MAXIMUM MATCHING OF GIVEN WEIGHT IN COMPLETE AND COMPLETE ;3
BIPARTITE GRAPHS
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We consider the existence of maximum matching of a given weight in weighted complete
and complete bipartite graphs. The corresponding problem is known to be NP-complete for in-
teger nonnegative weights of the graph edges. A polynomial algorithm is proposed for its
solution for the case of edges with weights 0 and 1.

Statement of the Problem and Results

Let G = (V, E) be a finite nondirected graph with an integer weight function a:E—1Z
defined on its edges. A matching in G is a subset M = E of pairwise nonadjacent edges (i.e.,
edges without common ends). A matching M is called bottleneck if it is maximal by inclusion,
maximum if it has the maximum possible cardinality [M|, and perfect if |M| = |V|{/2. Matching
problems have a wide range of applications, and for many of them effective (polynomial) algo-
rithms exists. In particular, this category includes the problem of maximum matching, the
problem of matching M of the maximum weight a(M)= Z (a (¢) : e € M), the problem of perfect match-
ing of minimum weight (see, e.g., [1]). '

The situation is different with regard to matchings of strictly specified weight. Let
P(G, a, k) denote the following problem: for a given integer k, decide if there exists in G
a bottleneck matching M of weight a(M) equal to k. This problem is intractable already in
the following particular cases.

1. G is a bipartite graph and a = 1. This problem transforms to the NP-complete prob-
lem of minimum bottleneck matching (2, p. 239].

2. G is a complete bipartite graph and a: E—Zt (this is equivalent to a variant of
assignment problem, which we may call the exact assignment problem: decide if a
m X n matrix includes a subset of min {m, n} independent elements, i.e., at most one
in each column and each row, which sum to a given number k). As noted in [3], this
problem generalizes the NP-complete numerical partitioning problem [2, p. 66]. Note
that while there is a pseudopolynomial algorithm for the latter problem, no such
algorithm has been found so far for the former. A probabilistic pseudopolynomial
algorithm was proposed in [3] which, for given G, a, k, and €, 0 < € < 1 generates
a correct decision if the sought matching does not exist and errs with probability
<g¢ if it exists; this algorithm runs in time O (AQ (| VI)QogMeﬂ) , where A= max {|a (¢)|:
e € E} and Q(n) is some polynomial (in fact, the solution in [3] is for the problem
of arbitrary matching of a given weight in a bipartite graph, but the algorithm is
easily modified to our case).

3. G is a complete graph and a:E-—~Z+. This problem is NP-complete, since it also
transforms to the numerical partitioning problem.

The graph G = (V, E) is called bipartite if there exists a partition {I, J} of its ver-
tices such that each edge in G has one end in I and the other in J. If I and J are nonempty
and each pair of vertices x€/l,y€J is joined by an edge, G is called a complete bipartjte.
graph; we will denote it by (I:J, E). A graph is called complete if any two distinct gﬁg§%~
are joined by an edge.

In this article, we develop a decidability criterion for the problem P(G, a, k) and pro-
pose a polynomial algorithm for its solution when a takes the value 0 and 1 and G is either
complete or complete bipartite.

Let us first investigate the case of a complete bipartite graph G = (I:J, E). It suf-
fices to consider a balanced graph, i.e., a graph with |I| = |J| = n: if, for instance,
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|I| > |J|, then we can pass to an equivalent problem by adding {I| — {J| new vertices and
joining them by edges of weight O with all the other vertices in I. In this graph, the sets
of bottleneck, maximum, and perfect matchings obviously coincide, and all consist of match-
ings of cardinality n. 4Pentify the subgraphs H° = (V, E°) and H' = (V, E!), where E'={ecE:
a()=0} and E'=EN\E’. Let k° and k! be the cardinality of the maximum matching in the
graphs H® and H!, respectively. The problem obviously has no solution (i.e., the sought
matching does not exist) if k > k! or n — k > k®. Other insoluble cases are less trivial.

By m(T') we denote the number of components (connected subgraphs maximal by inclusion) of the
graph T.

Example 1. Let m(H!) > 3 (respectively, m(H’) = 3] and each component in H* (in HY)
is a balanced complete bipartite graph. Then the problem is soluble for all k from n — k'
to k* =n, withthe exception of k = n — 1 (respectively, for all k from 0 to k* with the ex-
ception of k = 1).

Example 2. Let m(H!) = 2 and the components in H' are complete bipartite graphs (Ii:
Ji» E{), i =1, 2 (the same is obviously also true for H°). Then k' =n — II;| — [J,1, k® =
n—II,| = |J,I, and for n— #<k<4# the problem is soluble if and only if k + n + |I,] +
|J,| is even.

The verification of these examples, and the following Examples 3 and 4, is left to the
reader [the matrices (aij) corresponding to Examples 1, 2 are shown in Fig. 1].

THEOREM 1. Consider a balanced complete bipartite graph G = (1:J, E), |I| = n, with the
function a:E » {0, 1}, and let the subgraphs H’ and H* be different from those of Examples
1 and 2. Then G has a perfect matching of weight k for any integer k satisfyingn — A <<h<CAL

Let us now consider a complete graph G = (V, E), with the subgraphs H?, H' and the num-
bers k°, k' defined as above. Without loss of generality, we may take |{V| to be even and
equal to 2n. As above, the problem has no solution for k > k* or n — k > k°.

Example 3. Let m(H') =m > 2 [respectively, m(H°)=m >2]; each component in H! (in H®)
is either a complete graph with an even number of vertices or a balanced complete bipartite
graph, and if m = 2, then the set of the latter is nonempty. Then the problem has a solution
for all k from n — k% to n with the exception of k = n — 1 [respectively, for all k from 0 to
k' with the exception of k = 1].

Example 4. Let m(H') = 2 [respectively, m(H®) = 2] and the components in H! (in H?) are
complete graphs (Vj, Ey), i =1, 2. Let ni = |Vi|. Then Bt = |n,/2] + |ny/2], k%= min {m. ns} (Tespec-
tively, # = min {n,. 1y}, K= |n,/2]+ In2/2]) and for n—#i<k<H the problem has a solution if and only
if k + n + n, (respectively, k + n,) is even; ld is the.ﬁﬁgis part of c.

THEOREM 2. For a complete graph G = (V, E) with an even number of vertices 2n and a
function a:E » {0, 1}, let the subgraphs H’ and H' be different from those in Examples 3 and
4, Then G has a perfect matching of weight k for any integer k satisfying n—R<CRCAL

Theorems 1 and 2 will be proved later, and the proofs will directly lead to effective
algorithms which either find the sought matching or establish that one of the above insoluble
cases applies [the algorithm can identify the subgraphs H! and H® with those in Examples 1-4
in time 0(n2?)}. The running time of these aigorithms is comparable with that of the maximum
matching algorithms for a bipartite graph and an arbitrary graph, respectively, i.e., the
problem can be solved in time O0(n?:%) for a complete bipartite G and in time O(n?-°logn) for
a complete G.

In what follows we will require some additional definitions and notation. An edge with
the ends x and y will be denoted by xy. A chain (a cycle) in G is a nonempty subset of edges
L = E such that L = {xxi41:i{=0, ..., — 1}, where %4,...,X, are distinct vertices (with the
obvious exception x, = X,); we say that the chain L joins the vertices x, and xy. The chain
L is called alternating with respect to the matching M (or M-alternating) if in each pair of
adjacent edges in L one edge belongs to M. The set of all perfect matchings in G will be
denoted by M = A (G). For M EA and a M-alternating cycle C, we denote by q(M, C) the quan-
tity a (C | M) —a (C\M); clearly, MAC is a perfect matching of weight a(M) — q(M, C) [AAB
is the symmetric difference A\ B) U (B\A)]. For an arbitrary graph I' = (W, U) and noninter-
secting subsets X, Y = W, we denote by U(X:Y) the set of edges in T with one end in X and
the other in Y; the bipartite subgraph (X U Y, U(X:Y)) generated by X and Y will be denoted
gy F(X:Y).} By I'(X) = (X, U(X)) we denote the subgraph in I' generated by X, i.e., U (X) =f{xw €

1 x, y € X}.
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The Case of Complete Bipartite Graph

Let G = (I:J, E) be a balanced complete bipartite graph, |I| =n, and a given k satis-
fiesn— kK<<, If k = k' (respectively, k = n — k%), the sought matching is obtained
from the maximum matching in H' (in H’) by arbitrarily extending it to a perfect matching
in G, and we may therefore assume that n — k° < k < k!,

LEMMA 1. There exists ME€AM of weight k or k + 1.

Note that the lemma remains true if G is an arbitrary graph and Al a set of all its bot-
tleneck matchings.

Proof. We may assume that 2<Ck!— 2. Take some M, € AL with a(My) < k and choose any
M" € M, such that a (M) >k + 2. To prove the lemma, it suffices to show that there exists
M" € M such that 0Ca M) —a M) <2 and |{M" ) My |>IM" N My|. The set M’ A M, consists of
pairwise nonintersecting cycles (alternating with respect to M' and My); among these cycles
choose C with q(M', C) > 0, which exists since a(M') > a(M,). It is easy to see that C con-
tains adjacent edges xy and yz such that xy €M’ (1 E* and 92€ M,1 E°. Let zt be an edge in C
other than yz. Since G is a complete bipartite graph, then tx€E; let C' = {xy, yz, zt, tx}.
Clearly, C' is a M'-alternating cycle, and 0<C{qg(M',C)Y<<2, For M" = M' AC' we have MnoMHy
{(yz3 =M N My, and a(M") = a(M') = q(M', C'). Q.E.D.O

Note that this proof suggests a 0(n?) procedure to find MEM with a(M) = k or k + 1,
given Mo, M €M with a(Mo) = n — k° and a(M1) = k!.

Let M€ M be a matching of weight k + 1. Our aim is to find an alternating cycle C with
q(M, €) =1 (if we manage to do this, then MAC is the sought matching of weight k). - Let
M> =M E° M*=M ) E* and denote by X and Y the sets of vertices from I and J, respec-
tively, which are incident to edges in M!.

1. From the start, we can exclude from analysis the case when q(M, C) = 1 for any al-
ternating cycle C with [C| = 4. In other words, we assume that the following conditions
hold:

Cl) if xy, 2t€M', x, z€1, then either xt, 2y€E* or xt, zy € EY
C2) ifxy€ M, 2t € M° x,2€ [, then at least one of the edges xt, zy belongs to El.

2. Let us investigate the structure of the graph H}(X, Y). Forx€ X, let D(xy={yeY
xy€E’} and let Q ={x€X:D(x)s=F}. For xr€X determine the sets XX and YX of all vertices z
in X and Y, respectively, such that the graph H'(X:Y) has a M!-alternating chain which joins
x and z and contains an edge from M! incident @n x; the vertex x itself ma-yc-ibe regarded as
contained in XX. If for some x€Q we have Y*(} D(x)= &, then taking for emy 4E€Y N D(x)
this alternating chain between x and y and adding to it the edge xy, we obtain an alternating
cycle C with q(M, C) = 1 (since all the edges in C, except xy, belong to E!). At the same
time, we have :

LEMMA 2. If Y"'N D)= for all x€Q, then each component in H!*(X:Y) is a balanced
complete bipartite graph. ’

Proof. Let x€X. Applying standard arguments about alternating chains in a bipartite
graph, we find that a) foruww €M', yeX* implies that u€Y* and vice versa; b) vu€E® for any
veY" and u€ XN\ X% c)|X*|=|Y*|. From a), b) and condition Cl) we conclude that pugE® for
anyv€X* and u€V\Y", i.e., H1(X*:Y*)—is a component in H}(X:Y). This implies that for any
x, ¥ €X the graphs H'*(XX:YX) and H!(XX':YX') either coincide or are nonintersecting. If now
for some x€Q the graph H!(X¥:YX) is not a complete bipartite graph, then clearly there exists
¥ €X" such that Y* ) D(¥)s @ a contradiction, since YX = YX', Q. E. D. O
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Remark. We can find the required alternating cycle or establish that H!(X:Y) has the
structure as described in Lemma 2 in time O(JX[?). Indeed, the sets XX and Y¥ (and the corre-
sponding alternating cycles for the vertices in these sets) may be constructed by standard
labeling methods in time O(|X*[*). If for the current vertex x€Q , H!(XX:YX) is not a com-

plete bipartite graph, then, by the proof of the lemma, we can take as the next vertex any
x'€X"such that Y* 1 D(x')5= & and thus construct the alternating cycle.

3. Suppose that the components of the graph H!(X:Y) are the balanced complete bipartite
graphs G(X,:Y,),...,G(Xp:Yp), where X3 < I, i =1,...,m. In what follows, we do not fix the
matching M in each G(Xj:Y;j), i.e., we assume that M may contain arbitrary pairwise nonadjacent
edges from each G(Xj:Yy).

We will show that for m = 1, G contains an alternating cycle C with q(M, C) = 1. First
note that M® # ¢ (otherwise we would have k + 1 = |[M!| = n and k°® = [E’}| = 0, whence k < n —
k%). Let S and T be the sets of all vertices z in I and J, respectively, such that either
z€ X or the subgraph H° contains a M’-alternating e which joins z with some vertex in X.
Clearly,|S\X|=|T\Y| and xy@E° for any x€S, y€/\T. Since H’ contains a matching of car-
dinality k°>>n—k then by the Koenig—Ore theorem (see [4]) we should have|S|—|T|< %,
whence [SN X|—|T NY|<k. ButHe |S(X|=|X|=k+1andsoTNY%Z . Thus, H® contains an
alternating chain L which 301ns some x€X and Y€Y, and then C =L U {xy} is the sought alter-
nating cycle with q(M, C) =

4, Letm >2. If M° =¢, then k = n — | and we obtain the insoluble case from Example
1 (for m > 3) or Example 2 (for m = 2). Let M° = ¢. For an arbitrary edge ZeEM, 2€1, and
vertices x€X,, y€Y, u€X;, v€Y;, where i # j, we have the obvious alternative: either the
alternating cycle C = {zt, tx, xy, yu, uv, vz} satisfies q(M, C) = 1, or a(tx) = a(zv). Let
the latter be true for all E:ﬁé%ke z, t, X, ¥, u, v. Using condition C2), we thus conclude
that for each 2z(€ M z€/, we may have only 3384 of the following two situations:

Al) m>2, E{z}:Y)U E(X:{f)) cEY
A2) m = 2 and up to indexing we have
E({z}: YY) U E(X,: i) = £,
E({z}:Y) U E(X - {{h < E
Let m >3. Then by Al), for any edge z2t€M° z€/, and six vertices %€X;, y€Y;, i =1,
2, 3, we have an alternating cycle C = {2f, tx;, X1y, V1% XolYfs, Yo¥s Xslfs Ya2}, with q(M, c) =
5. It remains to consider the case m = 2. Choose four vertices % €X;, y;€Y;, i =1, 2
and take%"perfect matching M' = M A C, where C = {x,4y, Y. %s, Xolfp, Yo%}, of weight a(M') = a(M) -
2=k —1. Let us transform M' to a perfect matching of weight k, using the same reasoning
as for M (while interchanging the sets E! and E’). Then we will find the sought matching,

or else establish insolubility of the problem (by ending up with a subgraph H’ from Example
1 or 2), or finally establish that

a) aM)y=|M NEY>SO
b) the graph H(Z:T), where Z=(\X) U {*, %} and T=( \Y) U {41, %2}, is made up of two
components, G(Z,:T,) andG(Z,:T,), Z;<=I, each a balanced complete bipartite graph;

c) for any i€{l, 2}, x€X,\ {x}, ¥€Y:\{4:}, we have one of the following two situations
[analogous to Al) and A2)]:

BL) E({x}:T) U E(Z: () = E%

B2) up to indexing, we have
E({x}:T) U E(Z,:{y)) < £,
E({x}: Ty U E(Z,:{y}) < E.

Let X;=X\{x}andV;=Y,\ {4}, i = 1, 2. Examining arbitrary i, j€{l,2}, 2€2;, t€T; x€ X,
YEY,, we establish that only A2) may hold for the pair (z, t) and only B2) for the pair (x,
¥). Hence it follows that for any i,j €{l, 2} all the edges of one of the sets E(Z;:Y)) or
E(X' T) entirely belong to E° while all the edges of the other belong to E!. Note that

since M’' 1 £'s£ J, at least one of the sets X1 and X, is nonempty. For definiteness, let
X; # ¢ and E(Z,:Y)<E'. Then
E(X[:Ty U EX,;:TY U E(Z,:Y,)c E*,
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E@Z:Y) U EX}:TY UEZ;:Y) U EX:TY)E"

Hence it follows directly that H! is the union of two nonintersecting complete bipartite
graphs G(Z, U X[:T,UY) and G(Z,U X;:TH U Y) (see Fig. 2, where each of the eight vertex sub-
sets is represented by a single vertex). Moreover, |Z|+|T,|=|M NE|=n—k+1land |X;|=
Y]] imply that k4+n+{Z, U X;UT,U Y]l is an odd number. We have thus obtained the insoluble
case of Example 2.

This completes the proof of Theorem 1. Q.E.D.

The proof clearly suggests an algorithm for the solution of our problem. The algorithm
first finds the maximum matchings in the graphs H® and H!, which requires time O0(n?:%) (see
[5-71). All the other procedures of the algorithm require total time 0(n?).

The Case of Complete Graph

Let G = (V, E) be a complete graph, |{V| = 2n, and for a given k let n—R <Ak EL We
may assume that n — k% < k < k!. It is easy to see that the proof of Lemma 1 remains valid
for the case of complete graph also. Thus, we may assume that there exist M, M’'€ A, such that
a(M) =k + 1 and a(M') = k — 1. Since all the cycles in M U M' are of even cardinality, we
may choose a subset /cV, |/|=n such that M and M' are contained in a complete bipartite
graph Gy = G(I:J), where J = V\ I. Let Ej, v H), KB be, respectively, the set of edges in
Gy, the subgraphs (V,E* N E)), (V,E*(1 E;), and the cardinality of the maximum matchings in these
subgraphs. Then n—kJ<<k<<k} and we may try to find the sought matching already in Gp. 1If
it is not found there, then by Theorem 1 we have one of the insoluble cases of Example 1 or 2.

Case 1. k =n — | and Hi consists of m > 2 balanced complete bipartite graphs G(Ij:J;),
Lcl, i=1,...,m (to the general case of Example 1 we have added a particular case from
Example 2). As before, we assume that M is not fixed inside the graphs G(Ij:J;).

LEMMA 3.  Assume that G contains no matching of weight k. Then
a) for each i€fl,...,m} eitherE()Y E(WJ)<=£%or E()U E(J) = E:
b) for any two different i,j€{l,...,m}either E(//) YEWJ )< Eor E(:l) U EWdy)  EY

c) if xz€E! for some x€l, z€ly, i, j€{l,....m} i55]  then E(J)cE° and for any l€{l,...,m}\
{i, i} . we have E(J;:J) < E°.

Proof. Propositions a), b) derive from the following: if for any four different ver-
tices x€l,, y€J;, z€l,, t€J; (i = j is allowed) we had a(xz)7<a(yf), then for a M-alternating
cycle C = {xy, yt, tz, zx} we would have q(M, C) = 1. To prove c), consider any four differ-
ent vertices ye€J, t€J,u€cl,vé), where ¢ # j (2 = i is allowed). If YPEE'  then for the
alternating cycle C = {xy, yv, vu, ut, tz, zx} we would have q(M, C) = 1. Q.E.D.O

Lemma 3 directly implies that in case of no solution the components of the graph H! are
only complete graphs of the form G(/; J J;) and balanced complete bipartite graphs of the form
G(Jy), GU; UJpl; UJ).  We thus obtain the insoluble case of Example 3 or 4 (if Hi consists of
two complete graphs or is a complete bipartite graph, we have particular cases of Example 4).

The symmetrical case with k = 1 is analyzed similarly.

Case 2. The graph H[ consists of two complete bipartite graphs, G(/3/), i</, i=1,2
and k+4+n+ |/l +1Jy| is odd. We may assume that M| E°%= & and M’ () E'== J, since otherwise
we would get k=n—1, [[;|={J;|, 1 =1, 2, or k=1, I[;|=|J,], |4i] =/,|, which has been con-
sidered above. Note that k>n—4£) implies that M N E(/;:J)*= @, i = 1, 2. For definiteness,
let j/;|>IJ,. Clearly, M} E® contains an edge xy such that x€/,, y€J,. We may assume that M

conltains Et}le edges xy, zt, uv for arbitrarily chosen different vertices z, x€[l,, t€J,, u€l,,
\'4 E 20 4, v 2

LEMMA 4. Assume that G contains no matching of weight k. Then one of the following
two propositions holds:

a) EUdul) UEWU ) EEUYDUEUYUE W) U EW,) < EY
b) E(:ly) UEW Iy B, E(IYUEUYUEUIYU El) < E°

Proof. By assumption, for some :,€1/,, t,€/, we have z/,€ £, which leads to the following
chain of propositions:
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1) wv€E® for any u€Jd,, v€J, [otherwise, for an alternating cycle C = {zu, uv, vty, £2,} we
would have q(M, C) = 1]; similarly, ze¢pgo for all z€l,, t€l,

2) 2x€E! for any two different 2, x€/, [otherwise C = {zx, xy, yu, uz}, where u€J,, y€J,, is
an alternating cycle with q(M, C) = 1]; similarly yv€E' for any two different y,v€/,;

3) if M () E° contains an edge x'y' with x'€/,¥'€Ji, then from the same considerations as
in 2), we obtain that E(/;) U E(/)< E'; assume that no such edges x'y' are contained
inM N E°, then |M N E(J)] =1J,| and therefore, for any different u, 4'€Jy,2,2'€/,,
the cycle C'= {zu, uu’,u'?, 2z} is alternating; since q(M, C) # 1, then uu'€E'; we simi-
larly show that E (/)< E.

We have thus proved a). The case b) arises when zf,€E! for some z€/;, {,€], (we should
repeat the argument for M', interchanging E° and E!'). Q.E.D.

Lemma 4 directly implies that if the problem is insoluble, then either H! consists of
the complete graphs G(/; U J;), i = 1, 2 or H® consists of the complete graphs G (/,UJ;) and
G(l; UJy). Finally, it is easily seen that both numbers k£ + n-+|/,UJ,| and &+|/;UJ,[are odd.
i.e., in both variants we obtain the insoluble cases of Example 4.

This completes the proof of Theorem 2. Q.E.D.

OQur proof is easily transformed into an algorithm for the solution of the relevant prob-
lem. It starts by constructing the maximum matchings in the graphs H° and H' in time O(n?-°x
logn) [8] (the simpler algorithms in [9, 10] run in time O(n®)). The other procedures of the
algorithm run in time 0(n2).
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