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POLYNOMIAL UNCROSSING PROCESSES

A.V.Karzanov |

Abstract. Let F be a family of subsets of a set V, and f be a nonnegative integer-
valued function on F. An uncrossing process is a procedure of reforming F and f to F '
and f' such that ' is laminar by use of certain elementary operations (“uncrossing steps”)
with crossing sets in a current family. Uncrossing steps of two natural types are considered.
For both types, we prove the existence of an uncrossing process consisting of a polynomial

number of uncrossing steps.

1. INTRODUCTION

Let V be a finite set and S C 2" be a family of subsets of V. Two sets
X,Y C V are called crossing (denoted as X [ Y) if noneof X Y, Y — X,
XNY and V — (X UY) is empty; otherwise they are called laminar (denoted
as X || Y). A family ' C 2V is called laminar if it has no crossing pairs. We
associate with a subset 0 # X C V the set §¥(X) of edges of Ky having one
end in X and the other in V — X (a cut in Ky); here Ky = (V,Ey) is the
complete undirected graph with the vertex-set V.

It will be convenient for our further description to assume that S (as well
as each family of subsets occurring later) is symmetric, that is, X € S implies
X := V—X € S; such an assumption will lead to no loss of generality. We shall
deal with S that is cross-closed. This means that for any crossing X,Y € S
there are X',Y' € S such that either X' = X —Y and V' =Y — X, or
X'=XNY and Y' = X UY; we say that the pair {X',Y'} is obtained by
uncrossing X and Y (in [K2] the term “2-complete” was introduced for such a
family S). E.g., the following families S are cross-closed:

(Ex1): S is the symmetrization of a so-called “crossing family” S', that is,
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S' satisfies the property that XNY, X UY € S’ holds for any crossing X,Y € §'
(cf. [EG]);

(Ex2): S consists of the subsets X C V such that |X N T| is odd, where
T C V is a subset with |T| even (a cut §¥(X) for X € S is usually called
a T-cut (cf. [S]); T-cuts arise, in particular, in connection with the Chinese
postman problem [M,EJ]).

(Ex3): S is the set of X’s such that |§¥(X)NU| =1 for some U C Ey (cf.
[S]);

(Ex4): S is the set of X’s such that } (a(e): e € §V (X)) is odd, where a
is an integer-valued function on Ey (cf. [K1,K2]).

Now suppose that we are given a subfamily 7 C § and a mapping f:
F — Tt (& is the set of nonnegative integers); we shall assume that f is
symmetric, that is, f(X) = f(X). F and f can be reformed to new 7' and f'
as follows:

(i) choose some crossing sets X,Y € F; and choose X' ,Y' € § obtained by
uncrossing X and Y (if all X —Y,Y — X, X NY,X UY occur in 5, there
are two possibility for choice of {X',Y'});

(ii) add the sets X', X',Y',¥' to F forming F', and put f(Z) := 0 for each
Z € {X',X',Y',Y'} which is not contained in F;

(iii) where a := min{f(X), f(Y)}, put f'(Z) := f(Z) —afor Z = X,X,Y,Y;
F(Z") = f(Z")+afor 2 = X', X', Y',Y'; and f'(Z") := f(Z") for the
remaining Z" in F;

(iv) delete the members Z from F' such that f'(Z) = 0.

Note that the family S can be given implicitly by an oracle that, being asked
of a set X C V, tells us whether or not X belongs to S; in usual applications,
this oracle is realized by a procedure polynomial in |V|.

We say that the procedure (i)-(iv) is an uncrossing step of type 1, denoted
as X,Y — X', Y'. Another type of uncrossing steps, type 2, is defined for
S =2V as follows:

(i’) choose crossing X,Y € Filet X':=X -Y,Y':=Y — X, X":=XnY,

Y":= X UY, and let a := min{f(X), f(Y)};

(ii’) add the sets X',Y',X",Y" and their complements to 7 forming F', and
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put f(Z):= 0 for each Z € F' which is not in F;
(iii’) turn to an oracle that gives us an integer b such that 0 < b < a;

(iv’) form f' on F' by decreasing f(Z) by a for Z = X ,X,Y,Y; by increasing
f(Z) by bfor Z := X', X', Y',Y' and by a — b for Z := X" X" y"y",
and keeping the same f(Z) for the remaining Z in F;

(v') delete the members Z from F' such that f'(Z) = 0.

Clearly an uncrossing step of type 1 is a special case of that of type 2. An
uncrossing process is a sequence of uncrossing steps of a given type fulfilling
until a current family F becomes laminar. Such a process is always finished in
a finite number of steps independently of what sets X and Y are chosen in each
step and what are F' and f' resulting for this step. Indeed, for e € Ey define
the value cs(e) to be S(f(X) : X € F,e € §V(X)). It is easy to see that for
f, f' and a as in (i)-(iv) or in (i’)-(v’) the following is true:

(1) cp(e) < cs(e) for all e € Ey and there are edges e,e' € Ev (possibly
e = ¢') such that cp(e) +cs(e') = cs(e) + cs(e') — 4a.

We prove the following theorems.

Theorem 1. There exists an uncrossing process with uncrossing steps of
type 2 in which the number of steps is bounded by a polynomial in n := Vi,
m = | F| and log(|Ifl| + 1) where ||fl == T(f(X) : X € F).

Theorem 2. There exists an uncrossing process with uncrossing steps of
type 1 in which the number of steps is bounded by a polynomial in n and m.

The proofs of Theorems 1 and 2 will provide polynomial algorithms to
arrange required processes. 7‘

Remark. In [GLS] a polynomial uncrossing technique was developed for
S as in (Ex1) in connection with the submodular flow problem [EG]. More
precisely, a polynomial algorithm was described there which for given 7 C §
and f : F — Z* finds a laminar family 7' C S and a function f' : 7' — zt
such that Y(f'(X): X € F') = 3(f(X) : X € F) and ¢y (e) < cs(e) for any
e € Ey. Note that this algorithm, first, uses procedures different from “pure”
uncrossing steps as above and, second, it is not generalized to an arbitrary
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cross-closed family.

The following simple statements will be used in our proofs.

(1.1) Let X,Y,Z CV besuchthat X Y, X || Z andY | Z, and let
Xe{X-Y,Y-X,XNnY,XUY}. Then X' | Z.

(1.2) If F' is a laminar family on an n element set, then |F'| < 4n.

(1.1) is easy to prove. To see (1.2), denote by a(n) the maximum cardi-
nality of a laminar family on an n element set. One can show that a(n) <
a(n — 1) + 4, whence (1.2) follows.

2. PROOF OF THEOREM 1.

Let V, F and f be as above. We say that a family R of subsets of a set W is
cyclical if there is an ordering {v1,v2,...,v, = vo} (r = |W|) of elements of W
such that each set X € R is of the form {v;,v;11,...,v;} for some 4, j € {1,...,
r} (the indices are taken modulo r). First of all we prove the following lemma.

Lemma 2.1. An uncrossing process for F and f can be arranged so that it
consists of at most 2n(m/2 — 1) uncrossing processes, each for a cyclical family
R onV and a function g : R — Z* with ||g|| < ||f||-

Proof. Choose a laminar subfamily £; in F and a pair {X;,X;} € F—L; and
fulfil an uncrossing process for £; U {X;, X;} forming a laminar family £, and
some function on £,. Then choose a new pair {X3, X3} in F — (£, U{X1,X1})
and fulfil an uncrossing process for £, U{X,,X,}, and so on. As a result, after
k < m/2—1 iterations we get a laminar family 7' := £ required in Theorem
1.

Now we show how to arrange an uncrossing process for a family consisting
of a laminar subfamily £ and a pair {4, A}. We say that a set Y C V separates
aset X CVifboth XNY and X — Y are nonempty. A set X C V is called
bi-partitioned with respect to a laminar family D C 2V if there is Z C X such
that
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(2) for any Y € D, Y separates neither Z nor X — Z, that is, X NY €
{ZaX - Z,X,@}.

Suppose we are given two laminar families P and D satisfying the following
property:

(3) for each X € P, at least one of X and X is bi-partitioned with respect to
D.

Obviously, (3) holds for P := L and D = {4,A}. Choose a mazimal set
X € P which is bi-partitioned with respect to D and fulfil an uncrossing process
for the family D U {X,X}. As a result, we get a laminar family D'. Put
Pi=P - {X,X}.

Claim. For each X' € P' at least one of X' and X' is bi-partitioned with
respect to D'.

Proof. Since P is symmetric, we may assume that either X' C X or XnX' =0.
Then X' is bi-partitioned with respect to D. Indeed, in the case X' C X,
this obviously follows from the fact that X is bi-partitioned. And in the case
X 0 X' = 0, this is so because X' cannot be bi-partitioned by the maximal
choice of X. Thus there is Z' C X' such that any ¥ € D separates neither Z'
not X' = Z';if X' C X we put Z':= X'N Z. This easily implies that the same
property holds for X', Z' and each Y arising during the uncrossing process for
DU {X, X}, whence the result follows.

O

In view of the Claim, an uncrossing process for £ and {4, A} as above is
reduced to |£|/2 < 2n uncrossing processes for families D = DU {X, X} such
that D is laminar and X is bi-partitioned with respect to D.

Let Dx be the set of those members of D which are crossing X. One may
assume that Dx # 0 (otherwise D is already laminar). In view of (1.1), it
suffices to arrange an uncrossing process for the family Dx U {X, X} instead of
D. Let Z be as in (2) for given X and D. Put D' :={Y € Dx : X NY = Z}
then Dx = D' U{¥:Y € D'}. Wehave 0 #Z CY, 0# X —Z CY for each
Y € Dx, and now the laminarity of Dx implies that any two Y',Y" € D' satisfy
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either Y! C Y" or Y" C Y'. Therefore, there is a partition (V1,V2,...,Vr = Vo)
of Vsuch that Vi = 2, V., = X —Z and each Y € Dx U {X,X} is a set of
the form V4 UVa U...UV; for some 1 < i < r. This implies that Dx U {X,X}
is a cyclical family, whence the lemma follows (the inequality ||g|| < ||f|| holds

because the value || - || does not increase on any uncrossing step).
a

Remark 2.2. Each cyclical family occurring in the above proof is equi-
valent to a cyclical family R on an ordered set W = (v1,...,v,) having the
additional properties: (i) R = {X,X} UB; (ii) X = {v1,v.}; and (iii) B is
a laminar family each set of which is crossing X. These properties will be
important for the proof of Theorem 2 in the next section.

Now the theorem immediately follows from Lemma 2.1 and the following
lemma.

Lemma 2.3 Let R be a cyclical family on an ordered set W = (v1,... yUr)
and g :— Z' be a function. There exists an uncrossing process for R and g
consisting of log||g|| times a polynomial in r uncrossing steps.

Proof. Note that an arbitrary cyclical family on W has the obvious property
that each set obtained by uncrossing its crossing members has again the form
{vir,vir41,--,v5 }. Therefore any intermediate family R' arising during an un-
crossing process for R and g is cyclical; this, in particular, implies that the
cardinality of R' is at most r(r — 1). We say that a set X = {v;,Vig1y .-y 05} I8
essential if 2 < |X| < r —2. Let R and g denote a current cyclical family and
a function on R in the uncrossing process. In a current iteration we choose an
essential set X € R with g(X) mazimum (if there is no essential set in R, then
R is laminar) and fulfil uncrossing steps, one by one, with the fixed set X and
members of Rx :={Y € R:Y [ X}. Two cases are possible.

Case 1. g(X) > 3g(Rx) where g(Rx) := 3.(9(Y) : Y € Rx). Then all
the sets of R x vanish during the iteration, and any set X' of the resulting family
R’ is laminar to X. Therefore, after this iteration we can split the uncrossing
problem for R' into two problems, one for the family Ri:={YeR':YCX
or W—Y C X} and the other for Ry :={Y e R": X CYor X CW Y}
The problem for the former (latter) family is, in fact, that for a cyclical family
on the set W, (W3) obtained from W by identifying the elements of the subset
W — X (respectively, X ). We have |W;| <r, i =1,2, and |Wh|+ |Wa| =r+2.
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Furthermore, if |W;| < 3 then R! is obviously laminar. This implies that the
total amount of those iterations (for all families arising on W and reduced sets)
in which Case 1 occurs is bounded by a polynomial in .

Case 2. g(X) < 1g(Rx). Introduce the value

B:=pB(R,9):= Z Z(g(X) : X € R, X is essential and e € §" (X)),
e€Ew

where Ew is the edge-set of Ky. Let R' and g' be the family and the func-
tion obtained as a result of the iteration. The sets X and X vanish during the
iteration. In view of (1), this implies that 8’ := B(R',¢') < f—4g(X). Further-
more, it follows from the maximal choice of X that 8 < |Ew|g(X)|R| < r*g(X).
Therefore,

] 4
(4) B <B- 7).

Now suppose that Case 2 occurs in k successive iterations, and let Sy and f;
be the values of B in the first and the k-th of these iterations respectively. We
may assume that §; > 1. Then (4) and the fact that By < r?||g|| imply that k
is no more than log||g|| times a polynomial in 7.

O

3. PROOF OF THEOREM 2

It this section by an uncrossing step we mean that of type 1. According to
Lemma 2.1 and Remark 2.2, it suffices to arrange an uncrossing process (with a
polynomial in » number of uncrossing steps) for R and g : R — Z* such that R
is a subfamily of a cross-closed family C on an ordered set W = (v1,...,v,) and
R consists of two laminar families £ and B with £ = {X, X} and X = {v1,v,}.
Moreover, we may assume that )

(5) for each Y € R thereis Z € R such that Y and Z are crossing
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(otherwise, in view of (1.1), we can eliminate Y from R); and
(6) fori=1,...,r, there is a set in R separating v;_; and v;

(otherwise we can identify v;_; and v; decreasing the cardinality of the basic
set W). Here we call Z C W separating elements u,v € W, or separating a pair
{u, v}, if Z contains exactly one of u and v. It follows from (5) that R contains
only essential sets Z, that is, 2 < |Z| < r — 2. Note also that (6) implies that

(7) C contains the set Y; := {v1,...,v;} for 1 =2,...,7 2.

We will be forced to consider in our proof a family R = LU B of a slightly
more general form. Namely, as above, B is a laminar family such that

(8) each Y € B separates v; and v,
while £ is a laminar family which can contain more than two sets but such that
(9) each X € L separates v; and vs.

We shall show that for such an R there exists an uncrossing process consisting
of O(r?) uncrossing steps.

We proceed by induction on

w:=w(r,R) =7 +7L|/2 +d,

considering all W = (z1,...,v.), C and R = L U B satisfying (5)-(9). Here
d := d(R) denotes the minimum number ¢ such that R contains the set X; :=

{v2,...,vi}.

In what follows R' = £L'UB' and ¢' will denote corresponding items arising
when we apply to current R and ¢ an uncrossing step X,Y — X', Y’ and then
delete each set of the resulting family which is laminar to all other ones. We also
denote by r(R') the number of maximal subsets {v;,...,v;} which are separated
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by no set in R'. Clearly if 7(R') < r and if £' and B' are laminar families
satisfying the properties as in (8) and (9) then, after identifying elements v;—1
and v; separated by no set in R', we get r" and R" with smaller w (and satisfying
the properties as in (5)-(9)), whence the result follows by induction.

First of all suppose that {v1} € C. It easily follows from (5) and (6)
that £ contains the set X := X,_; and B contains the set ¥ := Y,. Then
Y - X = {n} €C, whence X' :== X NY = {v2} € C and Y =XUY =
W —{v,} € C (since C is cross-closed). Fulfil the uncrossing step X,Y — X', Y".
If g(X) < g(Y) then X ¢ R, and, similarly, if g(Y) < g(X) then Y ¢ R'.
Furthermore, sets X' and Y' are non-essential. This implies that at least one of
the pair {vs,v3} and {v,._1,v,} is separated by no set in R', whence r(R') < r
and the result follows by induction.

Thus we may assume that {v;} € C. Consider the set Xq4 = {va,... ,Vd}-
Since X is essential, d > 3. Note also that (6) and the minimality of d imply

(10) Y; = {vi,...,vi} € B fori=2,...d— 1.

Let k be the maximal index such that 1 < k < d and {vx} €C.
Claim. (i) k> 2. (ii) f k < d then Z := {vk41,..-,va} € C.

Proof. Observe that any minimal nonempty set in C is of cardinality 1 (this
follows from (6) and the fact that C is cross-closed). Therefore, Xq contains an
element v such that {v} € C, which implies (i). Next, if £ < d and Z € C then
there is v; € Z such that {v;} € C. Then k < j < d, contrary to the maximal
choice of k.

O

Now consider three possible cases.

Case 1. k=d. Let X := Xz and Y :=Y;_;; then Y € B, by (10). Observe
that X':= X—-Y = {v4} € Cand Y' := Y—X = {v1} € C. Fulfil the uncrossing
step X,Y — X',Y'. If g(X) > g(Y) then Y ¢ R' and no set in R’ separates
v4_; and vg, whence r(R') < r. And if g(X) < g(Y) then X ¢ R', whence
L' = L£—{X,X} and |£'| < |£]. In both cases we have w(r(R'),R') < w(r, R),
and the result follows by induction.

Case 2. k=2. Let X ==Xz andY :=Y,. Then X':=XNY ={v} €C
and Y':= X UY =Y; € C (by (7)). Fulfil the uncrossing step X,¥Y — X', Y".
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Similar to the previous case, we get at least one of the following situations: (i)
no set in R' separates v, and v3, or (i) £' = £ — {X, X}; and the result follows
by induction.

Case 8. 2< k <d. Let X := Xy, Y :=Y; and Z := {vg+1,...,v4}. By
the Claim, Z ¢ C. Therefore, X' := XNY =X, €CandY':=XUY =Y; €C.
Fulfil the uncrossing step X,Y — X',Y’. Suppose that g(X) < g(Y'). Then
X ¢ R' and X' € R, whence |£'| = |£|. Furthermore, we have d(R') = k <
d(R), and the result follows by induction.

Now suppose that g(X) > ¢(Y). Then X,X' € R', and therefore L' =
LU {X' X'}. However, the following useful property holds:

(11) vx and vi4; are separated in R' by only X and Xi

(since Y ¢ R'). Consider the sets X := X} and ¥ := Y;_; in R'. Both sets
X':=X—-V ={v}and V' := ¥ — X = {v;} are in C, so we can fulfil the
second uncrossing step X,Y — X',Y’ for R' and ¢' forming R" and ¢". Two
cases are possible.

(i) ¢'(X) < ¢'(Y). Then X ¢ R", and now, in view of (11), there is no set
in R" separating v, and ve41. Thus 7(R") < r, whence the result follows by
induction.

(ii) ¢'(X) > ¢'(Y). Then Y ¢ R", therefore no set in R" separates v;_;
and vi. We have again 7(R") < r, and the result follows by induction.

This completes the proof of Theorem 2.

Acknowledgement. I wish to express my thanks to A.Sebo for useful
discussions and for improvement of style of the paper.
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