)(i) and (ii)-(iii) in Theorem 5 implies that

(3.8) for &', ¢, d', f', B,m' as in Statement 3.8, if m’ is H'-primitive, m'(e) = 4 for some
e = zy € EG' and e lies in the region D' = Dp(f') for F € B, then D' contains
no hole except F.

Indeed, let C' be the image by o of the boundary of D'. If D' contains a hole
F' # F then, by Statement 3.8, the circuit C' does not follow the boundary of the face
F := ¢(F) in H. This means that there is an s—t path P € Lp(f') such that its image
Q := o(P) does not lie in bd(F). Since P is shortest for m' (as c'(m') = d'(m")), Q is
a shortest path in H. Hence, some of the ends of @, o(s) say, is b; for ¢ € {1,2,3}, by
(iii) in Theorem 5 (here L, = by ... b5 is the image of (z,e,y) as in (ii) of this theorem).
Remove from R? the set FUeU X UY, where X := 0~(z) and Y := ¢~!(y). In the
resulting space consider the component § containing s. Obviously o brings  into Le.
This implies that P meets X or Y. Then the part of P outside  is a path P’ such
that Q' := o(P’) has both ends in bd(ﬁ) ~{by, bg,bg}."Furthermore, Q' is shortest and
it does not lie in bd(F); a contradiction with (iii) in Theorem 5.

For a vertex z in Cr (F € B) let Ep(z) denote the set of edges incident to = and
contained in D — CF; then |Ep(z)| < 2.

Proof of Lemma 3.4. Let for definiteness F = I and F' = J, and let each of h;
and hy be not identically zero on L. One must prove that hz(e) = hs(e) = 1/2 for all
e € L. Suppose this is not so. Then for some of I,J, for I say, there are consecutive
elements e,z,e’ in L (where £ € VG and e,e’ € E(z)) such that hi(e) # 0 = hr(e').
By Statement 3.3, hy(e) # 0 # hy(e'), hence hi(e) = hs(e) = 1/2 and ky(e') € {3,1}.
Since hr(e) # hi(e'), Er(z) is nonempty (in view of (2.8)). Consider two possible cases.
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Case 1. |Ef(z)| = 1. Let for definiteness E(z) = (e,u,€',u’) and Ef(z) = {u};
see Fig. 3.2. Clearly f*¢ = f»* =0, Also fo¢ + fov' < 1/2 (as any path in £(f)
passing e and some of €', u' concerns the flow f 7y and the total amount of flow on these
paths is at most hs(e) = 1/2). Hence, for the fork T = (e,z,u) we have B() > 3/4 (cf.
(3.4)), whence a(7) = B(7) = 3/4.

Consider the solution f’ for G,c¢, 3/4,U obtained from f as in Remark 3.7 (for
T = (e,z,u)), and a 4f-metric m critical for T and induced by ¢ : VG — VH. By
Statement 3.2(iii), m(e) = m(u) = 4 and m(y,z) = 0, where y (z) is the end of e (u)
different of z. Let for definiteness o(z) = b4, o(y) = ¢(z) = bo (cf. (ii) in Theorem 5).
By (3.7) (for e,u), (f')5 > 0, therefore u belongs to a path P in L;(f'). By (3.6), P is
shortest for m. So by and by belong to a shortest o(J)-path in H, whence o(J) is J as
in Theorem 5. On the other hand, ¢’ € bd(I) (as h(e') = 0), whence u = zz € bd(I)
(as u is in Dy and u,e' are consecutive in E(z)). This implies that b0 = o(z) and
by = o(z) belong to the boundary of o(I) in H. A contradiction with (iv) in Theorem
5.

®
:DJ u'
oo e 9 X* 4y oo e
L e e
u
Fig. 3.2 D z®

Case 2. |Ef(z)| = 2. Let for definiteness E(z) = (e,u,v/,¢'); then Er(z) = {u,u'};
see Fig. 3.3a. Since Ej(z) is empty, hs(e) = hy(e') = 1/2 (in view of (2.8)). Obviously
fe = f'% =0 and fo + fo' < hy(e) = 1/2, whence 8(r) = 3/4 for T = (e, z, €').

Consider the solution f' for Gr,c,3/4,U as in Remark 3.7, and a 4f-metric m
critical for 7 and induced by ¢ : VG — VH. By Statement 3.2(iii), m(e) = m(e') =4
and m(y,z) = 0, where y (2) is the end of e (¢') different of =. Let for definiteness
o(z) = by and o(y) = a(z) = by. By (3.7), (f)$ = (f')¢ > 0 (taking into account that
hi(e) = 1/2, hi(e') = 0), whence o(I) coincides with J as in Theorem 5.

Next, let D' := Drj(f'). Clearly the boundary C' of D' is obtained from Cr by
replacing e, e’ by e,. Then e lies in D’, whence D' contains no hole except I (by (3.8)).
Consider the regions X := o~1 (b4). and Y := 071(by) (assuming that o is extended
as in (1.7)); then z is in X and y,z,e, are in Y. Since I is the only hole in D' and
bs belongs to the boundaries of at least two faces of H, X meets C'. Moreover, some
v € {y, 2} belongs to a component Q of Dy — X that does not contain I; see Fig. 3.3(b).
Let for definiteness v = y, and let @ = z¢...z, be the part of Ct such that z; € Y,
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zr € X, @) does not contain e, and all edges and inner vertices of Q arein  — Y. From
Statement 3.8 it follows that @ is mapped by o to L. = by...bs. Then o(z1) = b; for
some 7 > 1,

Fig. 3.3

Obviously the edge w = zoz; is not in bd(I). Hence, w belongs to a path P =
Yo -..Yq € L1(f'); let for definiteness z; = y; and zy = y;j41. We observe that the part
P' of P from y;41 to y; does not meet X (otherwise o(P) would pass b;, b, bs in this
order, contrary to the fact that P is shortest for m). Hence, P’ must pass through e,.
Then P’ contains e (by (3.7)), and therefore, P' contains z € X; a contradiction.

Proof of Lemma 3.5. Put e := €1, z := vy, € := e3, u' := e}. Let for def-
initeness F = I and F' = J. Suppose that hi(e) = hs(e) = 1/2. Since e,e', v’
are distinct, |Ey(z)| + |Es(z)| < 1. Therefore, one may assume that Er(z) = 0; let
E(z) = {e,€,u',u} (in case E(z) = {e,e'u,u'} arguments are similar). We observe
that hI(e’) = hr(e) = 1/2 that f¢'*+4 f¢'* = 0 (taking into account that f¢ = fI and

v = fJ since there is no hole between P and P'), and that f&*+ ferv’ < hi(e) =1/2.
Hence, B(7) = 3/4 for 7 = (e,z,¢'). Consider a solution f' for GryCr3/4,U as in Re-
mark 3.7, and a 4f-metric m critical for 7 and induced by ¢ : VG — VH. Let for
definiteness o(z) = bs and o(y) = o(2) = by, where y (z) is the end of e (¢') different
of z, see Fig. 3.4.

By (3.7), (#)5,(f")%,(f')5 > 0, whence the corresponding circuit C’ for f' is
formed from Cy by replacing e by €', e,. Also Cj is formed from Cy by replacing e, ¢’
by e-. Hence, o(J) is J as in Theorem 5. Clearly e lies in D' := Djs(f'), whence J
is the only hole in D', by (3.8). In addition, by belongs to a shortest I-path, where
I := o(I) (since y € C}).
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Let I := o(I). Since y is in CY, by belongs to a shortest I-path in H. Furthermore,
the facts that z € X := ¢7!(by) and there is no hole between P and P' imply that
X meets the part P of P from v, to vg. Thus, there is a vertex z' in C} such that
o(z') = by, whence by belongs to a shortest I-path in H.

Pl

Fig. 3.4

By (iv) in Theorem 5, some b € {by, b4} is not in bd(I). Then v € {z',y} such that
o(v) = b is contained in a path Q € L;(f'). By (v)(a) in Theorem 5, Q must separate
J from K and O, where H = {I, J, K, O} (taking into account that o(Q) is a shortest
I-path in H passing b). This means that C} (as well as C) separates J from I, K, O.
Hence, |H;| = 3. On the other hand, by (v)(b) in Theorem 5, no I-path in L(f') (as
well as in L£(f)) separates K and O. Thus, there is a bunch B’ for f such that either
|B'| =3, or |B'| =2 and {|HF| : F € B'} = {2,2}. A contradiction with the choice of
Bin (2.5). e

4. EXCLUSION OF |B| =4

In this section our goal is to show that case |B| = 4 is impossible for the minimal
counterexample in question. In fact, we show that the functions bz can be transformed
to some hl’s in such a way that at least one A} is integral, whence (G, U)* has a half-
integral solution, by Statement 2.3. Our arguments will rely on Lemmas 4.1-4.4 below
(they will be also used in the next section where we study case |B| = 3). These lemmas
will be proved in the end of this section.

Let F' € B. A maximal nontrivial path P in Cr with hp(e) = 1/2forall e € P
is called a 1/2-segment for F. By Statement 2.3, F has at least one 1/2-segment,
and this segment is not Cr. Next, let §X be a cut in Gp. Obviously, if §X is tight
(i.e., hr(X) = dp(X)) then §X is the union of simple tight cuts (see Section 2 for
definitions). In what follows, speaking of a cut, we usually mean a simple cut of the
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graph in question. Lemma 4.1 strengthens (i) in Statement 2.2 for case |Hr| =1, and
Lemma 4.2 exhibit a relation between tight cuts and 1/2-segments.

Lemma 4.1. Let F € B and |[Hp| = 1. Then each edge e € Cr belongs to a tight cut
in GF.

Lemma 4.2. Let F € B and |Hr| = 1. Then:
(i) for any tight cut X in Gr and any 1/2-segment S for F, |6X N§| < 1;
(ii) the number wr of 1/2-segments for F is even;

(iii) if SoyS1y...,S2k—1 are the 1/2-segments for F occurring in this order in CF
then every tight cut meeting some S; meets the opposite 1/2-segment S;y; (taking
indices modulo 2k).

A face in G that is not a hole is called intermediate. We say that two elements
z,y € VG U EG are dually connected if they belong to the boundary of the same
intermediate face in G.

Lemma 4.3. For distinct F,F',F" ¢ BletP=z;...z, P'=y1...yr, P' = 21 ... 24
be 1-paths in Cr,Cp and Cp», respectively, such that ©; = yr, y1 = 24, 21 = 2,
and z3 # yr_1. Let Cr and Cr have a common edge e with an end at z; for which
hr(e) = hpi(e) = 1/2. Let the region bounded by P, P', P" contain no hole. Then for
some edge u = z;—1z; (1 < i < q) one holds:

(i) hFu(u) = 1,‘

(ii) u is dually connected with z;.

Lemma 4.4. Let e and u be two consecutive edges in Cp such that e € Cr and
u € Cpn for distinct F',F" € B — {F}. Let e,u be incident to a vertex z. Let e' (u')
be the edge in Cg (Crv ) incident to = and different of e (u). Then:

(i) hr(e) = hp(e) = hr(v) = hpo(u) = 1/2;
(i) ¢’ = u' unless |B| = 4 and z is in C'g, where B = {F, F',F" F}.

Assuming that the above lemmas are valid, we now begin to study case |B| = 4.
Clearly |Hp| = 1 for each F € B. We need some additional terminilogy and notations.
Consider some F € B. We say that an edge e € Cp is a 1-edge if e ¢ Cp for any
F' € B — {F}, and a 2-edge otherwise. A maximal nontrivial path in Cr of which
all edges are 1-edges (respectively, 2-edges common for Cr and Cp for some fixed
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F' € B — {F}) is called a 1-path (respectively, a 2-path).

We classify 2-paths P as follows. We say that P C Cr N Cg is strong if for some
(or, in view of Lemma 3.4, for any) edge e € P one has hp(e) = hp/(e) = 1/2; and P is
weak otherwise. By Lemma 3.4 and Statement 3.3, if P is weak then either hp(e) =0
and hpi(e) > 0 for all e € P, or hr(e) > 0 and hpi(e) = 0 for all e € P. Clearly a
strong path P is contained in some 1/2-segment S (but P and S may not coincide).
A strong path P in CF is called reducible for F if it belongs to a 1/2-segment S for F
such that the opposite segment (see Lemma 4.2) contains no strong path. Otherwise
P is called non-reducible (for F). Thus if a 1/2-segment contains a non-reducible path
then the opposite segment does so as well. Define the function Ar on EGr by

(4.1) hr(e):=0 if e belongs to a reducible path for F,
or e belongs to a weak path and hg(e) =0,
:=1/2  if e belongs to a non-reducible path for F,

:=1 otherwise.

Note that if an edge e belongs to a reducible path in Cr, and §X is a tight cut in G
containing e then for the other edge €' in 6X NCr we have hp(e') = 1/2, and e’ belongs
to either a 1-path or a weak path in CF (in the latter case, hp(e’')+hp/(e') = 1/2, where
F' € B — {F} is such that ¢’ € Cr:). This implies that for each F' € B the problem
(hr,dr) is solvable, and the collection of hp’s is admissible (i.e. hp(e)+hr(e) < 1 for
distinct F,F' € B and e € Cr N Cp:). If for some F € B every strong path in CF is
reducible then Ay is integral, whence (G,U)* has a half-integral solution. Thus, each
CF contains a non-reducible path. Moreover,

(4.2) each F € B has two non-reducible paths contained in opposite 1/2-segments.

Denote by @ the graph that is the union of the circuits Cr (F € B) and denote
by Q' the graph that is obtained from Q by shrinking each 1-edge; let x be the natural
mapping of @ to Q'. Let R(F) denote the set of all maximal nontrivial paths P =
vov1 ... vk in CF such that: (i) vov; and vi_;vi are 2-edges, (ii) there is F' € B — {F}
such that each 2-edge in P belongs to Crv, and (iii) each 1-edge e € P (if any) belongs
to a simple circuit C in P U Cp such that one component in IR? — C contains no hole.
In view of Lemma 3.5,

(4.3) every strong path in CF is a member of R(F), and for each P € R(F) either P is
a strong path or every 2-path in P is weak.

The fact that [R(F)| > 2 for any F € B (by (4.2) and (4.3)) easily implies that
Q' is 2-connected, whence Q' is homeomorphic to some of the graphs Q',Q5,Q%, Q.
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drawn in Fig. 4.1. Let us call a vertex of degree at least three essential. One can see
* that |R(F)| is equal to the number of essential vertices in u(Cr). Let Z denote the set
of essential vertices in Q', and Z°® denote the set of z € Z for which p~1(z) consists of
a unique vertex in Q. For F' € B we keep the notation F' for the corresponding faces

in Q and Q'.

= G EHER

(a) Q' ®Q; . (9Q3 (d) Qg

Fig. 4.1

Now we describe one more sort of transformations of functions hr. Namely, for a
sequence 7 = (P1,..., P;) of paths in Cr and a sequence p = (*,,...,*z) of signs + or
—, define the function A’ on EGF by

(4.4) h'(e) =1 ife€ Pand *;=+,
=0 ife€P;and *;=—,

= hp(e) otherwise,
where hp is defined in (4.1). k' as in (4.4) is called the (m, p)-transformation of hp.

Statement 4.5. For some F' € B there exist two non-reducible paths contained in the
same 1/2-segment.

Proof. Suppose that this is not so. Consider the set Z of maximal sequences { =
(Lo, F1,L1y. .., Fy,Ly) such that for ¢ = 1,...,7: (i) F; € B, (ii) L;~1 and L; are
non-reducible paths for F; which are contained in opposite 1/2-segments for F;, and
(iii) Lo,...,Lr—; are different (assuming that none of the members of E is obtained
from another one by reversing and/or shifting cyclically (when Ly = Lx)). Since for
each F' € B no two non-reducible paths are contained in the same 1/2-segment, = is
well-defined and each non-reducible path belongs to a unique member of E.

Next, for each F € B fix a sequence 7g = (Py,..., Pyr)) of all non-reducible paths
in Cp. Define pr = (*1,..., %)) as follows. For i = 1,...,k(F) take (Lo, F1, L1,.-.,
F.,L,) € E such that P; = L; for some j. Put *; := + if F = Fj;; and put *; := — if
F =F;.
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Finally, for each F € B let k! be the (7F, pr)-transformation of Ap. One can
check that each problem (k'n,dF) is solvable, the collection of 7’s is admissible, and
each h is integral. Hence (G,U)* has a half-integral solution; a contradiction. e

z F(0)
Y L
F(3) F3)| p, F(1)
Lo
‘ F(2)
L3
(a) Qo Qs

Fig. 4.2

By (4.2) and Statement 4.5, there is F € B such that IR(F)| > 3, and R(F)
contains three strong paths Py, P,, P; such that P, and P, belong to the same 1 /2-
segment for F' that is opposite to the 1/ 2-segment containing P;. In particular, this
shows that Q' is not homeomorphic to Q). Also if |R(F)| = 2 then each of the two
essential vertices in Q' belonging to bd(F) cannot be in Z° (otherwise the non-reducible
paths for F would be contained in the same 1 /2-segment, contrary to (4.2)). Hence, if
Q' is homeomorphic to @} or Q} then Z° = 0, and therefore Q is “of type” Q, or Q;
as drawn in Fig. 4.2. Now we consider possible types for @ (or Q'), using notations as
in Fig. 4.2-4.3 (here B = {F(i) : i =1,...,4}).

A. Q is of type Q. For definiteness let the paths Ly, L3, P in R(F(1)) be strong,
and let §1, 53,5 be the 1/2-segments for F(1) containing them, respectively. We know
that two of these segments are the same and opposite to the third one. We observe that
S # 51,52. Indeed, by Lemma 4.3 applied to the 1-paths connecting z,y,z as in Fig.
4.2a, the 1-path connecting the vertices y and z contains an edge u with A F,',(l)(u) =1,
whence § # S1; and similarly, § # S,. Thus $1 = S2. A similar property holds for
F(3) if two of paths Lo, L3, P belong to the same 1/2-segment for F(3). Fori =0,1,2,3
let h; be the (m;, p;)-transformation of hr(i), where

mo = (Lo, L1) and pg = (—,+),

m = (L1, Lz, P) and p; = (—,—, +),
72 = (L2,Ls) and p; = (+,-),

™3 = (L3, Lo) and ps = (+,+,-),
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see Fig. 4.2a. One can check that each (h;, dp(i)) is solvable, the collection {A,,... yha}
is admissible, and each h; is integral. Hence, (G,U )* has a half-integral solution.

B. @ is of type Q3. Without loss of generality one may assume that P, is a non-
reducible path for F(1), and that P; and L, belong to the same 1/2-segment for F(1).
On the other hand, by Lemma 4.3 (applied to the 1-paths connecting the vertices
z,Y,2 as in Fig. 4.2b) the 1-path connecting y and z must contain an edge u with
hp(1)(u) = 1. Hence, P; and L, belong to different 1 /2-segments; a contradiction.

Fig. 4.3

C. Q' is of type Q}. Then |R(F)| =3 for all F € B. Let P;; = Pj; denote the
maximal path in Q4 common for bd(F(i)) and bd(F(j)). Consider two cases.

Case 1. Z° # Q. Let for definiteness v € Z%, where v is the vertex indicated in
Fig. 4.1d. By Lemma 4.4, for j = 0,1,2 the paths P;_; ; and P; ;41 belong to the
same 1/2-segment for F(j) (indices are taken modulo 3); therefore P; 3 must belong to
the opposite segment for F(j). In particular, |Z°| = 1, and Q is as in Fig. 4.3a.

Next, the path Py; is strong, so by Lemma 4.3 (applied to the 1-paths connecting
the vertices z,y,z as in Fig. 4.3a) the 1-path connecting y and z contains-an edge u
with hp(s)(u) = 1. Hence, Py and Py, belong to different 1/2-segments in Cr(s), and
similarly for Psg, P3; and for P3;, Ps,. Then some P; j, say P33, is reducible for F(3).
Fori=0,1,2,3 let h; be the (m;, p;)-transformation of hr(i), Where
mo = (Po1, Poz, Pos) and py = (+,+,—),
T = (P10, P12, P13) and p; = (—,—,+),
7y = (Pa0, P21, Pa3) and p; = (= —+),
w3 = (P39, P31, Psz) and ps = (+,—,—).

Case 2. Z° = 0. Then Q is of type asin Fig. 4.3b. Let for definiteness Pyy and Ps,
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belong to the same 1/2-segment for F(2). Then Lemma 4.3 (for the 1-paths connecting
z,y,z as in Fig. 4.3b) implies that Py; is not a strong path. Hence, all paths P; ; for
j = 0,1,2 are strong. Next, applying Lemma 4.3, we observe that the paths P;p and
P33 belong to different 1/2-segments for F(3), and similarly for Ps; and Ps;. A similar
property is true with respect to F(2). So we may assume that Psy and Ps; are in the
same 1/2-segment for F(3). For i = 0,1,2,3 let h; be the (m;, p;)-transformation of
hF(i)’ where :

mo = (Poz, Pos) and po = (+,-),

7 = (P12, P13) and p; = (+,-),

72 = (Pao, P21, P23) and pp = (—,—,+),

73 = (P30, Pa1, P32) and p3 = (+,+,-).

A straightforward check-up shows that in both cases each problem (k;,dg(;)) is
solvable, the functions h; are integral, and the collection of h;’s is admissible, whence
(G,U)* has a half-integral solution.

To complete consideration of case |B| = 4, it remains to prove Lemmas 4.1-4.4.

Proof of Lemma 4.1. In view of Statement 2.2, it suffices to consider e € Cr with
hr(e) = 0. Then e € bd(F). Suppose that the statement for e is wrong. Then

(4.5) hF(X) — dF(X) >

N~

for any X C VGp such that e € 6X.

Let =z and y be the ends of e. Add to Ur one more demand pair w = {z,y} for
which we put demand dr(w) = 1/2. In view of (4.5), from Okamura’s theorem it follows
that the problem (hr,d') (where d' denotes the demand function on Ur U {w}) has a
solution f'. Let L be a path with f'(L) > 0 connecting z and y. Since e € bd(F)NCp,
every cut §X which meets both bd(F) and Cr must have a common edge with L,
therefore hp(X) > dr(X). This implies that no edge in Cr belongs to a tight cut for
hr and dp, whence, by Statement 2.2, hp(e') = 0 for all ¢’ € Cr. Then (G,U)* has a
half-integral solution; a contradiction. e

Proof of Lemma 4.2. Let for definiteness F' = I. Consider a tight cut 6X with
|6X N Cr| = 2; let {e,e'} = X N C;. This cut is naturally associated with the
dual circuit (or the circuit of the dual graph) Dx = (Fy,e1, Fi,...,ex, Fr), where
86X = {e1,...,€ex}, each e; is a common edge in the boundaries of the faces F;_; and
F; of Gy, e; = e, e = €', and Fy = F}, is the face Fin G1 surrounded by Cj. Since
8X is tight, some F; is I. Such a Dx has a natural partition into two dual paths:

Dx(e) := (Fo,e1,...,F;) and Dx(e'):= (F;,eit1,-..,Fr).
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Next, since di(X) € Z and hy(e;) € Z for j = 2,...,k — 1, we have

(4.6) either hr(e),hr(e') = or ki(e),hs(e') € {0,1}.

DO =

First of all we prove two claims.

Claim 1. Let §X,8Y be two tight cuts such that X NCr = {u,u'}, §Y NCr = {2,2'},
hi(u),hi(v') = § and hy(z),hr(2') € {0,1}. Then Dx and Dy have no common faces
except I and F. '

Proof. Consider the dual paths Dx(u), Dx(v') in Dx = (Fo,e1, F1,..., ek, Fi) and the
dual paths Dy(z),Dy(2') in Dy = (Fy,e€},F],... €, Fy,). For definiteness assume
that Dx(u) = (Fo,el,...,ej,Fj)~and D(z) = (Fy,é€},. .-, F},) have a common face
F; = F), different from I and F. Put E; := {e1,...1€ir€} yy.-. €} and By =
{€},... €, €it1,...,€x}. One can see that there are tight cuts X' C E; and §Y' C E,
such that §X' contains e; = u and e}, = 2/, while Y’ contains ¢; = z and e = u'.
But hr(u) = 1/2 and hf(z') € {0,1}; a contradiction with (4.6) (for 6X',u,2"). e

Claim 2. Let §X,8Y,u,v',2,2' be as in the hypotheses of Claim 1. Then the pairs
{u,u'} and {2, 2'} are crossing in C (that is, up to permutation of u,u’ and permutation
of 2,7, these edges occur in Cy in order u,z,v’,2').

Proof. Assume that these edges occur in Cf in order u,u’, z,2' (clockwise from a point
a in F). Let @,@,%,%' be the edges in bd(I) that belong to Dx(u), Dx(v'), Dy (),
Dy(z'), respectively. From Claim 1 it follows that the latter edges occur in bd(I) in
order @, w',%,7 (clockwise from ). Let 6X' (8Y') be the cut formed by the edges in
Dx(u)UDy(2) (in Dx(u')UDy(2')). One can see that df(X')+dr(Y') > dr(X)+dr(Y),
whence we conclude that §X’ and 8§Y' are tight. A contradiction with (4.6). e

Now suppose that there are a tight cut §X and a 1/2-segment S having two
common edges u,u'. Since § # Cp (by Statement 2.3), there is an edge z € Cy with
h1(z) € {0,1}. By Lemma 4.1, z belongs to a tight cut §Y; let §Y N Cr = {z,2'}. By
(4.6), h1(2') is an integer, so z' ¢ S. This contradicts Claim 2 and proves (i).

Let us prove (ii)-(iii). From (i) and (4.7) it follows that wy > 2 and that (iii) is
true if wy = 2. Let wr > 3. Split Cras Sp-Lo+S1+Ly-... - Sw+ Ly (k' = wr—1), where
each S; is a 1/2-segment. It is easy to see from (i) that if (ii) or (iii) is not true then
there are indices (up to a cyclical shift) 0 < < i’ < j' < j < k' and tight cuts 6X,6X’
so that §X meets S; and S; while §X' meets Sy and Sj. Choose an edge z € Lj and
a tight cut §Y containing z. Clearly at least one of the pairs {§X,6Y} and {§X',6Y}

contradicts Claim 2. e o
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Proof of Lemma 4.3. Let F = I and F' = J. One may assume that e and €' = zz,
are consecutive edges in E(z), where z := z;; see Fig. 4.4. Then hs(e') = 1/2 and
B(r) = 3/4 for T = (e,z,¢’). Consider the solution f' for G,¢, 5 /s obtained from f
as in Remark 3.7, and a 4f-metric critical for 7 and induced by ¢ : VG — VH. The
correspondmg circuit C} for G, f' is formed from C; by replacing e by €', e,. Since
f$ >0, o(J) is J as in Theorem 5. Furthermore, the region @ C R? bounded by
P, P', P" contains no hole; so from Statement 3.8 it follows the closed path that is the
image by o of the circuit P - P" . P' separate no faces of H. This implies that there is
a vertex =’ € {z3,...,%k,22,...,2¢-1} such that o(z') = o(z). Note that z' = z; (for
some j) is impossible; otherwise we get a contradiction using arguments as in the proof
of Lemma 3.5.

Hence, z' = z; for some 1 < i < g. Choose i to be minimum subject to o(z;) = by
(letting for definiteness that o(z) = bo). Then for the edge u = z;_; z; we have m(u) >
0. Now the result follows from the facts that each edge w € EG, with m(w) > 0 must
be saturated by f' that (f')*" = 0 for any edge w' in the interior of 2, and that the
image of each of P P!, P" is a simple path in H, where P is the part of P from z, to
z. (the latter follows from Statement 3.8). o

Fig. l[lf

Z1 =Xk

Proof of Lemma {.4. Suppose that (i) is false. Let for definiteness F = I, F' = J,
F" = K. By Statement 3.3, among hy(e), k1(u), hs(e), hs(e'), hx(u), hx(u') there are
no zero numbers hq(g), hgr(¢') with @ # Q'. In particular, if As(e) = 0 then hr(u) >0
and hg(u) > 0, whence it is impossible that hr(e) = hz(u) = 1, or hr(e) = 0 and
hi(u) = 1. Consider the other cases for hs(e) and hr(u) (omitting symmetric cases).

(a) hr(e) = hr(u) = 0. Then ¢’ = u' (otherwise we would have fo* = feru' =
f* = f'%' = 0, whence B(r) = 1 for r = (e,z,€')). Let for definiteness E;(z) = 0.
Since h(e') # 0 and hi(e') # 0, hy(e') = hk(e') = 1/2. This implies that hs(e) = 1/2
and f(r) = 3/4 for 7 = (e,z,€'). Consider the solution f' for Gr,Cr,3/4,U obtained
from f asin Remark 3.7, and a 4f-metric m critical for 7 and induced by ¢ : VG — V H.
Since e € bd(I), o(I) is J as in Theorem 5. On the other hand, by (3.7) for F =K,
e’ belongs to a path in Lx(f'). A contradiction with (iv) in Theorem 5.
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(b) h1(e) =1/2 and hy(u) = 0. Then |Ef(z)| = 1; let Ef(z) = {"}. It is easy to
see that §(7) = 3/4 for 7 = (e,z,€"). A contradiction is shown in a similar way as in
Case 1 in the proof of Lemma 3.4.

(c) h1(e) =1 and hy(u) = 1/2. Then |E;(z)| = 1, whence ¢’ = u'. Moreover, from
the facts that hy(e) =1 and Ej(z) = @ it follows that hs(e) = hy(e’') = 0. Hence, this
case is similar to (a).

(d) hi(e) = hy(u) =1/2 and hy(e) = 0. If Ef(z) # 0 then Ej(z) =0, ¢’ = «' and
h(e') = 0; so this case is similar to (a). Let Ef(z) = 0. From A j(e) = 0 it follows that
B(r) = 3/4 for T = (e, z,u); further arguments are similar to those applied in case (a)

(for I instead of J).

To see (ii), suppose that ¢’ # u', and consider the fork v = (e,z,€'). If |B| =3
or if |B| = 4 but z is not in Cy (where B = {F, F',F",F}) then it is easy to see that
B(7) = 3/4. Now to get a contradiction we apply arguments as in Case 1 in the proof
of Lemma 3.4. o

5. EXCLUSION OF |B| =3

We show that in this case either (G,U)* has a half-integral solution, or there is a
reduction to case |B| = 2 or |B| = 4. The following strengthens, in a sense, Lemma
4.3.

Lemma 5.1. Let B = {F(0),F(1),F(2)}. Fori=0,1,2 let P; = ziz} ...z};(i) be a
nontrivial 1-path in Cp(;, and let a:.'i coincide with ”:&11)' Let Cp(iy and Cp(iy1) have
a common edge e; with an end at zj, and let hp(;)(e;) = hp(it1)(ei) = 1/2 (indices are
taken modulo 3). Next, let r(z) and l(?) be the minimum and maximum indices such
that hp(;)(us), hre(u]) € {0,1} for u; := zi(‘.)a:f_(i)“ and u} := "’?(i)”f(i)-r Then:

(i) all the edges u;,u} (i = 0,1,2) belong to the boundary of the same intermediate
face of G in the region @ C R? bounded by P, P;, Ps;

(i) hry(ui) = hrg(ui) = 1.

Proof. Observe that no vertex z € VG lies in the interior of { (otherwise there would
exist a fork 7 = (e, z,€') with f¢ = f¢' = 0, whence 8(r) = 1). Hence, every edge lying
in the interior of €} connects vertices in P; U P, U P;.

By Lemma 4.3, there is an intermediate face containing the vertices z and some
edges in P; for i = 1,2,3. Suppose that some w € {u,u}} and w' € {uy,ul} (2 #1')
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are not dually connected. Without loss of generality one may assume that w = wu,.
Then in the interior of  there is an edge e with ends z = z} and y = :c}, for some
1<j <r(1) <j'" < k(1). Consider the edge ¢’ different from zz},; and such that
T = (e,2,¢') is a fork, see Fig. 5.1. We observe that 8() = 3/4. Indeed, €' does not
lie in the interior of 2 (otherwise we would have B(7) = 1 since f¢ = f¢ = 0). The

following two cases are possible.

(i) j > 1 and ¢ = zz}_;. Then f* = 0 and f* = 1/2 (as j < (1)) imply
B(r) = 3/4.

(ii) j = 1 and €' = 2z}(,)_,. Then Ep(y)(z) = 0. Therefore f;:(z) = fra = 1/2,
and we again obtain S(7) = 3/4.

Let E(z) = {e,¢',u,u'} and 7' = (u,z,u'); then v’ = zz},, and B(+') = 3/4 (by
(3.5)). Denote z := z},;. Consider the solution f' for G;+,c,s 3/4 obtained from f as
in Remark 3.7, and a 4f-metric m critical for 7' and induced by ¢ : VG — VH. Let
C' = Cr(f)- Note that a(y) = o(2) (as ()° = 0), 3,2 € C and {o(a), 0(2)} =
{bo,b4}. Hence, o(F(1)) is J as in Theorem 5. This shows that the case (ii) as above
is impossible (otherwise we would have ( f}(z))"' > 0, whence ¢(F(2)) = J ). Hence,
7 > 1. Now the fact that f;:(l) > 0 easily implies that (f');l(l) > 0, whence v’ € C'
and C' = Cp(y)-

Fig. 5.1

Xk i)

Let for definiteness o(z) = by. The vertices z,2,y occur in this order in C'.
Therefore, in view of Statement 3.8, o(z') = by for all vertices z' in the part of C’
between z and y that does not contain z. But then the whole circuit C' formed from
C' by replacing the path z} :x:} $1eee z}. by~the edge e is mapped by ¢ into the unique
point by, which is impossible (since, e.g., C' separates some holes).

Thus, w and w' are dually connected, whence (i) follows.

Now suppose that hp(;)(u) = 0 for some u € {u;,u}}; let for definiteness u = u;.
Consider the fork 7 = (u,z,e) belonging to the boundary of some face in {2, where
z = a:,l_(l). Since f* = 0, f¢ > 0. Hence, either (i) 7(1) > 1 and e = z,l_(l)_lz, or
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(ii) »(1) = 1 and e = zz};,_;. One can see that in both cases, f¢ = 1/2, whence
B(r) = 3/4. In case (i), we get a contradiction using arguments as above (with =
instead of 7'). In case (ii), e belongs to both circuits Cr(1)(f') and Cp(2)(f') (for f'
defined as in Remark 3.7); a contradiction with (iv) in Theorem 5. o

Now we begin to consider case |B| = 3. Let B = {I,J, K} and Hg = {K,O}. The
graph Q' (defined as in Section 4) can be only as drawn in Fig. 5.2a.

By (4.2) (for F = I,J), the paths Py, P,,Ps are strong, P;, P, are non-reducible
for I, while P,, Ps are non-reducible for J. Moreover, the graph @ is as in Fig. 5.2b.
Let e be the first edge with hz(er) € {0,1} contained in the 1-path L; from z to ¥ in
C1, and ey be the first edge with hi(es) € {0,1} contained in the 1-path L; from z to
zin Cj. Let us be the last edge with hr(us) € {0,1} contained in the 1-path L] from
z' to y' in Cf, and us be the last edge with'hs(u;) € {0,1} contained in the 1-path L
from z' to 2z’ in C, see Fig. 5.2b. By Lemma 5.1,

(5.1) hr(er) = hr(ur) = hy(es) = hj(uy) = 1; er and e are dually connected; u; and
u s are dually connected.

yl
Py

(a)Q

Fig. 5.2

Statement 5.2. er and uy belong to a tight cut X1 for G1,hr,Ur (and similarly, ey
and uy belong to a tight cut 6Xy for Gy,h;, UJ).

Proof. Let Ly = zy...z; and L} = y;...y,, where z; = z and y; = z', and let
er = z;z;4+1 and vy = yYjyj+1. From Claim 2 in the proof of Lemma 4.2 and the fact
that the 1/2-segments containing P; and P, are opposite in Cf it follows that every
tight cut §X containing ey meets L] in some edge w = y;:y;4+1 with hr(w) € {0,1}.
Similarly, every tight cut §Y containing u; meets L, in some edge z = zyz;41 with
hr(z) € {0,1}. Let §X (8§Y) be chosen so that j' is maximum (respectively, 3’ is
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minimum). Suppose that j' < j; then i’ > i. Consider the dual paths

= ~ - ' ' ! !
D= (F,e1,F1,...,ep-1,Fp_1,€p, F) and D' =(F,e;,F|,...,e,_1,F;_;,€,F),

where {e1,...,ep} = 6X, {€},...,6,} =Y, e1 = e1,ep =w, €] = 2, ¢ = ur, and Fis
the face in G surrounded by Cr. Let e,,e,41,¢€;, €4, be in bd(I). Arguing as in the
proof of Lemma 4.2 and taking into account the choice of i/, j/, we deduce that D and D'

have no common face different of I and F. Hence, e,, ¢}, €441 €s+1 occur in this order
in bd(I). Then 6X' := {e1y... €55 €1415.--56;} and 8Y' := {e,...,€},€411,...,6p}
are tight cuts. A contradiction with the maximality of i’.

By (5.1) and Statement 5.2, §X1 U §X  forms a tight cut 6Z in Gr U Gy (with
all-unit capacities of the edges), that is, [6Z| = d;(Z) + ds(Z). Hence, for any solution
f' of (G,U)* the edges in §Z must be saturated by f; + f}. This implies that

(5.2) for any solution f' to (G,U)*, I and J belong to a bunch, i.e., no circuit Crp: (f')
with F' # I, J separates Cry(f') and Cyr(f').

Now we consider the graph Gg. Let R be the set of (simple) cuts in Gk that are
tight for hx, Uk and meet twice P, U P;. Suppose that some of P, and P, say P;, has
the property that no cut §X in R meets twice P;. Then defining the function A% on
EGg by

hix(e):=0if e€ P;, and hi(e):=1 otherwise;

and defining A}, h'; on EG, EGj, respectively, by
Dy

‘(e):=0if e€c P,, and hj(e):=1 otherwise;
'(€):=0if e€ Py, and h'j(e) :=1 otherwise;

we observe that each (hp,dr) (F € {I,J,K}) is solvable, and the collection {h',h'),
%} is admissible. Therefore, (G,U)* has a half-integral solution.

Thus, there is a cut 6X € R that meets P, twice, and similarly, there is a cut §X'
that meets P; twice. Let L (L') be the 1-path in Ck from z to y (respectively, from 2’
to y'), and let F be the face in Gk surrounded by Ck, see Fig. 5.3a.

Next, denote by Q the set of edges w in L U L' with hx(w) € {0,1}. Let a (b) be
the first edge in L (resp., in L') belonging to Q. By Lemma 5.1,

(5.3) hik(a) = hx(b) = 1; ais dually connected with ey and e; and b is dually connected
with uy and u .

32




Let A be the set of all tight cuts in Gk that meet Q. Arguing as in the proof of
Lemma 4.2, we conclude that

(5.4) for any §Y € A and §Z € R their corresponding dual paths Dy and Dz in Gk
have no common face different from F, K, O, and if they have a common face
F € {K,O} then they are crossing at this face.

Statement 5.3. There exists §Z € A that meets both bd(K) and bd(O) and contains
the edges a and b.

Proof. Suppose that some of §X and §X', §X say, meets only one of bd(K) and
bd(0), bd(K) say. From (5.4) it follows that each cut in A meets only bd(O). Then
6X' does not meet bd(O) (by (5.4)), whence §X' meets bd(K'). But then for at least
one I € {L,L'} the dual path Dz corresponding to a cut §Z € A meeting L must have
a common face F # F with Dx or Dx; a contradiction with (5.4).

Hence, each of §X,6X' meets both bd(K) and bd(O); see Fig. 5.3b. Applying
(5.4), one can see that every cut in A meets L,L',bd(K) and bd(0). Now we use
arguments as in the proof of Statement 5.2. o

P oX X
y L T i y \ I
\ / \ I
L _ L
(o™X -
\ [ \
[ | , | |
z P3 Y 85X
(a) (b)
Fig. 5.3

From (5.1),(5.3) and Statements 5.2 and 5.3 it follows that

(5.5) if f' is an arbitrary solution of (G, U)* then all edges in the set § X are saturated
by the flow f}, all edges in §X; are saturated by f, and all edges in §Z are
saturated by fi + 5.

In particular, (5.5) shows that

(5.6) for any solution f' to (G,U)*, Crs(f') does not separate J, K, O, and Cy(f') does
not separate I, K,O.
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Return to the flow f, and consider the bunch B' = {K,0}. Apply the operation
of “balancing” to Cxo and Cox (see (2.6)). From the proof of Lemma 2.2 one can see
that as a result we get a solution f' for (G,U)* and a bunch B satisfying the statement
of this lemma and such that K,O € B. Two cases are possible.

(i) |B| = 2. Then (G, U)* has a half-integral solution by arguments in Section 3.

(i) |B| > 2. Then (5.2) and (5.6) imply that B = {I,J,K,0}, whence (G,U)*
has a half-integral solution by arguments in Section 4.

This completes the proof of Theorem 1. ¢ o o
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