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ON MULTIFLOW PROBLEMS

Andréas Frank*
Alexander V. Karzanov#
Andrés Sebs™

Abstract. There are various versions of the multicommodity flow problems such as edge-demand,
node-demand, maximization and locking problems. Here we reveal some relationships between
these problems. In particular, with an unexpected use of Edmonds’ polymatroid intersection
theorem, we derive a theorem of Karzanov and Lomonosov on multiflow maximization. The
approach gives rise to a (combinatorial) polynomial time algorithm to find the maximum in

question. A certain weighted version of the maximization problem also becomes tractable.

1. INTRODUCTION

Let G = (V,E) and H = (T, F) be two graphs so that T C V. We call a path of G
H-admisstble if it connects two nodes z,y of T so that zy € F. G will be called & supply

graph, H a demand graph and the elements of T terminals while the other elements of V
are called inner nodes.

There are various forms of the edge-disjoint paths problem. In the edge-demand problem we
are given a demand function m : F — Z; and the objective is to find a family F of edge-
disjoint H-admissible paths so that for each demand edge f = zy there are m(f) members
of 7 connecting z and y. The mazimization problem consists of finding a maximum number
of edge-disjoint H-admissible paths.

If H consists of one edge, then the Menger theorem answers both questions. In the example
shown in Figure 1 H consists of two disjoint edges. Clearly, there is no solution to the
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2 On multiflow problems

edge-demand problem when both demands are 1. The maximum value in the maximization
problem is 2 since there are two paths connecting the end-nodes of one of the two demand
edges.

In the edge-demand problem the cut condition is a simple necessary condition: for every
cut, the number of edges in G cannot be smaller than the sum of demands in this cut.

In general, both problems are NP-complete even in the special case when G is Eulerian.
However there are important special cases when the problems are tractable. For example,
Rothschild and Whinston, sharpening earlier results of Hu, proved that in the edge-demand
problem the cut condition is sufficient when H consists of two edges, and for each node
v of G d(v) + > (m(uv) : uv € E) is even where d(v) denotes the number of edges of G
incident to v.

S1 to S1a oty
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Fig. 1

The same theorem holds if H consists of two stars (that follows by an easy elementary
construction from the theorem of Rothschild and Whinston [1966b]), if H is K, (complete
graph on four nodes) [Lomonosov, 1979; Seymour, 1980] and if H is Cs (5-element circuit)
[Lomonosov, 1979]. It is also known that there is no any other demand graph for which the
statment above holds. For a detailed account on edge-disjoint paths problems see [Frank,
1990).

As to the maximization problem, Rothschild and Whinston [1966a] proved a max-flow
min-cut type theorem when G is inner Eulerian (that is, d(v) is even for every inmer
node v) and H consists of two edges. Another important theorem is due, independently,
to L. Lovész [1976] and B.V. Cherkasskij [1977] . They solve the maximization problem
when H is a complete graph and G is inner Eulerian. In [1978] A.V. Karzanov and M.V.
Lomonosov found (in a sense, a strongest) common generalization of these two theorems.
Their original proof is rather lengthy and technical and it is certainly much more difficult
than those of the two special cases mentioned above.

The main contribution of this paper is a relatively simple proof of the theorem of Karzanov
and Lomonosov. The proof relies on two ingredients. First we provide a simple proof of
the so-called locking theorem, another earlier result of Karzanov and Lomonosov. In the
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second step we invoke the locking theorem and the polymatroid intersection theorem of
J.Edmonds [1970] . Both of these ingredients can be efficiently solved; this gives rise to a
combinatorial strongly polynomial time algorithm for the (capacitated) maximization prob-
lem in question, which has significally less running time than an algorithm in [Karzanov,
1985] (described in details in [Karzanov, 1987]) based on splitting-off techniques.

In what follows we do not distinguish between a one-element set {z} and its only element
z. For a set X and an element ¢ let X + ¢ denote the union of X and ¢. For a vector
m:S — R and X C S we use the notation m(X) for 3 (m(s) : s € X). A family
of pairwise disjoint non-empty subsets of a set S is called a sub-partition of S. For two
elements s,t a set X is called a t5-setif t € X, s ¢ X. An integer-valued vector or function
is called even if each of its values is an even integer. For a polyhedron P we use the
notation P/2 := {z : 2z € P}.

For a graph G = (V, E) the cut [X,V — X] is the set of edges with precisely one end-node
in X. Its cardinality is denoted by d(X)(= d(V — X)). d(X) is called the degree function
of G. Let d(X,Y) denote the number of edges with one end in X — Y and the other in
Y — X. It is easy to prove that d satisfies the following identities for every pair X,Y of
subsets of V.

dX)+dY)=dXNY)+d(X UY)+2d(X,Y) (1.1)

dX)+d(Y)=dX -Y)+dY - X)+2d(X NY,V - (X UY)) (1.2)

Splitting off a pair of adjacent edges e = st, f = sz means an operation that replaces e and
f by a new edge connecting ¢ and ¢ (this way we may introduce parallel edges between
and t.) The resulting graph is denoted by G¢7.

Let A and B be two disjoint subsets of V. A path connecting an element of 4 and an
element of B is called an (A, B )-path. A path connecting two distinct elements of A is called
an A-path. A\(4, B; G) or simply A(A, B) stands for the maximum number of edge-disjoint
(A, B)-paths. By Menger’s theorem A(A, B) = min(d(X): A C X C B).

One may consider a fractional version of the edge-disjoint paths problem. Let G and H
be as before. By an H-multiflow or briefly multifiow  we mean a family {P;, P,,..., P;}
of paths of G along with non-negative coefficients oy, as, ..., ax so that each P; connects
the end-nodes of a demand edge. z is integer-valued if each ¢; is an integer.
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If each P; connects an element of A and element of B (in particular, when H is a complete
bipartite graph with bipartition (A, B)), we speak of an (A, B)-flow. For an H-multiflow
xlet z(e) := > (a; : P;uses e) (e € E) and z(t) := > (a; : Piendsat t) (t € T). For a
given capacity function ¢ : E — Ry, z is called c-admissible if z(e) < ¢(e) for every e € E.

A non-negative set-function b: 27 — R is called a polymatroid function if
1. (@) =0,
2. b is monotone increasing, i. e. b(X) > b(Y) when Y C X C T,

3. bis submodular, i.e. H(X)+ Y )2 (X UY)+HXNY)for X,Y CT.

The degree-function d of a graph G satisfies properties 1 and 3 but typically not 2.

A polyhedron P(b) := {z € RT : 2 > 0, z(A) < b(A) for every A C T} is called a
polymatroid. It is called integral if every vertex of P is integer-valued.

The concept of a polymatroid was introduced by J. Edmonds. He proved several funda-
mental theorems concerning polymatroids. For example, he proved that a polymatroid
uniquely determines its defining polymatroid function (in other words, different polyma-
troid functions define different polymatroids.) Furthermore, a polymatroid is integral if
and only if b is integer-valued.

For a polymatroid P(b) the face B(d) := {z : x € P, 2(T) = b(T)} of P(b) is called the
basis polyhedron of P(b) and its elements are the bases. Edmonds also proved the following
important feature of polymatroids.

Theorem 1.1 [Edmonds, 1970). For an (integral) polymatroid P(b) and an (integer-
valued) vector x € P(b) there is an (integer-valued) basis with y > z.

Probably the most important result of Edmonds concerning polymatroids is the Intersec-
tion Theorem.

Theorem 1.2 [Edmonds, 1970]. For two polymatroid functions a and b defined on the
power set of T

max(z(T): z € P(a)N P(b)) =min(a(X) + (T -X): X CT).



A. Frank, A.V. KArzanov, A. Sebd 5

Furthermore, if a and b are integer-valued, the mazimum is attained by an integer vector.

It follows that there is a vector z in P(a) N P(b) and a bipartition {4, B} of T so that
z(A) = a(A) and 2(B) = b(B) and if a and b are integral-valued, then so is z.

2. THE LOCKING PROBLEM

For a subset A C T the notation A\(4,T — 4; G) will be abbreviated by A\(4; G) or by A(A)
when no confusion can arise. Throughout this section we assume that the pair (G, T) is
inner Eulerian.

Lovész [1976] and Cherkasskij [1977] proved the following theorem.

Theorem 2.1. For an inner Eulerian pair (G,T) the mazimum number of edge-disjoint
T-paths 1s equal to Y (A(t) : t € T)/2. Furthermore, there is a family of disjoint sets
{X(@):teT} sothatt € X(¢) CV and d(X(t)) = A(¢) fort € T.

An equivalent formulation of the first part is:

Theorem 2.1°. There is a family F of edge-disjoint T-paths so that F contains A(t) paths
ending at t for eacht € T.

In other words, there is a family of edge-disjoint T paths that contains maximal families
of edge-disjoint (¢,T — t)-paths simultaneously for all ¢ € T.

Karzanov and Lomonosov extended this theorem. To formulate their result let us say
that a family F of edge-disjoint T-paths locks a subset A C T if F contains A(A) paths
connecting A and T — A. Furthemore, we say that F locks a family £ of subsets of T if F
locks all members of L.

Theorem 2.1” asserts that there is a family F of paths that locks all singletons of T. Is it
always possible to find a family of edge-disjoint T-paths that locks a specified family £?
The answer is, in general, negative, as shown by the following two instances. Here in each
instance £ consists of three pairwise crossing sets. (Two subsets A and B of T are called
crossing if none of A— B,B — A,ANB,T — (AU B) is empty).
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The theorem below asserts essentially that if we exclude these configurations, then a locking
T-path system always exists.

Call a family £ of subsets of T' §-cross free if it has no three pairwise crossing members.

Locking Theorem 2.2 [Karzanov, 1984; Lomonosov, 1985]. Let (G,T) be inner Eulerian
and L a 3-cross free family of subsets of T. Then there exists a family of edge-disjoint
T -paths that locks L.

A proof of a slightly weaker version was sketched in [Karzanov and Lomonosov, 1978]. The
present proof relies on an idea used already in [Karzanov, 1984] but technically simpler.

Proof. We may assume that T — A € L for each A € £ because for A € £ adding T — A
to L affects neither 3-cross-freeness nor lockability. Also assume that G is connected.

We proceed by induction on the number of edges incident to the elements of V —T. If
this number is zero, then the statement is trivial. Therefore there is an edge e = st with
teT,s ¢ T. We are going to show that there is an edge f = sz, z # ¢, for which

MA; G) = A(4; G#Y) for every A € L. (2.1)

From this the theorem follows since, by induction, there is a family F of T-paths of G¢f
locking £. If a path P € F uses the new edge h of G®/ having arisen from the splitting of
e, f, then revise F by replacing h in P by e and f. By (2.1) the revised F locks £ in G.

Claim 1. Suppose for X,Y CV that XNT CYNT and that d(X)=ANXNT),d(Y) =
MY NT). Then d(XNY)=AMXNT),dXUY)=AXYNT) and d(X,Y) =0.
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Proof. Since XNT C Y NT we have (X NY)NT = X NT and hence d(XNY) > \(XNT).
Analogously, (X UY)NT =Y NT and d X UY) > MY NT). Therefore, by (1.1),
AXNTY+AYNT) =dX)+dY)=dXNY)+dXUY)+2d(X, V) > NMXNT) +
MY NT)+2d(X,Y), from which the claim follows.

Callaset X CV tight f XNT € Land d( X NT) = ANXNT). Since £ is closed under
complementation, V — X is tight if X is tight. Because (G, T) is inner Eulerian, a pair of
edges e = st, f = sz will satisfy (2.1) precisely if

there is no tight set X witht,z € X CV —s. (2.2)

Claim 2. There are no three mazimal tight t5-sets.

Proof. Let X,Y, Z be maximal tight ¢3-sets. Since L is 3-cross-free, two of the tree sets
XNT,.YNT,ZNT,say XNT and Y NT, are non-crossing.

Then either X NT CYNTor YNTCXNTorT CXUY. In the first two cases Claim
1 implies that X UY is tight contradicting the maximality of X and Y. In the last case,
by applying Claim 1 to X' =V — X and Y, we obtain that d(X',Y") = 0 contradicting the

existence of edge st. o

Let S denote the set of neighbours of s.

Claim 3. It s not possible to cover S by two tight t35-sets.

Proof. Suppose that § C XUY where X and Y are tight t5-sets. Let a :=d(s,X -Y), 8 =
d(s,Y—=X),v :=d(s,XNY). By symmetry we may assume that a > 3. (X+s)NT = XNT
implies that d(X + s) > A(X NT). On the other hand, since 4 is positive, we have
dX +s8)=d(X)—a-v+ 8 <d(X)= XX NT), a contradiction. e

By Claims 2 and 3 there i1s an edge f = sz satisfying (2.2) and then (2.1) holds; the proof

of Locking Theorem is complete. o o o
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. We will need a slight extension of Theorem 2.2. Let m : T — Z be a non-negative integer-
valued function on T. A family F of edge-disjoint T-paths is called m-independent if every
terminal t € T is the end of at most m(t) members of F. Let A (A) denote the maximum
number of m-independent (A, T — A)-paths. We say that a family F of T-paths m-locks a
subset A C T if F is m-independent and contains A, (A) (A,T — A)-paths. Furthemore,
we say that F m-locks a family L of subsets of T if F m-locks all members of £.

The following theorem is a straightforward consequence of Theorem 2.2 and will be used
in the proof of Theorem 4.3.

Theorem 2.3. Let G be Eulerian and L a 3-cross free family of subsets of T. Let
m: T — Z4 be an even vector. Then there ezists a family F of T-paths that m-locks L.

Proof. Let T' be a copy of T so that 7' NV =  and let ¢’ denote the the element of T'
corresponding to ¢t € T'. Let G' = (V', E') where V' := VUT' and E' := EU {m(t) parallel
edges between t and t' for every t € T'}. Let L' := {{t': t € L} : L € L}}. Apply Theorem
22toG', T and L'. e e @

3. FLOWS AND POLYMATROIDS

Let ¢ : E — Ry be a capacity function on the edges of G = (V,E). Let A C T and
B :=T — A. Define P4 := {m € R : there is a c-admissible (4, B)-flow = such that
z(v) = m(v) for v € A}.

For X C Alet f4(X):=min(6(Y): Y CV,X CYNT C A). Here 6.(Y) := > (c(e) :
e € [Y,V —Y]). Clearly f4 is submodular and monotone increasing. By a version of the
Max-flow Min-cut theorem a vector m € R% belongs to P4 if and only if m(X) < fa(X).
Therefore P, is a polymatroid. Furthermore, if ¢ and m are integer-valued, then there is
a c-admissible integer-valued (A, B)-flow z for which z(v) = m(v).

Let G be Eulerian. Define ¢ by ¢(e) = 1 for every e € E and let 7:= {T1,T%,..., T} be a
partition of T.

Let P denote the direct sum of polymatroids Pr,, Pr,,..., Pr,. Since G is Eulerian, P/2
is an integral polymatroid.
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Lemma 3.1. Let g be an even basis of P and m an even vector for which m 2> q. Then
any m-independent family F of T-paths that m-locks T contains at least ¢(T)/2 paths

connecting distinct members of T.

Proof. Since ¢ is a basis, there are ¢(T;) edge-disjoint paths connecting T; and T — T; so
that each t € T is the end-node of precisely ¢(t) paths. Therefore A (T:) = ¢(T;). The
assumption m > ¢ implies that Ap, > Ag. Since ' m-locks T, there are A, (T3) > A(T3) =
¢(T;) paths in F connecting T; and T ~ T; for each : = 1,..., k, from which the lemma

follows. e

Remark. Since g is a basis, F contains at most ¢(T;) (T;, T — T;)-paths and therefore F
contains at most ¢(T)/2 paths connecting distinct members of 7. That is, the number of
such paths in F is precisely ¢(7')/2 but we will not need this fact.

4. MAXIMIZATION

Let G = (V,E) and H = (T, F) be two graphs so that T C V and ENF = . Throughout
this section we assume that the pair (G, T) is inner Eulerian, that is, d(v) is even for every
v € V — T where d stands for the degree function of G.

The mazimization form of the edge-disjoint paths problem consists in finding a maximum
number y = u(G, H) of edge-disjoint H-admissible paths in G.

We can easily get an upper bound on u. Let us call a sub-partition {X1,X2,..., Xi} of
V admissible if T C UX; and each X; N T is stable in H(i =1,...,k). Clearly,

w(G,H) < d(Xi)/2. (4.1)

Let us call 37 d(X;)/2 the value of the sub-partition. Let 7 = 7(G, H) denote the minimum

value of an admissible sub-partition. Then p < 7.

The following example shows that we do not have equality, in general.
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There are two known special cases when equality holds. Theorem 2.1 shows that this is
the case if H is a complete graph on T. Reformulating Theorem 2.1 we have:

Theorem 4.1. Suppose that (G, T) is inner Eulerian and the demand graph H 13 complete.
Then u(G,H)=1(G,H). o

Another special case for which u = 7 is when H consists of two edges, that is, H = 2K,.

Theorem 4.2. Suppose that (G,T) is inner Eulerian and H consists of two edges sit; (z=
1,2). Then u(G,H) =7(G,H). o

This is a theorem of Rothschild and Whinston. Actually, they proved it in the following
simpler form (it is easy to prove that 7’ = 7).

Theorem 4.2’ [Rothschild and Whinston, 1966a]. Suppose that (G,T) is inner Eulerian
and H consists of two edges s;t; (i = 1,2). Then u(G,H) is the minimum cardinality T
of a cut [X,V — X] of G for which {s;,t;}NX =1(1=1,2). o

Let us call a graph H = (T, F) bi-stable if the family of maximal stable sets of H can be
partitioned into two parts, each consisting of disjoint sets. (It can be shown that the bi-
stable graphs are precisely the complements of the line graph of bipartite graphs. Moreover,
it is easy to design a polynomial time algorithm to recognize if a graph is bi-stable and,
if so, to construct a partition as above.) Clearly, a clique, or more generally a complete
k-partite graph is bi-stable and 2K is bi-stable as well. Therefore Theorems 2.1 and 2.2

are special cases of the following.



A. Frank, A.V. KArzanov, A. Sebé 11

Theorem 4.3 [Karzanov, 1985; Lomonosov, 1985]. Suppose that (G, T) is inner Eulerian
and H = (T, F) is bi-stable. Then u(G,H)=1(G,H).

A proof of a slightly weaker version was sketched in [Karzanov and Lomonosov, 1978].
The reader may feel that bi-stable demand graphs form a rather peculiar class of graphs
and there may be a larger, more natural class of graphs for which g = 7 holds. Karzanov
and Pevzner [1979], however, showed that if H = (T, F) contains no isolated nodes and
is not bi-stable, then there is a supply graph G = (V, E) with T C V such that even
for the numbers y*(G,H) and v*(G, H) in the corresponding fractional relaxations one
has u*(G,H) < v*(G,H). We now give a new, short, proof of Theorem 4.3 using results
obtained in Sections 2 and 3.

Proof. By (4.1) we have (G, H) < 7(G, H). To see the inverse inequality, first we prove
that the theorem follows from its special case when the graph is totally Eulerian. So
suppose the theorem is true for (G', H') whenever G’ is Eulerian and we want to prove
it for (G, H) when G is inner Eulerian. Let K denote the set of nodes of G with odd
degree. Since (G,T) is inner Eulerian K C T. If K is empty, we are done. If not, for
anew node t, let 7/ := T+t and V' := V +¢t Let E' := EU{zt : ¢ € K} and
F':= FU{zt:z € T}. Then G' := (V' E') is Eulerian and H' := (T", F') is bi-stable.
Let 4/ and 7’ denote, respectively, the maximum and minimum in question concerning
(G',H"). By the assumption y4' = 7',

Obviously, there is an optimal solution to the maximization problem concerning (G',H')
in which every edge zt, = € K, is itself a path in the solution. Thus we have u >
i’ — |K|. Furthermore, let M’ be an optimal admissible sub-partition for (G',H') so
that t € X € M'. Since every edge zt, z € T, belongs to H', X N T = {t}. Hence
M' — {X} is an admissible sub-partition for (G, H); therefore 7 < 7' — |K|. We conclude
that u >y — |K| = 7' —|K| > 7, as required.

Henceforth we assume that G is Eulerian. Let A' = {4},...,A}} and B' = {By,...,B}}
be two families of maximal stable sets of H that give a partition as above. Let A :=
A'U{{t}:t €T —UA;} and B := B'U {{t} : t € T — UB]}. Then each of A,B forms a
partition of T and consists of disjoint (not necessarily maximal) stable sets.

For 4; € Alet a;(X) (X C A;) be the set-function defined by a;(X) := A(X,T — A4;).
We have seen in Section 3 that a; is a polymatroid function. Define b; analogously for
B. For X C T let a(X) := 5 a;(X NA4;) and b(X) := > b;(X N Bj). Then a and b are
polymatroid functions, as mentioned in Section 3. Let P(a) and P(b) be the polymatroids
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defined by a and b.

Since G is Eulerian, a/2 and b/2 are integer vectors and therefore P(a)/2 (= P(a/2))
and P(b)/2 are integral polymatroids. By Theorem 1.2 there exist an even vector m’ in
P(a)N P(b) and a bi-partition {4, B} of T so that

m'(A) = a(4) and m'(B) = b(B). (4.2)

By Theorem 1.1 there are even bases m, € P(a) and my € P(b) so that m, > m' and
my > m'. By (4. 2) we have

m'(t) = m,(t) if t € A and m'(¢) = my(t) if t € B. (4.3)

Let a vector m be defined by m(t) := max(m,(t),ms(t)) for t € T. Clearly m is even and
(4.3) implies that m,(t) + my(t) = m(t) + m/(t) for each t € T, hence

mo(T) + myp(T) — m(T) = m'(T). (4.4)

Let £ := AU B. Clearly £ is 3-cross free so we can apply Theorem 2.3. Let F be a
family of m-independent T-paths provided by the theorem. Recall that a path was called
H-admissible if it connects the end-nodes of a demand edge.

Claim 1. The number h of H-admissible paths in F is at least m'(T)/2.

Proof. Note that a path is not H-admissible precisely if it connects two nodes belonging to
the same member of £ (= AU B). Apply Lemma 3.1 with the choice 7 := A, P := P(a)
and g := m,.

We obtain that there are at most |F| —m4(7T)/2 paths in F having both end-nodes in the
same member of A. Analogously, there are at most |F| —m(T')/2 paths in F having both
end-nodes in the same member of B.

Hence h 2 |F| = (1F[=ma(T)/2) = (1F|-ms(T)/2) = (ma(T) +me(T))/2 = |F|2 (ma(T) +
my(T) — m(T))/2 = m/(T)/2, as required. Here the inequality follows since F is m-
independent while the last equality is precisely (4.4). o
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Claim 2. There is an admissible sub-partition of value at most (a(A) + b(B))/2.

We leave the proof to the reader.

By Claims 1 and 2 and by (4.2) we have p > m/(T)/2 = (a(A) + b(B))/2 = 7, and the
proof of Theorem 4.3 is complete. o o o

5 ALGORITHMIC ASPECTS

In this section we briefly outline how the proof method above gives rise to a strongly poly-
nomial (combinatorial) algorithm in the capacitated case. (Informally, a polynomial-time
algorihm is strongly polynomial if the number of steps does not depend on the magnitude

of the occuring capacities).

The input of the algorithm consists of two graphs G = (V, E)and H = (T, F) where T C V.
G is endowed with a non-negative rational capacity function ¢ : E — Q4. We assume that
H = (T, F) is given by two partitions A= {A4;, A,,...,Ar} and B= {B1,Bs,..., By} of T
so that zy € F if and only if z and y do not belong to the same A; and to the same B;.

The output of the algorithm consists of an admissible sub-partition K= {X1X,,...,X;:}
of V and a c-admissible H-multiflow z so that Y (z(t) : t € T) = Y (6.(X) : X € K).
Moreover, if ¢ is is integer-valued and Eulerian in the sense that é.(v) is even for every

node v € V, then the output z is integer-valued.

Actually, we will assume that ¢ is integer-valued and Eulerian. If this is not the case, one
can multiply through the capacities by 2N where N denotes the common denominator of

the capacities.

First we remark that the proof of the Locking Theorem immediately provides a polynomial-
time algorithm for the set-system .A U B when c is identically 1. It is not difficult to show
that, for general ¢, if in every step one splits off as much as possible, then the algorithm
is strongly polynomial. In what follows we comment on the use of the polymatroid inter-
section algorithm to construct an even vector m' and admissible sub-partition occuring in
the proof of Theorem 4.3.

For disjoint sets X,Y C V let A (X,Y) denote the maximum value of a flow between
X and Y. With the help of a Max-flow Min-cut (MFMC) computation A.(X,Y) can be
computed in (strongly) polynomial time.
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For A; € A let a;(X) (X € Ai) be a set function defined by ai;(X) := A (X, T — 4;).
Define b; analogously. For X C T let a(X) := ) ai(X N 4;) and b(X) := > b;(X N B;).
Let P(a) and P(b) be the polymatroids defined by a and . Since c is Eulerian, P(a)/2
and P(b)/2 are integral polymatroids.

The Polymatroid Intersection Theorem 1.2 ensures the existence of an even vector m’ in
P(a) N P(b) and a bi-partition {4, B} of T so that m'(4) = a(A) and m'(B) = b(B).
P. Schonsleben [1980] developed a strongly polynomial algorithm for determining m' and
{A, B}. His algorithm works if an oracle is available to minimize a(X) — 2(X) and b(X) —
2(X) over X C T where z : T — Q is a vector. In our case this oracle can indeed be
constructed by invoking the MFMC algorithm.

There is, however, a better way to compute m' and {A, B} by exploiting the special
structure of the two polymatroids above. We now describe such a method that relies
directly on the MFMC computation and avoids the use of a general-purpose polymatroid
intersection algorithm.

Define a mixed graph Giig = (Vbig, Ebig) as follows (this graph is a slight modification of
one designed in [Karzanov, 1985], however, the former enables us to determine easily m'
and (A, B), while the latter only a partition (4, B)). First construct h + % disjoint copies
of G and denote them by G4,,...,G4,,GB,,---,GB,. Add then two new nodes s, ¢.

Foreveryi,7 (1 <1< h,1<j <k)andeveryv € T, define edges, as follows. f v € T—A4;,
connect s by an edge with the copy of v in G4,. If v € T — Bj, connect t by an edge with
the copy of v in Gp,. Finally, if v € A; N B;, draw a directed edge from the copy of v in
G 4; to the copy of v in G, ; the edge defined this way is denoted by e(v).

Define a capacity fuction ¢ : Eyig — Z4 U {00}, as follows. If an edge e’ of Gy, is a copy
of an edge e of G, then let c(e') := ¢(e). The capacity of all other edges of Gy, is co. Let
M denote the value of a maximum flow from s to .

Let R C Vpiy be an st-set for which §.(X) = M. Define X; (respectively, Y;) to be the
set of nodes in G for which the corresponding nodes in G4, (Gp;) do not belong to R
(respectively, belong to R). Finally, using that ¢ is Eulerianone can determine a maximum
flow from s to t in such a way that for every v € T the value of this flow on e(v) is even;

denote this value by m/(v).

It is easy to prove that m' € P(a) N P(b) and m/'(T) = M. Moreover, applying to
K = {Xy,..., X, Y1,...,Y} “uncrossing” operations we obtain an optimal admissible
sub-partition of value m'(T')/2.
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The running time of the above method to construct m' is 0(n(|Vsig|), or O(n(|V||T) op-
erations, where n(n) is complexity of finding a maximum in a graph with n vertices. One
can show that to determine an even basis m, as in the above proof of Theorem 4.3 (for the
capacitated version) is reduced to finding |4| maximum flows in G; and similarly for m;.
Thus m as in (4.4) is determined in running time O(|T|(|V])). Finally, one shows that
the locking problem (for m) can be solved by use of only O(|V]) splitting-off operations
for every vertex in V — T, each operation consists in finding a maximum flow in G. This
gives running time O(|V|*n(|V])) to solve the locking problem, and O(VE(IVI® + |T]?))
for the whole algorithm if for determining a maximum flow we use a subroutine of com-
plexity n(n) = O(n?). Note that the algorithm in [Karzanov, 1985] requires running time
(TP V)

6. NODE-DEMAND PROBLEM

The reader might have a feeling that there is a seemingly unnecessary twist in the proof
above. Recall that the polymatroid intersection theorem ensured the existence of a max-
imum even vector m' in P(a) N P(b) for which m'(T)/2 is precisely (G, H). Is it indeed
necessary to make a detour to the locking theorem or it would perhaps be possible to use
m' directly to construct m'(T)/2 H-admissible paths?

This would be the case if there existed a system of H-admissible paths so that eacht € T
is the end-node of precisely m'(t) of them. Unfortunately, such a system need not always
exist but the following problem naturally emerges.

Let G = (V,E) be a graph H = (T,F) a demand graph with T' C V. Moreover, let
m: T — Z, be a demand function.

The node-demand problem consists in finding a system of H-admissible paths so that each
terminal t is the end-node of precisely m(t) paths. We call the problem and also the vector

m feasible when such a solution exists.

The node-demand problem is called Eulerian if (G, T) is inner Eulerian and m(?) + d(t) is
even for each t € T. We call a demand graph H two-covered (one-covered) if every node
t € T belongs to at most two (exactly one) maximal stable sets of H; in particular, if H is
bi-stable, then it is two-covered. (The converse is, in general, not true).

Theorem 6.1. Suppose that the node-demand problem defined by (G, H,m) is Eulerian
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and H 1s two-covered. Then it is feasible if and only if the following node-cut condition
m(XNS)—m(XNT-S5)<dX) (6.1)

holds for every X CV and every mazimal stable set S in H.

Sketch of Proof. The necessity of the node-demand problem is straightforward. The proof
of sufficiency relies on the observation that the family £ of maximal stable sets of a 2-
covered graph H is 3-cross-free. Then we apply Theorem 2.3 and prove that the path
system provided by this theorem gives the required solution to the node-demand problem,
by showing that (6.1) implies that A, (X) = m(X) for every X € L. o

Several authors introduced a generalization of polymatroids called by A. Bouchet and W.
Cunningham [1991] bi-submodular polyhedra. This is a general class of polyhedra for which
a naturally formulated general greedy algorithm works. A bi-submodular polyhedron can
be defined as a polyhedron of the form

{r e RT : 2(M) - z(N) <b(M,N) for M,NCT, MNN - 0}, (6.2)

where b is a real-valued function defined on all pairs (M, N) of disjoint sets M,N C T
satisfying the “bi-submodular inequalities”:

B(M,NY+b(M',N') 2 b(MAM ,NON')+b(MUM')=(NUN"), (NUN")— (MUM")).

THEOREM 6.2 Suppose that H is one-covered. Then the polyhedron
{r:2(XNS)—2(XNT—-5)<d(X) for every X CV and S mazimal stable set in H }

18 a bi-submodular polyhedron.

Theorem 6.2 can be proved with a routine “truncation procedure” which consists in defining
a function b on every pair of disjoint subsets of T in such a way that {z : z(4) — z(B) <
b(A, B) for every A, B CV, ANB = 0 } is the same polyhedron as the one in the theorem,
and b(A4, B) is as small as possible. The bi-submodularity of b can be proved using (1.1)
and (1.2). Moreover, b is integral, and it is even whenever d is even.

Let us consider again bi-stable demand graphs. Then by Theorem 6.1 the set of feasible
node-demands m is exactly the set of solutions of (6.1). But the inequalities in (6.1) can be
separated into two parts, for each of which Theorem 6.2 can be applied. Thus {m € RT : m
is feasible} is the intersection of two integral bi-submodular polyhedra.
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Unlike the intersection of two integral polymatroids, the intersection of two integral bi-
submodular polyhedra is not necesserily integral. However, it was proved by [Cunningham,
1989]to be half-integral. Note also that if each of these polyhedra is given by a membership
oracle then, using the ellipsoid method, an optimal half-integral element of the intersection
can be found in polynomial time. (To our best knowledge no combinatorial algorithm is
known in the general case.) It follows that the following problem is polynomially solvable.

Let G and H be as in Theorem 4.3 but no Eulerian properties are required. Letw : V — Q
be a vector. Find o mazimum weight (fractional) H -admissible multifiow, where the weight
of ¢ multiflow is defined to be S (w(t)m(t) : t € T) and m(t) denotes the sum of values of
the multiflow on the paths ending at t.

The arguments above imply that this problem has a quarter-integral optimal solution, and
even a half-integral one when G is Eulerian. In addition, such a solution can be found in
polynomial time (relying on the ellipsoid method). So far we did not find a method for
the integral weighted maximization problem even if G is Eulerian.

Let us add that in our special case the membership (and even separation) problem for the
bi-submodular polyhedron can be solved by a combinatorial strongly polynomial algorithm

using a maximum flow subroutine.
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