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ON MULTICOMMODITY FLOW PROBLEMS
WITH INTEGER-VALUED OPTIMAL SOLUTIONS
UDC 519.95

A. V. KARZANOV

We give sufficient conditions for the existence of an integer-valued optimal solution
in the problem of a maximal multicommodity flow in an undirected network, and we
suggest an algorithm for finding such a solution with a polynomial number of operations.
This strengthens a number of known results on integer-valued and half-integer-valued
multicommodity flows.

1. Let G = (V,E) and H = (T,U) be finite undirected graphs with 7 C V; the edge
of a graph with end vertices z and y will be denoted by zy. An st-chain in G, where
s,t €V and s # ¢, is understood to be a set L C E of edges such that L = {@;2,4,: 7 =
0,1,...,k} for certain distinct vertices s = g, z1,...,Zx = {. The problem of a maximal
multicommodity flow in an undirected network admits the following formulation (the
problem P(G,c, H)): for a given function ¢: £ — R (for given edge capacities) find a
function f: £ — R satisfying the load condition

(%) gf(e)d:efZ(f(L):eeLeﬁ)Sc(e) Vec E

and maximizing the quantity 1- f = Y (f(L): L € £). Here £ = L(G, H) is the set of
all st-chains in G for st € U, and R is the set of nonnegative real numbers. A function
[ satisfying (x) is called an admisstble multiflow (multicommodity flow) in the network
(G,c) with flow scheme H; the maximum of 1- f over all admissible f is denoted by
v(G,c, H).

The function c is said to be intrinsically even if it is integer-valued and ) (c(zy): y €
V —{z}) is even for all z ¢ V — T. We say that H is solvable in 1Z (solvable in +Z
under the condition of intrinsic evenness) if for any graph G = (V,E) with V 2 T and
any function ¢: E — Z (any intrinsically even function ¢) the problem P(G, ke, H) has
an integer-valued optimal solution f, where Z, is the set of nonnegative integers, and k
is some positive integer.

It is known that H is solvable in Z when |UU| = 1 [1], and is solvable in Z; under the
condition of intrinsic evenness when |U| = 2 [2] or when H is a complete graph [3]. In
[4] a large class of flow schemes solvable in 2Z is given. Namely, let 4 = 4(H) denote
the set of all anticliques (i.e., maximal (with respect to inclusion) independent sets of
vertices) in H. The set A is said to be bipartite if there exists a partition {41, A2} of it in
which each A; consists of pairwise disjoint anticliques. For exawmple: a) if T = {s,{,p, ¢}
and U = {st,pgq}, then 4 = {{s,p},{z,q},{t,p}, {t,q}}; b) if H is a complete graph,
then 4 = {{s}: s € T'}. In both cases A is bipartite. It is shown in [4] (see [5] for details)
that if A(H) is bipartite, then H is solvable in £Z,, and an algorithm is proposed for
finding a half-integer-valued optimal solution with number of operations bounded by a
polynomial in |V, multiplied by ¢(E) (here and below, g(S’) denotes Y (g(s): s € §')
for g: S — R and a finite subset S’ C ). In this note we improve these results.
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THEOREM 1. If the set A(H) 1is bipartite and the function c s inirinsically even,
then the problem P(G,c, H) has an integer-valued optimal solution.

We give a scheme for proving Theorem 1 and describe an algorithm (for partite A),
with number of operations bounded by a polynomial in [V, that finds a real optimal
solution for ¢: £ — Ry and an integer-valued optimal solution when c¢ is intrinsically
even. We remark that Theorem 1 and an effective construction in [4] and [5] give us

THEOREM 2. If each vertex in H belongs to at most two anticliques, then H 1s
solvable in $Z. under the condition of intrinsic evenness.

2. Scheme of proof. Without loss of generality it will be assumed that the graph
G is complete. Suppose that ¢c: E — Ry, {A1, A2} is a corresponding partition of A,
and f: L — R, is an optimal solution (OS) of the problem P(c) (for P(G,c,H) and
v(G, ¢, H), the abbreviated notation P(c) and v(c) is used in what follows). Let L*(f) =
{LeLl: f(L)>0}.

For X C V let X = 89X denote the set of edges in G with one end in X and the
other in V — X (a cut of the graph G). A family of subsets X = {X4 C V: A € 4}
(allowing empty subsets) will be called semiregular if X4 NT C A VA € A and each
element of T belongs to exactly one X 4, and it will be called regular if, in addition, the
sets in X are disjoint. Let ¢(X) = 1 >(c(8X4): A € A). Obviously, ¢(X) > v(c) for any
semiregular X .

LEMMA. ¢(X) = v(c) for some regular X .

This lemma actually follows from the algorithm in [4]. Another proof of it, direct and
simpler, consists in the following. Let I: E — R be an optimal solution of the problem
dual to P(c) in the linear programming sense, i.e., {(L) > 1 VL € £ and ¢ -1 = v(c).
Denote by p the metric in G generated by , i.e., u(zy) = min{l{(L): L an zy-chain in G}
for z,y € V with z # y, and u(zy) = 0 for z = y. For z,t € T (allowing s = t) we write
s 2 t if there are no elements A, B € 4 with A # B such that s,t € ANB. For A€ £
and z € V let

ra(z) = min{u(sz): s € A}, da(z)=min{pu(sz) + p(tz): s,t € A s # t}.
We define the required family X = {X4: A € 4} as

XA:{I€V3dA(I)<%}, A€ Ay,
Xa={zeV:da(z) <3}U{zeV:rale) =0, dp(z) > 1VBeA-{A}}, AcAh,.

It can be proved that:

a) X is a regular family,

b) ¢f(e) = c(e) for any A € A and e € 3X 4, and

¢) [0X4NL) <1for any A € A and L € LT(f), which easily implies that ¢(X) =
1-f=v(c).

Suppose, further, that ¢ is an intrinsically even function. It is not hard to see that
¢(X) is an integer for any semiregular X, and thus

COROLLARY. The quantity v(c) s an integer.

We say that a family X is c-minsmal if ¢(X) = v(c); let M(c) be the set of all c-
minimal regular families. The rest of the proof is by induction. Assume that for fixed G
and H the theorem is true for all intrinsically even ¢’ such that either |[M(c')| > |[M(c)|,
or (M(c')| = [M(c)| and ¢/(E) < ¢(E). The theorem is obvious for ¢ = 0 (note that in
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this case every regular family is ¢-minimal, i.e., [M(c)| is the largest possible). A triple
of vertices 7 = Tyz in which y # Z,z will be called a fork. Define 6,: £ R, and
 ar € Ry as follows:

a) b, (zy) = 0;(yz) =1, Or(z2) = —1, 0,(e) = 0 (e€ E— {zy,y2, zz}) for z # 2, and
Or(zy) =2,0,(e) =0 (e€ E—{zy}) for ¢ = z;

b) 8, = min{e(zy), c(yz)} for z # 2, and 3, = s¢(zy) for z = z; and

c) & =max{a: q < Bry v(c - ab,) = v(c)}.

From the lemma it is not hard to get that

DHI0<a, < Bz, then M(c) C M(c - a,8,).

(ii) There exists a 7 - <y < 8., such that v(c—ab,) = v(c)—(a—af) fora, <a< ¥,
and v(c — af,) = vie) - (v - a,) — 2a~n)fory<a< Br.

A fork 7 = zyz will be said to be essential (with respect to f) if £ % 2 and there is
a chain L € £+(f) containing zy and yz; obviously, a, > f (L) >0. If [L| = 1 for all
L € L*(f), then the multiflow f is clearly integer-valued; therefore we can assume that
the set of essential forks is nonempty. Our goal is to prove that there is a fork + — TYz
such that a,; > 1. Then the proof of Theorem 1 is concluded as follows. Let ¢/ = ¢ — 6.
It is clear that ¢/(E) < ¢(E) — 1, the function ¢ is intrinsically even, and M(c) € M(¢),
which implies by induction that the problem P (¢’) has an integer-valued OS f'. The
required integer-valued OS J* for P(c) is not determined as follows:

a) f* = f' if either z — Z 01z # z and ¢/'(zz) < c(zz2);

b) I"(L) = f(L) - 1, fr(1) = PN + 1, f4(L") = p1y (17 e ¢ - {L,1'}) if
T # zand ¢'(zz) = e(zz)+1 (= (z2)), where L is some chain in £+ (") containing the
edge zz, and L’ is a chain in £ contained in (L = {s2}) U {zy, yz}.

Assume that o, < 1 for each essential fork 7. The following is an easy consequence of
the lemma.

2) If 7 = zyz is an essential form and ¢/ = ¢ — 30,, then

(i) a, = 1 and

(ii) there is a regular family X = {x,: 4 ¢ A} such that (X)) =1=uw(c) = d(X),
and 7,z € X4 C V—{y}and y € Xz €V —{z, 2} for some A, BeA.

From 2)(i) and 1)(i) we get that M(c) € M(¢”) for the intrinsically even function
¢’ =2¢', and therefore the problem P(c¢") has an integer-valued OS by induction. Con-
sequently, the problem P (c) has a half-integer-valyed OS; we use the previous notation
f for it. Assume, moreover, that ¢/(E) is minimal over all half-integer-valued 0S’s of

Ple).
3) Let T1YT2, Zoyzs, ..., pyzy, k > 3, be a sequence of essential forks, where all the
vertices y,... z; are distinct. Then a, > 1for r = T1yrs.

4) Suppose that for every y € V the sequence of essential forks indicated in 3) does
not exist. Then |L| =1 for al] [, ¢ LH(f).

3) and 4) are the key assertions; they conclude the proof of the theorem. In them we
use the fact that f(L) = lforall L e L*(f) with [L] > 1, along with a consequence of
2)(ii): if zyz, X,A, and B are the objects indicated in 2), and L ¢ L*(f) contains zy
and yz, then

a) ¢/(e) = ¢(e) for any C € A and e € X,

b) IL'ndXc| <1V e L¥(f) = {L}, C € 4, and

¢) ILNAX 4| = 3,ILNdXp|<1VYDe 4 — {A, B}.

3. The algorithm. This is based on the same idea as in the problem of Theorem
1 for composing a network by “separation” of forks. It uses the procedure described
in §4 for finding the number v(c). We first consider the case ¢: £ —, R.. First of
all, we determine the number v = v(c). In the main step of the algorithm we examine
successively the vertices in G, and for each Yy € V we examine sucessively the forks Tyz.
For fork r = Tyz under consideration and the current function ¢ we find «, as follows
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(using 1)(ii)). We let a := 3, and, if a > 0, we compute v’ = v(c—ab,). f ' =v—2" >0,
then we let a := a — 31’ and compute v" = v(c — af,). If again h" = v — v” > 0, then
we set a := a — h”. The a obtained is the required ;. Let ¢ := ¢ — a.8, and proceed to
the next fork. For the final function ¢ we have that é(e) = 0 for all e € E — U, i.e., the
function f defined as

F({sty) =é(st), stelU, f(L)=0, Le&L-u,

is an OS of the problem P(¢). At the concluding step of the algorithm, an OS of the
original problem P(c) is constructed in an obvious way from f and the sequence of
numbers «;.

The only difference in the algorithm in the case where ¢ is intrinsically even and
an integer-valued OS must be constructed for P(c) is that the current function ¢ is
transformed every time like ¢ := ¢ — [a,]0,, where [b] is the integer part of a number b.

4. Construction of a c-minimal family. For each A € A take a copy G4 of the
graph G; z 4 denotes the copy in G 4 of a vertex z € V. We determine the edge capacities
in,Ga:d(zaya) = 2¢(zy) if z,y € AN B for some B € A~ {A}, and d(zay4) = c(zy)
otherwise. We glue together these graphs, identifying the vertices s4 and sp, as well
as the edges sats and sptp for each A, B € 4 and s,t € AN B. Finally, we form the
graph I' = (V, £) by adding the vertices s” and ¢° to the graph obtained along with the
following edges of infinite capacity: 1) s%s4, A € A1, s € A;2) %, AC Ao, t €T — 4
3) t0ta, A€ A1, teT—A;4) %4, A€ A2, s € A, where A= A—J(B: Be A—{A}).

Let Y be the set of all ¥ C V such that s® € Y C V —{t°} and the cut d"Y does not
contain edges of infinite capacity. It can be verified that the mapping ¢ associating with
each Y € VY the family {Xa: A € A}, where X4 = {z € V:z4 € Y} for A € A; and
Xs={z€V:24€V-Y} for A€ Ay, is a bijection between Y and the set of semireg-
ular families, and, moreover, d(8TY) = 2¢(p(Y)). Consequently, the construction of a
¢-minimal family and the determination of the quantity v(c) reduce to the construction
of a minimal cut for I and d “separating” s° from ¢°.

We remark that |V| < nt + 2 because A4 is bipartite, where n = [V| and t = |T|. Thus,
the algorithm in §3 has the estimate O(n3c(tn)) for the number of operations, where
o(q) is an estimate for the number of operations in the procedure used to construct a
maximal flow and a minimal cut in a network with g vertices. There is a modification
of the algorithm in which only O(n) forks are considered for each y € V, and it has the
estimate O(n?0(n)).
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