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A family Z of cuts of an undirected graph G=(V, E) is known to have the weak MFMC-
property if (i) & is the set of T-cuts for some TS V with |T| even, or (ii) Z is the set of two-com-
modity cuts of G, i.e. cuts separating any two distinguished pairs of vertices of G, or (iii) Z is the set
of cuts induced (in a sense) by a ring of subsets of a set TS V. In the present work we consider a
large class of families of cuts of complete graphs and prove that a family from this class has the
MEMC-property if and only if it is one of (i), (ii), (iii).

1. Introduction

Let &% be a family of nonempty subsets of a finite set E. For /€R%, a map
f: # >R, is called l-admissible if the packing condition

SIf(F): e€FeF) =1()

bolds for each e€E (R, is the set of nonnegative reals). The maximum packing prob-
lem for E, & and /is to find an l-admissible function fon & with 1 -f= J(f(F):FeF )
maximum; this maximum is denoted by p(F,1). We say that a subset BCE meets
F if B meets every set Fin & (i.e. BOF# @). The blocker b(F) of # is the collection
of minimal (with Tespect to inclusion) subsets of E meeting &. It is easy to show that
p(#,=I(B) for each Beb(#F) (for a real-valued function g on a finite set S and
a subset S’SS, g(S") denotes X (g(x): x€8 ). & is said to have the (weak)
MFEMC-property [8] if the equality

p(#, 1) = min {I(B): BEb(F)}

holds for any I€RE. In other words, it means that all vertices of the unbounded poly-
hedron {x€RE: x=0, x(F)=1YFeF} are integral.

The problem of characterizing (in “good” terms) the class of families having
the MFMC-property is open and seems to be hard enough (if such a characterization
exists at all). In the present work we consider a special class of families. Namely, we
are interested in families of cuts of a complete undirected graph. For any finite set
W, Tet Ky, denote the complete undirected graph with vertex-set and edge-set W and
E(W), tespectively. An edge between x and y may be denoted by xy. For X cw,
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2X=0"X denotes the set of edges of Ky with one end in X and the other in W —X.
CCE(W) is called a cut of Ky if C=0X for some proper subset X of W, ie.:
p=XCW.

Throughout this paper we shall deal with the following objects: a complete
graph Ky, a subset T of V and a collection & of proper subsets of T'; we refer to T'and
of as a set of terminals and a scheme on T, respectively. For a set W27 and a sche-
me < on T, let €% (/) denote the set of cuts C in Ky such that C=0"X for some
Yc W with XNTeo. The question is: for what ¥, T and o/ does ¥”(s#) have the
MFMC-property? Here are three examples of such collections.

Example 1. |T|is an even integer, and & consists of all odd subsets of T (the members
of €"(&/) are usually called T-cuts). It follows from a theorem of Edmonds and
Johnson [2] that such a family €Y () has the MFMC-property (see also [7, 10]).

Example 2. T={s, s, 1,1’} and A={{s, 1}, {s, 'Y}, ie., €"() consists of all cuts
in K, containing both edges ss’ and #¢'. The fact that €¥(<#) has the MEMC-property
follows from the two-commodity flow theorem of Hu[4] and a general theorem of
Lehman [6] (see also [3, M.

Example 3. Let &/ be a ring of subsets of T (i.e. 4, BEsZ implies AMNB, AUBEA)
with a minimal element {s} and a maximal element 7— {t} for some s, 1€ T. Then
" (/) has the MEMC-property, which can be shown as follows. Let I: E V)—~R,
be an arbitrary function. Consider the directed graph H =(V, Z) in which (x, y)EZ
if and only if x€A implies yeA forall Ac.Bya well-known theorem in lattice
theory (see [17), a proper subset 4 of T is an element of o/ if and only if there is no
edge in H leaving 4, i.e., having its tailin 4 and its headin T—A.Let G be the mixed
multigraph (¥, E(V)U Z) with the set E(V) of undirected edges and the set Z of
directed ones. Define the lengths I’ of the edges of G by [ (e)=I(e) if e€E(V) and
I'(e)=0 if e€Z, and let n(x)(x€V) be the length of a shortest path (with respect
to I’) from s to x assuming that only paths whose direction corresponds 1o that
of the edges in Z are admitted. Let n(s)=0=ap<d1= ...<a,=m(t) be the
different values of = not exceeding 7(7). Put X;= {xeV: n(x)<a}, f(OX)=a—8-1
(i=1,...,m) and f(C)=0 for the remaining C’s in 6¥(). It is not difficult to
show that (i): fis I-admissible, (ii): if U is the set of undirected edges of a shortest path
in G from s to ¢, then U meets #"(oA), and (ii)): 1- f=n(t)=1(U), whence the result
follows.

Now we shall introduce several definitions. Two schemes o/ and &£’ on the
same set T are called equivalent if €T(A)=%"(A") (and therefore ¢V (A)=6" (")
for any V2T). Clearly o and &' are equivalent if and only if, for any ACT,
(4, T—AYNA#D implies {4, T—A}N’ 70 and vice versa. We say that &/’ is an
odd, two-commodity or lattice scheme if ' is equivalent to the scheme & in Example
1,2 and 3, respectively. We say that a subset X CW separates Y,ZcW if one of Y
and Z lies entirely in X and the other one in W —X. Two terminals s,z€7 are called
o-equivalent if there is no Acof separating {s}and {r}. A terminal €T is called
f-redundant if for any A€, there isa Dcsf suchthat s€4* and D*=A*—{s}
for some A*€ {4, T—A} and D*¢ {D, T—D}.

Definition A scheme &/ on T is called compact it T contains neither s/-equivalent
pairs of terminals nor of-redundant terminals.
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"yt is clear that if s€T is #/-redundant, 7T’=T—{s} and '={4'CT’:
A'=A—{s} for some Acs/}, then ¢V (AL)=%"(#") for any V2T. Also it is
easy to show that if s and ¢ are /-equivalent terminals, V’=V—{s}, and T” and &’
are defined as above, then €” () has the MFMC-property if and only if this property
holds for €¥'(«#). Thus, without loss of generality, we may consider only compact
schemes. : : ’ ‘

Fheorem 1. Let |V|=|T|+2, and let s/ be a compact scheme on T. Then the collec-
tion €"(sf) has the MFMC-property if and only if S is an odd or a two-commodity or
a lattice scheme. ,

In Section 4 the case |V|=|T|+1 is investigated and we show that in this
case only one new type of cut families having the MFMC-property is possible.

2. Proof of Theorem 1

The “if” part of Theorem 1 was discussed earlier, hence here we prove the
“only if” part. Let o be a compact scheme on T. Without loss of generality, one may
assume that o is a symmetric scheme, i.e. A€o implies T—A€HA.

Two subsets A4, A’C T are said to be crossing (in notation; Ay A)) if each of
the four subsets ANA’, A~A’, A'—A and T—(4U4) is nonempty, and laminar
(denoted by A[4) otherwise. A triple of pairwise crossing subsets will be called
a crossing triple. We say that a pair {4, 4"} of members of o is regular if at least one
of the following two possibilities holds : (i) A—4’, A —Aest, (i) ANA4, AU
UA’cof. In particular, {4, A’} is regular if A|4’ (since & is symmetric). For
IEREM) and x, y€V, w(xy) denotes the distance between x and y in the graph Ky
with edge length function . The proof of Theorem 1 is based on the following two
lemmas, the former was proved in [5] while the proof of the latter one is contained
in Section 3.

Lemma 2.1. Let s/ be a scheme on T, let VDT, and let €Y (L) have the MFMC-
property.

@ 1f Be b(¢¥ (4 ))_ and x€V—T, then x is incident to an even numbers of edges inB.
Gi) p(%Y(),l)=min{Z(m(s1): st€U )} '

where the minimum is taken over all minimal subsets USE (T) meeting 0TA for
every Aed,ie., U€b(%T(d)). | : »

Lemma 2.2. Let of be a scheme on T,let VOT, |V|=|T|+2, and let €Y (o) have
the MFMC-praperty.

() If Ay, A€ are crossing and there is an Ag€sf such that Ay|A, and A4|As,
then the pair {4, Ay} is regular. .

(i) Each crossing triple in o contains at least one régular pair.

Let P={Y,,...,Y,} be a partition of T; we admit empty sets ¥; in P.
We saythat AcT conformsto P if for every i either Y;S4 or ;N A=0. Let
(Tyy ..., TilZ,, ..., Z,) denote a partition " {Ty, ..., T, Zy, .... Z,} of T in
which the sets T, ..., T are distinguished. : I '
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Definition. A partition (T, ..., [i|Zy, ---» Z,) is called essential (with respect to &)
if (i) k is an odd integer =3, (ii) each T} is nonempty (Z; may be empty), and (iii) for
every i=l1, ..., k, there exists Afcof conforming to {T3, ..., Ty, Z3, -+ Z,} and
such that T,S 4 and T;NA'=8 if j=i.

The following assertion is one of the main tools in our proof.

2.3. Let |V|=|T|+1, and let €"(of) have the MFMC-property. Further let
(Ty, -, Ty|Z1, --s Zn) be an essential partition of T, and T'=T,U...UT,. Then
there exists Acof conforming to {T’, Z,, wevs Zwy In particular, T'#T and if
m=1 then T’ (and T—T’) belongs to .

Proof. Choose a vertex x€ ¥—7T and a terminal ¢; in each T;. Let B be union of the
sets E(TY, ..., E(Ty), E(Z),...,E(T,) and {xt;: i=1, ..., k). Two cases are
possible. 1) B does not meet @V (s#). Then there are A€sf and XCV such that
YNT=A and BNX=9. It follows from this that, for any Y€ (T, Zy, ... Zy),
either YC A or YN A=0,as required. 2) B meets 6¥ (). Let B’ be a minimal subset
in B meeting 6" (/). By Lemma 2.1, x is incident with an even number of edges in B’,
therefore xt;¢ B’ for some i€ {1, ..., k} since k is odd. Let A’ be the same as in the
definition of the essential partitions. Then B’Nd"4;=0, a contradiction. [

Now we turn to the proof of the theorem. Let €V (s/) have the MFMC-pro-
perty (in fact, below we use only Lemma 2.2 and 2.3 rather than the condition
|V|=|T|+2). Let o/° be the collection of minimal sets in /. Since & is symmetric,
l##°=2. The following two situations are possible: (i) each pair of members of &/ is
regular, and (ii) there is at least one ponregular pair in .

First we study case (i). Observe that any A€s/° and DE&/ are laminar. For
ifsome A and D are crossing, then, by the minimality of 4, AND ¢« and A—D ¢t
contrary to the assumption that {4, D} is regular. Thus, for any A€/, and D€,
we have either ASD or AND=, and hence |4|=1 for any Ac®, otherwise T’
would contain sZ-equivalent terminals. Let L0={{s;}: i=1, ..., k} and T'=
={s;: i=1, ..., k}. Consider three cases.

Case 1+ k= 2. Then each A€o separates {s;} and {s;}. Let o#’={d€s/: 5:€ A}.
We observe that &’ is a ring of subsets of 7 with minimal element {s,} and maximal
element T—{s,}. Indeed, for crossing A4, A’€s/’, the regularity of {4, A’} and the
fact that A—A’ ¢ (since sy, 5,¢ A—A") imply ANA, AUA e,

' Case 2 kis odd. It is clear that the partition P=({s}, ..., {s}|T—7")is essen-
tial. Applying (2.3) to P we obtain that T—T ¢ of, contradicting the definition of
0. ‘

Case 3: k is an even integer =4. We show that « is the odd scheme on 7.

(1) If ACT’ and |A]|is odd, then A€. This follows from 2.3 applied to the
essential partition ({si}, ..., {s}|T—4), where A={s1, ..., Sp}-

(2) If ACT and |ANT’|is even, then A¢s£. Indeed, suppose that it is not
so, and let ANT'={s], ..., sp}. Then the partition ({s1}, ..., {sp)}, T—A|A-T") is
essential, and by 2.3, A—T'¢s/; a contradiction with the definition of &/°.

Thus, it remains to prove that 7’=T. Suppose, for a contradiction, that
Q=T~T' #9. We shall show that 4 UZe o forany A€o/ and ZSQ, and there-

fore each terminal s in @ is &/-redundant, contrary to the compactness of of.
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; (3) If 4€o, DCANT’ and |D| is even, then A—-Ded.
Indeed, let W= (T"—A)UD. Since |T"|is even and ANT" is odd (by (2)), then ||
is odd, and hence, by (1), Wesf. Asthe pair {4, W'} is regular, at least one of 4 uw
and 4~W=A-D isan <. But (4 UW)NT’|=|T’| is even, whence AUW ¢ o,
by (2). Thus, 4—Degf.
" (4 If A€, DCT'—A and |D|is even, then AUDcoo.
For if s€cANT’ and W=DU {s}, then Wess and W—A=D¢sf, whence
AUD=AUWcg.
- For AcT’ with |4] odd, put L(A)={ZZQ: ZU4ecsf). It follows from
(3)and (4) that the set = (4) does not depend on the choice of 4. Let Z,Z’¢c
€Z(A). The regularity of {4UZ, AUZ’} implies 4UZUZ’, AU(ZNZ e,
and so & is a lattice. Furthermore, if Z¢ % (4) then Q—Zc#(T"—4) (since o is
symmetric), i.e., % is a complemented lattice. This fact together with the condition
that T contains no pairs of s/-equivalent terminals implies F =22 as required.
This completes Case 3 of (i).

~ Now we consider case (ii), i.e., when & contains a non-regular pair. We prove
that |T|=4 and # isa two-commodity scheme on T. As it was pointed out earlier,
forany dco/®and Dco, the pair {4, D} is regular if and only if 4 and D are lami-
nar. Furthermore, it follows from (1) in Lemma 2.2 that, for every A€o/, there
exists D€/ such that 4 and D are crossing. Let 77=U(4: A€f®). First we show
that |7”|=4 and there is an ordering sy, 55, 53, 5,=5, of the elements of 7" such
that &°={{s,, 5;,,}: i=0,1,2,3). This splits into a number of simple assertions.
Let A be an arbitrary set in «°.

(1) There exist A’, A”c#° such that 4'NA”=6, Ay4’ and ApA”.
Indeed, let D€« be such that 4 and D are crossing, and let 4" be a minimal set in o/
contained in D. If A’||4 then, by Lemma 2.2 (i) applied to 4, D and A’, the pair
{4, D}is regular, which is impossible. 4” is defined to be a minimal set in &7 contained
in T—D.

(2) Let Ao’ ApA’, and let DEof. Then D and A” are crossing for
exactly one A”¢{4, A’}.

Indeed, if D||4 and D|A4’, then, by Lemma 2.2 (i), {4, 4’}is a regular pair. If Dy A
and Dy A4’, then, by 2.2 (ii), {4,4’, D} contains a regular pair. In both cases we
obtain a contradiction.

(3) If A’€#® and AkA’, then [ANA'|=1.

For supposing s, 7€ AN A’, choose a set D in < separating {s} and {t} (which exists
because o is compact). The minimality of 4 and 4’ implies that Dy 4 and Dy A,
which contradicts (2).
T @ Let AL AEH, ANAT=0, ANA = {s} and 4NA”"={s"). Then
A={s,s5"}.
Indeed, suppose, for a contradiction, that W =4 — {s’, 5"} is nonempty, and consi-
der the essential partition (4" —{s"}, 47— {s"}, W{s'}, {s”}, Z), where Z=T—
~(A4UA"UA"). By 2.3, there must exist a set D in & of one of the following types:
D{s}, se{s’.s"}, 2) {5, 5"}, 3) 2, 4) {s}UzZ, se{s’, 5"}, 5) {s’, s"}UZ. Each of
these case leads to a contradiction: if D is as inlor2,then DcA;if Disasin 3, then
Djj4 and DjiA’; if Dis asin 4 or 5, then DiA and either DA’ or DyA”".

Thus, we may assume that /° contains A;={s;, ;11 i=1,2,3. Let 4 be
a set in &/° different from 4;, i=1,2, 3 (such a set exists in view of (1)). By (4),
{[41=2, and now using (2) we easily conclude that 4= 4,= {s,, $;}, asrequired.
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It remains to show that Q=T—7"=§. Suppose that it is not so. For any
Deof, we obviously have. DNT'=4A; for some i€{0,1,2,3}. Put ZL(4)=
={ZcQ: ZUA;c o). We show that £(4;)=22, and therefore each terminal in @
is &/-redundant, contrary to the compactness of /. First observe that £ (4,) isa
lattice. Indeed, if D, D’€s/ are crossing and DNT"'=D'NT"=A4;, then {D, D"}
is regular by Lemma 22 applied to D, D’ and 4;, whence DND’, DUD’ € 4. Below
all indices are taken modulo 4. :

(5) If ZEL(A,) then Q—Z€L(A;,y).

This is trivial if  Z=0 or Z=Q. Otherwise consider the essen'ual partltlon
(2, {s} {si-1}] {831} {5:42}U(Q—2Z)) (One should choose A', 4> and 4° in
the definition of the essential partitions to be T—A;_,, 4; and T—(4;UZ), respec-
tively). By 2.3, there exists D€« -of one of the followmg types D {8:41}:2) {s:00}U
UQ-2), 3) {si15 S142}U(Q—2)=4;,,U(Q—Z). Cases 1 and 2 are impossible
because in the first case we have DcA; and in the second one Di 4., and
DyA;,,. Hence A4;,,U(Q—2)csf, as reqmred

Now (5) together with the obvious fact that Z¢.% (A,) if and only if 0—
—Zc¥(A,,,) implies that ¥ =% (A4;) does not depend on i and £ is a complemen-
ted lattice. Finally, using that T has no pairs of «/-equivalent terminals we obtain
$:2Q. ) . N

3. Proof of Lemma 2.2

The proof is based on the following lemma.

Lemma 3.1. Let |V|=|T|+2, let o be a scheme on T such that 6" (of) has the
MFMC-property, and let S={A,, As, As} be a crossing triple in . Then there
exists DEsd such that D is laminar to at least two members of S.

Proof. First of all we classify the crossing triples. For a crossing triple Q=
={D;, Dy, D3} 2%, let P(Q) denote the partition {W1, ..., W,} of W into maxi-
mal subsets W such that either W,SD; or W;(\D;=§ for 1—1 2,3. We say that
two triples Q {D,, D,, Ds}CZW and Q {D,’, D;, q}C2W’ with P(Q)=
~{W, eees W} and P(Q)= {W ..s Wy} are equivalent (denoted as Q~Q)if
m=m’ and there are a permutation ¢ on {1, 2, 3} and a permutation y on {1, ..., m}
such that, for any j, k€{1, ..., m} and i€{l, 2, 3} D, separates W; and W, 1f and
only if D,;, separates W, ; and W, In Fig. 1 six pairwise non-equlvalent crossing
trlples S1, ..., S are illustrated. (Here, for r=1, ..., 6, every member of P(S,)
consists of one element and, for each D€S,, aline scparatmg D and its complement
is drawn). One can prove that an arbitrary crossing triple is equivalant to one of
Sl, ..., Sg. The proof reduces to a routine examination of various trlples of subsets of
4, ..., 8-clement sets hence it is omitted.

Now suppose that the hypotheses of Lemma 3.1 hold. We shall use the follow-
ing theorem due to Lehman [6]: a family Z of subsets of a set E has the MFMC- pro-
perty if and only if the “length-width” inequality :

(*) Iw = min {I(B) Beb(F)} mm {w(F): F€9’}

holds for any /€RE and wcRE, where b(ﬁ) is the blocker of & and Iw=
= (l(e)w(e):e GE) We apply the “only if” part of this theorem to our E=E(¥)
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Fig. 1
and F =%"(«/). Using (i) of Lemma 2.1, one can replace ( * ) by
4)) Iw = min { > w(st): Ueb(%" ()} min {w(C): CEE*(A)}.
For /€RE, let -
v(l, S) = min{g w(sh): Yeb(€7(S))}.

Since every Ucb(%7(s/)) meets the family 7(S)={0"4;:i=1, 2, 3}, then
Q) o(l, §) = min{ > u(st): Ueb(@™ ().

stelU
For weREY) and ACT, define

d(w, A) = min {w(@" X): XV, XNT = A}
and
a(w,S)=min {d(w, 4)): i =1,2,3}.

Let % (w) denote the collection of proper subsets 4 of T such that d(w, A)<a(w, S).
The idea of the proof is as follows. We shall find functions 7, we RE™) satis-
fying

3 Iw < v(, Saw,S).

So it will follow from (1), (2) and (3) that /N %Z(w)>~0. A function w will be chosen
so that each D€ 2 (w) is laminar to at least two members of .S, whence the result will
follow.

Let P(S)={Ti, ..., T,); we shall assume that if S~S, then the indices in
P(S) correspond to ones in P(S,) as shown in Fig. 1 (That is the permutation y for
given S'and S, is identical). Take one element s; in each T (it is convenient to use the
same symbols as in Fig. 1).
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Fig. 2

(a) If S is equivalent to one of Sy, Sz, S, S5, S5, we choose a vertex xe V—T
and fix the subgraph G’=(V’, E’) in K, with the vertex-set V’'={x, 51, 53, S3, A
and the edge-set E'={s;x:i=1, ..., 4} (see Fig. 2a).

(b) If S~8, we choose two vertices x, y€V—T and fix the subgraph G’'=
=(V’, E’) with vertex-set V’'={x, y, 51, ..., 5} and edge-set as illustrated in Fig. 2b.
(This is the only place of our proof where we use the condition |V|= [T|+2).

Define two functions / and w” on E(V) by

1 if ecE’,
l(e)=[|{i: 1=i=3, ecd™4}| if ecE(T),
M otherwise,

1 if e€E’,
wf(e)z{M if ecE(T), j=1,..,m,
0 otherwise,

where M is a large positive number. One can check that: (i) if S'is equivalent to one
of S;,S,, Ss, S5, Sg then v(l, $)=3, a(w, S)=2 and Iw'=|E’|=4; and (ii) if
S~ S,then v(l, $)=3, a(w’, S)=3and Iw'=|E’|=1. (The proofis left to the reader;
see also [5].) Thus, in each case we have w’<v(l, S)a(w’, S). Note also that the inequ-
ality w' (9" X)<M holds only if the set D =X T conforms to P(S), and hence Z(w’)
can contain only such sets D. If S~S, then P(S)={T), T, Ts, T,} and, obviously,
no members distinct from 7; (and T—T;) can be in #(w’); and so, our lemma is
valid in this case. (Below we shall see that this case cannot occur, but at this point it
does not matter.) Unfortunately, in the other five cases 2(w’) is still too large and
this does not enable us to take w’ as required. For this reason, we define w to be
w +w”, where w”€RED) is a function satisfying

(4) w”(aAi) = q’ i = 1? 2, 3’

5) w”(e) =0 for each ecE(V)—E(T),
and such that

6) d(w’, D)+w"(0"D) = a(w’, S)+q

will be valid for each “undesirable” D in #(w), i.e., if |{i: D||4;}|=1, where g is a
positive number. Note that (5) implies w”(9"X Y=w"(@"T4) for any XCV and 4=
—XNT. Thus, (6) can be rewritten as d(w, D)=a(w, §), and therefore D does not
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belong to #(w). Next, by (4), (5) and the definition of /, we have
Iw” =2 (I(w”(e): e€E(T)) = (w@'4): i=123)=
=3g=v(,S)aWw’, S),

and so, (3) is true for any considered / and w.
It remains to point out such functions w” for each of cases S~S,, r=2, ..., 6.
These functions are illustrated in Fig. 3. Here multigraphs He, ..., H; are drawn;

for S~S, and xy€E(T), w'(xy) is defined to be the number of edges of H, connect-
ing the vertices x and y. It is easy to check that (4) is true for any w”. The verification
of (6) requires examination of subsets D of form 7;U...UT; which are crossing with
at least two members of S. For example, let S~S,. (We consider this case because
we shall need it again in what follows). We have a(w’, §)= 2 and g=1. One can see
that 2 (w’) consists of {T1}, ..., {Ts} {Ts, T;}, j=1, ..., 4, and their complement-
ary sets. But for D={Ts}, {T;, T;}, j=1, ..., 4, the left hand side of (6) is at least
3, thus 2(w) consists only of {T.} ..., {T,} and their complements, each of which is
laminar to all 4;, i=1, 2, 3. The other cases can be checked similarly. This comple-
tes the proof of Lemma 3.1. 1

Using Lemma 3.1, we now prove Lemma 2.2,

() If 4,4, Do, Axd’ and D=T—(AUA’), then ANA’c€s. This
follows from 2.3 applied to the essential partition (4 —4', A'—A,D|ANA).

(2) Let 4, A’€ o/ be crossing. Then AAA’¢.of, where A denotes symmetric
difference.
Indeed, suppose, for a contradiction, that AAA’cs/. Clearly, both
(A—4", 4 —4, T—(4Ud4)|ANA") and (T—(4U4’), ANA, A —AlA—A") are
essential partitions, whence, by (2.3), ANA’€sf and A—A’cs/. But then the par-
tition (4NA’, A—A’, T—A|) must be also essential, a contradiction.

(3) Let A4, A',Déd, Ax 4, DcT—(4AU4), Z=ANA" and Z'=
=T—(4UA’UD). Then at least one of Z, A—A’, A —A and ZUZ’ is a member
of 4.

5
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Indeed, applying 2.3 to the essential partition (4—A’, A"—A, D|Z, Z’) shows that
one of Z,Z" and ZUZ’ is in &/. Supposing Z’€/ and applying 2.3 to
(D,Z’, Z|A—A’, A’ —A), we obtain that one of 4—A4", A"—A and AAA"is in .
Now the result follows from (2).

Next we prove (i) from Lemma 2.2. Let A,, A2, As€sl, A xA, and Agl|4;,
i=1,2. One may assume that 4,C T—(4,UA,). In view of (1), it suffices to show
that one of A,—4,, A,—A4,, AN A, and T—(4;UA,)is a member of &#. Thus, we
may assume that A, does not coincide with T—(4,UA4,). Let Z=A4,NA4, and

=T—(4,UA4,UA4,). By (3), if none of Z, 4,—A, and A,—4; is in o, then
ZUZ'cd. Clearly S'={4,, 4,,ZUZ’ } is a crossing triple and S’'~S,. It was
shown in the proof of Lemma 3.1 that in this case at least one of A;—4,, A,—A4,, Z
and Z’ is in &/. But if Z’€</, then, by (1) (used with A=4;, A'=T— (ZUZ)
and D=2Z’), we have A4 ﬂ(T (ZUZ)) A,—A,€sf. This proves part (i) of
Lemma 2.2.

Lemma 2.2 (ii) follows immediately from (i) and Lemma 3.1. This completes
the proof of Lemma 2.2 and Theorem 1.

1. The case |V|=|T|+1

If we weaken the hypothesis of Theorem 1 by setting |V|=|T|+1 instead of
|V |=|T|+2, then a priori schemes & different from the ones described in the theo-
rem may appear, for which €Y (/) has the MFMC-property. Let 7={sy, ..., 5},
and let «#¢ denote the scheme on T consisting of four subsets A4,={s;, s;11, $ i 2},
i=1,2,3, dnd Ay={s1, S35, 55} We say that a scheme </ on T is “octahedral if it is
equivalent to #/2. (A motivation of using such a termis that if |V{=|T|+1 and
{x}=V—T and it the elements of 7 are thought to be the vertices of an octahedron ¢
and x to be its centre, then the cuts of %Y (/) correspond to the eight partitions of
V induced by planes parallel to faces of @.)

Theorem 2. Let |V|=|T|+1, let o be a compact scheme on T, and let o/ be not
octahedral (if |T|=6). Then €Y () has the MFMC-property if and only if o is an
odd or a two-commodity or a lattice scheme.

A sketch of a proof is as follows. Let |V|=|T|+1, and </ be a symmetric
compact scheme on T having the MFMC-property. One can see from the proof of
Theorem 1 that if both statements in Lemma 2.2 hold for some &7 and V, then <7 is
an odd or a two-commodity or a lattice scheme (since in the proof developed in Sec-
tion 2 we use, in fact, the condition V> T rather than |V|=|T|+2). Furthermore,
one can see from the proofs of Lemmas 2.2 and 3.1 that part (i) of Lemma 2.2 as weli
as part (ii) in the cases S+ S, remain true for given & and V. Thus, we may assume
that & contains a triple S’'={4,, 4,, 45} such that S"~S§,, §’ contains no regu-
lar pair and there exists no D€ .o laminar with at least two members of S’. We show
then that & is octahedral. We may assume also that 4,=T,UT; ,UT;,,, i=
=1,2,3, where {T,...,T;, Ts=T,} Is a partition of T into nonempty subsets.
We observe that T; ({.sz! and T;UT; ¢4 for j=0,..,5 (otherwise S’ would

contain a regular pair), and’ that T;,UT. ¢ if 3= l/'—j|=4 (otherwise
{4y, Ao, A3, T;UT;} would contain a crossmg triple equivalent to S;, which
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implies T;€f or T;.€o/). Now applying 2.3 to the essential partition
(Ty, Ty, Te|Ty, Ty, T;) shows that A,=T,UT. sUTs€4. Clearly, each triple of
Ay, Ay, A3, A, is equivalent to S, and each pair is non-regular. Let &’ be the set of
members of o different from A4, 4,, 4;, A, and their complements with respect to
T. We show that o’ =9.

Supposing the opposite, let D be a member of &7’ with |D| minimal. Let # be
the set of A;’s (1=i=4) such that D and 4, are crossing. Clearly |2]=3 or 4. The
minimality of D implies that {D, 4,} is non-regular for every A;€#, and therefore
each triple in 2U {D} is equivalent to .S,. Let, for definiteness, A,, A,, A, R. It
is easy to show that T;U7,,,cDc T; ,UT;,UT;,,UT;,, for some 0=;j=5 and
DNT,#0, T, for k=j—1, j+2 (indices are taken modulo 5), which implies
Dk 4,. Thus, |#|=4. Now, assuming, e.g. that 7, UT,C D we obtain {4;, A, D}~
~S¢, a contradiction. Finally, since 7 has no .«/-equivalent pairs, IT;|=1 for
J=1, ..., 6. Therefore, & is an octahedral scheme, as desired. [ |

Unfortunately, I do not know whether or not the family €Y (), (|V|=7)
has the MFMC-property, but I think it has.

Acknowledgement. I am indebted to the referee and to V. P. Grishuhin for their
valuable remarks.
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