On a Class of Maximum
Multicommodity Flow Problems
with Integer Optimal Solutions

A. V. KARZANOV

In [4] we announced and briefly outlined a new proof of a theorem, due to
Karzanov and Lomonosov, on the existence of an integral optimal solution
for a special case of the maximum undirected multicommodity flow problem.
In this case the capacity function is inner Eulerian and the commodity graph
H possesses the following property: the set of its anticliques has a partition
into two subsets, each consisting of pairwise disjoint anticliques (in other
words, H is the complement to the line graph of a bipartite graph). Based
on the splitting-off techniques (rather than alternating path approaches), this
proof looks considerably simpler than the original one and, moreover, it pro-
vides a strongly polynomial algorithm to solve the problem.

In this paper we give a detailed description of these results.

1. Introduction

By a graph we mean a finite undirected graph without loops and multiple
edges; the edge with endpoints x and y is denoted by xy. By a chain {or an
xy-chain) of a graph we mean its subgraph L = (VL, EL) whose vertex-set
and edge-set have the following form: VL = {x=x4, %, ... s X =V},
EL = {xl.xm: i=0,...,k—1}; the chain L is denoted by XgXy e X

We deal with the following objects: a graph G = (V, E), capacities c(e) >
0 defined on its edges ¢ € E, and a graph H = (T, U) having no isolated
vertices and satisfying the relation 7 C V. The pair (G, c), the graph H,
and its vertex set 7' are said to be the network, the (flow) scheme, and the
set of terminals, respectively.
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Consider the well-known problem of finding a maximum multicommod-
ity flow in a network (G, c) with a scheme H. For our purposes, it is
convenient to formulate this problem as a chain packing problem. Given
x,y €V, denote by Z(G, xy) the set of all xy-chains in G. Put & :=
Z(G, H) = Uyey-Z (G, st). A function f: 2 — R, (here R is the set
of all nonnegative reals) is said to be a multicommodity flow, or, briefly, a
multiflow; a multifiow f is said to be c-admissible if the following capacity
restrictions are valid:

fley= Y. flL)<cle), eckE. (1)

Le?, e€EL

PROBLEM P = P(G, c, H). Find a c-admissible multiflow f having the
maximum total value

1 f= 3 fL).

LeZ

Denote by v = v(G, ¢, H) the maximum of 1. f over all c-admissible
f.
An interesting problem in discrete optimization theory consists in the fol-
lowing: Given a class of linear programs with integer-valued constraint ma-
trices and right-hand side vectors, decide whether each program of this class
has an optimal solution with all denominators bounded by a fixed number
k. In our case, we have the following situation. Let us classify the prob-
lems P(G, c, H) according to the type of the scheme H = (T, U). We
say that a scheme H (and the corresponding class Z(H)of the problems
P(G,c, H) with H fixed) is solvable in {Z,, where Z_ is the set of
all nonnegative integers and k € Z, \ {0}, if for any graph G = (V, E),
V D T, and any nonnegative integer-valued function c: E — Z_ the prob-
lem (G, c, H) possesses an optimal solution f such that kf(L) is an
integer for all L € (G, H); in other words, if the problem (G, kc, H)
possesses an integer optimal solution. A scheme H is said to be of bounded
fractionality if H is solvable in 1Z . for some natural k. .

We need also the following notions. Let X C V' ; the set of all edges of
G having one endpoint in X and the other one in V' \ X is denoted by
80X = 8°X and is called a cut of G (the cases X = & and X = V are
allowed). A function c¢ is said to be inner Eulerian if it takes integer values
and c(8X) is even forany X C V'\ T (for arbitrary g: E — R and E'CE
we denote by g(E’) the sum >ecr 8(€)). Ascheme H issaid to be solvable
in %Z . for the inner Eulerian case if the problem P(G, kc, H) possesses
an integer optimal solution for any graph G = (V, E), V 2 T, and any
inner Eulerian function ¢ on E. Evidently, if H is solvable in 7‘(—Z . for
the inner Eulerian case, then it is solvable in ﬁZ .-

By the classical Ford-Fulkerson theorem, H is solvable in Z . = %Z +
for |U| = 1 (in this case one has the usual maximum flow problem for
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an undirected network); this fact is generalized easily to complete bipartite
graphs H . One can show that if H is not a complete bipartite graph, then
it is not solvable in Z, . It is well known that the scheme with two edges is
solvable in %Z , (Hu’s theorem on half-integer two-commodity flows [3]), as
well as schemes that are complete bipartite graphs with an arbitrary number of
vertices [7], [9], [1]. These results were sharpened in [10], [9], and [1]; it was
proved there that the corresponding schemes are solvable in Z, for the inner
Eulerian case. In [2], the solvability in %Z . was proved for certain schemes
represented as the union of two complete bipartite graphs. Finally, in [6]
large classes of schemes solvable in 1Z , and in 17 ., were provided, which
generalize all the previously known schemes with these properties. These
classes are defined in terms of the family & = &/ (H) of all anticliques of
the graph H (an anticlique of a graph is a maximal (with respect to inclusion)
independent (i.e., generating the empty subgraph) set of its vertices).

DEerFINITIONS. A family & of anticliques is said to be bipartite if it has
a partition {&/], %} such that each ./ consists of pairwise disjoint anti-
cliques. A family .% is said to be 3-noncrossing if it does not contain three
pairwise intersecting anticliques. A family is said to be perfect if for any three
distinct anticliques 4, B, C suchthat ANB# J, BNC#J, CNA# I,
onehas ANB=BNC=CnA.

Each of the above three classes contains the previous one as a proper
subset. Here are several instances of these classes:

a) If H contains only two edges, or H is a complete graph, then &/ isa
bipartite family.

b) If H is the cycle on 5 vertices, then .% is 3-noncrossing, but not
bipartite. ’

¢) If H consists of a triangle and an edge not adjacent to the triangle, then
& is perfect, but not 3-noncrossing.

If H consists of three pairwise nonadjacent edges, then %/ is nonper-
fect.

According to [6], the following assertions ar¢ true:

(1) If & is bipartite, then H is solvable in 3Z_ .

(2) If & is 3-noncrossing, then H is solvable in $Z .-

The proof of the first statement is implied by the existence of a pseu-
dopolynomial algorithm solving the problem (G, ¢, H) for integer ¢ and
bipartite &/ (H) (the running time for the algorithm is bounded by ¢(E)
times a polynomial in |V| and |T|). The second statement follows from a
reduction of the problem (G, ¢, H) with a 3-noncrossing % () to the
bipartite case; this reduction assigns an optimal solution of the first problem
to each optimal solution of the second one; moreover, the fractionality for
the former is twice as big as that for the latter. For details of proofs see [4]
and [8].

The question of what is the class of H ’s such that H is solvable in 17 N
for some natural k (depending only on H) is still open, and a conjecture
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is that this is exactly the set of H’s with perfect &/ (H) (a strong version ol
the conjecture suggests that whenever such a k exists for a given H, k can
be taken to be 4).(')

The original proof of the first of the above statements, outlined in a
sketched form in [6], provides, in essence, the following stronger result, as
was pointed out in [8].

TueoreM 1. If &7 (H) is bipartite and ¢ is inner Eulerian, then the prob-
lem P (G, ¢, H) has an integer optimal solution (in other words, each scheme
H such that o/ (H) is bipartite is solvable in Z for the inner Eulerian case).

This implies that in the inner Eulerian case, H is solvable in %Z N if
& (H) is 3-noncrossing.

It should be noted that the above-mentioned proof of Theorem 1 used
rather intricate augmenting-path techniques. In the present paper, we de-
velop a new proof of this theorem, which seems to be significantly simpler;
moreover, this proof provides a strongly polynomial algorithm to solve the
problem in question. These proof and algorithm were announced and briefly
described in [4].

The proof presented here relies on the following two ideas. First, one can
directly establish the existence of a dual optimal solution having a special
combinatorial, form (in fact, the existence of such dual solutions was stated
in [6], but there it appeared as a consequence of the proof of Theorem 1).
Second, on the basis of this result, one can apply the splitting-off technique
that reduces the initial network step by step to a trivial one, for which an
integer optimal solution exists evidently.

The rest of the paper is organized as follows. The special duality theorem is
established in §2, and the proof of Theorem 1 is completed in §3. Finally, in
§4, we describe a strongly polynomial algorithm for the problem Z#(G, ¢, H)
with a bipartite & (H). It is capable of working with arbitrary “real-valued”
capacities ¢ and has complexity 0(n3o(tn)); here n = |V|, ¢t =|T|, and
o(n') is the running time required for finding a maximum flow in a network
on n’ vertices. Whenever ¢ is inner Eulerian, the algorithm determines an
integer-valued optimal solution.

2. Minimal proper families

In what follows we use the abbreviated notation £(c), v(c), & , .Z for
PG,c,H), v(G,c,H), &(H), Z(G, H), respectively. Throughout
the paper, we assume that ./ is bipartite, and {&], &} is its partition
(ANB = foranydistinct A, Bew,, i=1,2).

(I)Added in translation. Recently, in [11] it was proved that: (1) if & (H) is perfect, then
the dual problem is solvable in 1Z_ , and (2) if & (H) is not perfect, then the primal problem
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is not solvable in +Z, forany k.

A family & = {X 1 A € &/} is said to be semiproper if

(1) X, cV and X, NT C A for any 4 € & (the case X, = & is
allowed), and

(2) each terminal s € T' is contained exactly in one set X, € 2.

A semiproper family #” consisting of pairwise disjoint sets is said to be
proper. Let us define the capacity of a semiproper family 2 by ¢(Z) :=
3V sew €(0X,).

In this section our aim is to prove the following theorem establishing a
minimax relation between multiflows and proper families.

T.HEOREM 2.1. The value v(c) equals the minimum of c(Z) over all
semiproper families & , and the minimum is attained at a proper family.

The proof includes several auxiliary facts. Assume that f:.% — R . isan
optimal multiflow, and let .#"(f) denote the set {L ¢ .%: f(L) > 0}. A
subset X C V' (as well as the corresponding cut 9.X ) is said to be saturated
by f if Cf(e) = c(e) for any e € 90X ; X is said to be compatible with
Le 2 if |9XNEL| < 1, and compatible with f if it is compatible with each
chain in .#*(f). By the definition, for a semiproper 2 and an arbitrary
st € U there exists a unique pair X 4> X €2 such that s € X, # ¢ and
s ¢ Xp >t. This fact implies easily the following statement, which is often
used here and in subsequent sections.

- CLAIM 1 For any semiproper family & one has ¢(#) > v(c), and equal-
ity holds if and only if each set X | € & s saturated and compatible with

f.

A terminal s € T is said to be a 1-terminal (a 2-terminal) if it belongs
o exactly one (respectively, two) anticlique. Given two terminals s and ¢
(not necessarily distinct), we write s~ ¢ if s, 7€ AN B for two intersecting
anticliques 4 and B, and s £ ¢ otherwise. In particular, s ~ s if s is a

2-terminal, while s o s if 5 isa 1-terminal. One easily obtains the following )
useful statement.

CLamM 2. Let &/ be 3-noncrossing, and let A, B € & .

1. Ifs,teAd, sit, pe T\ A4, then at least one of the edges sp and
tp belongs to U .

2. If stecU and s' ~ s, then st e U .

3. If A and B are intersecting and either s € ANB, t € T\ (AUB), or
SEA\B, te B\ A, then stc U.

Asspme that l:.E — R, 1is an optimal solution for the problem 2#~(c)
dual (in sense of linear programming) to %#(c), that is, /(EL) > 1 for all
LeZ and 3, c(e)l(e) =v(c). For arbitrary x,y € V put

u(xy):= min [(EL);
Le#(G,xy)
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thus, p is the metric on V' induced by the edge lengths [ (observe that
u(xy) = 0 if x =y, and u(xy) = ~ if x and y are from different
connected components of ). Then u(st) > 1 for any st € U, and the
complementary slackness conditions of linear programming applied to % (c)
and Z"(c) are specified as

ecE, '(e) <cle) = l(e) =0; )
LeZ ()= EL) =1(=ust)=1), (3)
where s and ¢ are the endpoints of L.
Let A% and x € V; put
r(x):=min{u(sx): s € A}, ,
d,(x):=min{u(sx) + u(xt):s,t€ A, s 4t}
Next, for 4 € % put
X, =Y,={xeV:d,(x)<1/2},
and for 4 € .9 put

Y, :={xeV:d,(x)<1/2}, R,:={xeV:r,(x)=0},
W,:=R,N{xeV:dy(x)>1/2 VB € & \ {4}}, X, =Y, uWw,

Finally, put 2* = {X: A€ ¥}.

We want to prove that 2" is a proper family all of whose sets are saturated
and compatible with f; by Claim 1, this would yield ¢(Z”") = v(c), thus
proving the theorem. The proof is divided into several claims. For any two
terminals s and ¢ (not necessarily distinct), put

1 if steU,
T(st) = .
0 otherwise.

For any four terminals s, ¢, p, g (not necessarily distinct), put

(s, 1, p, q) = max{t(st) + 1(pq), t(sp) +(tq), ©(sq)+1(tp)}.
Coamm 3. 1. If t(s,t,p,q)=0,then s, t,p,q€ A forsome Ac .
2. If 1(s, t,p,q) =1, then there is an A € &/ containing exactly three

of the terminals s, t, p, q.

Proor. 1. This follows from the fact that no edge of H can have both
of its endpoints in {s, ¢, p, g} (otherwise (s, ¢, p,q) = 1).

2. Evidently, each anticlique contains at most three elements out of
{s, t,p, q}. There are two possible cases, up to a permutation:

1) 7(st) = t(sp) = 7(tp) = 0, and

2) z(sty=t(sp) =1(sq) = 0.

In the first case, the triple {s, ¢, p} belongs to an anticlique. In the second
case, each pair out of {s, ¢}, {s, p}, {5, g} belongs to an anticlique, and
since & is 3-noncrossing, two of these anticliques coincide, thus completing
the proof.
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CLAaM 4. Forany s, t,p,q €T and x € V , one has
u(sx) + u(tx) + u(px) + p(gx) =2 ©(s, 1, p, q)-
ProOOF. Observe that for any s, € T one has u(s't) > ©(s't). To

be definite, let (s, ¢, p, g) = 7(st) + 7(pg). Then the required inequality
follows immediately from the triangle inequalities:

p(sx) + u(xt) 2 p(st),  u(px)+pu(xq) > u(pq).
CLAIM 5. Suppose that A, Be & and x € V. Then:
(1) d(x)+dg(x) 22 if ANB =,
(2) d(x)+dy(x) 21 if A and B intersect.

PrOOF. Assume that s,7€ 4 and p, g € B satisfy the relations

sot, p*q,
d,(x) = p(sx)+p(xt),  dg(x)=pulpx)+ pu(xq).
By Claim 4, one has d (x) +dg(x) > (s, t,p,q). Let ANB =0. If
7(s,t,p, q) < 1, then by Claim 3 there exists an anticlique 4’ containing
at least three elements out of 5,7, p,q, say, s,t,pe A . Then A # A,
and s,t€4 N A, contrary to s % ¢t. Now let 4 and B intersect. Then
s A4t and p £ g imply that there does not exist any anticlique containing
all the four elements s, ¢, p, ¢. By Claim 3, this yields t(s, ¢,p,q) > 1.

CrLAmM 6. Suppose that A and B are two distinct anticliques and x € V .
Then:
(1)If r (x)+dg(x)< 1, then A and B intersect and

peA, upx)=r,(x)=peANBKB.

(2)If ANB =@ and r(x)+rg(x) < 1, then there exists an anticlique C
intersecting both A and B and such that d.(x) <r,(x)+rp(x).

PrOOF. 1. Let 5,7 € B, 5 o t, and dg(x) = u(sx) + u(xt). Since’
u(sp) € r(x)+dy(x) <1,onehas sp ¢ U. Similarly, tp ¢ U. Assume
that B’ is an anticlique containing s, ¢, p. Since s £ ¢ and & is 3-
noncrossing, one obtains B =B.

2. Llet se A, t€ B, rx) = u(sx), rg(x) = p(tx). Then u(st) < 1;
hence st ¢ U. Let C be an anticlique containing s and 7. Since &/
is 3-noncrossing, the anticlique C is defined uniquely; hence s % ¢ and
de(x) < p(sx) + u(xt).

Claim 5 yields Y, NnY, =@ for any two distinct 4, B € & . Next, let
A€, and x € R,. The definition of W, implies that for any B' e i
the relations x € W, and x € Y, are never valid simultaneously, while, by
Claim 6(1), dgv(x) > 1 for any B” € &, \ {4} . Hence, W,NY, = for
any B € &/ \{A4}. Next, if ry(x) = 0 for some B € &\ {4}, then by Claim
6(2) there exists an anticlique C € .% such that d.(x) = 0, thus implying
x ¢ W,, W,. Therefore, 2" consists of pairwise disjoint sets.
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Consider an arbitrary terminal s. If § is a 1-terminal and s € A4, then
s # s and d,(s) = u(ss)+ u(ss) = 0, hence s € Y, . Assume that 5 is a
2-terminal and s € 4 € %. Then r (s) = u(ss) =0, and s ¢ W, would
imply dg(s) < 1/2 for some B € &/ \ {4}, whence s € Yy ; furthermore,
taking Claim 6(1) into account, one obtains s € 4N B. Therefore each
terminal s is contained in exactly one set X -, and s € C. Hence 2" isa
proper family.

It remains to prove that each set in 2" is saturated and compatible with
f. Let us make use of relations (2) and (3) for f and /. The following
statement is trivial.

CraM 7. Suppose that x,y €V, u(xy) =0, and A€ & . Then:
(WIfxeY,  then yeY,.
2)If xeW,, then ye W,.

Given A€ & and xy € X, one applies Claim 7 to obtain u(xy) >0,
and thus /(xy) > 0. Therefore, by (2), the edge xy is saturated by f.
Hence X, is saturated by f.

To prove that X; is compatible with [, consider an arbitrary pg-chain
Le™ +( f) and suppose that there exists a vertex x € VL contained in
X;. To be definite, assume that ¢ ¢ A, and let L' and L” be the parts of
L from p to x and from x to g, respectively. By (3), one has

IEL)=IELY+l(EL") = u(pq) = 1.

Let us show that VL' C X.

1. Suppose that x € Y,. Choose s,t € 4, s # t, such that d,(x) =
u(sx)+pu(xt). Then u(sx)+ p(zx)+pu(px)+pu(gx) < 3/2; hence, by Claims
4 and 3, 7(s,t,p, q) = 1 and there exists an anticlique B containing s,
t and p' € {p, q}. Evidently, B = A (otherwise s ~ ¢); hence p=p.
According to Claim 2(1), one has {sq,fq}NU # &. If s’ ~ p for some
s’ € {s, 1}, then s'q € U (by Claim 2(2)), and ¢ # p, where {s', ¢} =
{s, t} . Therefore, one can assume that sq € U and ¢ o p. The relations
u(sx) + I(EL") > u(sq) > 1 and [(EL) =1 yield u(tx)+{(EL) < d(x).
Hence, for each vertex y € VL' one has u(ty) + u(yp) < d (x), and thus
yey,.

2. Suppose now that 4 € &, and x € W,. Choose s € A such that
u(sx) =r,(x)=0; then u(sx)+{(EL)+{(EL")=1.1f sq € U, the above
equality together with u(sq) > 1 implies u(sx) + I(EL") = 0. Hence, for
an arbitrary y € VL' one has u(sy) = 0; therefore, by Claim 7, y € W,,.
Suppose now that sq ¢ U, and let B be an anticlique containing s and
g; evidently, B # A and s  g. Since x € W, one has dy(x) > 1/2.
Hence /(EL") + u(sx) > 1/2, and thus u(sp) < u(sx) + [(EL) < 1/2.
Therefore, sp ¢ U since & is 3-noncrossing, this yields p € A. Now
pg € U and sq ¢ U show that s £ p. Then an arbitrary y € VL' satisfies
d,(yy<u(sy)+u(yp)<1/2,ie, yey,.
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The proof of Theorem 2.1 is completed.

COROLLARY 2.2. If ¢ is an inner Eulerian function then c¢(Z’) is an integer
for any semiproper family % (hence v(c) is an integer as well).

Proor. Indeed, assume that 4 € & and Z ' is the proper family con-
sisting of sets X/, = X,U(V'\T) and X, =X,NT (B e \{A}). Since
¢ is inner Eulerian, one obtains c(9X, 'C) = c(0X,)mod 2 forany C € &
(taking into account that X. N T = X, N T); hence ¢(Z") — ¢(Z) is an
integer. Since # " is a partition of the set V', each edge e € E occurs in an
even number of cuts dX,, C € & ; therefore ¢(£”) is an integer.

3. Splitting a network

In this section we complete the proof of Theorem 1. It will be convenient
to assume that G is a complete graph, that is, xy € E for any distinct
x,y € V (if the initial graph G lacks an edge xy, add the edge and put
¢(xy)=0). Let ¢ be inner Eulerian.

A semiproper family #° such that ¢(Z) = v(c) is called c-minimal.
Denote by .#(c) the set of all c-minimal proper families. The proof of the
theorem proceeds by induction. More precisely, suppose that the assertion
of the theorem is true for some fixed G and H and for all inner Eulerian
functions ¢’ such that either [#(c)| > |#(c)|, or |[#(c')| = |#(c)| and
¢'(E) < c¢(E). The assertion is obvious for ¢ = 0 (observe that in this case
each proper family is c-minimal, hence |.#(c)| takes the maximal possible
value).

Denote by f an optimal solution for the problem (G, ¢, U), as above.
A triple xyz of vertices such that y # x, z (x and z may coincide) is
said to be a fork for the function ¢ if ¢(xy) > 0 and c(yz) > 0. Given a

fork xvz, define a function 8 = 9xy , on E by the following relations:

2 fore=xy,
B(e) = o ) Y if x=z;
0 otherwise,

1 fore=xy,yz,
Bley=< —1 fore=xz, if x#z.
0 otherwise,
A fork xyz is said to be essential (with respect to f) if x # z and the set
Z*(f) contains a chain passing through both xy and yz.
STATEMENT 3.1. Suppose that xyz is a fork, and ¢' = c — 0.,
(1) ¢’ is inner Eulerian. '
(2) v(c) 2 v(c) 2 v(c)-2.
B3) If v(cY=v(c), then # (') D A (c).
(4) If xyz is essential and & = {X,: A € &'} is a proper family such
that ¢ (Z) < v(c), then ¢'(Z) = v(c) — 1, ¢(Z) = v(c)+ 1, and there
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exist X,, Xp € & such that y ¢ X,3Xx,z and x,z ¢ Xy 3y (this
fact/ implies in particular that if xyz is essential, then either v(c) =v(c) or
v(c)=wv(c)-1).

. PROOF. The first assertion is obvious. Lat 2 be an arbitrary proper fam-
ily. By Corollary 2.2, both ¢(#°) and /(%) are integers. For any X c€EZ
one has

c(0X.)—-2 ifxy,yzedX,,

c(0X,) otherwise.

(OX.) = {

Since the members of 2 are pairwise disjoint, 2 contains at most two
sets X such that xy, yz € 0X,; hence o(#) > (&) » c(Z') — 2. Thus,
the second and the third assertions are proved. Now let xyz and & be
defined as in the last assertion, and assume that X, € Z is a set such that
Xy,yz €0X.. Then X ¢ 18 not compatible with f'; therefore, by Claim 1
of §2, & fails to be c-minimal. Now the required assertion follows from
&) -c(#)<2.

Denote by K(f) the set of all essential forks for /. If K (f) =< (that
is, |[EL| =1 forall L€ 7 (f)), then [ is evidently an integer multiflow.
Hence; one may assume that K(f) # &. A fork xyz is said to be separable
if v(c') = v(c) with ¢ := ¢ — nyz. We shall prove that there exists at
least one separable fork. Once this fact is proved, the proof of Theorem 1 is
c9mp1eted in the following way. Assume that xyz is a separable fork and
¢ =c-40,,. Since ¢'(E) < ¢(E) and M (') D .#(c) (by Statement 3.1(3)),
the problem L@(c')’ possesses an integer solution f by induction. If x = z,
or x # z and Cf (xz) € ¢(xz), then f is c-admissible, whence it is an

optimal solution for Z(c). If x # z and Cf’ (xz) =c(xz)+1=((xz), put

rfy=rfL-1, fLYy=ra)+1,
f*(L”)=fI(L”), L”E.CZ\{L,LI},

where L is a chain from ¥ +( f ) passing through the edge xz and L' isa
chain from .# such that EL' C (EL\ {xz})U {xy.,yz}. Evidently, " is
c-admissible and 1- f* = 1. f' = v(c); therefore f* is an integer optimal
solution for Z(c).
. Let us now prove the existence of a separable fork. The proof breaks up
into several claims. In what follows we may assume that none of the essential
forks is separable. It is then necessary to prove that there exists a separable
nonessential fork. Choose an essential fork xyz and put ¢’ ;== c— @ vz
"= - %nyz , ¢ :=2c¢". For any proper family £ one has ¢"'(2) =
(c(Z) +c'(£))/2; therefore, by Statement 3.1(4), the following are true:

1) v(c")y =v(c).

2)If ¢(Z) =v(c), then "(2) =v(c").

3) If ¢(#) <w(c), then ¢(2) > v(c) and (2) = v(c").
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Hence .#(¢) =.#(c") D #(c). Since &= 2c—0, . isevidently an inner
Eulerian function, the problem Z(¢) possesses an integer optimal solution
f by induction. Furthermore, the fork xyz is separable for the function
2¢; hence, acting as above, one can reform the multiflow f to obtain a
2c-admissible integer multiflow f * such that 1- f * = 1. f. Therefore, the
problem % (2¢) possesses an integer optimal solution, and so %°(c¢) possesses
a half-integer optimal solution.

Thus, one may assume that f is half-integral, that is, it takes its values
in %Z , - Assume as well that the multifflow f has the least possible value

of Cf (E) among all the half-integer optimal solutions for 4(c). Given an
essential fork xyz, we say that the proper family £ indicated in Statement
3.1(4) is critical, while X, and X, are said to be the external and the
internal sets (with respect to xyz ), respectively.

CLAIM 1. Suppose that xyz is an essential fork, & is a critical proper fam-
ily for xyz, X,, Xz € Z are the external and the internal sets, respectively,
and L € LT (f) is a chain passing through xy and yz. Then:

(1) Each set X € & is saturated by f.

(2) Each set X. € 2 \{X,, Xg} is compatible with f.

(3) The sets X, and X are compatible with each chain in FHHN{L}.

(4) |[ELNoX,|=3.

(5) f(L)=1/2.

PrOOF. Put ¢ :=c— %nyz
f(L)=fLy-1/2, fL)=rLY+1/2,
"y =5, L'eZ\{L, L},

where L' is the chain in . such that EL' = (EL\ {xy,yz}) U {xz}.,
Then v(c) =v(c') =c'(Z), and f is an optimal solution for P(c'). Now
the first three assertions, as well as the last one, follow immediately from
Claim 2 of §2 applied to ¢', f and &£ . Finally, [EL'nax | =1 (since
VL' NX,#2)implies [ELNOX,|=|EL'n8X,|+2=3.

Let ¥ be the set of vertices y € V' occurring in at least one essential fork
xyz . Consider a vertex y € ¥ and an essential fork xyz. Claim 1(3) shows
that & +( f) contains exactly one chain L passing through both edges xy
and yz. Since f(L) = % and the edge xy is saturated by f, at least one
of the following is true:

1) There exists an essential fork x'yx, x' # z.

2) The edge xy belongs to a chain L' € Z*(f) having an endpoint at y
(in particular, y is a terminal).

This implies immediately that at least one of the following two cases holds:

(C1) G contains a vertex y and distinct vertices Xx,, Xy, ..., X, = Xg
k > 3, such that x;yx, , is an essential fork forany i=1, ...,
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and define a multifiow f’ by the following:



(C2) V C T, and for some s € T and x, z € V there exist a chain L €
Z7(f) passing through the edges xs and sz and an st-chain L' € &7 (f)
passing through the edge sx .

Let us prove that case (C2) is in fact impossible. To do this, we need the
following statement.

CLam 2. Let L € " (f) bea pg-chainand T' .= TN(VL\{p, q}) # .
Then T' C AN B for some distinct A, B € .« .

ProOF. The minimality of ¢/(E) implies that p'q’ ¢ U for any pair
{p' , q'} C VLNT distinct from {p, g} (otherwise one would shorten the
chain L). Choose p' € T', and assume that 4 is an anticlique containing
p and p’, while B is an anticlique containing p’ and ¢. Let ¢’ € T\ {p'}.
The relation p'q’ ¢ U together with Claim 2(3) of §2 implies ¢’ € 4 U
B. Since pq' ¢ U, the relation q' ¢ A would imply the existence of an
anticlique C # A, B containing p and g, contrary to the fact that & is
3-noncrossing. Hence ¢’ € A, and similarly, ¢’ € B.

Consider s, x, z, L, L' indicated in (C2). Let p and g be the end-
points of L, and let X, be the external set of the critical proper family for
xsz. Observe that V' C T yields x, z€ T. Since |EL| = |ELN 90X, =3,
at least one of the terminals x and z, say x, is distinct from p and g¢q.
Claim 2 together with the fact that x € X, N7 C 4 yields s € 4. Let ¢ be
the endpoint of the chain L’ distinct from s. Since X  1s compatible with
L' (by Claim 1(3)) and s ¢ X ,»one has £ € X, . Hence both endpoints of
L' belong to the anticlique 4, a contradiction.

Let us now turn to case (C1); consider the vertices y, x,, ..., X, asin
(Cl1). Let us prove that any fork of the form x,yx, , is separable Assume

that 2" = {X B € &/} is the critical proper family for x;yx, ,, XA(I)

Z' is the external set (with respect to x;yx, ), T' denotes T N X AGi) >

and L' ¢ ZH( (f) is a chain passing through the edges x;y and yx

i+1°2
i=1,..., k. In what follows all the indices are regarded modulo k.
CLaM 3. Forany i =1, ..., k, A(i) intersects A(i+1) (possibly, A(i) =
A+ 1)).

PROOF. Suppose that A(/)NA(i+ 1) =@. Then T'n T = & hence
the families

2/:=<2”‘\{X}>U{X\Y}, 7' =@\ {YHu{r\ X},

are proper (here X := A“) , Y =X ’+ll+1 ). Since the internal (with respect
to x;yx,, ) set for Z' is not compauble with f and occurs in %, one has
(%) >v(c)+ 1. Similarly, ¢(%”) > v(c) + 1. Therefore,

%)+ > c(%') +o&™h.
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On the other hand, x, ;y € 0X,0Y and x, |y ¢ (X \Y),0(Y\ X);
hence the strict submodular inequality

c(0X)+c(BY)>c(8(X\Y))+c(d(Y\ X))
is valid for X and Y . This yields
&)+ @) > )+,
a contradiction.
Denote by L[zz'] the part of a chain L from z to z’', where z, z' € VL.
Let s, denote the endpoint of the chain L' such that X, is contained in

L'[s,;y], and let ¢, be the other endpoint of L', i=1, ..., k. Claim 1(3,4)
immediately implies the following proposition.

CLAaM 4. The following assertions are true forany j=1,...,k:
J

(1) zj_l,steT . ‘

(2) Exactly one of the terminals 5 and t; belongs to T’ .

CLAM 5. At least one of the terminals s, | and t; belongs to T nT!,

i=1, , k.

PrOOF. Suppose the contrary. Claim 4(1) (for j =i+1 and j = i) yields
t,e T and s;,, € T'. Then ¢, ¢ T' and s,,, ¢ T'"'; hence, by Claim
4(2), s, € T' and tig € T, Therefore iy S EA(D), 1, 1, € A(i+1),
thus 1mply1ng A(i) # A(i+ 1). By C1a1m 3, A(i) intersects A(i + 1).
Besides, Claim 2(3) of §2 yields s;¢, , s, +1t1 € U. Form an s;t;, -chain L
and an s,_,¢;-chain L' such that ELC EL [s; y]UEL’“[ til and EL' C
EL™'[s, X JUEL’ [x, 11;]. Define the multiflow f* by the relations
SL)y=fLy+1/2,  fL): y+1/2,  f@Y=rL"=0
= rL" for all the other chains L’ € .Z.

Evidently, 1-f = 1-f = v(c), and Cf’ (e) Cf(e) for any e € E. Moreover,
Cf' (X;.1Y) < < (X;,,¥) (since the chains L and L' do not contain the edge
X;,1¥ ), a contradiction to the minimality of Cf (E).

To be definite, let s, € T'. Then Claims 4 and 5 imply that s, € 7" 'nT’
and ¢; € Ti+1\T’ , i=1,...,k (seeFigure 1). Taking Claim 3 into account,
one obtains that the following facts are true for an arbitrary i:

(F1) s, € Ai—-1)NA(i), t,€ AG+ 1)\ A(i).

(F2) A(i) intersects (but does not coincide with) A(i + 1) (by Claim 3
and the relations 5, € T*, ¢, € Ty,

(F3) A(i) # A(i +2) (smce s, €T, and t,, €T

(F4) A(i) # A(i+3) (otherwise A(i), A(i+1), A(i+2) would be pairwise
intersecting). 1 g



3
XA(B)

FIGURE 1

In particular, (F4) yields that k& > 4. Besides, by (F2), (F3) and the fact
that ./ is 3-noncrossing, one has

(F5) A())nA(i+2)=9.

Now we come to the final claim of our proof.

CLAIM 6. The fork x,yx, is separable.

Proor. By (F1) and (F5) one has 5, ¢ A(2), A(3). Then, taking Claim
2(3) of §2 into account, one obtains s;s, € U ; denote by P, an s, s;-chain

such that EP, C ELl[s1 y]u EL3[ys3]. Similarly, s,s, € U . There are two
possible cases: 1) f,t; € U, and 2) t;¢; ¢ U. In the first case, choose an
s,s,-chain P, and a f,t,-chain P; such that

EP, C EL’[5,x,]U {x,x,} UEL"[x,5,],

EP, C EL'[t,x,]U{x,x,} UEL’[x,t,].
In the second case, let B be an anticlique containing ¢, and #,. By (Fl)
and (F5), B is distinct from A(1), A(2), A(3), A(4). Then ¢, and ¢, are
2-terminals, ¢, ¢ A(1), A(2), t; ¢ A(3), A(4), and Claim 2(3) of §2 yields
s,t,€eU, ts,€lU. Choose an 5213-chain P, and a t,s,-chain P, such that

EP, C EL*[s,x,]U {x,x,} U EL’[x,2,],

EP, € EL'[1,x,]U {x,x,} UEL"[x,s,]
In both cases, define a multiflow f* by the relations

f(P):=fP)+1/2, j=1,2,3,
™ =fL"-1/2(=0), m=1,2,3,4,
f(Ly= f(L) for all the other chains L € Z.

Evidently, f’ is ¢’-admissible with ¢’ := ¢ — 9x2yx4, and v(c) > 1-f =
1-f—1/2=wv(c)—1/2. Now the fact that both v(c) and v(c') are integers

implies v(c') = v(c). Therefore, x,yx, is a separable fork.
The proof of Theorem 1 is completed.
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4. Algorithm

The algorithm is based on the same splitting-off idea as the proof of The-
orem 1. In order to obtain an algorithm having strongly polynomial running
time, we determine the maximum possible “weight” that can be assigned to
a current fork so that splitting it off according to such a weight still preserves
the maximum total value of a multiflow. To do this, one applies a subroutine
that finds a c-minimal semiproper family 2 (for the current c).

It should be noted that the method of finding such a family presented in
§2 is not efficient enough, since it involves the solution of the dual problem
P*(c). Let us show that finding a ¢-minimal family can be executed directly,
via the reduction to an ordinary minimal cut problem for a certain extended
network.

Let ¢:E — R, . Foreach 4 € & , take a copy G, = (V,, E,) of
the graph G and denote by x, the copy of a vertex x € V in the graph
G, . Paste together graphs G,, 4 € &, by identifying the following edges
and vertices: for each pair of intersecting anticliques A4, B € &, identify
vertices x, and x, if x € 4N B, and identify edges x,y, and x gy, if
x,y € AN B and xy € E. Denote the resulting graph by ¥’ . Retain the
same notation G, for the corresponding subgraph of Z' . Let A be the set
of 1-terminals for an anticlique A, thatis, A=A — Ug e\ {4} B . Construct

agraph & = (7, &) by adding to &’ the vertices s° (the source), ° (the
sink) and the following edges:

sosA forse A, Ae o,
s't, forte T\ A, Ae;
1, forteT\A, Ade;

s, forse d, Aes

(see Figure 2 for an example of G, & and & ;here & = {4 ={s,t}, C =
{p,aq,r}} and &, = {B = {t,p, q}}). For A € &/, denote by ¢, the
natural inclusion map of G into & that takes G to the subgraph G e
Define the edge capacities d = d° for the graph £ in the following way.
For xye £, Aed, e=9,(xy) €&, put

d(e) := 2c(xy) ifx,ye€ AN B forsome B € & \ {4},
o c(xy) otherwise,

and put d(e) := oo for each edge e € & incident to s® or £° (one can see
that d is well-defined).

A cut 8Z of the graph ¥ is said to be an (sO , to)-cut if scZc? and
P ¢ Z. Let Q denotethesetof all Z C 77 such that 8Z isan (so, tO)-cut
containing no edges incident to s° or {°. Given Z € Q, define a family
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FIGURE 2

w(Z)={X,: A/} of subsets of V' by the following rule:

X -

{gp;(ZﬂVA) for 4 € &/,
4°=

9, (V,\Z) for A€,

The construction of the graph ¥ immediately implies the following state-
ment (details of the proof are left to the reader).

STATEMENT 4.1. The mapping o is a bijective correspondence between Q
and the set of all semiproper families for G and &/ . Moreover, for Z € Q
and & = w(Z) one has d°(0Z) = 2c(Z).

Thus, to find a c-minimal semiproper family £ and the value v(c) =
¢(#Z’) one has to construct an (so, to)-cut 8Z 1in the graph & having the
least possible capacity d“(8Z) (we have used the following fact: if ez’ ]
t and Z' ¢ Q, then the cut #Z' contains an edge having infinite capacity,
hence it fails to be a minimum (s0 , tO)-cut). Observe that one can transform
‘a ¢-minimal semiproper family {X 4+ A€} toa c-minimal proper family
{X;: Ae L} by X; =X,\ (UBEM,\{A} Xp) (this simple fact is left to the
reader).

On the basis of on the above arguments, we now design an algorithm for
solving the problem #(c). There are two cases to be distinguished:

1) ¢ takes values in R_ .

2) ¢ is an inner Eulerian function.

In the first case, one has to find a “real-valued” optimal multiflow f: % —
R, , and in the second case an integer-valued optimal multiflow f: % — Z_ .
As before, it is convenient to assume that G is a complete graph.

Let us start with the first case. Given a function ¢’: E — R , and a triple of
vertices xyz (y # x, z ), denote by b(c’, xyz) the maximal number a € R,
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such that a < ¢(xy), a < ¢'(yz) and v(c' - af,.) = v(c). The algorithm
consists of the main and the final stages. At the beginning, the number v(c)
is determined. At the main stage, the vertices of G are processed one by one
in an arbitrary order, and for each y € V' the triples xyz, x,z e V' \ {y}
(including x = z), are processed one by one in an arbitrary order. The
processing of a current vertex y forms an iteration of the stage, while the
processing of a current triple xyz forms a step of the iteration (therefore,
the main stage consists of |}/| iterations, while each iteration consists of
[VI(|V]| — 1)/2 steps). The processing of a triple xyz consists in finding
the number b = b(c, xyz) for the current function ¢ and in changing the
function: ¢:=c¢ — ngyz . Let ¢ be the current function ¢ at the end of the
main stage. Then an optimal solution f for the problem %(¢) is defined
by f(L,,) =¢&(st), st € U, where L, is the chain with EL_, = {st} (f is
assumed to be extended by zero to all the other chains in .&).

The number b(c, xyz) can be computed in the following way. If g, :=
min{c(xy), c(yz)} = 0, then, obviously, b(c, xyz) := 0; otherwise put

¢ i=c—ayb,,. andfind v(c,) (to do this, according to Statement 4.1, one

has to find the value ¢ of the maximum flow from s to £ in the network
(&, d); then v(cy) == ¢q/2). If v(c,) = v(c), then, clearly, b(c, xyz) :=
ay. If hy:=v(c)—v(c) >0, put a :=a,—hy/2, ¢, :=c— a,0,,, and
find v(c,). The required number b(c, xyz) is equal to a, — h, , where
hy=v(c)-v(c).

Let us lay a foundation for the main stage. First of all, observe that during
the stage the value of v(c) (for current ¢ ) does not change. Let us prove that
the numbers b(c, xyz) are computed correctly, and that for any triple xyz
one obtains H(¢, xyz) = 0 for the final function ¢é. For arbitrary y € V',
x,zeV\{y}, aeR_ and a proper family 2 one has ¢'(Z) = ¢(Z)—ak,
where ¢’ = c—at, ., while k =k(Z, xyz) is the number of X, € 2 such
that xy, ¥z € X,; so k can take only one of the following three values: 0,
1, 2. Hence

ble. xy2) = min {e(xy). e(vz), min A@)} . @)
where % is the set of all proper families, and
(&) —v(c) _
AZ) = A&, xyz, ) =4k fork=k(Z,xyz) >0,

o for k = 0.

This fact easily implies that the numbers b(c, xyz) calculated as above have
correct values. Next, consider an arbitrary step where a triple xyz is pro-
cessed. Let us prove the following fact: if relations b(c, x'y'z’) = 0 are valid
for all the previously processed triples x'y'z" before executing the step, they
remain valid after finishing it. Denote by ¢, and ¢, the function ¢ at the be-
ginning and at the end of the step, respectively, and let x'y’z’ be a previously
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processed triple. One may assume that both ¢,(x'y") and c,(y'z") are strictly
positive. If ¢,(x'y") < ¢,(x'y") and ¢,(¢'2") < ¢,;(¥2"), then the relation
b(c,, x'v'z') = 0 is implied by (4) (for ¢ = ¢, and ¢ = c, ), since evidently
AZ,x'y'Z,¢e) < AZ,x'y'Z, ¢) forall & € % . Suppose now that
¢, (x'V) # 0 # ¢, (v'2") and ¢, (xy') > ¢/ (x'y') (the case (') > ¢, (v'2)
is treated similarly). Then one has evidently b(c,, xyz) > 0 and Xy =xz,
thus implying y' # y: hence y' is a previously processed vertex. To be
definite, let y' = z. Since yy'z' is a previously processed triple, one has
b(c,, yy'z') = 0, by the hypothesis. However, cl(yy') > b(c,, xyz) > 0
and ¢, (y'z') > ¢,(»'z") > 0; therefore there exists 2 € % such that
AZ,yy'z ,c) =0. Choose X, € 2 satistying y',y'z € 9X,. The
relations ¢ (2) = v(c) and b(c,, xyz) > 0 vield k(2 , xyz) = 0; hence,
by yz=yy €dX,, one obtains xy ¢ dX, and x'y' =xz € 8X,. There-
fore, k(% ,x'y'z) > 0 and A(Z, x'y'z', ¢c,) = 0 (since ¢,(Z) < ¢|(Z)
and ¢,(£) = v(c)), whence b(c,, x'y'z"y = 0 as required. Observe that
b(c,, xyz) = 0 as well. Therefore, by induction, b(¢, xyz) = 0 holds for
the final function & and arbitrary y € V', x, z € V\ {y}.

Assume now that f is an optimal solution for the problem Z(¢) . If there
were a chain L € .Z7(f') such that |EL| > 2, then L would contain two
distinct edges xy and yz, thus implying b(¢, xyz) > f(L) > 0. Hence
|EL| =1 forall L e #*(f); therefore f coincides with f .

At the final stage, f is used to determine in a natural way an optimal
solution f* for the initial problem £(c). Namely, let ¢ = ° , ! Y eens N =
¢ be the sequence of functions at the steps of the main stage. Starting from
f, find successively multiflows f = NN =1, where f' s
an optimal solution for the problem =Qa(c"). How to find f* via f s
obvious.

Let n=|V]| and ¢ = |T|. Since |7| < n|%/|+2 and || < ¢, one has
|77| < tn+2. Itis easy to see that the running time for the main stage, as well
as for the entire algorithm, is 0(n3a(tn)) , where o(n') is the running time
of the procedure for finding a maximum flow in a network with n' vertices
(the final stage can be completed within O(ns) operations). In fact, one can
organize the processing of triples at an iteration of the main stage in such a
way that the procedure of finding a maximum flow in the network (Z,d")
is used only O(n) times per iteration (we omit details here); this enables us
to obtain an algorithm with running time O(nza(tn)) .

The algorithm for the case of an inner Eulerian function g differs from the
one described above only in one point: we must put ¢ := ¢ —|b(c, xyz)] nyz
for each triple xyz at the corresponding processing step (here |a| stands
for the greatest integer not exceeding a ). The verification of the algorithm
follows mostly the same lines as above: one proves that at the end of the
main stage b(¢, xyz) < 1 for the final function ¢ and arbitrary y € V,
x, z € V\{y} (the proof goes by induction, and is similar to that described
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above; it relies on Statement 3.1(4) and relation (4) with b(c, xyz) replaced
by |b(c, xyz)| and A(Z) replaced by |A(Z)] ). This implies |EL| =1 for
all Le Z*(f), provided f " is an optimal solution for the problem F(¢);
hence f = f.
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