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1. Introduction

Among the questions that are of interest in combinatorial optimization
theory is the one dealing with fractionality of solutions for certain classes
of linear programs. Let us give the formal setting of the problem. Assume
that & is a set of programs of the form Ax < b (admissibility problems),
or max{cx|Ax < b} (optimization problems), with integer matrices 4 and
integer vectors b and c; usually the set & (called a class of problems, or a
problem) has a specific combinatorial meaning. By the fractionality k(P) of
an instance P € % we mean the least natural number k such that for some
admissible (respectively, optimal) solution x for P, the vector kx has only
integer entries; if P has no solutions, we put k(P) = 0. The fractionality
k(9P) for a class & is defined as max{k(P)|P € &#}; if k(F) = o0, we
say that &7 has unbounded fractionality.

At present, no general theorems are known dealing with rather large classes
P of fractionality > 2 (in contrast to well-known results on problems with
totally unimodular constraint matrices, or on problems with submodular re-
strictions, which provide two representative examples of classes of fraction-
ality 1). To find the fractionality, or even to establish that it is bounded,
turns out to be a very difficult task for many combinatorial problems; one
can mention, for instance, the Tutte—Seymour conjecture that the problem
of finding an exact covering of the edges of an undirected graph by cycles has
fractionality 2 (see [9]), which has withstood many efforts to solve it.

In the present paper, we discuss unbounded fractionality phenomena in
multicommodity flow problems on undirected networks (the case of directed
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networks appears to be significantly simpler, as we explain below).

For our purposes, it is convenient to consider multicommodity flows as
certain chain packings, rather than collections of flows (these two definitions
are known to be equivalent [1]). By a graph we mean a finite undirected graph
without loops and multiple edges; an edge with endpoints x and y is denoted
by xy. By a chain, or an xy-chain, of a graph we mean a nonvoid subgraph

L =(VL, EL) of it with vertices VL = {xzxo,xl, < X = V1, xi#xj,
and edges EL = {)cl.xi+1 [i=0,..., k- 1}; the chain L is denoted by
XgX| Xy

The main objects of our studies are a graph G = (V, E), a distinguished
subset T C V of vertices (called terminals), a nonnegative integer-valued
function ¢: E - Z . (of edge capacities), and a graph H = (T, U) without
isolated vertices ( H is called a commodity graph, or a scheme). Given x, y €
V', we denote by (G, xy) the set of all xy-chains in G. Put

Z=2(G, H):= |J ZG, s
steU
A function f: % - R . Is said to be a multicommodity Sflow, or a multiflow.
A multiflow f is c-admissible if the following capacity restrictions are valid:

Cf(e) = Z S(L) < cle), eckE.
LeY ,ecEL
Given a multiflow f, one defines its value between terminals s and ¢
by v(f, st) = ELey(G,sz)f(L)’ and its total value by v(f) = 1 - f =
ELe_gﬂ f(L) *
Below we formulate three main types of multiflow problems.
DEMAND PROBLEM (to be denoted hereafter by D(G, H, ¢, d)): given

a function d: U — Z , (flow demands), find a c-admissible multiflow I
satisfying the condition

v(f,st)=d(st) forallste U

(or prove that such a multiflow does not exist).

MAXIMUM MULTIFLOW PROBLEM (10 be denoted hereafter by M(G, H,¢)):
find a maximum c¢-admissible multiflow, that is, a multiflow f with the
greatest total vaiue v(f).

MINIMUM COST MAXIMUM MULTIFLOW PROBLEM (to be denoted hereafter
by C(G, H, ¢, a)): given a function a: E — Z, (of edge costs), find among
the maximum multiflows the one (denote it by f') having the least cost

Y. aELFL) =Y a@) (e);

Le#(G,H) ecE

hereafter g(S'), S’ C S, stands for 2 .cs &le) for a function g on §.
Let us classify the problems according to their schemes, thus combining
in one class all the problems of a given type having the same scheme H .
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Namely, given a scheme H = (T, U), denote by D(H) the set of all the
demand problems D(G, H, ¢, d) for arbitrary graphs G = (I‘/','E) ,VDOT,
and arbitrary functions ¢: E — Z_, d: U — Z_; in a similar way one
defines the sets M(H) and C(H). The fractionalities k(%) for the classes
P =D(H), # =M(H), # =C(H) aredenoted by k (H), k,(H), ky(H),
respectively.

The following simple proposition is true.

Cram 1. 1. Ifa scheme H' is a subgraph of a scheme H , then k,(H') <
k,(H). o

2. If a scheme H' is an induced subgraph of a scheme H ’(that is, H
is the subgraph induced by a vertex subset of H), then k,(H') < k,(H),
i=2,3.

ProoOF. Indeed, let H' = (T',U’) ¢ H = (T, U); then the problem
DG = (V',E),H, c',d) is equivalent to the prob,lem D(G,ﬁ, c,d)
with G = (V' U(T\T"), E'), cle) :=c'(e) for e € E', d(u) := du) for
ueU', du):=0 for ue U\ U'; this yields the first assertion. The second
one is proved in a similar way.

The aim of this paper is to prove the following theorems.

THEOREM 1. If a scheme H contains three distinct pairwise intersecting
anticliqgues A, B, C such that ANB # ANC, then ky,(H)=o0.

THEOREM 2. If a scheme H contains two distinct intersecting anticliques
(i.e, H is not a complete multipartite graph ), then k,(H) = occ.

Recall that an anticlique of a graph is defined as a maximal (with respe.ct
to inclusion) independent (that is, inducing an empty graph) subset of its
vertices.

We make a few comments. Denote by K, the complete graph on n ver-
tices, by Z_ the star with r edges (that is, the graph all of yvhose r 'edg.es
possess a common vertex), and by I', + T, +--- 4T, the union of palmse
disjoint graphs I , T, ..., T, ;instead of I'+..- +T (m times) we write
mI'. Let & (H) stand for the set of all anticliques of H .

1) It is known that (a) k,(H) = 1, provided H = Z_ [1]; (b) kl.(I‘J) = %,
provided H is the union of two stars and H # Z, (according to Dinits, tI}1S
fact is an easy consequence of the half-integrality theorem for two-commodity
flows [2]); and (c) k,(H) = 2, provided H is K,, or H is the cycle on 5
vertices [7] (see also [10] and [8]). . .

Recently, the author proved that k,(H) = 2, provided H = K§ or H is
the union of K, and a star [5]. On the other hand, it is shown in [8] that
k\(H) = oo for H = 3K,. One can verify that the only sqheme H suc.h
that k,(H) is not defined by the above results and Claim 1.1 is 2K . Iq this
case the demand problem can be reduced easily to the maximum multiflow
problem for the same scheme 2K, (observe that H = 2K, violates the
assumptions of Theorem 1); there are reasons to conjecture that k(2Ky) = 4.
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2) It is known that (1) k,(H) = 1, provided H is a complete bipar-
tite graph (a multi-terminal version of the maximum flow theorem (1 (2)
k,(H) = 2, provided | (H)| > 2 and & (H) admits a partition {&/, %}
such that each family &/ consists of pairwise disjoint anticliques [6] (see also
[8] and [4]); and (3) k,(H) = 4, provided the latter condition is violated,
yet H does not contain three distinct pairwise intersecting anticliques [6].

Therefore, each scheme H such that k,(H) is not defined by the above
results and Theorem 1 must contain three distinct pairwise intersecting anti-
cliques, and for any such triple 4, B, C one must have ANB=BnC =
C N A. For such schemes H , the values k,(H) are not established yet (pre-
sumably, k,(H) < 4); recently, the author proved that for such schemes H
the fractionality for the problem dual to M(G, H, ¢) does not exceed 4.

3) It is known that k;(H) =1, provided H is a complete bipartite graph
[1], and that k,(H) =2, provided H=K,, n >3 [3].

The latter result can be extended easily to the case of complete multipartite
graphs H . Together with Theorem 2, this provides a complete description
of the values of k;(H) for all schemes H .

The solution of fractionality problems for directed multiflows is signifi-
cantly simpler. Classical results of Ford and Fulkerson [1] imply that k (H) =
1, provided H = (T, U) is a directed star (that is, either U = {s, )|t €
T\ {s}}, or U= {(t,s)|t € T\ {s}} for some s € T), and k,(H) =
k,(H) = 1, provided H is a complete directed bipartite graph (that is,
U=/{s,t)|se€S,teT\S} for some S C T). Easy examples show
that in all the other cases the fractionalities are infinite.

2. Proof of Theorem 1

The following proposition is true (the proof is left to the reader).

CLAM 2. A scheme H satisfies the assumptions of Theorem 1 if and only
if H possesses an induced subgraph H' such that 3K, C H cH U where

H' is the graph in Figure 1(b).

According to Claims 1 and 2, to prove Theorem 1, it suffices to consider
only schemes H = (T, U) such that 3K, C H C H'. One must show that
for an arbitrary natural k" there exist a graph G =(V, E ), V2T,and a
function ¢: E — Z,_ such that for any optimal solution f of the problem

1 2
o0
3 3 3 3
(a) 3K, (b) H'
FIGURE !
L

FIGURE 2

D(G, H, c) the vector k' f has at least one noninteger entry for any natural
k' < k*. The construction providing such networks (G, ¢) for the above
described schemes H relies on the construction for the “simplest” scheme
H, = 3K,. For the case of H,, one can take the counterexample from §12
of [8]; however, below we present a simpler example. Namely, consider the
graph G, = (V}, E;) shown in Figure 2; it consists of the cycle
Lxy, "'xkykllxk+1yk+l Ce XYyl
plus vertices 2, 2 3, 3, edges 2x;, 3x;, ;'yi, g'yi, P=1,...,2k%

and two distinguished edges: 23 and 32'. The capacities cy(e) for all the
nondistinguished edges e € E; equal 1, while those for the distinguished
edges equal 2. Put Hy = (T, U,), where

T,={1.1,2,2,3.3}, Up={LL,
Define in G, the following multiflow fo:

22', 33'}.

L) = fL)=(k=D/k, i=1,..., 2k,
So(P) = fo(Py) = 1/k,
£,(0,) = f(Q) = 1/k, i=1,...,2k
where :
L=2xy2, L=3xy,_,3 (j#1L.k+1),
L'l = §x1ly2k§’a L;c+1 = 3xk+1l'yk§' ,
P =1xy, "'xkykll ’ Py =1y x5 'yk+1xk+1—1—, >
Q,=2x32, 0/ =23y2"

for all the other chains belonging to .#(G,, H,) the multiflow f, vanishes.
A direct calculation shows that all the edges of G, are saturated by Sy (that

is, Cf"(e) =¢y(e) for all e € E;), and that
v(fy, W) =2/k,  v(fy,22)=2k+2, w(f,33)=2k-2;
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hence Jf, 15 ¢y-admissible, and its total value v( Jo) equals 4k +2/k .

Let us prove that £, is an optimal solution for M(G,, H;, c,); this fact
would imply that the fractionality for the above problem is atoleast k/2
since the dcznominator of v(f;) equals k/2. To do this, consider the duai
problel? M'(Gy, Hy, ¢,) . Observe that the admissible solutions for the prob-
lem M™(G, H, ¢) dual (in the sense of linear programming) to the problem
M(G, H, c) are exactly the functions /: E — R , satisfying the restrictions

{ELy>1, L € Z(G, H).
The above restrictions can be rewritten as
dist,(st) 21, steU,

where distlﬁxy) denotes the distance between the vertices x and y in the
graph G with edge lengths /(e); in other words,

dist,(xy) = Le_g}icn )I(EL).
s XY

By the .linear programming duality theorem, admissible solutions f and [
are optimal if and only if

v(f)=c-1 (: Zc(e)l(e));

ecE
this is equivalent to the complementary slackness conditions

LeZ(G,H), f(L)>0= [(EL) =1, (C1)
ecE,lle)>0={(e) = c(e). (C2)

In our case, put

lo(lxl) = lo(Uzk) = lo(llxk+]) = lo(llyk) = 1/4k;
10(2) = 10(2,) = lo(xl‘yi) = lo(ijj+1) =1/2k,
i=1,...,2k, J=1, k-1, k+1,...,2k—-1;
ho@x) = L3x) = ,2y) =1,3y) =172~ 1/4k, i=1, ... 2%k
It is easy to check that /, is an admissible soluti *
o e solution for M™(G,, H,, c¢,), and
that both f, and ¢, satisfy (Cl) and (C2), as required. 0 Fa: 4

Therefore,‘ we have constructed the proper example for the scheme H, =
3K, . To design the required examples for the other schemes H , H, c 13 C

1 .
H, we reform G, €y Jy in such a way that the values of each of the three
flows involved remain integer.

1. Pa}ste tf)ge.ther k copies (G, ¢)s .-, (G, ¢,) of the network (G,
¢;) by identifying the vertices lj (denote the vertex obtained by 1) and

by identifying the vertices l;. (denote the vertex obtained by i’); here w,
stands for the copy of the vertex w € Vo, in the graph G .. ’
J

¢

2. Add to the graph obtained above new vertices 1, 1, 2, 2', 3, 3' and
new edges 11, 1'T", 22, 2'2}, 33;, 3'3), j=1,..., k, with

c(tl)==c(1'i) =2,  ¢(22)=c(22)) =2k +2,
c(33):=c(33):=2k-2, j=1,.. ,k

Denote the resulting network by (G = (¥, E),c),and let H = (T, U) be
the scheme whose edges are 11°, 22", 33,

One can naturally “extend” the multiflow f, to a multiflow f for G,
H, ¢. Namely, given a chain L =jv.-..wi, i€ {1, 2, 3}, take k chains
Lj=i1juj--.wj1;i’, j=1,...,k,inthegraph G,and put f(L,):= fy(L).
Evidently, all the edges of G are saturated by f, and f is an optimal
solution for G, ¢ and H as above.

Let us prove that the fractionality for any maximum flow f for G, ¢
and H as above equals at least k/4. Denote by E(x) the set of edges in
G that are incidentto x € V; put E' = U7 E(s). Consider the following

functions /' and /°> defined on E:
0 fi E', 1/2 f E',
ll(e)= ' or ec / lz(e)= / or ee ;
lj(e) for ec E\E, 0 for ec E\FE,

where e’ is the edge of G, such that e is a copy of e’ . It is easy to see
that both /' and /° are optimal solutions for the problem M*(G, H, ¢).
Assume that L = i---i is a chain in .Z(G, H) with f'(L) > 0. Relation
(C1) for f " and I implies that L passes through no vertices from T except
i or i. Next,if i € {2, 3} and L contains a vertex s € {1, 1'}, then the

relations ll(EL) =1 and distll(is) = distlx(si') = 1/2 (these are easy to
verify) yield ["(EL) = I"(EL") = 1/2, where L' and L" are the parts
of the chain L from i to s and from s to i’, respectively. Denote by
G;. = (V}' , E;.) the subgraph of G obtained by adding vertices 2, 2,3, %
and edges 22 ;s 2';} , 33 i 3'3;. to Gj. Let g be the multiflow in the graph
G; with terminals at 7' = {i, 1’, 2, 2', 3, 3’} that is induced by f’; that
is, g(L') = S f'(L) for any chain L' in G; such that both its endpoints
belong to 7", the sum being taken over all chains L € #(G, H) containing
L' asapart. Denote by .%’ the set of all chains in G;. having both endpoints
in T'. Since f’ saturates all the edges of G, g must saturate all the edges
of G}; thus
S IMEL)g(L) = Y cle)l'(e) = ¢y Iy = 4k + %
L'es’ 23

On the other hand, the above arguments imply that for any chain L' € & "
the value /'(EL’) equals either 1 or 1/2, provided g(L') > 0. Hence the
fractionality of g is at least k/4.
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(Observe that the above example proves also that the fractionality of the
demand problem for the scheme 3K, is unbounded.)

Finally, consider an arbitrary scheme H = (T, U) such that 3K, CHC
H'. Itis easy to see that H ! contains exactly one subgraph isomorphic
to 3K,. Thus, one can assume that 7 = 7, U > U = {11, 22', 33},
and that the edge set of H' is U' = U u{1'2,1'2',1'3,1'3",2'3, 2'3'}.
Let us prove that for G and ¢ as above, any optimal solution f* for the
problem M(G, H, c¢) satisfies v(f™, st) = 0 for all st € U\ U ; this would
yield that the restriction of f* on Z(G, H) is an optimal solution for the
problem M(G, H , c), and thus the fractionality of f~ is at least k/4. To
do this, it suffices to present an optimal solution / for the dual problem
M*(G, H, c) such that dist,(st) > 1 forall st € U\ U (by (C1); this would
imply v(f™, st) = 0). The required solution / can be defined as follows:

(=0, 1'1H=1,
122)=14%, 1Q22)=3, 1(33) =1(33)=14, j=1,...,k,
and /(e) = 0 for all the other edges of G. It is easy to verify that

dist,(sty =1 for steU,
dist,(st) >1 for ste U\ U

besides, relations (C1) and (C2) are valid for the solution / and the multiflow
f defined as above (for G, ¢ and H); hence / and f (extended by zero to
Z(G, H — H)) are optimal solutions for M*(G, H, ¢) and M(G, H, c),
as required.

Theorem 1 is proved.

3. Proof of Theorem 2

The following proposition is rather trivial (its verification is left to the
reader).

CLamm 3. Let H be a graph without isolated vertices. Then H possesses
two distinct intersecting anticliques if and only if it contains a four-vertex
subset T' = {1, 1", 2, 2'Y such that the subgraph H' induced by T' satisfies

! / I3 !
Hy C H' C H,, where Hy = (T, U,), H = (T', U), U, = {11',22'},
U, ={12, 12'}u T,.

By Claim 1.2, it suffices to consider only schemes H = (T, U) satisfying
the relation H,C H C H,. Assume that 7 = {1, 1, 2, 2'} , and the edge
sets U, and U, for the graphs H, and H, are defined as in Claim 3.

Given an arbitrary positive odd &, we construct a simple example of the
problem C(G, H, ¢, a) such that it has exactly one optimal solution f, and
the fractionality of this solution is just k. The graph G = (V, E) is shown

in Figure 3. Here all the edges have unit capacities, except the edges 2w

»]

2
w
1 Yk
R TR P Xig
X
21
Va1 X2 Y; Xou|  Yax
X3 T * ’ X3g
1 z 2/ 11
Ykl 2 e Xk
k1 Yia
wl
2/
FIGURE 3

and 2'w’; these two edges are of capacity k — 1. Edge costs are defined as
follows:

a(x;y,;):=0, a(lz):=2k, a(1'z'y:=0, aw) :=a'w'y =k,
a(yijxij+l) = a(ypqyp+1 q) = a(xrmxr+l m) =1,
a(zx;,) = a(z/yl.k) =a(wx,;) = a(w'xkj) =k.

Introduce the following chains:

V4

Li=lzx,yyXp...x4v,2 1, i=1 k

Py = 20X 91,900 % Vs, - VX' 2 o

and define a multiflow f by SB)y=(k=D/k, f(L)=1/k,i=1,... ,k,

f(L) = 0 for all the other chains in .#(G, H). One can verify the following

facts:

(1) v(f) = k, and for any c-admissible multifiow f': #(G, H) — R,
one has v(f") < (c(12) + ¢(1'2') + c2w) + c(2'w"))/2 = k, whence f is a
maximum multiflow.

(2) The costs for the chains L; and P, equal 5k—1, while the cost a(EL)
for any other chain L in (G, H) is at least 5k ; therefore, the cost of f
is minimal among all the multiflows (for G, ¢ and H) of the same total
value.

(3) The multiflow f is the unique multiflow of total value k that involves
only chains L; and P,.

Properties (1)-(3) immediately imply the assertion of the theorem.
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