ON MULTICOMMODITY FLOW PROBLEMS WITH INTEGER-VALUED OPTIMAL SOLUTIONS

UDC 519.95

A. V. KARZANOV

We give sufficient conditions for the existence of an integer-valued optimal solution in the problem of a maximal multicommodity flow in an undirected network, and we suggest an algorithm for finding such a solution with a polynomial number of operations. This strengthens a number of known results on integer-valued and half-integer-valued multicommodity flows.

1. Let G = (V, E) and H = (T, U) be finite undirected graphs with $T \subseteq V$; the edge of a graph with end vertices x and y will be denoted by xy. An st-chain in G, where $s, t \in V$ and $s \neq t$, is understood to be a set $L \subseteq E$ of edges such that $L = \{x_i x_{i+1} : i = 0, 1, \ldots, k\}$ for certain distinct vertices $s = x_0, x_1, \ldots, x_k = t$. The problem of a maximal multicommodity flow in an undirected network admits the following formulation (the problem P(G, c, H)): for a given function $c: E \to \mathbf{R}_+$ (for given edge capacities) find a function $f: \mathcal{L} \to \mathbf{R}_+$ satisfying the load condition

$$\varsigma^f(e) \stackrel{\mathrm{def}}{=} \sum (f(L) \colon e \in L \in \mathcal{L}) \le c(e) \quad \forall e \in E$$

and maximizing the quantity $1 \cdot f = \sum (f(L) : L \in \mathcal{L})$. Here $\mathcal{L} = \mathcal{L}(G, H)$ is the set of all st-chains in G for $st \in U$, and \mathbf{R}_+ is the set of nonnegative real numbers. A function f satisfying (*) is called an admissible multiflow (multicommodity flow) in the network (G, c) with flow scheme H; the maximum of $1 \cdot f$ over all admissible f is denoted by v(G, c, H).

The function c is said to be intrinsically even if it is integer-valued and $\sum (c(xy): y \in V - \{x\})$ is even for all $x \in V - T$. We say that H is solvable in $\frac{1}{k}\mathbf{Z}_+$ (solvable in $\frac{1}{k}\mathbf{Z}_+$ under the condition of intrinsic evenness) if for any graph G = (V, E) with $V \supseteq T$ and any function $c: E \to \mathbf{Z}_+$ (any intrinsically even function c) the problem $\mathcal{P}(G, kc, H)$ has an integer-valued optimal solution f, where \mathbf{Z}_+ is the set of nonnegative integers, and k is some positive integer.

It is known that H is solvable in \mathbf{Z}_+ when |U|=1 [1], and is solvable in \mathbf{Z}_+ under the condition of intrinsic evenness when |U|=2 [2] or when H is a complete graph [3]. In [4] a large class of flow schemes solvable in $\frac{1}{2}\mathbf{Z}_+$ is given. Namely, let $\mathcal{A}=\mathcal{A}(H)$ denote the set of all anticliques (i.e., maximal (with respect to inclusion) independent sets of vertices) in H. The set \mathcal{A} is said to be bipartite if there exists a partition $\{\mathcal{A}_1,\mathcal{A}_2\}$ of it in which each \mathcal{A}_i consists of pairwise disjoint anticliques. For example: a) if $T=\{s,t,p,q\}$ and $U=\{st,pq\}$, then $\mathcal{A}=\{\{s,p\},\{x,q\},\{t,p\},\{t,q\}\}\}$; b) if H is a complete graph, then $\mathcal{A}=\{\{s\}\colon s\in T\}$. In both cases \mathcal{A} is bipartite. It is shown in [4] (see [5] for details) that if $\mathcal{A}(H)$ is bipartite, then H is solvable in $\frac{1}{2}\mathbf{Z}_+$, and an algorithm is proposed for finding a half-integer-valued optimal solution with number of operations bounded by a polynomial in |V|, multiplied by c(E) (here and below, g(S') denotes $\sum (g(s)\colon s\in S')$ for $g\colon S\to \mathbf{R}$ and a finite subset $S'\subseteq S$). In this note we improve these results.

THEOREM 1. If the set A(H) is bipartite and the function c is intrinsically even, then the problem P(G, c, H) has an integer-valued optimal solution.

We give a scheme for proving Theorem 1 and describe an algorithm (for partite \mathcal{A}), with number of operations bounded by a polynomial in |V|, that finds a real optimal solution for $c \colon E \to \mathbf{R}_+$ and an integer-valued optimal solution when c is intrinsically even. We remark that Theorem 1 and an effective construction in [4] and [5] give us

THEOREM 2. If each vertex in H belongs to at most two anticliques, then H is solvable in $\frac{1}{2}\mathbf{Z}_+$ under the condition of intrinsic evenness.

2. Scheme of proof. Without loss of generality it will be assumed that the graph G is complete. Suppose that $c : E \to \mathbf{R}_+, \{\mathcal{A}_1, \mathcal{A}_2\}$ is a corresponding partition of \mathcal{A} , and $f : \mathcal{L} \to \mathbf{R}_+$ is an optimal solution (OS) of the problem $\mathcal{P}(c)$ (for $\mathcal{P}(G, c, H)$ and v(G, c, H), the abbreviated notation $\mathcal{P}(c)$ and v(c) is used in what follows). Let $\mathcal{L}^+(f) = \{L \in \mathcal{L} : f(L) > 0\}$.

For $X \subseteq V$ let $\partial X = \partial^G X$ denote the set of edges in G with one end in X and the other in V-X (a cut of the graph G). A family of subsets $\mathcal{X}=\{X_A\subset V\colon A\in\mathcal{A}\}$ (allowing empty subsets) will be called semiregular if $X_A\cap T\subseteq A\ \forall A\in\mathcal{A}$ and each element of T belongs to exactly one X_A , and it will be called regular if, in addition, the sets in \mathcal{X} are disjoint. Let $c(\mathcal{X})=\frac{1}{2}\sum(c(\partial X_A)\colon A\in\mathcal{A})$. Obviously, $c(\mathcal{X})\geq v(c)$ for any semiregular \mathcal{X} .

LEMMA.
$$c(X) = v(c)$$
 for some regular X .

This lemma actually follows from the algorithm in [4]. Another proof of it, direct and simpler, consists in the following. Let $l\colon E\to \mathbf{R}_+$ be an optimal solution of the problem dual to $\mathcal{P}(c)$ in the linear programming sense, i.e., $l(L)\geq 1 \ \forall L\in\mathcal{L}$ and $c\cdot l=v(c)$. Denote by μ the metric in G generated by l, i.e., $\mu(xy)=\min\{l(L)\colon L \text{ an }xy\text{-chain in }G\}$ for $x,y\in V$ with $x\neq y$, and $\mu(xy)=0$ for x=y. For $x,t\in T$ (allowing s=t) we write $s\not\sim t$ if there are no elements $A,B\in\mathcal{A}$ with $A\neq B$ such that $s,t\in A\cap B$. For $A\in\mathcal{A}$ and $x\in V$ let

$$r_A(x) = \min\{\mu(sx) \colon s \in A\}, \quad d_A(x) = \min\{\mu(sx) + \mu(tx) \colon s,t \in A, s \not\sim t\}.$$

We define the required family $\mathcal{X} = \{X_A : A \in \mathcal{A}\}$ as

$$\begin{split} X_A &= \{x \in V \colon d_A(x) < \frac{1}{2}\}, \qquad A \in \mathcal{A}_1, \\ X_A &= \{x \in V \colon d_A(x) \leq \frac{1}{2}\} \cup \{x \in V \colon r_A(x) = 0, \ d_B(x) \geq \frac{1}{2} \ \forall B \in \mathcal{A} - \{A\}\}, \quad A \in \mathcal{A}_2. \end{split}$$

It can be proved that:

- a) \mathcal{X} is a regular family,
- b) $\varsigma^f(e) = c(e)$ for any $A \in \mathcal{A}$ and $e \in \partial X_A$, and
- c) $|\partial X_A \cap L| \leq 1$ for any $A \in \mathcal{A}$ and $L \in \mathcal{L}^+(f)$, which easily implies that $c(\mathcal{X}) = 1 \cdot f = v(c)$.

Suppose, further, that c is an intrinsically even function. It is not hard to see that $c(\mathcal{X})$ is an integer for any semiregular \mathcal{X} , and thus

COROLLARY. The quantity v(c) is an integer.

We say that a family \mathcal{X} is c-minimal if $c(\mathcal{X}) = v(c)$; let $\mathcal{M}(c)$ be the set of all c-minimal regular families. The rest of the proof is by induction. Assume that for fixed G and H the theorem is true for all intrinsically even c' such that either $|\mathcal{M}(c')| > |\mathcal{M}(c)|$, or $|\mathcal{M}(c')| = |\mathcal{M}(c)|$ and c'(E) < c(E). The theorem is obvious for c = 0 (note that in

this case every regular family is c-minimal, i.e., $|\mathcal{M}(c)|$ is the largest possible). A triple of vertices $\tau=xyz$ in which $y\neq x,z$ will be called a fork. Define $\theta_{\tau}\colon E\to \mathbf{R}_{+}$ and

- a) $heta_ au(xy)= heta_ au(yz)=1,\ heta_ au(xz)=-1,\ heta_ au(e)=0\ (e\in E-\{xy,yz,xz\})\ ext{for}\ x
 eq z,\ ext{and}$ $\theta_{ au}(xy)=2,\, heta_{ au}(e)=0\,\,(e\in E-\{xy\}) ext{ for } x=z;$
 - b) $\beta_{\tau} = \min\{c(xy), c(yz)\}$ for $x \neq z$, and $\beta_{\tau} = \frac{1}{2}c(xy)$ for x = z; and
 - c) $\alpha_{\tau} = \max\{a : a \leq \beta_{\tau}, v(c a\theta_{\tau}) = v(c)\}.$

From the lemma it is not hard to get that

- 1) (i) If $0 < \alpha_{\tau} < \beta_{\tau}$, then $\mathcal{M}(c) \subset \mathcal{M}(c \alpha_{\tau}\theta_{\tau})$.
- (ii) There exists a γ , $\alpha_{\tau} \leq \gamma \leq \beta_{\tau}$, such that $v(c-a\theta_{\tau}) = v(c) (a-\alpha_{\tau})$ for $\alpha_{\tau} \leq a \leq \gamma$, and $v(c - a\theta_{\tau}) = v(c) - (\gamma - \alpha_{\tau}) - 2(a - \gamma)$ for $\gamma \le a \le \beta_{\tau}$.

A fork $\tau = xyz$ will be said to be essential (with respect to f) if $x \neq z$ and there is a chain $L \in \mathcal{L}^+(f)$ containing xy and yz; obviously, $\alpha_{\tau} \geq f(L) > 0$. If |L| = 1 for all $L \in \mathcal{L}^+(f)$, then the multiflow f is clearly integer-valued; therefore we can assume that the set of essential forks is nonempty. Our goal is to prove that there is a fork $\tau=xyz$ such that $\alpha_{\tau} \geq 1$. Then the proof of Theorem 1 is concluded as follows. Let $c' = c - \theta_{\tau}$. It is clear that $c'(E) \leq c(E) - 1$, the function c' is intrinsically even, and $\mathcal{M}(c) \subseteq \mathcal{M}(c')$, which implies by induction that the problem $\mathcal{P}(c')$ has an integer-valued OS $\overline{f'}$. The required integer-valued OS f^* for $\mathcal{P}(c)$ is not determined as follows:

- a) $f^* = f'$ if either x = z, or $x \neq z$ and $\zeta^{f'}(xz) \leq c(xz)$;
- b) $f^*(L) = f'(L) 1$, $f^*(L') = f'(L') + 1$, $f^*(L'') = f'(L'')$ $(L'' \in \mathcal{L} \{L, L'\})$ if $x \neq z$ and $\zeta'(xz) = c(xz) + 1$ (= c'(xz)), where L is some chain in $\mathcal{L}^+(f')$ containing the edge xz, and L' is a chain in $\mathcal L$ contained in $(L=\{sz\})\cup\{xy,yz\}$.

Assume that $\alpha_{\tau} < 1$ for each essential fork τ . The following is an easy consequence of the lemma.

- 2) If $\tau = xyz$ is an essential form and $c' = c \frac{1}{2}\theta_{\tau}$, then
- (i) $\alpha_{\tau} = \frac{1}{2}$, and
- (ii) there is a regular family $\mathcal{X} = \{X_A \colon A \in \mathcal{A}\}$ such that $c(\mathcal{X}) 1 = v(c) = c'(\mathcal{X})$, and $x, z \in X_A \subseteq V - \{y\}$ and $y \in X_B \subseteq V - \{x, z\}$ for some $A, B \in \mathcal{A}$.

From 2)(i) and 1)(i) we get that $\mathcal{M}(c)\subset\mathcal{M}(c'')$ for the intrinsically even function c''=2c', and therefore the problem $\mathcal{P}(c'')$ has an integer-valued OS by induction. Consequently, the problem $\mathcal{P}(c)$ has a half-integer-valued OS; we use the previous notation f for it. Assume, moreover, that $\varsigma^f(E)$ is minimal over all half-integer-valued OS's of

- 3) Let $x_1yx_2, x_2yx_3, \ldots, x_kyx_1, k \geq 3$, be a sequence of essential forks, where all the vertices x_1, \ldots, x_k are distinct. Then $\alpha_{\tau} \geq 1$ for $\tau = x_1 y x_3$.
- 4) Suppose that for every $y \in V$ the sequence of essential forks indicated in 3) does not exist. Then |L| = 1 for all $L \in \mathcal{L}^+(f)$.
- 3) and 4) are the key assertions; they conclude the proof of the theorem. In them we use the fact that $f(L)=\frac{1}{2}$ for all $L\in\mathcal{L}^+(f)$ with |L|>1, along with a consequence of 2)(ii): if xyz, \mathcal{X}, A , and B are the objects indicated in 2), and $L \in \mathcal{L}^+(f)$ contains xy
 - a) $\varsigma^f(e) = c(e)$ for any $C \in \mathcal{A}$ and $e \in \partial X_C$,
 - b) $|L' \cap \partial X_C| \le 1 \ \forall L' \in \mathcal{L}^+(f) \{L\}, \ C \in \mathcal{A}$, and
 - c) $|L \cap \partial X_A| = 3$, $|L \cap \partial X_D| \le 1 \ \forall D \in \mathcal{A} \{A, B\}$.
- 3. The algorithm. This is based on the same idea as in the problem of Theorem 1 for composing a network by "separation" of forks. It uses the procedure described in §4 for finding the number v(c). We first consider the case $c \colon E \to \mathbf{R}_+$. First of all, we determine the number v = v(c). In the main step of the algorithm we examine successively the vertices in G, and for each $y \in V$ we examine successively the forks xyz. For fork $\tau=xyz$ under consideration and the current function c we find α_{τ} as follows

(using 1)(ii)). We let $a:=\beta_{\tau}$ and, if a>0, we compute $v'=v(c-a\theta_{\tau})$. If h'=v-v'>0, then we let $a:=a-\frac{1}{2}h'$ and compute $v''=v(c-a\theta_{\tau})$. If again h''=v-v''>0, then we set a:=a-h''. The a obtained is the required α_{τ} . Let $c:=c-\alpha_{\tau}\theta_{\tau}$ and proceed to the next fork. For the final function \tilde{c} we have that $\tilde{c}(e)=0$ for all $e\in E-U$, i.e., the function \tilde{f} defined as

$$\tilde{f}(\{st\}) = \tilde{c}(st), \quad st \in U, \quad \tilde{f}(L) = 0, \quad L \in \mathcal{L} - u,$$

is an OS of the problem $\mathcal{P}(\tilde{c})$. At the *concluding* step of the algorithm, an OS of the original problem $\mathcal{P}(c)$ is constructed in an obvious way from \tilde{f} and the sequence of numbers α_{τ} .

The only difference in the algorithm in the case where c is intrinsically even and an integer-valued OS must be constructed for $\mathcal{P}(c)$ is that the current function c is transformed every time like $c := c - [\alpha_{\tau}]\theta_{\tau}$, where [b] is the integer part of a number b.

4. Construction of a c-minimal family. For each $A \in \mathcal{A}$ take a copy G_A of the graph G; x_A denotes the copy in G_A of a vertex $x \in V$. We determine the edge capacities in \mathcal{G}_A : $d(x_Ay_A) = 2c(xy)$ if $x, y \in A \cap B$ for some $B \in \mathcal{A} - \{A\}$, and $d(x_Ay_A) = c(xy)$ otherwise. We glue together these graphs, identifying the vertices s_A and s_B , as well as the edges s_At_A and s_Bt_B for each $A, B \in \mathcal{A}$ and $s, t \in A \cap B$. Finally, we form the graph $\Gamma = (\mathcal{V}, \mathcal{E})$ by adding the vertices s^0 and t^0 to the graph obtained along with the following edges of infinite capacity: 1) s^0s_A , $A \in \mathcal{A}_1$, $s \in \tilde{A}$; 2) s^0t_A , $A \in \mathcal{A}_2$, $t \in T - A$; 4) t^0s_A , $A \in \mathcal{A}_2$, $s \in \tilde{A}$, where $\tilde{A} = A - \{B\}$.

3) t^0t_A , $A \in \mathcal{A}_1$, $t \in T - A$; 4) t^0s_A , $A \in \mathcal{A}_2$, $s \in \tilde{A}$, where $\tilde{A} = A - \bigcup(B : B \in \mathcal{A} - \{A\})$. Let \mathcal{Y} be the set of all $Y \subset \mathcal{V}$ such that $s^0 \in Y \subseteq \mathcal{V} - \{t^0\}$ and the cut $\partial^{\Gamma}Y$ does not contain edges of infinite capacity. It can be verified that the mapping φ associating with each $Y \in \mathcal{Y}$ the family $\{X_A : A \in \mathcal{A}\}$, where $X_A = \{x \in V : x_A \in Y\}$ for $A \in \mathcal{A}_1$ and $X_A = \{x \in V : x_A \in \mathcal{V} - Y\}$ for $A \in \mathcal{A}_2$, is a bijection between \mathcal{Y} and the set of semiregular families, and, moreover, $d(\partial^{\Gamma}Y) = 2c(\varphi(Y))$. Consequently, the construction of a c-minimal family and the determination of the quantity v(c) reduce to the construction of a minimal cut for Γ and d "separating" s^0 from t^0 .

We remark that $|\mathcal{V}| \leq nt + 2$ because \mathcal{A} is bipartite, where n = |V| and t = |T|. Thus, the algorithm in §3 has the estimate $O(n^3\sigma(tn))$ for the number of operations, where $\sigma(q)$ is an estimate for the number of operations in the procedure used to construct a maximal flow and a minimal cut in a network with q vertices. There is a modification of the algorithm in which only O(n) forks are considered for each $y \in V$, and it has the estimate $O(n^2\sigma(n))$.

All-Union Scientific Research Institute for Systems Studies Moscow

Received 4/MAR/84

BIBLIOGRAPHY

- L. P. Ford, Jr., and D. R. Fulkerson, Flows in networks, Princeton Univ. Press, Princeton, N. J., 1962.
 - 2. B. Rothschild and A. Whinston, Operations Res. 14 (1966), 1121-1129.
 - 3. B. V. Cherkasskiĭ, Èkonom. i Mat. Metody **13** (1977), 143–151. (Russian)
- 4. A. V. Karzanov and M. V. Lomonosov, Mathematical Programming, Vyp. 1 (O. I. Larichev, editor), Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, 1978, pp. 59–66. (Russian)
- 5. A. V. Karzanov, Combinatorial Methods in Flow Problems, Vyp. 3 (A. V. Karzanov, editor), Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, 1979, pp. 6–70. (Russian)

Translated by H. H. MCFADEN