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Abstract. The problem that we study in this paper arises as a natural extension of the classical
minimum-cost maximum-flow problem, on one hand; and the problem of finding a collection of flows
(a multifiow) in an undirected network, such that a flow connecting any two terminals is allowed and
the sum of values of these flows is maximum, on the other hand. It is known, due to Cherkasskij and
Lovész, that the latter problem has a half-integral solution when the capacity function is integral.

We consider the problem of finding a multiflow (consisting of flows between any pairs of terminals)
whose total cost is minimum provided that the sum of values of the partial flows is maximum. We prove
that it has a half-integral optimal solution whenever the capacities are integral. Moreover, we describe
a pseudo-polynomial algorithm to solve this problem and show the existence of a half-integral optimal
dual solution. Finally, we develop a strongly polynomial algorithm for finding half-integral optimal
primal and dual solutions.

Some of the above-mentioned results have been published in an earlier paper of the author, and
here we give other, shorter proofs, while the other results are now presented for the first time.

1. Introduction

Throughout the paper by a graph (digraph) we shall mean a finite undirected
(directed) graph without loops and multiple edges. VG is the vertez-set and EG is
the edge-set (arc-set) of a graph (digraph) G. An edge of a graph with end vertices
z and y may be denoted by zy. A path, or an s — ¢ path, in a graph (digraph) G is
a sequénce P = (s = xzg,€1,%1,...,€k,2k = t) where z; € VG and ¢; = z;_1z; € EG
(respectively, e; = (z;—1,z;) € EG). The path P is simple if all z;’s are distinct.

We shall deal with an undirected network N = (G,T,¢c,a). Here G is a graph
and T is a subset of its vertices, called terminals in N. An edge e € EG has a
nonnegative capacity c(e) and cost a(e). Throughout the paper, if another condition
is not explicitly stated, we assume that both ¢ and a are integer-valued.

Let P := P(G,T) denote the set of simple s —t paths in G with s,t € T' and s # t.
A (c-admissible) multiflow, or multicommodity flow, in N is a mapping f : P — Q4
satisfying the capacity constraint

(1) ¢f(e):=> (f(P)le€e PEP) < c(e) foralle€ EG
(Q+ is the set of nonnegative rationals). For s,t € T the restriction f,; of f on the set
of s —t paths is called a flow from s to t. (Thus a flow from s to ¢ is considered to be

a function on the simple s —t paths; such a definition is known to be equivalent to the
usual notion of a flow as a function on directed edges satisfying conservation conditions,
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cf. [FF]; the former definition will be more convenient for our purposes). The total
value v(f) of fis 3 (f(P) | P € P), and the total cost a(f)is Y (a(e)¢f(e) | e € EG).
A multiflow f is called mazimal if its total value v(f) is as great as possible.

In the present paper we study the problem

(2) given N = (G,T,c,a), find ¢« mazimal multiflow fin N whose total cost a(f) is
minimum,

When a = 0, (2) turns into the problem () of finding a maximal multiflow
(in which flows connecting any two distinct terminals are allowed). It was proved
independently by Cherkasskij [Ch] (this paper was submitted for publication in 1973)
and Lovasz [Lo] that there exists a maximal multifiow f that is half-integral (i.e.,
the function 2f is integer-valued). Moreover, if ¢ is inner Eulerian, that is, for any
z € V—T the value 3 (c(e) | e € EG, e incident to z) is even, then (*) has an integral
solution. Also it was shown in [Ch] that a half-integral (integral if c is inner Eulerian)
solution of (*) can be found in strongly polynomial time (another, faster, algorithm
of complexity 0(n, log|T|) was developed in [Ka2], where 7, is the running time of a
maximal flow procedure for a network with n := |V G| vertices).

When T consists of two terminals, say s and t, (2) turns into another well-known
special case. Namely, we get the (undirected) minimum-cost maximum-flow problem:
find a maximal flow f,; from s to ¢ whose total cost is minimum. A classical result in
network flow theory is that the latter problem has an integer solution, see [FF]. This
problem is also solvable in strongly polynomial time, due to [Tal] (see also [GT] for
a “pure combinatorial” algorithm).

For |T'| > 3 the problem (2) has, in general, no integral optimal solution even
when c is inner Eulerian, as shown by the following simple example:

33? Q%4

Fig. 1

(Here T := {s1,...,36}; c(€e) = 1 for all edges e; a(zy) =1 and a(e) = 0 for the other
edges.) However, the following is true.

Theorem 1. Let |T| < 3. Then (2) has a half-integral optimal solution f, that is, 2f
1s integer-valued.

The problem in question can be associated with the linear program: givenp € Q.,
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(3) mazimize pv(f) — a(f) (subject to (1) and f >0).

Clearly (2) is equivalent to (3) when p is a rather large positive number; we shall
see later that taking p to be p := 2a(EG) +1 is sufficient. (Forg: S — Qand §' C S,
9(S") denotes 3 (g(e) | e € S').) Theorem 1 is a direct corollary of the following result.

Theorem 2. For any p > 0 the program (3) has a half-integral optimal solution.

Theorem 1 (and, in fact, Theorem 2) was stated in [Kal]; it was a consequence of
a pseudo-polynomial algorithm developed there to find a half-integer solution of (2).
In the present paper we give a direct proof of Theorems 1 and 2 (in Sections 2 and 4).
Furthermore, we present here a pseudo-polynomial algorithm to solve (2) (in Section
3); being, in essence, a modification of the method in [Kal], this algorithm seems to
be simpler in respect to its design as well as the proof of its correctness.

The algorithm is based on ideas of the primal-dual method in linear programming,
like the classical algorithm of Ford and Fulkerson [FF] for the min-cost max-flow
problem. The program dual to (3) is:

(4) minimize cl := } (c(e)l(e) | e € EG) provided that | € Q¥Y and I(P) >
p —a(P) for any P € P.

(Here for I' € QES, I'(P) denotes the “length” 3 (I'(e) | e € P) of a path P))
Further without loss of generality we shall assume that G is connected (otherwise we
would consider each component of G separately), and that c(e) > 0 for each edge
e € EG (since an edge e with ¢(e) = 0 can be deleted from G). For I' € QFC and
z,y € VG let disty(z,y) denote the minimum I'-length I'(P) of an £ — y path P in G
(the I'-distance between vertices x and y). The system of inequalities in (4) can be
rewritten as

(5) disto+i(s,t) > p for any s,t € T,s # t.

The algorithm for (2) consists in an iterative process of solving the program (3)
and its dual (4) for a sequence of numbers pg < p1 < p; < .... When p becomes
greater than or equal to p, the solution of (2) will be found.

A sketch of our approach to solve (3) and (4) for p = p; is as follows. The linear
programming duality theorem applied to (3)-(4) implies that a (c-admissible) multiflow
f and a vector ] € Q_‘EG satisfying (5) are optimal solutions of (3) and (4), respectively,
if the following (complementary slackness) conditions hold:

(6) if P € Pand f(P) > 0 then a(P)+I(P) = p; in particular, P is an (a+1)-shortest
path in G (i.e., a shortest path with respect to the length a + [);

(7) if e € EG and I(e) > 0 then e is saturated by f, i.e., (¥(e) = c(e).
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The algorithm starts with putting f := fy to be the zero multiflow and [ := Iy to
be the zero vector on EG; then (6) and (7) obviously hold for p := p(a). (Here and
later, for A € Q_‘EG,

(8) p(A) := min{dista(s,t) | s,t € T, s # t}.)

Suppose that after ¢ — 1 iterations there have been constructed f = f;_; and
I = I;_, which satisfy (6)-(7) for the corresponding p. The i-th iteration consists of
two stages:

at the first stage, f is transformed into a new multiflow f' (=: f;) such that v(f")
1s maximum provided that (6) and (7) hold for f', [ and p.

at the second stage, ! is transformed into a new vector I’ on EG such that for
A= a+!' the number p' := p(A) (=: p;) is as great as possible provided that f', I
and p’ satisfy (6) and (7).

The algorithm finishes when, at the second stage of some iteration, p' can be
chosen arbitrarily large. Then (6) and (7) hold for f', I' and p' := . Hence, the final
f' is an optimal solution of (3) (and (2)).

Note that for |T| = 2 this approach turns, in fact, into that developed in [FF]
for the min-cost max-flow problem. In that case, on each iteration, f' and I are
constructed from f and [ by using a maximal flow and a minimal cut in an auxiliary
directed network; the arcs of such a network correspond to the feasible edges e in G
(this means that {(e) = 0 and e belongs to a path in P of (a 4 !)-length p). However,
for |T'| > 3 the method of determining f' and I turns out to be more sophisticated.
The central idea is to form a certain directed network T, the so-called double covering
network. Each edge in G corresponds to a pair of non-adjacent arcs in T', where
A:=a+], and G is the subgraph of G whose edges belong to paths in P of A-length
p- An important property of T' is that each path in it which goes from a source to
a sink corresponds one-to-one to an (a + I)-shortest path in P. A new multiflow f’
(vector I') is constructed from f (respectively, ) by using a maximal flow ¢ (minimal
cut) in the feasible-arc subgraph of I'. Moreover, it follows from the integrality of ¢
that g can be chosen integer-valued. The last property will imply the half-integrality
of f' and, in particular, will prove Theorem 2 (and 1).

In fact, the algorithm is applicable to arbitrary “real-valued” c¢ and a; the total
amount of elementary operations (i.e., arithmetical, logical and data transfer ones)
is bounded exponentially in |[VG|. When ¢ (or a) is integer-valued, the algorithm is
“pseudo-polynomial” (more precisely, the number of operations in it is estimated as
c(EG) (respectively, a( EG)) times a polynomial in [V G|), like the min-cost max-flow
algorithm in [FF].

Now we outline the other results of the present paper. One result concerns the
dual problem (4). In Section 5 we prove the following.
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Theorem 3. If a is integer-valued and p is an integer then (4) has a half-integral
optimal solution .

The second result (Section 5) is that half-integral optimal solutions of (3) (or
(2)) and (4) can be determined in strongly polynomial time. To do this, we at first
find some (rational) optimal solution ! of (4). Since (4) can be rewritten as a linear
program whose constraint matrix is of size polynomial in |V G|, [ can be determined
in strongly polynomial time by using a general method of Tardos [Ta2], based on the
ellipsoid method [Kh]. Then we show that, knowing [, in order to find a half-integral
optimal solution f of (3) it suffices to apply only one iteration of the above-mentioned
algorithm. This gives a strongly polynomial combinatorial algorithm for finding such
an f. (Notice that even if we state (3) in a compact, “node-edge”, form, general linear
programming methods do not garantee us to obtain a half-integral optimal solution
for (3) because, as it can be shown, for any integer k¥ > 0 there exist G, T (integral)
c and a such that kf is not integral for some optimal basis solution of (3).) Finally, [
and f enable us to reformulate (4) in terms of potentials. As a result, we get a linear
program with a constraint matrix A = (a;;) such that each row ¢ of A has at most two
non-zero entries, say a;; and a;x, satisfying |ai;| + |aix| = 2. We explain how to find
efficiently a half-integral solution of the arising program by using covering network
techniques.

In conclusion of this section let us consider a more general concept of the minim-
um-cost maximum-multifiow problem. More precisely, let H = (T,U) be a graph,
called the commodity graph, that indicates the pairs of terminals which are allowed
to connect by flows. Denote by P(G, H) the set of simple s — ¢ paths in G such
that {s,t} is an edge of H. Consider the problem (2) with the set P := P(G, H)
rather than P(G,T). E.g., if |U| = 2 we deal with the minimum-cost maximum-two-
commodity-flow problem. A natural question arises: given H, what is the minimum
integer k := k(H) such that, for any G with VG D T, c (integral) and a, the problem
(2) for G, ¢, a and P(G, H) has an optimal solution f with kf integral?

Sok(H)=1if |U| =1, and k(H) = 2 if H is the complete graph K,, with m > 3
vertices (by Theorem 1). Theorem 1 can be easily generalized as follows (cf. [Ka3]): if
H is a complete m-partite graph and m > 3 then k(H) = 2 (if m = 2 then k(H) = 1).
(H is m-partite if there is a partition {T},...,T,n} of T such that st € U if and only
if s € T; and t € Tj for ¢ # j.) On the other hand, it was shown in [Ka3] that
k(H) = oo unless H is a complete m-partite graph (in particular, for H consisting of
two non-adjacent edges).

2. Geodesics and covering networks

In Sections 2 and 3 we consider a restricted class of cost functions a. Namely, we
assume that a is positive, that is, a(e) > 0 for all e € EG. Such an assumption enables
us to simplify the description of the algorithm as well as the proof of Theorems 1 and
2. The case of an arbitrary a will occur in Section 4.

The aim of this section is to introduce the notion of a covering network and to

5



study relations of such a network to the original one. As a result, we prove Theorems
1 and 2 (under the above assumption).

Let us be given a positive function A on EG. Put p := p()) where p(A) is defined
as in (8). A path connecting two distinct terminals and having A-length exactly p is
called a geodesic for A, or a A-geodesic. Let G be the subgraph of G whose edges
belong to A-geodesics and vertices belong to A-geodesics or 7.

For brevity, a path P = (s = zq,€1,21,...,€x,7x = t) in G may be denoted by
ToZ1 ... 2k (this leads to no confusion because G has no multiple edges). If s € X and
t € Y, we may say that P is a path from X to ¥, or an X —Y path. For 0 < i <3<k,
P(z;,z;) is the part z;z;4; ...zj of P from z; to ;. The ¢t — s path zxzr_1...20
opposite to P is denoted by P™!. If Q = yoy;...ym is a path with yp = ¢, P - Q
stands for the concatenated path zoz; ... zxy; ... Ym -

Consider a vertex v € VGz. Define the potential 7(v) := 75(v) of v to be the
minimum A-distance from v to s € T. In particular, 7(v) = 0 if v € 7. The set
{s € T | dista(s,v) = 7(v)} of terminals closest to v is denoted by T(v) := Ta(v). We
say that v is centralif |T(v)] > 2. The set of central vertices is denoted by C := Cj.

(2.1) Let v belong to a geodesic P from s to t. Then n(v) is the minimum of the
lengths A\(P(s,v)) and A\(P(v,t)).

Proof. Let for definiteness M(P(s,v)) < A(P(v,t)). Then n(v) < MP(s,v)) < p/2
(since A(P) = p). Suppose that p(v) < A(P(s,v)), and let s' be a terminal such that
m(v) = dista(s',v). As P is A-shortest, we have A(P(s,v)) = distA(s,v), therefore,
s # s'. Now dista(s,s") < dista(s,v) + dista(v,s') < p; a contradiction. e

It follows immediately from (2.1) that n(v) < p/2, and this inequality holds
with equality if and only if v is central. For s € T define V* := Ve to be {v €
VG | dista(s,v) < p/2}. Then the sets V*, s € T, and C are pairwise disjoint and
give a partition of VGy. (2.2) shows that if P = vyvy...vx is a geodesic from s to ¢,
then there are ¢ and ¢’ such that vy, ... Vg € V2 vp, ... vp € VPand either ¢/ = ¢+1,
or ¢' =q+2and vyy; € C. Let E® (respectively, E{*} where t € T — {3}) denote the
set of edges in G with one end in V* and the other in V* U C (respectively, in V.

(2.2) (i) If uv € EG) then either uv € E* (for some s € T) and |7(v) —n(u)| = Aluv),
or uv € E{*t} (for some s,t € T) and w(u) + A(uv) + m(v) = p. (ii) Each edge of Gy
belongs to exactly one set among E*® (s € T) and E{*t} (s,t € T) (in particular, none
of the edges of G connects two central vertices).

Proof. Consider a geodesic P containing uv. Let P be an s — ¢ path, and let P meet
u earlier than v. Then A(P(s,u)) + AMuv) + A(P(v,t)) = p. One may assume that
A(P(s,u)) < AMP(v,t)). Since Muv) > 0, M(P(s,u)) < p/2, whence A(P(s,u)) =
m(u) (by (2.1)) and u € V°. If A(P(v,t)) > p/2, we have A(P(s,v)) < p/2, whence
A(P(s,v) = m(v), by (2.1). This implies v € V*UC, uv € E*® and 7(v) —7(u) = A(uv).
And if A(P(v,t)) < p/2 then w(v) = A(P(v,t)). In this case we obtain v € V?,
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uwv € E{*t} and 7(u)+A(uv)+7(v) = p. Part (ii) easily follows from above arguments.

The following statement, converse, in a sense, to (2.2), describes geodesics in terms
of potentials.

(2.3) Let P = vgvy ... vt be an s—t path in G with s,t € T and s # t. The following
are equivalent:

(i) P is a geodesic;
(i) there is ¢, 0 < ¢ < k, such that n(v;) — m(vi—1) = Mvi—1v;) fori =1,...,¢q
and 7(v;) — m(vi+1) = A(vivig1) fori=q+1,...,k — 1.

Proof. (i)—(ii) follows from (2.2). (ii)—(i). Observe that m(u) = A(P(s,u)) and
m(v) = A(P(v,t)) where u := v, and v := v,4;. Consider a geodesic @ containing
the edge uv; let Q be an s’ — t' path, and let Q meet u earlier than v. Then A\(Q) =
MQ(s',u)) + Muv) + A(Q(v, 1), MQ(s',u)) > m(u) and A(Q(v,t")) > m(v), whence
p = AM@Q) > A(P), and therefore, P is a geodesic.

Fig. 2

Now, based on (2.2) and (2.3), we design the covering digraph I' = I'y for G.
Each non-central vertex v of G generates two vertices v! and v?> in . fv € VG,
is central, it generates 2|T(v)| vertices v, i = 1,2, s € T(v), in I". The arcs of T are
defined as follows:

(9) (i) an edge uv € E* (s € T) with n(v) — m(u) = AMuv) induces two arcs (u!,v!)
and (v?,u?) (or (u',v}) and (v2,u?) when v is central) in T', each of capacity
c(uv); :

(ii) an edge uv € E{** (s,¢t € T) induces two arcs (u!,v?) and (v!,u?) in T,
each of capacity c(uv);
(ili) a central vertex v € C induces 2|T(v)|(|T(v)| — 1) arcs (v},v?) in T for all
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distinct s, € T(v), each of capacity oo;

assuming oo to be a rather large positive integer. (See Fig. 2 for illustration; here
T = {s,t,¢} and the number on an edge e indicates A(e).)

We shall keep the same notation ¢ for the capacities of arcs in I". The subgraph
in I arising from a central vertex v € C, as well as an arc in it, is called central; this
subgraph will be denoted by H,. The set § := {s' | s € T} is considered to be the set
of sources of ' while §' := {s? | s ¢ T} the set of its sinks. Let P = zozy . ..Tx be a
path in T, that is, (z;_1,2;) € ET for ; = 1,...,k (as above we use brief notation for
a path). We say that Pisan § — S’ pathif 2y € S and z; € S'.

The construction of ' determines the natural mapping 7 of VI'UET onto VG, U
EG\ such that v* € VT (or vi € V) is mapped by 7 to the vertex v, a non-central
arc (z,y) € ET to the edge 7(z)7(y), and a central arc (v3,v?) to the vertex v.

The mapping 7 is naturally extended to paths in I and G A- Namely, for a path
P=z¢zy...24inT, 7(P) is the path in G induced by the sequence 7(z9),7(x1),...,
T(zt) of vertices (with deleting repeated vertices going in succession).

We also define a mapping 9 : (VT'UET) — (VT'U ET) such that a vertex v; (or
v!) is mapped to the other copy v*~* (or v37%), and an arc (z,y) to (I(y),d(z)). It
gives a (“anti”-) symmetry of . For an s — ¢ path P = 2oz;...24 in T, Y(P) is the
symmetric 9(t) — 9(s) path 9(zy)(zk_,). .. ¥(zo); obviously, 7(P) is the path in G
opposite to T(¥(P)).

(2.4) 7 determines a one-to-one correspondence between the set of § — S' paths in I
and the set of A-geodesics in G.

Proof. In view of (2.2) and (9), for a geodesic P one can directly construct an S — S
path P'in I such that P = 7(P'). Conversely, consider an S — S path P = z¢z, ... 24
in I'. It follows from (9) that P contains exactly one arc, say € = (z,, 2,41 ), such that
either u is central, say (vl,v?), or 7(e) € E{*'} for some distinct s,t € T (let for
definiteness 7(z,) € V*). Moreover, T(v;) EVoforj=1,...,¢—1and 7(v;) € V? for
J=¢+2,...,k Now (2.3), (9) and the fact that s # ¢ imply that 7(P) is a geodesic.

One can see that each S — §' path P in I" is simple and that the pathé P and
U(P) are disjoint (since each geodesic in G is a simple path because of the positivity
of A).

We now extend the correspondence of geodesics and S~ S’ paths to a relationship
between certain multiflows in N and § — S flows in the digraph I with the capacity
function ¢ as in (9). We say that a multiflow fin N goes along A-geodesics if

f(P) >0 implies that P is a A-geodesic.

For a function ¢ : ET — Q4+ and a vertex z € VT define

(10) divy(z) := Z 9(z,y) — Z 9(y, ).

y:(z,y)EET v:(y,z)EET



¢ is called a (c-admissible) flow from S to S', or §— S’ flow, if it satisfies the conserva-
tion condition divy(z) = 0 for all z € VI' — (S U S') as well as the capacity constraint
g(e) < c(e) for all e € ET". The value v(g) of a flow g is } (div,(z)|x € S); g is called
maximal if v(g) is as large as possible.

A routine fact is that a flow g as above can be represented as a collection of
elementary flows along paths. More precisely, there are S — S’ paths Py, Ps,..., P,
(m < |ET|) and positive rationals a;,as,...,an, such that:

(11) > (@il e€ P)=g(e)) for any e € ET.

It follows from (11) that > («; | P; starts at s) = div,y(s) for any s € S, whence

(12) o) =Y (eili=1,...,m).

We say that D := {(P;,a;) |t =1,...,m)} is a decomposition of g. If g is integral
then there exists a decomposition with all a;’s integral; such a decomposition can be
found by a trivial procedure of complexity O(|VT||ET|) (cf. [FF]). A decomposition
D determines a multiflow f := fp in N by setting f(7(P;)) := «i/2 and f(P) := 0 for
the remamlng paths P in P. Indeed, it is easy to see from (11) that for any e € ET,

¢ (7(e)) = 5(oe) + 9(9(e)) < 3(ele) +e(9(e)) = elr(c)),

that is, f is c-admissible. Moreover, f goes along geodesics, and, by (12), 2v(f) = v(g).

A converse property is also true. More precisely, for a (c-admissible) multiflow f in N

going along geodesics, define the function g = g5 on ET such that for e € ET, g(e) is ,

the sum of values f(7(P)) over all S — §' paths P in T containing e¥ One can check u
that g5 is a (c-admissible) § — §’ flow in I', and v(gs) = 2v(f). These observations

are summarized as follows.

(2.5) (i) Ifgisan S — §' flow in T’ and D = (P;, a;) is a decomposition of g, then fp
is a multiflow in N going along geodesics, and v(g) = 2v(f). Moreover, if all a;’s are
integral, then fp is half-integral. (ii) If f is & multiflow in N going along geodesics,
then gy isan S — S" flow in T, and v(g) = 2v(f). (ili) Ifgisan S— S flowin T, Dis
a decomposition of g, and f := fp, then gg=g. o

Since ¢ is integral, there exists an integral maximal S — S’ flow in I. This gives
the following corollary of (2.5) (it will not be used later, but is interesting in its own
right).

(2.6) If ¢ is integral then there exists a half-integral maximal multiflow in N going
along geodesics. o

Now we can prove Theorem 2 (and Theorem 1) in the assumption of positivity of
a. Given p > 0, suppose that f and [ are optimal solutions of (3) and (4), respectively.
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Let A := a+ 1. By (6), f is a multifiow in N going along A-geodesics. Consider the
S—58"flow g :=g;in T :=T). We say that an arc e € ET is feasible if either e is
central or I(7(e)) = 0; the set of feasible arcs is denoted by A. In view of (7), for each
e € ET — A the edge 7(e) in G is saturated by f (since I(r(e)) > 0), which implies
that g(e) = ¢(e), and hence ¢ is integral on ET' — A. Let ~ be the restriction of g on A.
We say that a function h: A — Qg is flow-like ~ if h is c-admissible (i.e., h(e) < c(e)
for e € A) and

(13) divp(z) = divy(z) forallz € VI —(SuUS"),

(where for a function b on A, div, is defined as in (10) with respect to A rather than
ET).

Since ¢ is integral, there is an integral h which is flow-like 7. Then ¢', defined by
g'(e) := h(e) for e € A and g¢'(e) := g(e) for e € ET — A, is an integral § — S’ flow in
. Now the multiflow f':= fp, where D = {(P;,a;)} is a decomposition of ¢ with all
a;’s integral, gives a half-integral multifiow in N. Since g' can differ from ¢ only on
arcs in A, f' satisfies (7) (with ! as before). Furthermore, (2.5)(3) implies (6) for f'.
Hence, f' is an optimal solution of (3), and the result follows.

3. Algorithm

As before we assume that the cost function a is positive everywhere. Let f := f;_;
be a multiflow in N and [ := [;_; be a function on EG that have been constructed
after 1 — 1 iterations and satisfy (6) and (7) with p := p;_; := p(A), where A :=a +1,

The first stage of the iteration. As we mentioned in the Introduction, it consists
in a transformation of f to a new multiflow f’, and we now describe it. Let G A and
I' =Ty be objects defined as in the previous section for given A; g be the S — S’ flow
gs in I’ induced by f; and A be the set of feasible arcs in ', that is, either e is central
or [(r(e)) = 0. Then g(e) = g(9(e)) = c(e) for any e € ET — 4, by (n.

Let v be the restriction of g on A. Determine a function k on A such that A is
flow-like v and maximal, that is, the value v(h) := Y (divy(z) | x € S) is as great as
possible. (Such an h can be found by usual flow techniques using a polynomial in VT
number of operations, cf., e.g., [ADK].) Form the function ¢' on ET that coincides
with h on A and with g on ET'— A. Find a decomposition D of ¢'. Then the multiflow
f' resulting on the i-th iteration is just fp. It was explained at the end of Section 2
that f', l and p satisfy (6) and (7). We now demonstrate other properties of f', which
will be used in what follows.

Let L = (s = z9,€1,%1,...,€k, 7k = t) be a sequence such that s € S, z; € VT,
e; € A, and e; is either (z;_1,2;) or (z;,z,-;). We say that L is an active path with
respect to a function A' € Q4 if h'(e;) < c(e;) holds for each direct arc e; = (zic1,2;)
of L, and h'(e;) > 0 holds for each reverse arc e; = (zi,zi—1). Standard arguments in
network flow theory show that if A’ is flow-like v then exactly one of the following is
true: (i) A’ is maximal, or (ii) there is an active path with respect to k' which reaches
some sink in S’.
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For Z C VI and B C EF_let Z denote VT — Z, and (Z)p denote the set of arcs
(y,2) € Bwithy € Z and z € Z. Let X be the set of vertices in VT that are reachable

by active paths for h as above. Then S C X. Furthermore, since h is maximal, we
have X NS’ =0,

(14) h(e) = c(e) fore € (X)a, and h(e)=0 fore € (X)a.
Consider the set Y := 9(X) in VT “symmetric” to X.

(3.1) (i) h(e) = c(e) for e € (Y)4, and h(e) = 0 for e € (Y)4. (ii) X and Y are
disjoint.

Proof. For the S—S' flow ¢’ as above and a subset Z C VT let a(Z) denote ¢'((Z)gr)—
¢'((Z)er) (recall that for §: E — Q and E' C E, §(E')is Y(§(e) | e € E')). Clearly
a(Z) =3 (divg(z) | z € Z). This implies

(15) a(X) = a(Y) =) (divg(s) | s €5) = (g

(taking into account that § C X C 8 and S C 5) Put B := ET — A. By the

definition of ¢', we have:

(16) o(X) = 9((X)B) + h((X)4) = 9((X)B) — h((X)4); and
(17) oY) = g((Y)B) + ((¥)a) = 9((¥)B) — h((Y) ).

By symmetry, (Y)c = 9((X)¢) and (V)¢ = 9((X)¢) for any C C ET. This and

the fact that g(e) = c(e) for any e € B imply g((X)5)—9((X)s) = 9((Y)B)—9((Y)B).
Then, in view of (15)-(17),

(18) (X)) = h((X)a) = h((Y)4) = B((Y) ).

By (14), h((X)4)—h((X)4) = ¢((X) ). Furthermore, A((Y)4)—h((Y)a) < R((Y)a) <
c((Y)4) (since h is c-admissible). Now (18) and c((Y)A) = ¢((X)4) implies (i).
To prove (ii), consider the set Z := X NY. By (i) and (14), each arc in (Z)A is
saturated by &, and h(e) = 0 for any e € (Z)4. This means that no vertex in Z is
reachable by an active path. Hence, X C Z, and (ii) is true. o

The second stage of the iteration. Let X and Y be the sets as above. Put W :=
— (X UY). For subsets Z,Z' C VT denote by (Z,Z') the set of arcs (z,y) in T
with 2 € Z and y € Z'. We say that u € ET is

11



(19) a (+)-arc if either u € (X, W) or u € (W,Y);
a (++4)-arc ifu € (X,Y);
a (—)-arc if either u € (W, X) or u € (Y, W);
a (——)-arc if u € (¥, X).
The (—)- and (——)-arcs will be called negative. By symmetry, if u is a (4)-arc then

J(u) is a (+)-arc as well, and similarly for (++)-, (—)- and (——)-arcs. For a rational
¢ 2 0 define the function I on EG by:

(20) °(e):=1lle)+¢ ife€ EGy, e =1(u) and u is a (+)-arc;
=1(e)+2 ifee EGy e=r(u)and u is a (++)-arc;
=1(e)—¢ ife€ EGx, e=1(u), uisa(—)-arc and u ¢ A;
=1(e) —2¢ ifee EGx, e=1(u), uis a(—=)-arc and u ¢ A;

:=l(e) for the remaining e in G.

The function !’ resulting at the second stage is defined to be l:, where € is the
maximum of ¢ > 0 such that

(21) I°(e) >0 forall e € EG;
(22) P =p+ 2

where p€ := p()\*) for A° := a + ¢ (p(]) is defined in (8)).
Correctness of the second stage and determining . If ¢ = 0 then I* = I, and (21)

and (22) obviously hold; thus &> 0. Clearly the property (21) is necessary for I' to be
a feasible solution of (4). Introduce the value

(23) €1 := min { min{l{(7(u)) | uis a (=)-arc not in A},

min{%l(r(u)) | wis a (——)-arc not in A}}.

(If there is no negative arc in A then &; = c0.) By (20) and (23), for £ > 0, I is
nonnegative if and only if ¢ < £;. Thus ¢; gives an upper bound for £, Note also that
€1 > 0 since I(7(u)) > 0 for all u € ET — A.

Consider an arbitrary (finite) ¢ such that 0 < € < ¢;, and put p' := p + 2¢. First
of all we show that (6) and (7) hold for f', I and p’ (note that p' is not necessarily
equal to p%).

(3.2) f' and I* satisfy (7).
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Proof. If e € EG — EG) then I(e) = 0 (since ¢’(e) = 0 < c(e), and (7) holds for f
and [), whence °(e) = 0 (by (20)). Consider an edge ¢ € EG). Let u € ET be such
that 7(u) = e. If u & A then (F'(e) = ¢f(e) = c(e). And if u € A then I'(e) >0=1(e)
would imply that u is either a (+)-arc or a (++)-arc (by (20)), whence ¢'(e) = ¢(e),
in view of (14) and (3.1). e

Let @ be a path in I'. We say that Q is regular if () has no negative arcs in A.
In particular, it follows from (14) and (3.1) that Q is regular if ¢'(u) > 0 for all arcs
u of Q. Define nt := ng to be the number of (+)-arcs in Q; and similarly define the
numbers nt*, n~ and n=". It is easy to see that if @ is an S — S’ path then

(24) 2nt 4+ttt _on —n-- =2

(3.3) (i) Let P be a A-geodesic in G, and let Q be an S — S’ path in " such that
P =1(Q). If Q is regular then I°(P) = I(P) + 2¢; otherwise I(P) > I(P) + 2e.
(ii) f', I* and p' satisfy (6).

Proof. (i) obviously follows from (20) and (24). To see (ii), consider P € P with
f'(P) > 0. We know that P is a A-geodesic (as f', I and p satisfy (6)). Moreover, f'
was yielded from a decomposition D of ¢', so ( is a member of D. Then g'(u) >0
for all arcs u of Q. Hence, Q is regular, and we now obtain from (i) that A(P) =
a(P)+I(P)+2=p+2=p'. o

We observe that £ > 0. Indeed, three types of paths P in P are possible. (i) P is
a A-geodesic with f(P) > 0. Then A*(P) = p + 2¢ for any € < e1 > 0, by (3.3)(1). (ii)
P is a A-geodesic with f(P) = 0. Then A*(P) > p + 2. (ili) P is not a geodesic for )\,
e, A(P) > p. Since I°(P) is a linear function of g, and I°(P) = I(P), there exists a
(rather small) ¢’ > 0 such that a(P) + I°(P) > p+2¢ for any € < ¢'. Note that the set
of paths as in (i) is nonempty (since G is connected and c is positive, whence g’ # 0
and f' # 0). Thus (22) is true for some ¢ > 0 (and any smaller ¢).

Arguments above prompt an efficient procedure to determine &, N ote that if P is
a simple path in G then the value I°(P) is expressed as I(P) + ¢k(P) for some integer
k(P) such that [k(P)] < 2|VG]| (since P has at most VG| — 1 edges, and for any
e € EG, I*(e) = l(e) + Be where 8 € {-2,-1,0,1,2}). Put ¢ := ¢;, and determine
p° by solving |T| shortest path problems for G with the length function A® (if £; = o0
we put € to be a rather large positive integer). If p¢ = p + 2¢ then €1 is just £. But if
P° < p+ 2¢ then choose a path P, € P such that Af(Py) = p° (by an argument above,
Py is not a A-geodesic); and put €, to be the solution of

(25) (/\ej'H(Pj) ::) G(P]) + I(PJ) + Ej+1k(Pj) =p + 2€j+1
with j := 1. Now determine p® for ¢ := €2, and so on. Suppose we have al-
ready executed ¢ steps and found rationals ¢; > e, > ... > €q+1 > 0 and paths
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Py, P,...,P; € P such that, for j = 1,...,q, the path P; and the numbers ¢; and
€;41 satisfy

(26) (A% (Pj) =) a(P;) + U(P;) + &;k(P;) = p < p+ 2

and (25). Comparing (25) for j := ¢ — 1 and (26) for j := ¢ we obtain A% (Py—1) >
A%(Pg). On the other hand, A*e-1(P,_;) < X*e-1(P,) (as P,_; is a geodesic for
Afe-1). Since €4 < £4—1, we obtain from these inequalities that k(Pg—1) < k(P,). This
implies ¢ < 4|V G|. Thus & will be found in O(|VG|) steps as above.

Finiteness and complezity of the algorithm. The value p strictly increases during
the algorithm because of (22) and & > 0. The algorithm finishes when, on some
iteration, & becomes co. Then, by (22) and (3.3)(ii), f', I := I¢ and p' := p® satisfy
(6) and (7) for any € > 0; taking a rather large ¢, we obtain optimal solutions of (2)
and (4). Now we have, first, to prove that the algorithm terminates in a finite number
of iterations and, second, to estimate this amount.

We say that an iteration 7 is positive if the value of the current multifiow increases
on this iteration (i.e., v(fi—1) < v(f:)), and negative otherwise. We shall prove below
that

(27) the number of negative iterations going in succession is at most VG| - |T)|.

Assumming that (27) is valid, we complete examination of the algorithm as fol-
lows. By (27), if the number of occurrences of positive iterations is M then the total
number of iterations in the algorithm is O(nM) where n := |V G|. Hence, the algorithm
uses O(M P(n)) operations, P is a polynomial (since an iteration takes a polynomial
in n number of operations). We estimate M for three cases.

(C1) If ¢ is integer-valued, then, as we explained earlier, the value v(f) of any
current multiflow f is half-integral. Obviously, v(f) does not exceed ¢(EG). Therefore,
M is bounded by 2¢(EG), and the complexity of the algorithm is O(P(n)c(EG)), P

is a polynomial.

(C2) Let a be integer-valued. Consider a positive iteration, and let L = zoz; ... 2%
be an active path entering S’ in the corresponding I'. Denote by Lt (L) the set of
non-central direct (reverse) arcs in L. Using the fact that for any (directed) S — S
path @ in T the (a + !)-length of 7(Q) is p, one can see that

Y (alr(w) + [r(w) = 3 (alr(w) + (r(w))) = p.

uelt uel-

Furthermore, I(7(u)) = 0 for each u € Lt U L™, and there are at most two arcs u
in L with the same 7(u). Hence,

(28) p= Y a(r(w) - Y a(r(u)) < 2a(EG),

u€lL+ ueL—
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whence M < 2a(EG) (since a is integral and p increases during the algorithm). Thus
the algorithm has complexity O(P(n)a( EG)).

(C3) Suppose both ¢ and a are arbitrary (“real-valued”). (28) shows that M does
not exceed the number of functions on EG taking their values in {—2,—-1,0,1,2}, and
we therefore obtain a corresponding finite upper bound for the amount of iterations,
which depends only on n (as an exponential). Of course, such a bound is viewed as
too large and inexact.

It remains to prove (27). Consider two subsequent iterations 7z and ¢ + 1. Let [
denote the current function on EG at the beginning of the i-th iteration; g denote the
S — 8§ flow in I' :=T'), A := a + [, resulting on the i-th iteration; 7 denote 7); and X
denote the set of vertices of I" reachable by active paths after the first stage of the i-th
iteration. Analogous objects for the (: 4+ 1)-th iteration will be denoted with primes.

(3.4) Lemma. Let the (i + 1)-iteration be negative. Then 7'(X') strictly includes
(X).

This lemma immediately implies (27) (taking into account that T C 7(X') because
of S C X).

Proof. First of all we show that 7(X) C 7/(X'). We use notations 4, Y, W for the
corresponding objects in I" as in the description of the algorithm; analogous objects in
I are denoted by A', Y', W',

Note that there is a simple relationship between g and ¢'. Namely, let f be the
multifiow in N resulting on the i-th iteration; then f = fp where D = {(Q;,a;)|j =
1,...,m} is a decomposition of g. Since the (: + 1)-iteration is negative, there is a
decomposition D' = {(Q';,a';) | j = 1,...,m'} of ¢’ such that m' = m, o'; = aj,
and the path 7'(Q’;) coincides with 7(Q;). Note also that if u € ET is an arc with
g(u) > 0 then there is a regular S — S’ path in T which contains u (e.g., a path in D
which traverses u).

Claim 1. Each arc u = (z,y) € ET with z,y € X belongs to a regular S — S' path in
T.

Proof. We show that there are regular paths R; from S to z and R, from y to S';
then R; - u - Ry gives an S — S’ path as required.

Choose an active (with respect to ¢) path L = zgz;...2; in T’ with z; = z.
If L has no reverse arc then we can put R; := L (all vertices of L are in X, and
therefore, L has no negative arcs). Otherwise, let j be the maximal index such that
u := (z;,z;—1) is a reverse arc in R;. Then g(u) > 0, whence there is a regular S — .5’
path @ containing u. Put Ry := Q(s,z;) - L(z;, ), where s is the first vertex in Q.

Next, choose a path L' = yoy1...ym in T’ from y to S'. Let y; be the first vertex
of L' not in X. Then u' := (yj_1,y;) is either a (+)-arc or a (++)-arc, whence g(u') =
e(u') > 0. Choose a regular S—S' path Q' containing u'. Put R, := L'(z,y;)-Q'(y;,1),
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where t is the last vertex in Q'. o

Claim 2. Let Q = zozy...2k (k> 1) be a path in T such that each arc of @ belongs
to a regular S — S' path. Then @ is a part of some a regular S — S’ path.

Proof. (By induction.) Suppose that zozy...z; (1 < j < k) is a part of a regular
5— 5" path R. Take aregular $—§' path containing (z,2,4;). Then R(s, z;)-L(z;,t)
is a regular S — S’ path containing zoz; ...z 41, where s is the first vertex in R while
t is the last vertexin L. e

We say that an arc of I is regular if it is non-central and belongs to a regular
S — S’ path. In particular, each non-central arc with both ends in X is regular, by
Claim 1. By arguments above, if u = (z,y) is regular then there is an arc u' = (z',y")
in T such that 7'(z') = 7(z) and 7'(y') = 7(y); we denote u', 2, y' by o(u), p(z)
©(y), respectively. The above-mentioned relationship between ¢ and ¢’ implies:

i

(29) if uw€ ET is regular, then g(u) = ¢'(¢(u)).

We observe that any vertex + € X —S is incident to a regular arc. Indeed, consider
an active path xox;...zx with zp = z; then k¥ > 1. Let u be the arc with the end
vertices y := z4—; and z. By Claim 1, one may assume that u is central. (i) u = (y,z).
Then there is a non-central arc b = (z,2). If z € X then b is regular, by Claim 1.
But if z ¢ X then g(b) > 0, whence b is also regular. (ii) u = (z,y). Then g(u) > 0,
therefore, there is an arc b = (z,z) for which g(b) > 0, whence b is regular.

Claim 3. If z € X then z' := ¢(z) € X' (assuming that for s € S, ¢(s) is the source
8" in T for which 7'(s') = 7(s)).

Proof. Put Z := {z € X | p(z) € X'}. Suppose that Z # X. Since X D Z # 0 (as
©(S) € X'), there is an arc u € A connecting vertices ¢ € Z and y € X — Z such that
either u = (z,y) and g(u) < ¢(u), or u = (y,z) and g(u) > 0. If u is non-central then
¢(u) € A', and now (29) and ¢(z) € X' imply ¢(y) € X'; a contradiction. Suppose
that u is central. Consider two cases.

(1) u = (z,y). Choose a non-central arc, say b = (z,z), entering = (b exists since,
obviously, z ¢ S). Moreover, b can be chosen so that z € X or g(b) > 0 (otherwise z
cannot be reached by an active path). Hence, b is regular. Next, choose a non-central
arc, say d = (y,w), leaving y. Obviously, d is regular. By Claim 2, the path zzyw is
a part of some regular S — S’ path in T, whence either () = ¢(y), or ¢(z) and ¢(y)
are connected in I by the central arc (p(z),p(y)).

(ii) u = (y,z). Choose a path Q; in D which contains u; let b = (2,y) (d = (z,w))
be the arc in Q; preceding (respectively, succeeding) u. Since Q; is regular, either
¢(z) = ¢(y), or ¢(z) and ¢(y) are connected in I by the central arc ¢ = (¢(y), ¢(2));
moreover, ¢'(¢q) > 0.
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In both cases ¢(y) is reachable by an active path in I''; a contradiction. e

Now we prove that 7(X) C 7/(X'). Suppose, for a contradiction, that 7(X) =
(X"). Put D := {z € VI' | z € SU S’ or z is incident to a regular arc in I'}.
Obviously, if @ is a regular path in I' then the “symmetric” path #(Q) is also regular.
Hence, Y C D. Moreover, Claim 3 and the definitions of Y and Y’ show that

(30) if €Y then ¢(z)eY’
(for s € S', (s) is the sink s’ in I for which 7(s) = 7'(s")).
Claim 4. Let «t € W. Then y € W for any vertex y in I" such that 7(y) = 7(z) =: v.

Proof. This is so when the vertex v is non-central for A, since 9(z) € W, by symmetry.
Suppose that v is central for A, and there is y € XUY such that 7(y) = v. By symmetry,
one may assume that y € X and z = v} for some s € T)(v). Since the arcs of the
central subgraph H, cannot be saturated, there are no arcs in H, from X to WUY.
Hence, y = v? for some t € Ty(v) — {s}. Furthermore, each arc u = (z,y) entering y
is central. So z € WUY and g(u) = 0, which implies g(u') = 0 for any arc u' leaving
y. Then y cannot be reached by an active path; a contradiction. e

Claim 4 and the fact that 7(X) = 7(X') and 7(Y) = 7'(Y"') imply:

(31) if z€eWND then p(z) e W'.

Consider numbers € and &; defined above for the i-th iteration. Two cases are
possible.

1) &€ = €;. By (23), there is an arc v = (z,y) such that z € WUY, y € X,
g(u) = ¢(u) > 0 and I'(7(u)) = 0. Then u is regular, and v’ = (z',y') = ¢(u) is in
A'. Now y' € X' implies that z' is reached by. an active path in I, that is, ' € X'; a
contradiction with (30) or (31).

2) € := € < €1. Then there is P € P which is a geodesic for A' = a + I’ but not
for A\. Consider the S — S’ path @ in IV such that P = 7'(Q). Let U be the set of
non-central arcs u' in Q' such that A(u') := I'(+'(v')) — I(7'(u")) # 0. Since A\(P) > p
and A (P) = p + 2¢ (where A"(P) denotes the A"-length of P), we have

(32) > (A() | v € U) < 2e.
Fix u' € U, and let e := 7'(u'). Since I'(e) # Il(e), there is an arc u € ET such
that 7(u) = e. Moreover, u is regular and connects vertices of different sets among X,

W, Y. Without loss of generality, one may assume that v’ = ¢(u). Claim 3, (30) and
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(31) imply that if u is a (+)- (respectively, (+4)-, (=)-, (—=)-) arc in T then u' is a
(+)- (respectively, (++)-, (=)-, (—)-) arc in I ( a (-)-arc in T is defined as in (19)
with respect to X', W', Y'). In view of (32), this means that Q contains an arc ¥ ¢ U
such that o' is either a (+)- or (++)-arc. We observe that ¥ cannot be saturated by
g'. Indeed, ¢'(b') = ¢(¥') would imply that b is non-central, and there is a regular arc
b € ET such that b' = ¢(b). But then bis a (+)- or (++)-arc in T as well (by (30),
(31) and Claim 3). Hence, I'(7(b)) # I(7(b)); a contradiction with ' guU.
This completes the proof of the lemma. e

4. The case of arbitrary costs

Let a be an arbitrary (nonnegative) cost function on EG. Put Z := {e €
EG | a(e) = 0}. In Sections 2 and 3 we dealt with the case Z = 0.

One natural approach to solve the problem (3) (or (2)) with Z # 0 is to ap-
proximate a by a positive function a’. For instance, one can take a' to be as with
a rather small § > 0, where as(e) := a for e € EG — Z and as(e) := 6 for e € Z.
When c is integer-valued, we know that (3) for N5 = (G, T, ¢, as) has a half-integral
optimal solution. By standard arguments, this implies that (3) for the original N
also has a half-integral optimal solution. Thus, Theorems 1 and 2 remain true for
arbitrary a. If, in addition, a is integer-valued and p 1s an integer, we can put § to
be 1/(2¢(Z) + 1). Indeed, for a (c-admissible) multiflow f’ and o' € QEG | let ¢(f',a)
denote pv(f') —a'(f’). If f' is half-integral then we have

0<q(fya) —a(fas) =63 ¢7'(e) < be(2) < %
e€Z
Furthermore, ¢(f', @) is half-integral. Hence, ¢(f',a) > ¢(f, a) would imply ¢(f', as) >
q(f,as). This means that a half-integral optimal solution of (3) for Nj is an optimal
solution of (3) for N. Note that when applying this approach, the time bound in the
case (C2) (Section 3) becomes O(P(u)a(EG)c(Z)).
Another method, which seems to be more efficient and is suitable for “real-valued”

c and a, is as follows. Instead of a, we consider the vector-function @ : EG — R2
defined as

(33) a(e) := (ale),0) if e€ EG -2
:=(0,1) if e€ Z.

This leads to appearance of (two-component) vector-lengths [, vector-distances D,
vector-potentials 7, and so on. Here we use usual addition and subtraction and lexico-
graphical comparison of vectors. One can check that the corresponding statements in
Sections 1-3, the construction of a covering network and the algorithm remain correct
when dealing with such vectors and vector-functions (the examination is routine and
we leave this to the reader). It follows from arguments in (C2) (Section 3) that the
current p in the algorithm is a vector (p,p’) such that p is defined as in (28) and p' is
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an integer whose absolute value at most 2|Z|. Thus, for the case (C2), after at most
2|Z| iterations p increases by at least 1, whence the algorithm turns out to be “O(|Z|)
times slower” in comparison with that for positive a.

5. A polynomial algorithm and proof of Theorem 3

Consider the programs (3) and (4) with integer-valued ¢, @ and p. We may assume
that a is positive (otherwise we would take the vector-function @ defined in Section 4).
The polynomial algorithm that we now develop consists of three steps:

(S1) find a (rational) optimal solution [ of (4);
(S2) using [, find a half-integral optimal solution f of (3);
(S3) using [ and f, find an optimal solution ! of (4) such that I’ is half-integral.

Note that, in view of (5), we can write (4) as a linear program with a N x M
constraint matrix A whose entries are 0, 1 and -1, where N is O(|T||EG|) and M is
O(|T||[VG| + |EG]). Thus, to solve (S1) we can apply a strongly polynomial method,
like a Tardos’ one [Ta2]. This gives a strongly polynomial, though not combinatorial,
algorithm for (S1).

To solve (S2), we construct I' := 'y for A := a + ! with [ found in (S1), and
determine an integral S — S’ flow ¢ in T satisfying g(u) = c¢(u) for all u € ET — A
(recall that A is the set of central arcs and arcs u such that {(7(u)) = 0). Such a g
exists, as we explained in Section 2. Then f := fp is a half-integral optimal solution
of (3), where D is an integral decomposition of g.

Finally, we show that (S3) is solvable and develop a combinatorial strongly poly-
nomial algorithm to solve it. Thus, Theorem 3 will follow. We use terminology from
Section 2. For [ as above, put A := a+ 1. First of all we modify the graph G as follows.

(i) Replace each central vertex v € C by |T(v)| new vertices v*, s € T(v), and
connect each pair {v°®,v'}, s # t, by an edge of zero cost; such an edge is called
central. If v is an end of an edge e € E*, we now join e to v*. If v is an end of an edge
e € EG — EG), we join e to an arbitrary vertex among v°, s € T(v). As a result, we
obtain a graph Gi; the corresponding edges of G and G; have the same costs. Denote
by B the set of central edges in G;, and denote by U; (Uz) the set of edges of G,
corresponding to the edges in EG ) (respectively, EG — EG)).

(ii) Let @Q; = (V;,U;) be the subgraph of G; induced by U;, ¢ = 1,2. For any two
distinct vertices z,y € V3 UT such that z and y belong to the same component of @5,
we form a new edge e connecting z and y, assigning the cost of e to be the a-distance
in ()2 between z and y, that is,

(33) min{a(P) | P isan z —y path in Q,}.
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Let U’ be the set of such edges €. Then the final graph, denoted as G', has the vertex-
set V1 UT and the edge-set U; U U’ (strictly speaking, G' is a multigraph because it
can contain multiple edges).

If v' € VG’ arises from v € VG we denote v by v(v'). Similarly for e € U;, v(e)
denotes the corresponding edge in G. The cost function for G' is denoted by a'.

There is a natural partition of VG’ into the sets V'®, s € T, where o' € V'® if
either y(v') € V* — C or v’ = v® for some v € C with s € T(v). We also partition the
edges of G’ into the sets:

E”:={e€U, ~B|~v(e) € E*}, seT;
st .o {ec Ui —B|y(e) e E*Y}U{ee B|e=v"" some ve C}, s,teT;
U ={e=ayeclU'|z,yc V'), seT;
U’{s’t}::{ezxyEU'IxEV's,yEV't}, s,teT, s#£t.

Let m = 7 be the potential for G and X := a+1, as defined in Section 2. Consider
the linear program: find (a potential) p: VG' — Q satisfying:

(34) p(s) =0 for each s € T;

(35) for s € T and e =zy € E" with 7(v(z)) < 7(v(y)) :

p(y) — p(z) > a'(e) if y(e) is saturated by f,
=a'(e) otherwise;

(36) for s,t €T, s#t,and e=zay € gt
p(z) + p(y) <p—d'(e) if e ¢ B and y(e) is saturated by f,

= a'(e) otherwise;

(37) forseTande=zyeU':
p(e) —p(y) < a'(e), and p(y) - p(z) < d'(e);

(38) fors,teT,s#t,and e=2y € yist .
p(x)+p(y) = p—d'(e).
The system (34)-(38) is solvable. Indeed, these relations hold for p defined by
p(z) := m(7y(z)) for z € VG’ (to examine this, one should take into account (6)-(7) for

f and [, the statement (2.2) and the definition (33)). On the other hand, consider p
satisfying (34)-(38). By (36), p(z) = p(y) for each central edge zy in G’ (moreover, if
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v is a central vertex in G with |T(v)| = 3, then p(z) = p/2 for any = € VG’ such that
v(z) = v). So we can define a potential 7' on VG, as #'(v) := p(z) for v := y(z),
z € VG'. For e = uv € EG, put I'(e) := |n'(u) — n'(v)| —a(e) if e € E*, s € T;
I'(e) := p— 7'(u) — 7'(v) — a(e) if e € E{st; and I'(e) := 0 otherwise. A routine
check-up shows that: (i) every A-geodesic P has A'-length p where ' := a + I'; and
(i) if P € P is not a A-geodesic then X'(P) > p. Moreover, it follows from (35)-(36)
that f and !’ satisfy (7). Thus, !’ is an optimal solution of (4).

The constraint matrix of (34)-(38) has entries only 0, 1 or -1, and each row of
the matrix contains at most two non-zero entries. This implies that (34)-(38) has a
half-integral solution. Theorem 3 is proven.

The left hand side of the constraint in (36) or (38) contains two coefficients 1. To
obtain an efficient algorithm for finding a half-integral solution of (34)-(38), we design
another linear program in which each row of the constraint matrix has at most two
non-zero entries, and these entries are either {1} or {1,—~1}. Hence, the program can
be reduced to a variant of the shortest path problem in a digraph (in fact, this digraph
is a slight modification of the covering network introduced in Section 2).

More precisely, let V be the set containing two copies, z! and 22, of each element
x € VG'. Each z € V is associated with a variable o(z). The constraints are designed
as follows.

(i) For s € T, set 0(s') = 0 and o(s%) = p.

(i) Let ¢ = 2y € B'* and x(1(2)) < 7(3(3). For (z,w) = (z1,5"), (5%, 2%), set
o(w) — o(z) > a'(e) if y(e) is saturated by f, and o(w) — o(z) = a’(e) otherwise.

(iii) Let e = zy € E't* For (z,w) = (2}, y?), (¥, 2?), set o(z) — o(w) < —a'(e)
if e ¢ B and ~(e) is saturated by f, and o(z) — o(w) = —a'(e) otherwise.

(iv) Let e = ay € U". For (z,w) = (z',y'), (", 21), (2%, 9%), (4, 2?), set o(w) -
o(z) < d(e). :

(v) Let e = zy € U'*, For (2, w) = (21, ?), (3}, 2%), set o(z) — o(w) > —a'(e).

Now a straightforward examination shows that: if p satisfies (34)-(38) then (i)-(v)
hold for ¢ defined by o(z!) := p(z) and o(2?) := p—p(z) for z € VG'; and, conversely,
if o satisfies (i)-(v) then (34)-(38) hold for p defined by p(z) := 3(p + o(z') — o(z?))
for z € VG'.

Since (i1)-(v) has an integral solution and it can be found in a number of operations
polynomial in |V G|, we get a strongly polynomial algorithm for (S3).
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