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Alezander V. Karzanov #

Abstract. We consider the problem of finding the euclidean distance from the origin
to the perfect matching polytope of a bipartite graph. Being a quadratic program with linear
constraints, this problem can be solved in polynomial time by use of a version of the ellipsoid
method. We develop a combinatorial algorithm which solves it in polynomial time. The
algorithm as well as the proof of its correctness uses ideas involved in the cancelling minimum

mean circuit algorithm for the minimum cost circulation problem due to Goldberg and Tarjan.

1. INTRODUCTION

Let G = (V, E) be a bipartite graph with parts V; and V2. Denote by P = Pg the
convex hull of the incidence vectors of all perfect matchings of G, the perfect matching
polytope for G. It is known that P consists of the vectors z € Rf such that

(1) . - z(Ey)=1 forall veV.

Here E, is the set of edges of G incident to v, and for a subset X of a set S and a
mapping g: S — R, g(X) denotes 3 . x g(e).

We assume that P is nonempty and consider the problem of determining the point
in P closest to the origin; in other words, we wish to

(2) find z € P with }_,cp(x(e))? minimum.
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(Clearly (2) has a unique optimal solution.) Since (2) is a quadratic program with
linear constrants, it can be solved in polynomial time by use of a versien of the ellipsoid
method [KTK]. In the presernt paper we construct a polynomial algorithm to solve (2)
which exploits purely combinatorial techniques and is based on the idea of cancelling
minimum mean circuits in a certain digraph (such an idea was applied in [GT] in
connection with the minimum cost circulation problem).

The polytope P is the set {z € RE | = > 0,Az = 1}, where A is the matrix
whose rows a, are the incidence vectors of the sets E,, v € V. Hence, z is the optimal
solution of (2) if and only if the gradient vector of the function Y ece(z(e))? at z can
be represented as 3,y p(v)ay + 3 .c g Y(€)xe for some numbers p(v) € R (v € V)
and y(e) € Ry (e € E) such that z(e) = 0 whenever y(e) > 0; here . is e-th unit
basis vector in R, It gives the following

Optimality criterion: z € P is optimal if and only if there exists p:V — R such
that for any e = uv € E:

(3) o p(u)+p(v) = z(e) if 2(e) >0
' <0 if z(e)=0.

(Though we allow G to have parallel edges, an edge € € E with end vertices u and v may
be denoted by uv when it leads to no confusion; a similar convention will be admitted
for the directed graphs below.) It should be noted that this criterion can be easily
established directly, not appealing to general duality theorems in convex programming,
as we explain in the Remark 1 below.

It is convenient to associate with z € P a pair (D, f), where D = D* is a digraph
(V,A) and f : A — R is a function on its arcs defined as follows. D is obtained from
G by replacing each edge e = uv € E with u € V; by a directed edge (an arc) (u,v)
if z(e) = 0, and by two oppositely directed edges (u,v), (v,u) if z(e) > 0. Foruv € E
with u € V] put

(4) f(u,v) := z(uv) and f(v,u):= —m(uv) if z(uv) >0,
“flu,v) =0 i z(uv) = 0.

Conversely, if f is a function on A such that

(5) flu,v)=—f(v,u) >0 if ueV; and (u,v)(v,u) € A,
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fu,v)=0 if (u,v)€ A and (v,u) € A,

Z f(u,v)=1for ueV; and Z f(u,v) =1 for ve Vs,

vE Vg/ . ueVy
then the vector zy € RZ, defined by z(uv) = f(u,v) for uv € E with u € V4, belongs
to P. From the above optimality criterion it follows that for D and f satisfying (5) the
vector z 7 is the optimal solution for (2) if and only if the weight f(C) := 3, ec f(€)
of every (directed) circuit C in D is nonnegative (regarding a circuit as an arc-set). In
other words, z s is optimal if and only if there exists a function7: V — R (a potential)
so that

(6) Ar(e):=m(v) —n(u) £ f(e) forany e = (u,v) € A.

Indeed, putting p(u) := —7(u) for u € V; and p(v) := 7(v) for v € V2, we observe
that (6) is equivalent to (3).

Remark 1. The above criterion can be proved directly. Suppose that f admits a
circuit C of negative weight f(C). For £ > 0 let f° be the function on A obtained from
f by increasing f(u,v) by ¢ for (u,v) € C with u € V4 and by decreasing it by ¢ for
(u,v) € C with u € V3. It is easy to see that for a sufficiently small ¢ the vector z g
belongs to P and has smaller euclidean norm than zs. The part “if” in the criterion
follows, in particular, from the lemma below.

Notice that each entry of the optimal solution z* of (2) is a fraction whose denom-
inator is at most 2°", where n := |V| and ¢ is a constant. The algorithm developed
in the present paper relies on the following lemma the matter of which is that if in-
equalities in (6) are possibly violated but by a rather small number then z; is close to
the optimal vector z* (in fact, this lemma is a refinement to our case of known general
results on certain optimization problems on polyhedra). Let m := |E|.

Lemma. Let f satisfy (5), and let v > 0 be such that

(M ‘ 7(C) = f(C)/|C| > -+  for every circuit C in D.
Then
(8) |zs(e) —z*(e)] <ym forany e € E.
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We shall prove this lemma in Section 4. It shows that if we have succeeded
in finding f (for some D) such that (7) is satisfied with v < 272¢"~1m;m~1  then
lzy — 2*|lec < 272°""1, s0 we can determine z* from z; using standard techniques
on continuous fractions. (For a vector a = (aj,...,am), ||a||e denotes the norm
max{|a;| |t =1,...,m}.)

2. ALGORITHM

Consider D = (V, A) and f asin (5). Define A = A(f) to be the least real for which
there exists a potential 7 : V — R satisfying

(9) o | Ax(e)— f(e) <A forany e€ A

Then for every circuit C in D one has f(C) > —)|C|, whence the mean weight f(C) :=
F(C)/IC| of C is at least —\.

Moreover, obviously (i) there exists C for which f(C) = —\, and (ii) a circuit C is
a mintmum mean circwit for f (that is, f(C) = =) if and only if for 7 satisfying (9)
we have

(10) Ax(e)— f(e)=A for each arc e € C.

Note that the value A(f), a potential 7 as in (9) and, therefore, a minimum mean

circuit can be found in strongly polynomial time; for example, an algorithm of Ka.rp
[Ka] has running time O(n?).

Now we describe an algorithm to solve (2). It starts with choosing an arbitrary
z € P (e.g:, with = to be the incidence vector of a perfect matching in G) and the
corresponding D; and f; for this z. At ith iteration of the algorithm there is a digraph
D = D; = (V, 4;) and a function f = f; : A; — R satisfying (5) (for 4 := A;).

Determine A = A; = A(fi), # = =; satisfying (9), and a minimum mean circuit
C = C;. Let

(11) , ¢ = ¢; := min{\, min{—f(e) | e € C7}};
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here and later on C* (C~) denotes the set of arcs (u,v) € C withu € (respectively,
u € V3). We transform f into f' = fiy1 by pushmg the flow of value ¢ along C”.
Namely, put

(12) f'(e) = f(e)‘+ e for ecC,

and accordingly correct the current digraph D and the current “ﬂow” fon the other
arcs. More precisely, we may consider D as a subgraph of the digraph D= (V A) whose
arc-set A consists of the arcs (u,v) and (v,u) for all uv € E; extend f by zero on the
arcsin A — A (then f is a “skew-symmetric” function on the arc-set of the symmetric

digraph 5) Put

(13) f'(v,u) = —f'(u,v) for (u,v) €C;
:= f(v,u) for the other (v,u) in A.

Finally, the new digraph D' = D;4, is formed from D by deleting the arcs (v,u) such
that v € V5 and f'(v,u) = 0.

Clearly the new function fi+; satisfies (5) (concerning Diy1 = (V, Ait1)). Algo-
rithm finishs when the current A becomes less than $n~2¢*m™~! (then we are done by
Lemma).

3. CORRECTNESS OF THE ALGORITHM

We use terminology and notation as in the previous section. Finiteness and, more-
over, strong polynomiality of the above algorithm are provided by the following two
claims. which are analogous to corresponding statements in [GT].

Claim 1. Let A and X' be the corresponding numbers on two consecutive iterations.
Then X < ).

Claim 2. Let m := |E|. Then for any two iterations i and i +m, Aiym < (2;;1),\,-.

By Claims 1 and 2, after each 2nm iterations the current A decreases at least by
a factor of e = 2.71.... Since for any z € P, ||z]lcc £ 1 holds, the number of iterations

, -1
of the algorithm is at most 2nm log (2‘2°"‘1m_]> , or O(nm(n + logm)).
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Remark 2. In fact, arithmetical operations involved in the algorithm are only
addition (or subtraction, or comparison) of fractions and division of a fraction by a
natural number not exceeding n (when X is being determined). This implies that if
we start with an initial z to be the incident vector of a perfect matching then we can
organize the procedure of computing each of intermediate data in the algorithm in such
a way that, after a polynomial (in n,m) number of iteration, the size (that is, the
number of digits in binary notation) of the numerator and the denominator of each
currently appeared fraction would be bounded by a polynomial in n,m. This gives a
polynomial (in n, m) boundary for the running time (calculated in operations over bits)
of the whole algorithm.

Proof of Claim 1.

Consider 7 and C occurring on ith iteration. Let e = (u,v) € A’ (A’ is the arc-set
of D' = D;y,). We assert that

(14) Ar(e) — fl(e) < A,

which obviously implies that f'(C') > —A|C’| for every circuit C' in D', and the result
follows. . :

Ifedg C and (v,u) € C then e € A and f'(e) = f(e), whence (14) follows from (9).
If e € C then f'(e) > f(e) (by (12)), and (14) is obvious. Finally, let (v,u) € C. Then
Ax(v,u) = f(v,u) = A (by (10)) and f'(v,u) = f(v,u) + ¢. Hence

Ar(e) — f'(e) = f'(v,u) — Ap(v,u) = f(.v,u) +e— Ar(v,u)
=-A+e<0,
(since ¢ < A, by (11)), and (14) follows. e

Proof of Claim 2.

Consider iterations j =4,i+1,...,7 4+ m. Fix 7 and A occurring on ith iteration.
Fori<j<i+mlet Al = A} denote the set of arcs e € A; such that

Ar(e) — fi(e) > A/2,
and let A2 = A%:=4; - A}. Two cases are possible.
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Case 1. Forall j =1,...,i+ m — 1 each arc e € C; belongs to Al. Consider some
j. By Claim 1, ); < X, hence there is an arc e € C; such that Ar(e) — fj(e) £ A. One
may assume that ); > )/2 (otherwise A\iym < A; < A/2, and we are done). K g; = A;
then for e as above we have

Ax(e) = firr(e) = Ax(e) = fi(e) =X S A— A S A/2

hence e ¢ A},,. I ¢; = —f;(¢') for some e' € C; then fjyi(e') = 0, which implies
e' ¢ Aj+1. On the other hang, no new edge e" can appear in A}, in comparison with
Al. Indeed, if for e" € A4, its opposite arc does not belong to C; then fjyi(e) > fi(e)-
And if " is opposite to an arc (u,v) € C; then ¢; < Aj < X implies that —fj1(e") =
fi(u,v) + €5 < fij(w,v) + A, whence

An(e") = fi41(") € D) + Fi(u,v) + A= —Bn(u,0) + F(u,v) + )
< =A24A=)/2

(taking into account that (u,v) € A}), that is, e" € A%,,. Thus, m 2 |4} > 1AL, >
... > |Al ], which implies that A;1m = A? . and Aigm S A/2.

Case 2. For some j € {i,...,i+ m — 1} there is an edge ¢ € C; in A?. Consider
the least j having such a property. Note that the fact that for ;' =4¢,...,j -1 all edges
in Cj: belong to A}, implies Ar(e') — fire1(€') < Afor all €' € Aj4y (this can be easily
shown by induction on j', using arguments as in the previous case). Hence,

Fi(C = Fi(CH = D Br(e) == (An(e) = fie') | €' € Cj = {e})

e’ €C;
~(Ax(e) = fi(e)) Z =M(C;] — 1) = A/2 = =A(2|C;| - 1)/2,

whence A; = —-fj(Cj) < A2|C,| - 1)/(2]C}]), and the result follows. e

4. PROOF OF LEMMA

Let z be an arbitrary vector in P, and z* be the 6ptimal solution of (2). Denote
by D = (V, A) and f the digraph D and the function on A defined by (4), respectively.
Similarly, denote by D* = (V, ;l*) and f* the corresponding objects for z*. Put
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6 := ||z — 2*||c. We show that there exists a circuit C in D such that f(C) < —6/m:
this will immediately imply the lemma. -

As above, we may think of D and D* as subgraphs of the symmetric dlgraph

(V A) (D was defined in Section 2). Extend f and f* by zero on the arcs in A — A
a.nd A-ar , respectively. Let E; (E;) be the set of arcs e € A such that F*(e)> f(e) >0
(respectively, f(e) < f*(e) < 0). For e € E;, U E, put h(e) := f*(e) — f(e). From the
facts that z,z* € P and that both f and f* are skew symmetric it follows that for any
veV: p

> (h(u,v) | (u,v) € By UE;) = (h(v,u) | (v,u) € Ey UE,),

that is, h is a circulation. Then k can be represented as

h=g1xcq) + g2xc@) + - + grXxcw)

with k < |E; U E;| < m, where g1,.. ., gi are positive reals, and xc(;) € REWVE: 5 the
incidence vector of the arc-set of a circuit C(3) in the digraph (V,E; U E3). Choose
C = C(7) with g = ¢; maximum. It is clear that g > §/k > §/m.

Let C* := CNE; and C~ := CN E,. From the definition of E, and F, it follows
that for e = (u,v) € C, e € C* if and only if u € V.

Since 2* is optimal, there is a potential 7 := ¥V — R such that Ar(e) = f*(e
holds for any e € A* with f*(e) # 0, and A,(e) < 0 for any e = (u,v) € A* with
f*(e) = 0 (in the latter case u belongs to V). Hence, Ax(e) = f*(e) for e € CT (as

f*(e') > 0 for each ¢’ € E1) and Ar(e) > f*(e) for e = (v,u) € C~ (as u € V;, whence
(u,v) € A*). Thus,

FC) <Y Ar(e) =0,

eeC

Finally, since each arc (u,v)-€ A with u € V; belongs to A, and f(e) # 0 for any
e € E;, we observe that C is a circuit in D. For each e € C we have f*(e) - f(e) =
h(e) 2 g, whence f(C) < f*(C) - g|C|. Now f*(C) £ 0 implies f(C) < —g¢|C|. Thus.
F(C) £ —g < —6/m, as required. o

Remark 3. The above algorithm can be easily extended to solve the problem of
determining the distance to the perfect matching polytope of a bipartite graph from
an arbitrary (rational) point a in RZ. This is equivalent to the problem of finding
the distance from the origin to the “shifted” polytope Pg . consisting of the vectors
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z € RE such that z(e) > —a(e) for e € E and z(Ey)=1—a(Ey)forveV. In this
case the number of iterations of the algorithm similar to that described above becomes
O(nm(n + logm + max{s(a(e)) | e € E})), where for a rational number r = p/q, s(r)
denotes 1 + [log(|p| + 1)] + Mog(lg| + 1)]-
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