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A GENERALIZED MFMC-PROPERTY AND
MULTICOMMODITY CUT PROBLEMS

A.V. KARZANOV

ABSTRACT

Let K, be the complete undirected graph with the vertex-set ¥
whose edges have nonnegative weights (lengths) [, 7 be a distinguished
subset of its vertices and ¥ be a family of cuts in K, . In the work
mainly the maximum fractional packing problem for ¥ is considered
and the question is studied: if T and @ have the property that, for any
[, the maximum total value of packings is completely determined by
distances (with respect to /) between elements of 7. It is known that the
answer is affirmative when

(i) T={s,s',t,¢t'} and ¥ consistsof all cuts containing both edges
ss' and #t' (sucha € is said to be a two-commodity cut family)

(ii) |7| is even and € is the set (()f all cuts induced by subsets
X CV suchthat XN T is odd (so-called T-cut family). As main result,
a large class (complete under some additional assumptions) of 7 and ¥
having this property is described. To that end we introduce a concept of
a generalized MFMC-property for abstract families of subsets of a set and
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establish some interconnection between multicommodity cut problems
and multicommodity ' flow ones. Also other results about cut packing
problems are presented.

1. INTRODUCTION

For a finite set Y, let K, denote the complete undirected graph
with the vertex-set Y and E(Y) denote the set of edges of Ky; xy
(or yx) denotes the edge with ends x and y. For XC Y, 0X=09Yy
is the set of edges in K, with one end in X and the otherin Y — X.
ECE(Y) is called a cut if E= 090X for some proper subset X of Y
(ie. p# X #Y). Obviously, X# X' and 0X = 0X' imply X' =Y - X.

We consider a quadruple (V,[, T,S) consisting of a (basic) finite
set V¥V, a function /: E(})-> R + (R + s the set of nonnegative reals),
a distinguished subset 7S V¥V and a nonempty collection SC 27 of
proper subsets of 7; we refer to I, 7 and S as an edge length function,
a set of terminals and a scheme, respectively. Let Z(V,S) denote the
family of sets XC V such that XN TeS, and ¥(V,S) the set
BYx: xea, §)} of cuts (note that €(V,S) may contain repeated
members, clearly this is so if and only if there are two complementary
members A and T—-A4 in S). A function «a: Z(V,S)~> R, is called
l-admissible if, for any e € E(V), the value

N(e) = 2(a(X): XEX(V,S), ec 3X)

does not exceed Xe) (in other words, the function f on € (V,S) defined
by AdX)=oaX) (X€Z(V,S)) is a packing of ¢(V,S) into E(V)
weighted by /). Also /-admissible « will be referred to as a multicom-
modity cut, or a multicut for the sake of brevity.

In this work we study mainly the maximum packing problem for
¢(V,S) and [: find l-admissible a: Z(V,S)-> R + Whose total value
1 o is maximum; this maximum value is denoted by p(V, S, 7). Such
a problem will be shortly called a multicut max-2 problem and denoted
by 2(V,S,D.

Applying the linear programming (l.p.) duality theorem to 2'(V, S, 1)
we have
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(1.1)  p(V, 8, =min{l- w: we REM) w@X)>1 VXex(V,Ss)).

(For functions f,g€ RY, f-g denotes 2()e(): yeY) and if
Y'S Y then {Y') denotes Z(f(y): ye Y'))

A number of families of cuts is known for which there is a minimax
relation of a more special kind than (1.1). We need some known notions.
Let # +#¢ be a collection of nonempty subsets of a set E (we admit
that FC F’ for some F,F'€ % and that # contains repeated mem-
bers). The blocker b(#) of % is the set of minimal subsets of E
meeting each member of % . # is said to have the (weak) MFMC-property
(cf. [1])if, forany ce€ RE,

max (1 + /) = min {¢(B): B € b(F)},

where the maximum is taken over all f: & > R , satisfying the packing
condition 2(AF): ec F€ #)< c(e) forall ec E.

According to the definition a cut family €(V,S) has the MFMC-
property if the equality

(1.2) p(V,S,D) = min {{(B): Be b(¥(V, S))}

holds for any /&€ RE(). 1t can be shown (see Theorem 7.1 and Corol-
lary 7.2) that if €(V,S) has the MFMC-property then any member
B of b(€(V,S)) is the union of some disjoint T-terminus chains in
Ky and, moreover, for any /€ RE%), (1.2) may be rewritten in the
following more nice form:

(1.3)  p(V, 8, 1) = min{ Z(u,(u): uc U)},

where the minimum is taken over all U € E(T) such that U 974 = )
foreach A €.

[Some terminology and notation throughout the paper: a chain in K,
isaset LS E(Y) of edges such that a subgraph in K, induced by L is
connected and it has the vertices of valency 2 except two vertices x and
¥ which are of valency 1; these x and y are called the ends of L and
the edge xy is denoted by eL; a circuit is a similar nonempty subset such
that each vertex in the induced (connected) subgraph is of valency 2;
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achain L in K, is called T-terminus (for a distinguished T) if eL €
€ E(T); for le Rf“’), u, € RE()  denotes the distance function in-
duced by I, ie. u;(xy) is the minimum of (L) over all chains L in
K, with el =xy.]

Here are some known examples of cut families having the MFMC-
property (Examples 2, 3 will occur in Section 5, 6).

Example 1. T={s,¢} and S={{s}}, i.e. €(V,S) consists of the
cuts in K, separating” s and ¢. The maximum packing problem for
€(V,S) with such S is usually called one-commodity cut problem.
Robacker [2] proved that p(V, S, )= u,(st).

Example 2. T={s,s',¢,¢t'} and S={{s51¢},{5s,t'}}, ie. €(V,S)
consists of the cuts in K, each “separating” s and s’ aswellas ¢ and
t'. The corresponding maximum packing problem is known as two-com-
modity cut problem. It follows from results of Lehman [3] and Hu
[4] that p(V, S, )= min {ul(ss'), ul(tt')} (see also [5], [6]).

Example 3. |T| is a positive even integer and S consists of the
odd-size subsets of T (#€(V,S) forsuch T and § is usually called the
family of T-cuts, or odd-terminus cuts). Edmonds and Johnson [7]
(see also [8]) proved that p(V,S,l) is equal to the minimum of IJ)
over all THoins J in KV (a T+oin is a minimal subset J< E(V) such
that the odd valency vertex-set of the subgraph in K, induced by J is
exactly T). It is easy to show that Edmonds—Johnson’s relation can be
expressed also in the form (1.3), where U ranges over all perfect matchings
in K.

Unfortunately, the list of cut families #(V,S) having the MFMC-
property is rather short (the complete collection of such families for
| V= |Tl+ 2 will be given (without proof) in Section 7). In this paper,
we are interested in the cut families for which a special minimax relation,
weaker than (1.3), hold. Namely, we study such triples V, T, S for which,
for any /€ REWY), the value p(V,S,l) is determined by certain non-
negative linear combinations of distances between terminals. More pre-
cisely, let §: E(T)~> R_ be afunction satisfying
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BRTA) (= Z(Bu): uc3aTA)=>1 forall A€S,

and let L% (u€ E(T)) be a shortest chain in KV (ie. I(L)= pyel))
with eL = u. Then for arbitrary [-admissible «: £(V,S)~> R L+ we
have

1-a= Z@X): XeZ(V,8)<
< S @X)BRTX N T): XeZ(V,9)) =

ZT) Bu) S (aX): XEX(V,S), ucd’X)<

uceE(

< 2 B Z(\e): ec L)< 2 Ba)L),
Ty ucE(T)

ucE((

whence
p(V,S, D)< Z(Bwuu): ue ET)).

Definition. We say a scheme §C 2T belongs to the DSC-class with
respect to the multicut max-2> problems (shortly, to the 2 -DSC-class)
if, forany V2 T and /€ RE(Y), the following equality is true:

pV.S, D=
(1.4)
=min{ 2 Bwww): pe RED, 374)>1 VAES}.
uc€E(T)

(The term “DSC-class’ abbreviates that of the class of schemes for which
the output of any corresponding packing problem is determined by the
lengths of shortest chains connecting terminals”.)

Clearly, a scheme SC 2T belongs to the 2 -DSC-class if 4(V,S)
has the MFMC-property for each ¥ 2 T since the relation (1.3) (subject
to UndTA+¢ forall A€S) is a special case of (1.4) with 0, 1-func-
tions f.

Example 4. S is the set of l-element subsets of 7. Forany V2T
and I, the equality (1.4) is known to hold for some B taking values O, 1

and -—12-; thus, such § beldngs to the 2 -DSC-class. At the same time

¢(V,S) does not have the MFMC-property if 3 < |T|+# 4.
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Our aim is to characterize the 2 -DSC-class. We need some de-
finitions. Two subsets X,Y S W are said to be crossing if none of
XnY, X-Y,Y—-X and W-—-(XVUY) is empty and to be laminar
otherwise. A collection & C 2% is called i-crossing (for an integer i > 2)
if there are at least i members of % each two of which are crossing.
For example, the collection {{0, 1},{0,2},{0, 3},{3,4,5},{5}} of
subsets of the five elements set is 2- and 3-crossing but not 4-crossing.
A collection is called laminar if it is not 2-crossing.

Definition. A scheme S C 27 is called 3-complete if, for any three
pairwise crossing members A1’A2’A3 €S (if any), there exist non-
negative reals y(4,) (¢=1,2,3), and a function e: §~> R, such that

"
Y(A,) + ¥(A,) + Y(A,) < S(e(d): A€ S),
20Apy: i=1,2,3)>2(ed)p,: AES),

(1.5)

where, for BC T, Pg denotes the characteristic vector of the subset
9TB in RET) and the vector inequality > in (1.5) means that the left
hand side value is no less than the right hand side value for any component
u € E(T) and it is strictly more for at least one component .

For example,_where T={0,...,5}, the scheme § consisting of
six subsets A, ={i,i+1,i+2} (i=1,2,3), A, ={1}, Ag = {3},
A6 = {5} is 3-complete because for the triple of pairwise crossing mem-
bers {4,,4,,4,} (it is the unique triple in § with such a property)
(1.5) holds with v(4,)=1, e4)=0 (i=1,2,3) and ed)=1 (=
=4,5,6) (the corresponding component inequality is strict for the edge
u = 02). Also the schemes in Examples 1, 2 are obviously 3-complete.
One can verify that the schemes in Example 3 are also 3-complete (see
Section 5).

Theorem A.
(1) A scheme belongs to the 2 -DSC-class if it is 3-complete.

(ii) Let a scheme SC 2T be not 3-complete. Then S does not
belong to the 2-DSC-class. Moreover, forany V> T with \V|> |T|+ 2
there exists 1€ REW) such that (1.4) is not true.
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This theorem is central in the paper. It will be proved in Section 4.
Note that there is a good characterization of the 2 -DSC-class since a
polynomial (in |7, |S|) algorithm can be produce which decides if a
scheme S is 3-complete. Indeed, we can generate all triples in § and
select the triples of pairwise crossing members. Further each triple
{4,,4,, Ay} of pairwise crossing members can be examined in a constant
time whether v and € exist for it satisfying (1.5). For one can identify
(in a new vertex) each maximal subset of terminals having the property
that st€ 374, for i=1,2,3 and any two elements s and ¢ of the
subset, and next solve a corresponding linear program for a graph with at
most 23 = 8 vertices.

Now we introduce one more type of cut packing problems. Such
problems will arise in the proof of Theorem A, but they are interesting
also by themselves. For arbitrary «: Z(V,8)-> R, and A €S define
the partial value of o to be

CrAYE S (X)) XCV, XnT=A).

Multicut existence problem EX (V,S,1,d): given V,T,S,! (defined
as above) and a function 4d: S—- R + (as demands on partial values), find
l-admissible o: Z(V,S8)—> R, satisfying {*(4)>d(4) for all 4€S§
(or establish that such o does not exist).

If a is l-admissible and L is a shortest chain joining terminals s and
t, then

M(st) = UL)> 2(\*(e): e€ L) =
=2(aX)|dXNL|: XeT(V,85) >
=>2(aX): XeT(V,S), steaVXx)=
=2(£%(A): A€S, steaTa).

And so, in order to have a solution of a problem EX (V,S,[,d) it is
necessary (but, in general, not sufficient) that the inequality

(1.6)  m@)=2(dA) A€S, ucaTa)

should hold for all u € E(T).
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Definition. We say a scheme S C 27 belongs to the DSC-class with
respect to the multicut existence problems (shortly, to the EX-DSC-class)
if, forany V2T, I€ Rf(y) and d& Rf , EX(V, S, !, d) has a solution
whenever the inequality (1.6) holds for each u € E(T).

In Section 3 we prove the following theorem which gives a complete
description of the EX-DSC-class.

Theorem B.

(i) A scheme belongs to the EX-DSC-class if it is not 3-crossing.
(i) Let a scheme SC 2T be 3-crossing, V2 T and |V|>|T|+ 2.

Then there exist 1€ REY) and de RS such that (1.6) holds for each
uc E(T) but EX(V,S,1,d) has no solution.

(Note that there is a stronger, half-integer,. version of this theorem,
it will be mentioned in Section 5.) Theorem B is one of statements on
which the proof of Theorem A is based. The proof of Theorem B uses in
turn some relationship between multicut existence problems and one class
of multicommodity flow problems, it allow us to apply one known resuit
about multicommodity flows. Such a relationship can be shown in abstract
terms. To that end, in Section 2, we consider an arbitrary family of subsets
of a set with a fixed partition into subfamilies (such a family is named us
to be a compound one), introduce concepts of the generalized 2-MFMC-
and EX-MFMC-properties for compound families and establish some facts
about families having such properties. It will follow from the definitions
for our special case that S C 2T belongs to the 2-DSC- (resp., EX-DSC-)
class if and only if the cut family < (V,S) (divided into subfamilies
€V (A)={3VX: XCV,XnT=A4} (A€S)) has the generalized
2> -MFMC- (resp., EX-MFMC-) property forevery V2 T.

In Section 5 we study a special subclass of 3-complete schemes,
so-called 2-complete ones, and show that multicut max-2 problems
with such schemes have optimum solutions with some nice features. As an
application of this, we give a simple proof of one of Seymour’s theorems
on multicommodity cuts announced in [9] and proved in [10]. Also here
we show that unbounded least “fractionality” of optimum solutions in
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multicut max-2 problems with integer-valued lengths and laminar schemes
is possible. Finally, in Section 6 the concepts of the generalized MFMC-
properties are illustrated with multicommodity flows and some known
results are surveyed.

2. COMPOUND FAMILIES AND THE GENERALIZED
*MFMC-PROPERTIES

Let % be a family of nonempty subsets of a finite set E. F is
called compound and denoted by (#,: i€ ) if some partition of & into
nonempty subfamilies F, (<l is fixed. For c€ Rf, a function
;. F-R + 18 c-admissible if

2.1 2(fIF): ee FE F)< c(e) forall ec E.
We consider the following two packing problems.

A. Max-2 problems >(%,c): given c€ RE, find c-admissible f

on ¥ with 1-f maximum (this maximum is denoted by p(&, ¢)).

B. Existence problem EX (#%,c,d): given CERf and d € Ri,
find c-admissible f on F such that

(2.2) 2(fiF). Fe F)2d@i) forall iel
(or establish that such f does not exist).
Applying the L.p. duality theorem to 2'( #, ¢),
(2.3) p(.?,c)zmin{c-w:weRf, w(F)y>1 forall Fe #}.

For a function w on E and i€, let w! denote the value
min {w(F): FEe & i}. The following gives a criterion of solvability of
existence problems.

Proposition 2.1. EX(#,c¢,d) has a solution if and only if the in-
equality

(2.4 c-w=2diw’: iel

holds forany we Rf.
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Proof. Solvability of EX (#, ¢,d) means that the system of the
linear inequalities (2.1)—(2.2) has a feasible solution. Farkas’ lemma
applying to this system implies that EX (&% ,¢,d) has a solution if and
only if the inequality

c-w=2d@vi): ieN>0
holds for any w e Rf and ve Ri satisfying
w(F) —v(i)=> 0 forall i€l and Fez,
whence the result easily follows. &

Now we define the collection
b(7)=U@(F,): ieD

(where b(#F l.) is the blocker of & ;) which is called the imperfect blocker
of the compound family (#;:i€l). For BEE, we say that B meets
&, if B meets each member of F,

Let 6(E')=6FE(E') denote the characteristic vector in RE ofa
subset £' S E. Consider a function §: (%)~ R , satisfying

(25)  2(8B): BEB(F), B meets #,)> 1 forall i€l
For w=2/(8(B)0(B): BEb(#)) and any Fe #, i€l, we have
w(F) = 2 (8(B)8(B)8(F): B e b(F)) >
>2(8(B): Be b(#), B meets F)> 1
and kence (2.3) implies
P(F,¢)< 2(8(B)c(B): B e b(F)).

Definition. We say a compound family # has the generalized
MFMC-property with respect to the max->' problems (shortly, the gen.
2 -MFMC-property) if the equality

(2.6) p(F, c) = min {J(8(B)c(B): B € b(F))}

holds for any ¢ € RE, where the minimum is taken over all &: bB(F) -
> R, satisfying (2.5). (Obviously, the notion of the gen. 2 -MFMC-prop-
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erty is equivalent to that of the MFMC-property in the case |/|=1, i.e.
when an ordinary (noncompound) family is considered.)

Now consider an existence problem EX (#,c¢,d). It follows from
Proposition 2.1 that it is necessary (but generally not sufficient) for solva-

.bility of this problem that the inequality

2.7 c(B)> 2(d(i): i€ I, B meets F))

holds for all B € b(#), because, for B€ h(F) and w = 8(B), we have
c-w=cB) and w'=min{|BNF|: FE #}>1 forall i€l such
that B meets F .

Definition. We say a compound family % has the generalized
MFMC-property with respect to the existence problems (shortly, the
gen. EX-MFMC-property) if, for any c€ R and deR!, EX(Z,c,d)
has a solution whenever (2.7) holds for all B € b( ).

(It is easy to show that in the case |/|= 1 the nations of the
gen. EX-MFMC- and 2 -MFMC-properties are equivalent and, therefore,
both of them are equivalent to the MFMC-property.)

Now we introduce some packing problem for the imperfect blockers.
Given we Rf, let x: B(F)~> R+ be a w-admissible function, i.e.

(2.8) 2(k(B)8(B): BE b(F)) < w.
Then, for any F€ ¥, we get
w(F) = 0(F) 2((B)0(B): BE b(#)) >

> 2 (k(B): BE B(F), BN F + ¢),
therefore, forany i€ I,
(2.9)  w! (= min{w(F): F€ #)> Z(K(B): B€ b(F), B meets # ).
We say that a w-admissible « locks # ; if
(2.10)  w'=Z(k(B): B€ b(F), B meets 7).

Locking problem LOCK (#,w): given w€ Rf , find a w-admissible
k: B(F)~> R, which locks &, for all i€l (or establish that such a
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k does not exist). & is called lockable if LOCK (%, w) has a solution
(i.e.sucha k exists) forany we RE.

Lemma 2.2. The following statements are equivalent:
(i) # has the gen. EX-MFMC-property;
(i) # islockable.

Proof. (i)~ (ii). In view of Proposition 2.1, the fact that # has the
gen. EX-MFMC-property means that, for any fixed we Rf , (2.4)is true
for every c€ Rf and deR! satisfying (2.7) for all B€ b(F). Ap-
plying Farkas’ lemma to the implication V¢ >0, d>0 (VB(2.7)~> (2.4))
we get that there is a k: B(F) > R+ satisfying (2.8) and

2.11) =2 «(B): B€ b(F), B meets 971.)<—w" forall ie [l

But the w-admissibility of x implies (2.9) for any i€ I, and (2.10)
holds because of (2.9) and (2.11). Considering all w € Rf we conclude
that # is lockable. (ii) - (i) is proved by conversion of the above argu-
ments. 8

Lemma 2.2 will be used in the proof of Theorem B. The following
lemma will be needed for proving Theorem A.

Lemma 2.3. Let ¥ be a compound family and c€ RE. The for
lowing statements are equivalent:

(i) the equality (2.6) is true;
(ii) theinequality
(2.12) c-w>=2d@): i€D

is valid for any d€ R! and we RE such that d satisfies (2.7) for all
Be b(F) and w does

(2.13) wF)=1 foral Fe #.

Proof. First of all, we observe that validity of (2.6) is equivalent
to feasibility (by f2 # - R+ and &: H(F)~ R+) of the system of
linear inequalities {(2.1), (2.5)} together with the inequality
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(2.149) —S(fiF): Fe #)+ 2 (c(B)8(B): Be b(#)) < 0.

By Farkas’ lemma, the system {(2.1), (2.5), (2.14)} has a feasible solution
if and only if the inequality

2.15) c-w—23(di) ieD>0
~ E 5 . .
holds forany w€ RY, deR! and yeR, satisfying
(2.16) wWF)—y¢=>0 forall FE &,
(217)  — Z(dG): i€1, B meets #)+ c(B)Yy>0 forall BE b(F)

(w7, d and Y are variables dual to (2.1), (2.5) and (2.14), respectively).
But the implication {(2.16), (2.17)}~ (2.15) is equivalent to {(2.13),
(2.7}~ (2.12). For, partly, if =0 then (2.17) implies d=0 (as
d>0, each Fe # is nonempty and each #; is nonempty), whence
(2.15) trivially follows, partly, for arbitrary ¢ >0, the mapping
w,d, ¥)~> (w,d) defined by w=w/y and d=d/y turns the former
implication into the latter one. 8

Remark 2.4. It follows from Lemmas 2.1 and 2.3 that if % has the
gen. EX-MFMC-property then it has the gen. 2-MFMC-property as well
(because (2.4) and (2.13) together imply (2.12)).

Now we return to cut packing problem. A cut family %(V,S) hasa
natural representation as a compound one, namely (¢V(4): A€ S),
where %V (4) denotes {9V X: XcC V, XNT=A4} for A€S. Obvi-
ously, the blocker of %Y (4) consists of all the minimal chains in K,
with one end in 4 and the otheronein T — A. Thus 5(¢(V, S)) = z8,
where %% is the set of minimal T-terminus chains L such that el €
€9TA forsome A €S (suchachain L is called an S-chain). According
to the definition, % (V,S) has the gen. >-MFMC-property if, for any
1€ RE(),

(2.18)  p(V,S,D)=min {2(8(L)I(L): L€ &)},

where £ = % and the minimum is taken over all §: % - R + satis-
fying

(2.19) 2B Le ¥, eLcdTA)>1 forall A€ S,
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Let 2(V,T) denote the set of 7-terminus chains in K. Note that if
eL€3TA for some T-terminus L and A €S, then thereis an S-chain
L'C L for which also eL'€ dTA. It easily follows from this that if
(2.18) (subject to (2.19)) holds for ¥ = Z(V,T), then the same is true
for ¥ = %5, and vice versa. Next, let £ = #(V,T), and assume that
(2.18) (subject to (2.19)) holds and &* attains the minimum in (2.18).
Then, for L€ £V, T), §*(L)> 0 implies that L is a shortest chain
(since if WL')<IKL) and eL'=eL forsome chain L', the the function
§' defined by 8'(L)=0, §'(L")=8*(L)+ 8*(L') and 8'(L") = S*(L")
for the remaining L"’s in 2 (V,T) would satisfy (2.19), which would
lead to a contradiction to the minimality of 8%). Put f*(u) = 2(8*(L):
Le £V, T), eL=u) for each u€ E(T). Then B* attains the equality
in (1.4). Conversely, validity of (1.4) easily implies that of (2.18) (subject
to (2.19)) for £ = £(V,S). Thus, a scheme SC 2T  belongs to the
> -DSC-class if and only if £(V,S) has the gen. 2-MFMC-property for
all V2T.

Next, for # = ¢(V,S), c=1¢€ Rf(V) and d € RS, the inequality
(2.7) is specified as

(2.20) KL)=2(d(A): A€ S, eLe3T4),

where L is an S-chain in K, . Easy arguments show that if, given / and
d, the inequality (2.20) holds for any S-chain L, then it does for any T-
terminus chain L, whence validity of (2.20) forall L€ #% is equivalent
to that of (1.6) for all u € E(T). Thus, a scheme SC 27 belongs to the
EX-DSC-class if and only if % (¥,S) has the gen. EX-MFMC-property
forall V2T.

For we RE() and A €S, let w4 denote the value min {(W(E'):
E'e ¥V (A4)}. According to the above definition, a w-admissible function
¢: 25 >R, locks ¢V(4) if

221) wad =(pl): Le £, eLedTA),

where %= 25. As above, we extend £ to Z£(V,T), and let
p: >R + (where %= 2(V,T)) be a w-admissible functions satis-
fying (2.21). Then the function ¢' on £5 defined by

~ 456 —

o'(LY=Z(pl): Le £V, D), L' < L), L'exs,
is also w-admissible and
S('(L'): Le £5, eL'€3TA)>
> S(pl): Le £V, T), eLedT4),

whence it follows that ¢’ locks ¢V (4). Therefore, we may consider
the following slightly different (but equivalent, in essence) form of the
locking problem for €(V,S): given w€ RE(W), find a w-admissible
p: 2V, 1) >R + satisfying (2.21) for all 4 €S (or establish that such

- does not exist). This form is denoted by LOCKS (V, S, w) and called a

multiflow locking problem.

The problem LOCK/ (V, S, w) will appear in the proof of Theorem B.
Note that such a problem has also other applications, in particular, it is used
for solving a number of multicommodity flow problems (see [11], [12]).

3. PROOF OF THEOREM B

A proof of Theorem B can be immediately obtained from Lemma 2.2
and the following theorem.

Theorem 3.1.

(i) Let a scheme SC 2T pe not 3-crossing. Then, forany V2T,
the cut family €(V,S) is lockable.

(ii) Left ascheme SC 2T pe 3-crossing, VO Tand [VIZIT|+ 2.
Then €(V,S) is not lockable.

Theorem 3.1 is due to M.V. Lomonosov and the author (see
[13], [12])- However, in order to make the paper self-contained I give
another proof of Theorem B. Namely, a direct proof of the part (ii) of
Theorem B and a new proof of the part (i) Theorem 3.1 are given here
(the part (i) of Theorem B follows from the part (i) of Theorem 3.1 and
Lemma 2.2).

Proof of the part (ii) of Theorem B. Let Sc 2T be 3-crossing,
VST and |V|>1|T|+ 2. Choose an arbitrary triple of pairwise crossing
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members in §, say S*={4,,4,,4,}. Put dd,)=1 (i=1,2,3) and
d(4)=0 forall A€ S —5* Now our purpose is to determine a func-

tion I on E(V) such that the inequality (1.6) holds for any u € E(T)
but there exists a function w € RE(Y) such that

I-w<ZdA)wr: 4€8)
(then by Proposition 2.1, EX (V, S, !, d) has no solution).
First of all we introduce two sorts of triples of pairwise crossing sets:
1. 8, ={{0,i}: i=1,2,3}c 2”1, where T, ={0,1, 2,3},

2. 8, ={{i,i+1,i+2})i=1,2,3}C 272 where
T,={0,...,5}.

(see Fig. 3.1, where the corresponding families of cuts are shown).

Proposition 3.2. Let T' be a minimal subset of T having the prop-
erty that the subsets A{=A,NT' (i=1,2,3), are still pairwise crossing
with respect to T'. Then the triple S' = {4;,4,,4;1C 2T is equivalent
to either S, or §,, thatis, there is a one-to-one mapping x: T'~> T
(resp., > T,) such that, X(A[) is either {0,i} or T, —10,i} fresp., i.ls
either {i,i+ 1,i+ 2} or T, —{i,i+1,i+2}) for i=1,2,3.

L i
N
|
y \ 1 | 2
O 1,7 209 ° ©
/V // \\ I //
/ | // \\ | //
—— L 00 ST o3
// I TN
p I/ // | \\
A ST
OO /s 30 | h
\ /s l SO O4-
U |
-~ |
(a) (b)

Figure 3.1
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This statement occurred in [12]. A sketch of that proof is the follow-
ing. Obviously, A} NA;N A31<1 for arbitrary A} € {4, T — A}
(i=1,2,3). Without loss of generality we may assume A N Ay NAy+
# ¢. The following two cases are possible:

1. for j=1,2,3, A]f does not lie in Az')UAtII’ where {p,q}=
:{1,233}_{]}>
2. A].'QAI', UACI7 for some j€{1,2,3} and {p,q}=11,2,3} - {j}

Using the minimality of 7' one shows that S’ is equivalent to S,
in the first case and S’ is equivalent to S, in the second case. 8

Now, let T' and S’ be defined for above T and S* asin Proposi-
tion 3.2.

Case 1. |T'|=4 (and S' isequivalentto §,).

We may assume that 7' is identified with 7, by use of the map X.
Take an arbitrary element x in V — T, and let Gl = (V1 ,E 1) be the
subgraph of the graph K, drawn in Fig. 3.2a. Put l(e)=1 forall e€ E,
and l(e)>2 forall e€ E(V)~E,.

Case 2. |T'|=6 (and S’ isequivalent to S5).

Similarly we assume that T’ is identified with T,. Take arbitrary
two elements x and y in V — T (which exist because | V{=|T|+ 2),
and let G, = (V,,E,) be the subgraph of K, drawn in Fig. 3.2b. Put
le)=1 forall ecE, and He)=3 forall e€ E(V) _Ez-

1 9 1 2
x 0 3
x y
@G, 0 3 G, 5 4
Figure 3.2
- 459 —



One can check that in both cases the inequality (1.6) holds for all
u € E(T). However, in both cases the problem EX (V,S,l,d) has no
solution. Indeed, consider the function w on E(V) defined tobe 1 on
E, (respectively, on E,) and O on the remaining edges in EV). Itis

easy to check that w?i=2 inCase 1 and w" = 3 in Case 2 i=1,2,3).
If Case 1 takes place we have /- w=4<6=2(dd)wi: A€S) and

in Case 2doeswe have /- w=7<9=2(dA)wd: A€S).1

Proof of the part (i) of Theorem 3.1. We say that a nonnegative in-
teger-valued function w on E(V) is inner cut even if the value w(d Vix}
isevenforall xe V-T.

Lemma 3.3. Let SC 27 be not 3-crossing. V2T, andlet w be
inner cut even function on EV). Then there exists a w-admissible
o: 2V, T)>Z,_ locking all AE€S (Z_ is the set of nonnegative in-
tegers).

(Clearly this lemma is a strengthening of (i) in Theorem 3.1. It is due
to Lomonosov and the author [13], [12]; their proof is based on an
algorithm whose running time is bounded by w(E(¥)) times a polynomial
in | V| and |S]|. In[12] also another algorithm is developed which works
with arbitrary nonnegative real-valued w and uses O(]T|*|V|?) opera-
tions.) Here I present another and simpler proof of this lemma.

Proof. We proceed by induction on n(w) = 2 (w(@{x}: x€ V- T).
Assume that n(w)= 0, and put (L) = w(u) forall L ={u}. (u€ E(T))
and ¢(L)= 0 for the remaining L’sin £ (V,T). Then w? = J(w(u):
u€ dT4) and (2.21) is obviously true for all A € S. Now we assume that
n(w)>0, andlet x€ V — T be such a vertex that w(a{x}) > 0. Define
the set V(x) to be {y: w(xy)>0}. For XCV, let X* denote X if
x& X anditdo V- X if xe X.

Assume that |V(x)| =1, and let V(x)={y}. Put w'(xy)=0 and
w'(e) =w(e) (e€ E(V)—{xy}). Since w(xy) (= w(d{x})) is even, w'
is inner cut even. We show that w4 =w4 forall A€ S (then, by
induction, there is a w’'-admissible ¢: L(V,T)~> Z + locking all 4 €S
(concerning w'), and hence ¢ is w-admissible and it locks all A€ S
for w). Let A€S, XCV, XNT=A and w'(3X)=w4. If xy ¢ dX,
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then w'(3X)= w(3X)=> wi. Suppose xy€dX, andlet Y =X*U {x}.
Then YNT=X*NT and w'(3X)= w'(3Y) = w(dY) > w?, therefore

wid =wa,

Thus, we may assume that | V(x)|> 2. For two distinct y,z € V(x),
we say that w' is obtained from w by righting on y,z if w'(xy)=
=wkxy)—1, w'(xz)=wxz)— 1, w'(yz)=w(pz)+ 1 and w'(e) = w(e)
for the remaining e’s in E(¥). Obviously, n(w') < n(w) and w' is inner
cut even when w does so. We shall show that there are y, z € V(x) such
that the function w’' obtained from w by righting on y,z satisfies
w'd = wA forall A€S. Then, by induction, there exists a w'-admissible
¢t £(V,T)y> Z, whichlocksall 4 €S (for w"). If w'(yz)> 2 (¢'(L):
Le £V, T), yz€ L), then ¢' is also w-admissible and hence ¢’ locks
all A€ S for w. Otherwise, we take an arbitrary L € £(V,T) such that
yz€ L and yield the chain L' for which eL’' =eL and L' S (L — {yz}) U
U {xy, xz}. Then the function ¢ defined by (L) = ¢'(L)—1, (L") =
=LY+ 1 and (L") =¢'(L") (L"€ #2(V,T)—{L,L'}) is obviously
w-admissible and it locksall A€ S for w.

We need three simple claims. We say that X separates Y and Z

ifeither YEX, ZNX=¢ or Z&X, YNX=¢.

(1) Let w be inner cut even, and w’' be obtained from w by
righting on y,z (y,z € V(x)). Next, let w4 <w? forsome A€ES,
and XC V besuchthat XN T=4A4 and w'(d8X)=w". Then X sepa-
rates {x} and {y,z}, and w(dX)=wA.

Indeed, let E, = v X. wi(E|) = wd <wi < w(E|) easily implies
that xy,xz€ E; and yz&E,; andso X separates {x} and {y,z}, and
w'(E)=w(E;)—2, whence w4 >w4 —2. Let YCV be such that
YNT=A and w(E,)= w4 where E,=9Y. Since XNT= Yynr
and w is inner cut even, then w(E,) — w(E,) is even. Hence wd =
=wA —2 and w(E)=w4.

X is called V(x)-maximal if X € F(V,S), w(dX)=wX"T and the
set X*n V(x) is maximal under these conditions (X* is defined as
above).
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(2) Let X, and X ) be two V{(x)-maximal sets such that X 1* N
nV(x)#Xz*n V(x) and Xl*an*ﬂ V(x)# ¢, and let Ai=XiﬁT
(i=1,2). Then A1 and A2 (considered as subsets of T') are crossing.

Suppose, for a contradiction, that A1 and A2 are laminar. Let 4 l =
=X*NT (=1,2). Assume that AjNA=¢, andlet ¥ =X — X5
and Y, =X} X A;NA;=¢ implies ¥Y,nT=A;, and we have
w@X?)=w'i<w@Y,) (i=1,2). Hence, for any e€E(V) with
w(e) > 0, the obvious submodular inequality

[{e} N X} |+ I{e} N X} 1> |{e} N 3Y, |+ [{e}n 3Y, ]|

holds as equality. Thus, w(zv)=0 forany z€ XN X} and v€E V—
— (XU XJ) which contradicts to XN XFNnVx)+¢ and xe V-
— (X VU X)) A similar contradiction is produced when A; U A, =T.
It remains to consider the case {4, N 4;, AjVALY= {A;, 45} Let,
for definiteness, Ai VA, = Ai, and let Y= XU X;. Then, by argu-

ments as above, w(aY) = wA 1 But the set Y N V(x) strongly includes
X l.* N V(x) (i=1,2), contrary to the V(x)-maximality of X,.

(3) Let XCV,XNnT=2A4 and w(dX) = w4. Then w(E') < w(E"),
where E'={xy: yeX*N V(x)} and E" = {xy: y€ V(x) — X *}.

Indeed, let Y=X*uU{x}. Then YnNnT=X*NT, whence
w(@X*) = w? <w(@Y), where A=XnNT. We have 3X*—-0Y =E'
and 3Y — 0X*=FE", and the result follows.

Now we continue proving the lemma. Suppose, for a contradiction,
that each two y,z € V(x) have the property that w4 <w? for some
A €S and the function w’ obtained from w by righting on y,z. Then,
by (1), for each two y,z € V(x), there are A€ .S and X C V such that
XNnT=A, wdX)=w? and X separates {x} and {y,z}. Choose a
collection @ of V(x)-maximal sets such that X n V(x)# Y N V(x) for
any distinct X, Y€ Q and, for any V(x)-maximal Z, thereisan X € Q
for which XN V(x)=Zn V(x). Assuming that |Q|<?2 we get that

there is an X € Q such that 2 (w(xy): y€ X* N V(x)) > —%Z(w(xy):
¥y € V(x)), contrary to (3). Thus, [Ql>3. Let X,,X, be elements
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of Q such that XN X2* #¢, and let ye (X[ —Xz*)ﬁ V(x) and
z€ (X} —X{)N V(x). Take an X;€Q such that X, separates {x}
and {y,z}. Finally,let 4;,=X;NT (i=1,2,3). By (2), any two mem-
bers of {A1 , A2 , A3} are crossing. This contradiction completes the
proof of the lemma.

4. PROOF OF THEOREM A

Proof of the part (i). Consider an arbitrary 3-complete scheme
Sc 2T, aset V2T and an edge length function /€ RE(Y). We have
to prove that

4.1) p(V,S, D=2 (B*w)u,(u): u€ E(T))
forsome g*: E(T)~> R, satisfying
4.2) g*@TA)=1 forall A€S.

Define u€ Rf(T) by w(u)= u,(u) (u€E(T)), and consider the “re-
duced” multicut max-> problem Z(T,S,u). By linear programming
duality thereisa $*: E(T) > R_ which satisfies (4.2) and

+
(43)  p(T,S, 1) = 2B*wn(u): uc ET)).

It suffices to prove that p(V,S, D> p(T,S, ) (then (4.3)implies (4.1)
since p(V,S,D< Z(B*(u)u,(u): u € E(T)) always holds subject to (4.2)).
Let a: §~> R, be an optimum solution of 2(T, S, w, ie.

A w) (= S(A): A€S, uc dTA)) < uw)

4.4)
forall u <€ E(T)

and 1-a= p(T, S, u). Assume, in addition, that « is chosen so that the
value ¥(&) = > (\*(u): u€ E(T)) is minimum.

Claim 4.1. Let S*={4, ,Az,A3} be a triple of pairwise crossing
membersin S. Then a(Al.) = Q foratleast one i€{l,?2,3}.

Indeed, let a = min {a(Ai): i=1,2,3}, and suppose, for a
contradiction, that > 0. Since § is 3-complete, there is y: S* > R,
and e: S~ R+ satisfying (1.5). Put oz’(At.) = a(Al.) — b'y(Ai) + be(Ai)
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(i=1,2,3) and a'(Ad)=a(d)+be(d) (A€S—S*, where

- a o |
" max{v(4): i= 1,2, 3} (0<b<e since a>0 and ¥A4)>0

for at least one i, because of (1.5)). Obviously, o' > 0. From (1.5) we

get 1- a'=1- &, A% <A and )\"N"(u) < )xa(u) for some wue€ E(T),
contradicting the choice of a. 8

Now let S* ={4€S: a(d)> 0}. By Claim 4.1, S§* is not 3-
crossing. Define the demand function d: §* >R_ by d(4)= o(A)
(A €87%), and consider the multicut existence problem EX (V,S™, 1, d).
Since S* is not 3-crossing and the inequalities in (4.4) hold (com-
pare with (1.6)), then, by Theorem B, this problem has a solution
o't E#(V,5%)> R, . Let the function « be the extension o£ «' with
zero on Z(V,S—-S*t). Then, obviously, 1-a=1-q« hence
pV,S,D=1+a=p(T,S, ), asrequired.

Proof of the part (ii). This proof is more complicated. We are based
here on Lemma 2.3. Let SC 2T be not 3-complete, V> T and |V|>
2 |Tt+ 2. According to Lemma 2.3 we have to prove that there are
le Rf(V), deRS and we RE(M) such that

4.5) w@VX)>1 forall Xe #(V,S),

(4.6)  p(u)=>(dA4): A€S, ucdT4) forall ue ET)
but

47  1-w< (dd): A€S)

((4.6) is equivalent to {(2.7) VBe b(#)} by F=%{V,S) and I=c,
as it was explained in Section 2.)

Let §*={4,,4 A3} be a triple of pairwise crossing members in
S such that there are no v: §* ~ RJr and e S~ R+ satisfying (1.5).
Let us choose a minimal subset 7' '€ 7 such that A/ =A,nT
(i=1,2,3), are still pairwise crossing (with respect to T'). By Propo-
sition 3.2, we may assume that either

(1) T'=T, =1{0,1,2,3} and §'=8,={{0,i}: i=1,2,3}

" or
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2) T'=T2={0,...,5} and S'=S2={{i,i+ 1,i+ 2}
i=1,2,3}, where S'={Al',Aé,A;}.

First of all, we define a suitable function ! as follows.
-
Case 1. S§' = AP

Choose an arbitrary vertex x€ V — T, and let G, = (Vl,E ) be
the graph with the vertex-set {0, 1, 2, 3,x} asin Fig. 3. 2a Put
1, eEE1
(e)=1p, (+p, (@+p, (e), ecEMD,
a large positive number, e€ E(V) - (E, V E(T),

where p, denote the characteristic vector of the subset 874 in RE(D.

Case 2. S' = S2.

Choose arbitrary x,y € V — T (existing because of IVIZ|Ti+ 2,
and let G =(V,,E,) be the graph with vertex-set {0, . ,9,x,¥} as

in Fig. 3. 2b ! is defined similarly to the previous case (w1th G, instead
of G,).

Next, d is defined by dA)=1 (=1,2,3) and d4)=0
(AeS—-5%). It is not difficult to verify that in both cases, (4.6) holds
with given / and d. Now our aim is to define a function w € REM
that (4.5) and (4.7) should be true (with given / and d). At the beglnnlng,
we define the function w' as follows:

1

3 ecF
w'(e) = [ in Case 1;
0, eEE(V)—E1
[31, eEE2
w'(e) = in Case 2.
0, ecE(V)—

One can check that

4.8) w'(0X)> 1 forall XeZ(V,S%)
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in both cases. Furthermore, in Case 1, we have

1

I-w' =4-1 -§<3=Z(d(A):A€S)
and in Case 2, we have
o' =7 1-%—<3=2(d(A):AeS).

The only reason why it is not fit, in general, to put w=w' is that the
inequality w’(8X) <1 is possible for some X € Z(V,S — S*). However,
the following lemma is valid (its proof is the central point in our process
and it will be given later).

Lemma 4.2. There existsa 8€ RETD such that
BRTA)=1 (=1,2,3),
4.9)
BdTAY> 1 forall AcS—S*

Assuming that this lemma is valid we define suitable w as follows.
Put w'(e)=p) (e€E(T)) and w'(e)=0 (ec E(V)—- E()). Let
k=min{fBTA)—1: A€S5—-5*} and =%min{1,ic}, then

1 ! n
0< E<§ . Now put w=§w'+ (1 —§w". We observe that w"(3X) =

=B@TA) forany XC V and A = XN T, and hence, by (4.8) and (4.9),
w(@X)=1 forall Xex(V,8*%). If Xez(V,S—8*)and A=XnNT,
then

w@X)= (1 —9HETAH =1 - HU + ) > 1.

Thus, (4.5) holds for given w. Next, by (4.9) and the definition of /, we
have

l-w'=2(py B:i=1,2,3)=3,
H
and now, since /- w’' <3 and 2(d(4): A€ S)= 3, we obtain
lew=E8 -w+(Q-8l-w'<3=2(dA): A€S),

i.e. (4.7) is true.
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Proof of Lemma 4.2. We prove that the linear program £: max 6
subject to

poaTAy=1 @(=1,2,3), 1y
—BETA+86<—-1 (AeS-85%), le
BeREM, seR,

has an optimum solution (B, 8) with either §>0 or 8=. The
program 2* dualto 2 is:

47, €)= SHA,): i=1,2,3) - Z(e(d): A€S—S*)~> min
ZA)p, : i=1,2,3) - 2(e)p,: A€S-51)>0
Z(e(d): AeS—8*)>1

YA)S0 (=1,23), €4)>0 AES-SM.

Suppose that #* has no feasible solution. Then one can see that,
for any A€ S— S* there is an edge u€ 3TA such that u@dT4,
(i=1,2,3). Define B asfollows. Let T'S T and S'={A;,4,,4;}

be defined as in Proposition 3.2. If T'={0,1,2,3}, put B0, = 5

(i=1,2,3), andif T'={0,...,5}, put B(0,3) = 1. Next, put f(u) =2
for all u € E(T) such that u@ 374, (i=1,2,3), and fu) =0 for the
remaining u’s in E(T). Then, as it is easy to see, 6(8TAl.) =1(=1,2,3)
and {3(6TA) >2 (A€ S~ S*), hence (B, 1) isa feasible solution of 2.

Next, suppose that #2* has an unbounded solution, and let ('Ay', €)
be a feasible solution of #* such that q(;, €)<0. Put ~(4))=
= max {v(4,), 0} - gy, e), vA4)=max{y(4),0} (i=2,3) and
€(4;) = max {— 'y(Al.), 0} (i=1,2,3). Then ¥>0, €>0 and (1.5)
holds for these y and e, contradicting the choice of S™.

Now suppose that £* has an optimum solution (;, €) with
(v, €)= 0. Note that feasibility of (v, €) implies that e(4)> 0 for some
A€ S—-S*, whence ;(Ai) >0 forsome 4;,€ 5% But (1.5) holds for no
(v, €), and now a contradiction to the supposition is immediately obtained
from the following lemma (thus, it remains to consider only the situation
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when £2* has an optimum solution (;, €) with q(;, €)> 0; then,
by Lp. duality, there is a feasible solution (B, 8) of # with 6> 0, as
required).

Lemma 4.3. Let ¢+1S{1,2,3}, §*={4; i€} and ¥(4)>0
for i€ 1. Further, let S(T) be a collection of proper subsets of T such
that §* C S(T) and, for any proper subset A of T, exactly one of A
and T— A isin S(T). Then there exists no function e€: S(T) — S*- RJr
such that both of the following equalities are true:

410) S, i€D=Z(ed)p,: A€SD -5,
(4.11)  Z(y4): ieD=Z(e(4): A€ S(T)-S5*).

Proof. We need some known easy assertions about metrics. A func-
tion w: E(T") -~ R, is said to be a metric on T' if u(xy)+ p(yz)=
> u(xz) for any distinct x,y,z€T’. A chain L in K. is called a
geodetic of u if p(el) = (L) (= 2 (u(e): e€ L)). Let 7 (n) denote the
set of geodetics of pu. ’

(1) If p,u',u" € E(T') are metricsand p=pu' + u", then F(u)=
=T W)n Tu").

(2) Let S'c2” and veRS. Then u=2@wUp,: A€S) is
a metric, and a chain LS E(T') is a geodetic of u if and only if
ILN3T'A1<1 foreach A€ S’ such that »(4)>0 (p/j1 is the charac-
teristic vectorof 374 in RT).

(3) Let u be a metric on 7', and let u(st)=0 for some st€
€ E(T'). Then wu(sp)= u(tp) forany pe€ T —{s, t}.

(4) (a corollary of (2) and (3)). Let pu be a metricon 7', and let

{1,,7,,..., Tm} be the partition of T’ into maximal subsets T} such
that m(u)=0 for any ue€ E(T)). Define uf (i) = u(st) for ij € E(P),
seET, te€ T]., where P={1,...,m}. Then

(a) u® isametricon P,

(b) if p=2@MAp,: AES'), where S§'C 27" peRS and
»(4)> 0 forall A€S’, then, forany A€S', A=U(T; i€ AF) for
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some AF c P, and pf =Z(V(A)p;PZ A€ S'), where p/’;P denotes the
characteristic vector of 3747 in RP.
Now we start proving the lemma. Suppose, for a contradiction, that

there is € satisfying (together with given v) (4.10) and (4.11). Let
U= Z(’Y(A,-)pA - je ). By (2), p is a metric. According to (4), without
i

loss of generality we may assume that p()>0 for all u€ E(T) (as
otherwise, we could consider P and pf instead of T and u, where P
is the partition for u as in (4)). Thus, we have 2< | TI< 2M' < 8.

Case 1. |I|=1.
Then |T1=2, S* = S(T), and (4.10) is impossible.
Case 2. |I|= 2.

Let S*= {AI’AB}}’ say. Since A, and A4, are crossing, we have
|T| = 4. Let, for definiteness, 7 = {0, 1,2,3} 4, = {0,1}, A5 = {0, 3}
and S(T) - S*= {{0}, {1},{2},{3},{0, 2}}. Itis easy to see that:

(i) each chain L]. ={jG+ 1),G+ DG+ 2)} (indices are taken
by modulo 4) is a geodetic of p (see Fig. 4.1),

(ii) for each A € S(T) - S* there is some geodetic L’. such that
IL]. Nn3aTAji=2. Thus,by(1)and(2), e=0, a contradiction.

—o
4‘[\)

Figure 4.1
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Case 3. I = 3.

Then S*=S8* and 4<|T|<8. Let T'ST and S'=
={4;=A,NT":i=1,2,3} be defined as in Proposition 3.2. Let
P1'9 be the characteristic vector of subset 9878 in RT for
BcT'.

Claim 4.4. The inequalities

(4.12) Z'(W(A,f)p,;;,: i=1,2,3)=2 4", A" €S(T"),
(4.13)  2(WA4)): i=1,2,3)=ZFA"): A’ €S(T")

imply

(4.14)  (4H=0 forall A'€S(T") ",
(4.15)  £A)D) = Y(A)) for i=1,2,3.

Proof. Assume that {7'|=4, andlet 7'={0,1,2,3} and A=
={0,i} (=1,2,3). Put A’={j} (=0,1,2,3). The vector equality
(4.12) may be written as

16 ZWA) - A i€{1,2,3}, uedl'a))=
' =2(8A7): j€{0,1,2,3}, uc 3T A7) forall ue E(T).

Summing up all the six equalities in (4.16) we get
4Z2(PA)-¥A)): i=1,2,3)=32(847): j=0,1,2,3),

whence, taking into account (4.13), we obtain (4.14). Now (4.16) easily
implies (4.15).

Now assume that |[7'|=6, and let T'={0,...,5}, A=
={ii+ 1,i+ 2} (i=1,2,3). One can see that:

(@) each chain L;={(G+ D,(+ DG+ 2,G+2)G+3)} (=
=0,...,5) (indices are taken by modulo 6) is a geodetic of u (see
Fig. 4.2),

(b) for any A'€ S(T')—-S' there is a geodetic L; such that
iLjﬂ aT'A'|= 2. Thus, by (b), (1) and (2), (4.14) is valid. Now,
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considering the equality (4.12) for the edge (i— i G=1,2,3) we
immediately obtain Y(4;) = £&(4;), asrequired. ¥

Figure 4.2

Thus, if 7' = T, the result immediately follows from Claim 4.4. Now
assume that 7' € T. Inview of Claim 4.4, in order to finish the proof it is
enough to show that, if 4 € S(T) is such that A& S* and AN T = A
(or AnNT' =T"— A,.') for some i, then there is a geodetic L C E(T) of
u for which |L N aTA|> 2 (then, by (1)and (2), it must be e(4) = 0).
Let, for definiteness, ANT'=A4; (and A # A4,), and choose a vertex
ye T—T' such that either v€EA and v€ A, or v@&A4 and vE€A,.
Take A*€{A,T -A} and Al?* E{Ai, T— Al.} (i=1,2,3) so that
A*NT'=ATN T', vgA* and ve Al (i=1,2,3). Since u(xy)>0
for any xy € E(T), then {A]NATNAJI<]I, andso Af NA;NAS=
={v}. Hence A} NAJ NA3' =¢, where A}'=ArnT. Choose
pEA}' NAZ and g€ A} N A" (see Fig. 4.3) (every A} ﬁA].*' is
nonempty because A’ and A ]?" are crossing). Now since p & A}’
and q&A}, we have u(pv)=1v(4,), wurg)=v4,) and upq)=
=7(4,) + v(4;), therefore the chain L = {pv, vq} is a geodetic of u.
But p,ge A* and v@A*, hence |[LNaT4|=2.

This completes the proof of Lemmas 4.3, 4.2 and Theorem 1. 8
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Figure 4.3

5. 2-COMPLETE SCHEMES

Consider a multicut max-> problem Z(V,S,I), where Sc 2T,
and let u= p,| ETY It was explained in Section 4 that the minimax
relation (1.4) holds for such a problem if and only if

5.1 p(V,S,D)=p(T,S, w.

Thus, given SC 27, (5.1)is true forany ¥ 2T and /€ RE(Y) ifand
only if § belongs to the 2 -DSC-class which, by Theorem A, is equivalent
to that S is 3-complete. Moreover, the idea behind the proof of the part
(i) of Theorem A prompts the following approach for solving 2V, 8D
with 3-complete S. First we must solve the reduced multicut max-2,
problem 2 (T, S, u) (which may be named a pre-problem of 2V, S, D).
Next, we reform the found optimum solution y€& Ri of 2(T,S,w
into such an optimum solution +' that the family S*(y)={4€S:
v'(4)> 0} is not 3-crossing. Finally, we solve the multicut existence
problem EX (V,S8*(y"),1,d), where d(4)=1~'(4) (A€S5%(y"), then
the found solution « is an optimum solution of 2 W, S, D.

There is a greedy algorithm for solving any existence problem
EX (V,S,1,d) with real-valued ! and d and non-3-crossing S [18].
The complexity of the algorithm is O(| T 131 V13) operations. As a direct
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corollary of the algorithm, the following half-integerity theorem is stated.
We say that a function I on E(V) is cyclically even if it is nonnegative
integer-valued and the value XC)= 2 (le): e C) is even for any circuit
C in K.

Theorem 5.1. Let SC 2T benot 3-crossing, V2T, 1€ ZEY) and
de Zf , and let (1.6) hold for all u € E(T). Further, let the function l,
defined by 1'(e) = 2(dA): A€ S, ecdTA) (e€ E(T)) and 1'(e)= l(e)
(e€ E(V) — E(T)), be cyclically even. Then EX (V, S, 1, d) has an integer
solution.

Return to the max-2 problem 2(V,S,!) with 3-complete S, and
suppose that we succeed in finding such an optimum solution 7y of the
pre-problem (T, S, u) that S*(y) is not 3-crossing and both ml! and
mry are integer-valued, for some integer m. Then, by Theorem 5.1, there
exists an optimum solution a of 2(V,S,D such that 2mo is integer-
valued.

Now we introduce one special class of 3-complete schemes. A scheme
Sc 2T is called 2-complete if, for any two crossing A, A, €S (if any),
there are BI,B2 €S such that B = A} — A5 and By =A} ——Ar for
some Af€{A;,T—A;} and Bre{B, T-B;} (i=1,2). Itiseasy to
see that such a relation can be expressed as the vector inequality

(52) Py t Py, Pg TPy,

Obviously, any laminar scheme (i.e. consisting of pairwise laminar subsets)
is 2-complete. It is easy to show that, for any 7T, the scheme of all the
odd-size subsets of T (Ex. 3 in Introduction) is 2-complete. Here are
other examples of 2-complete schemes § (their examination is left to the
reader).

Example 5. § consist of all proper subsets of 7.
Example 6. S={4ACT: 1<|A|<k} forarbitrary k< |T|.
Example 7. S={AC T: |d7TAn U|= 1} for arbitrary U < E(T).

Example 8. S={4 CT: a(dTA) odd} for arbitrary integer-valued
function a on E(T).
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Proposition 5.2. If a scheme is 2-complete, then it is also 3-complete.

Indeed, let Al,Az,AS be pairwise crossing members of S. As S is
2-complete, there are B1 , 132 € S for which (5.2) holds. Then (1.5) holds
for v(4,)=v4,)= €B,)=¢€eB,)=1, Y4;)=0 and e€(4)=0 for
AeS—{B,,B,}1

Thus, by Theorem A, each 2-complete schemes belong to the 2-DSC-
class. The 2-complete schemes have the following important property.

Theorem 5.3. Let SC 2T be 2-complete, V2T, Ic RE and
let pu= ul| E(T)" Further, let v. S-> R + be w-admissible. Then there
exists an l-admissible o: 2(V,S)—> R + Such that

i l1-a=1-4v,
(i) « isinteger-valuedif | and v areinteger-valued,
(iii) the family Z*(a)={Xe€ XV, S): a(X)> 0} is laminar,
(iv) if the family S*(y) is laminar, then
(A (= 2(X): XCV, XNnT=A))= Y(A) forall AES.

Proof. Supposing that S*(v) is not laminar, let v’ be p-admissible
and such that 1-+4'=1-+v, ¥ isintegral if vy is that, and the value
wy) = 2()\7'(u): u € E(T)) is minimum. We assert that S*(y’) is lami-
nar. For suppose that A A€ S*(y') are crossing, and let B,,B,eS
be such that (5.2) holds. Define v" by *y"(A,.) = 'y'(Al.) —a, 7"(Bi) =
= 'y’(Bl.) +a (i=1,2), where a= min {r'i)), v7'(4,)}, and v"(4) =
= v'(4) for the remaining A’sin S. Then +” is u-admissible and
1-9"=1-9" But w(y")< w(y"), acontradiction to the choice of v'.

Thus, we may assume that S*(y) is laminar and now we prove (iv).
We proceed by induction on ¥(/,y) = | ST (y)| + [{e € E(V): I(e)> 0}]
(by fixed V,T and ). The result is obvious when S*(y)=¢. Let
S*(v)# ¢. Choose a minimal set A* amongall A€ S+ () and their
complements T — A. Without loss of generality, we may assume that
A* € St (y). Put

X=A*U{xeV-A* min{u(sx): s€ A*} =0},
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A = min {y(4*), min {l(e): e€ 3V X}}.

Since v is u-admissible, then Kst) = u(st) = A7 (st) = v(4*) > 0 for any
st€ 3TA*, hence XN T=A* Define I’ and v by Il'(e)=le) — A
(e€ 3X), l'(e)=IUe) (e€ E(V) - 3X), Y'(A*)=v(A*)— A and y'(4) =
=~vA4) (A€S—{A*}), and let u'= By lE(T). Obviously, A>0 and
n(',v")<n(, ). We have to prove that vy’ is u'-admissible, i.e.

(%) A (0q) (=2 (y'(A): AES, pge dTA) < u'(pg)

for any pge€ dTA. Then, by induction, there exists an [/ ’-admissible
o #(V,S)-> R, for which ¢ (A)=7'(4) for all A€S, and re-
quired o is defined by aX)=a¢'X)+ A and «(Y)=a(Y) (Y€
exV,S)—-{X}.

(1) p,geA*.
The choice of A* implies A7(pq) = 0, and («) is obvious.
(2) p.q€ T-A*

Let L={xpyx ,xX;,...,%;_;%} C E(V) be a shortest chain with
xo=p and x, =gq, ie. I'(L)=u'(pq). If LN3X=¢, then I'(L)=
= (L) = u(pq), and the result follows. Assume that L N 90X # ¢, and let
0=i0)<i1)<...<i(m)=k be such a sequence that m = |L N 0.X|
and Xi) isin X if and only if j is odd. According to the definition of
X, forany odd j, either Xy =5 € A* or there is 5; € A* such that
ul(s].,xi(].)) = 0. We observe that ul(e)> A for any e€ 0X. Further,
the laminarity of S*(y) and the minimal choice of A* imply

AN (ps;) + N (s,,, 1 @) — N (pq) = 2v(A4%) > 24,

Using these facts, we have

m

-1
wipg)=U'(Ly=UL) - mA> p(x,.(’.)xi(j+ 1)) —mA>

= u(psl) + uls,, _ 19 —24> )\V(psl) + 7\7(sm~ 19)— 24>
> \"(pg) = \" (pg).

(3) peT - A*, g€ A*.
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In this case the proof of (») is carried out similarly to the previous
one (one should take into account that m=|L N dX| is odd and

A7 (pq) = N (pq) — A).

It is easy to see that (ii) and (iii) are also true. (i) immediately follows
from (iv). &

Corollary 5.4. If S is 2-complete, 1 is integer-valued and 2 (T, S, i)
has an integer optimum solution, then p(V,S,D)=p(T,S,u) and
2(V,S, 1) has an integer-valued optimum solution a such that Z* (o)
is laminar.

Remark. The above proof contains, in essence, an efficient algorithm
solving Z(V, S,1) with 2-complete S and /€ RE() in assumption that
an optimum solution vy of the pre-problem 2(7,S,u) with laminar
S*(y) is given. Note that the following specification should be introduced
in this algorithm for the efficiency: if A* is chosen on some iteration, then
subsequent iterations are accomplished for the same A* while ¥(4*)> 0,
where v is considered as a current (decreased) function. Then complexity
of the algorithm is shown to be O( TH| V|3) operations (note that this
algorithm can be improved to be of complexity O(| V12| T|log| T).

Now we demonstrate some applications. Let US E(V) and & v
={XCV:|d3XnUl=1}. Consider the following problem P(V,U,D:
given /€ RE(), findan l-admissible a:2; > R, such that

(5.3) A*(w)=lu) forall ueU.

For a circuit C< E(V) in KV, let A(l, C) denote the value {(C - U) —
—KCn U). The problem P(V, U,[) wasstudied by Seymour [9],[10]
who proved that

(i) PV, U,D has a solution « if and only if A(/, C) is nonnegative
for each circuit C in K,

(ii) if ! is integer-valued and A(/, C) is a nonnegative even integer
for each circuit C in” K}, then the problem has an integer solution.

We show that (ii) can be directly obtained from (i). Let T be the set
of ends of edges of U, andlet S, ={AC T: |1aTA N U| =1} (cf. Exam-
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ple 7). It is easy to see that Z';, = Z'(V,S). Assume that / is integer-
valued and A(l, C) is a nonnegative even integer for every circuit C, and
let u= ul| E(T)" First, we observe that u is integer-valued, u(u) = l(u)
forall u€ U and A(u, C) is a nonnegative even integer for every circuit
C in K. Next, applying (i) to T, U, u), there is a u-admissible
v: Sy > R, such that

() Ao (w) = p(u) = lu) forall ue U,

where 8 =1v. Since S, is 2-complete, we may assume that S*(y)=
={4 € Sy: v(4)> 0} is laminar. It suffices to prove that there exists
integer-valued p-admissible ; satisfying («), where 6 = ; Then, by The-
orem 5.3, there exists /-admissible «: & v V4 + such that {%(4) = y(4)
for all A€S,; (such an a is a solution of P(V,U,!) obviously). We
proceed by induction on (T, p) = | T{ + 2'(ule): e € E(T)).

If u(st) =0 for some st € E(T) we reduce the problem to that with
T',U' and u', where T' is obtained from T by identifying s and ¢
(i.e. by replacing s and ¢ by a new vertex) and U’ is the image of U
under this identification; u' is defined naturally. Then Y(T',u")<
< Y(T, u), and the result follows by induction. Thus, we may assume that
u(e) > 0 forall e € E(T). Choose a minimal set 4* amongall 4 € S*(y)
and their complements 7 — A. Without loss of generality, we may assume
that A* € S*(y). The laminarity of S*(y), the minimal choice of A*
and the positivity of u imply that there is no pg€ U such that p,q€
€ A*, whence easily follows |A*|=1. And so, let A*={s} and
aTA* N U= {st}, say.Put v = p — P4+, and define p' to be the distance
function on E(T) induced by the edge length function ». Clearly that
v=0, YT, u')Y< (T, u) and A(r,C) is even for any circuit C in K.
Let C be an arbitrary circuit in K,. We show that A(v,C) = 0. (Then
A(u’, C') is a nonnegative even integer for any circuit C’, whence u'(u) =
=v(u) =mu) (we U-—{st}) and u'(st) = v(st) = u(st) — 1. By induc-
tion, there is integer-valued u'-admissible 7' satisfying (») (for 8 =7"),
therefore v, defined by Y(A*)=7'(A4*)+ 1 and ¥(4)=v(4) (A€
€S, —{A*}), is a required p-admissible function.) Suppose, for a contra-
diction, that A(»,C)<0. Then Cn aTA*+# ¢, hence C contains
exactly two edges, say, sp and sq in 9TA*. Since A(», C) iseven, we
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obtain A(u,C)= A(r,C)+ 2=0, and so sp,sq€ E(I')— U. Now, be-
cause A(g, C)=0 and (+) holds for § =% wehave [(C—U)Nn dT4|=
=|CNnUNJTA|<1 forany AE€ST(y). But (C—U)naTa*=
= {sp, sq}. This contradiction proves (i) ~ (ii). &

Now consider a max-> problem Z(V,S,, 1), and let « be its op-
timum solution. The definition of SU implies 1 - a= 2Z(\%u): ue )<
< I(U). Thus, « is a solution of the problem P(V, U, ) if p(V, SU, D=
= l(U), and P(V, U, ) has no solution if p(V, Sy D <UU). Therefore,
2V, SU, !) may be regarded as a generalization of P(V, U, ). However,
unlike the latter, 2 (V, SU, I) has the following rather unexpected
property.

Proposition 5.5. For any integer k> 2, thereare T, UC E(T) and

I: E(T)~ Z+ such that |\T|= 2k and p(T, SU, 1) has the denominator
2k-1

Proof. Given k, let G = (T,E) be the graph asin Fig. 5.1, and let
U be the set of its thick edges. Put e)=1 for e€ E and le)>= 2k
for e€E(T)—E. Let A,={s;} (i=1,...,k), and Bi= {5y, 5
Tpseoonty 1} G=2,...,k). Itiseasy to see that U generates a span-
ning tree in K,, whence S consistsjust of such 4 P B]. and their com-
plements. Define vy by ¥(4,) = v(B))=m,;, where

2k-i+1 — (= 1)k—i+l

m; 3,2k——i+l (i=12)
and
_2F+ - DF-E
My =3 2k-1

Then the denominator of 1-+4 is 2%¥~1. One can check that Y is
l-admissible. Finally, vy is optimal since the “dual” function w on
E(T), defined by w(s;s;, )= w(s;; )= m_;.q G=1,..., k-1,
w(s,t,)=m, and w(e)=0 for the remaining €’s in E(T), satisfies

w@T4)=w@TB)=1 and 1-y=1-w.1

In conclusion we consider a max-2 problem 2(V,S,I) for S
consisting of all the odd-size subsets of 7, [T} iseven. Edmonds and
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Figure 5.1

Johnson [7] constructed an algorithm for solving such a problem and
proved that it has a half-integer optimum solution whenever [ is integer-
valued (cf. [8]). This result was strengthened by Seymour [10] who
proved that if / is cyclically even then the problem has an integer optimum
solution (unfortunately his proof is not constructive). Since S is 2-com-
plete, as it is said above, it suffices to solve the pre-problem Z(T, S, u).
Specific properties of the latter one (in particular, that u is a metric)
permit to construct an algorithm (using a matching technique) solving it
which is much simpler than that in [7]. As a result, an algorithm of com-
plexity O((IT|3 + |V|2|T]log T) is developed for solving S(V, S, 1)
with 1€ RE() and § asabove which finds an integer optimum solution
whenever [ is cyclically even [19].

6. MULTICOMMODITY FLOWS

For US E(V), let £V (U) denote the set of chains L in K, such
that eLeU. £V(U) may be considered as the compound family
(£V(u): ue U), where £V(u) stands for £V ({u}). Clearly the im-
perfect blocker of £V (U) consists of all subsets E'= 38X, X € 2V (1),
where V()= {XC V: 3X N U+ ¢}.

Now let a capacity function c: E(V)-»> R + and a demand function
a: U» R, be given. A known multicommodity flow problem (here
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called a multiflow existence problem and denoted by EXf(V,U,c,a)
is: find c-admissible ¢: £V (U)~ R, such that

2(pL): Le Y W)= a(u) forall ueU

(or establish that such a ¢ does not exist). According to the definition
in Section 2, £V (U) has the gen. EX-MFMC-property if, for any ¢ and
d, EXf(V,U,c,a) is solvable provided that the inequality of Ford—
Fulkerson’s type

c(@X)= 2(au): ue Un 3X)

holds for each X € VY (U). Let TV denote the set of ends of edges of
U, and HY denote the graph (7Y, U). A complete description of fami-
lies 2V (U) having the gen. EX-MFMC-property is stated in the following
theorem due to Papernov.

*Theorem 6.1 [14]. £ Y (U) has the gen. EX-MFMC-property if and
only if HY is K, or Cs oraunion of two stars.

(Lomonosov (see [15]) proved algorithmically that if HY is
K, or (s oraunion of two stars, ¢ and a are integer-valued and the
value c(d0X)—2(a(u): u€ Un 3X) is a nonnegative even integer for
any X CV, then the problem EX/ (V, U, c,a) has an integer solution.
In [12], it is shown how to use some multiflow locking problems
LOCK/ (V, S, w) with lockable #(V,S) in order to solve EXf(V, U, ¢, a)
for HU e {K 4> Cs}, and, as a result, an algorithm of O(| V|3)-complexity
is developed for solving such multiflow existence problems.)

Now consider a multiflow max-2 problem (denoted by Z/(V, U, ¢)):
given V,USE(V) and c€ RE(), find c-admissible : 27 (U)> R,
with 1+ ¢ maximum. By the definition in Section 2, £ Y (U) has the
gen. 2 -MFMC-property if, for any c,

max (1 + p) = min {Z(@(X)c(dX): X € £V (U))},

where the maximum is taken over all c-admissible ¢ and the minimum is

taken overall «: 4V(U)~ R, satisfying

2@X): XezV" ), uedXx)>1 forall ueU.
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Let o/ (H) denote the collection of maximal independent subset of vertices
in a graph H. We say that H is even if thereis a partition {&/,, & ,} of
A (H) for which each &, consists of pairwise disjoint members. The fol-
lowing theorem describes a class of families £V (U) having the gen. 2-
MFMC-property [the part (i) was proved algorithmically by Lomonosov
and the author (a detail construction of their algorithm is given in [12])
and the part (ii) was proved by Poevzner and the author].

Theorem 6.2 ([11], [16]).

(i) Let USE(V) and let the family «/(HY) be not 3-crossing.
Then <LY(U) has the gen. >-MFMC-property. Furthermore, for any
cE Zf V) the problem 2 f(V, U, ¢) has a quarter-integer optimum solu-
tion, and it has a half-integer optimum solution whenever the graph H U is
even.

(i) Let USEW), |VI=|TY |+ 4 and let the family «(HY) be
3-crossing. Then £V (U) does not have the gen. 2-MFMC-property.

Next we consider a locking problem for a compound family V()
(it is called a multicut locking problem and denoted by LOCK (V, U, D).
This is: given /€ RE(Y), find a l-admissible function a: 2V(U)~> R,
such that

() = 2(a(X): X€ XV (U), uc dX) forall ueU.

Theorem 6.1 and Lemma 2.2 imply the following result: % iy is
lockable if and only if HY is K 4 or C; oraunion of two stars. The
part ”if” can be strengthened as follows: let HY be K 4 or C; oraunion
of two stars, and let /€ ZE(") be cyclically even, then LOCK (V, U, ])
has an integer solution [17].

Now we point out one application of multicut locking problem. Con-
sider a two-commodity cut problem 2'(V,S,0), where T={0,1, 2,3}
and S={{0, 1}, {0, 2}} (see Example 2 in Introduction). In order to solve
this problem, we first find a solution o« of LOCK (V, U,!), where U=
= {03, 12} (such a problem is solvable since, for this U, H U is a union of
two stars). Let (o) = {X € 2V (U): oy > 0}; because |7| =4 we may
assume that |[XNT|<2 forall X€ 2% (). Define Z/(a) to be
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Xext(): XnT={i}} i=0,1,2,3) and 36“5(0:) tobe (X e Zt(a):
XnT={ij}} (&€ E(T)). Assume that there are nonempty 32",?“(0:) and
ﬂ"j* (o) for some ij€ E(T)— U. Choose arbitrarty X € % ,+ (o) and
Ye Sl;f (o), and put ¢'(X)=a(X)—a, ' (V)=o) —a, «/(XUY)=
=a(XU Y)+a and o'(W)= (W) for the remaining W’sin ZV (U),
where a = min {o(X), a(Y)}. Obviously,

H{u}n o XU V)= [{u}ndX|+ {u}noY|=1

for u€{03,12}, therefore, o' is also a solution of LOCK (V, U, D).
Yielding a sequence of such reformations (no more than &' * (o) times), we
obtain such a solution «* of LOCK (V, U, ) that Isrl.*(a*)l | 5[;‘ (a®)| =
=0 for any ij€ E(T)— U. We may assume that if | XN T|{=2 for
Xeat(a*) then XN T={0,1} or {0,2} (forif XN T={0,3} (or
{1,2) then UnaYX=¢ and one can put «a*(X):=0 without
violating that «a* is a solution of LOCK (V, U,[1)). We claim that the
restriction & of «* on Z(V,S) is an optimum solution of Z(V, S, D).
Indeed, the above property of «* implies validity of at least one of the
following equalities:

i@ =27(@9)=0, Zi(@)=a;(@)=0

In the first case we have 1+ a= 2(a*(X): Xe Q"gl(a:) U ﬂ"gz(a*)) =
= 4,(03) and similarly in the second case, we have 1 - a= u,(12). Note
also that the above mentioned half-integerity theorem for LOCK (V, U, )
implies that a two commodity cut problem 2 (V,S,D) has an integer
optimum solution if { is cyclically even (thus, another proof of Seymour’s
two-commodity cut theorem [6] is obtained).

7. FAMILIES OF CUTS WITH THE WEAK MFMC-PROPERTY

Theorem 7.1. Let TS V, andlet SC 2T be a scheme such that
the cut family ¥(V,S) has the (weak) MFMC-property. Then every
minimal subset B C E(V) meeting all members of ¥(V,S) can be
represented as a union U (L: L€ £) of disjoint T-terminus chains such
that, for any AE S, thereis L€ ¥ with one endin A and theother
in T—A.
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Proof. We proceed by induction on |B|. For v&V, let s(B,v)
denote the subset of elements of B with one end v. The result is trivial
if |s(B,v)I<2 forall v€ ¥V — T. Thus, we assume that |s(B,v){=k=>3
for some v€V —-T. Let {yl, e ,yk} be the set of ends of edges in
s(B,v) different from v, and let e,=y;y;, 4 i=1,...,k=1), ¢ =
=y y,. Let I(e)=1 (e€B) and l(e) be a large positive number for
ecE(V)—B, and let o: Z(V,8)~ R+ be an optimum solution of
Jw.,S, D). Clearly 1-a=1IB), A*e)=1 for all e€B and
l1aX N B|l=1 for each Xe€Z*(aw), where 27 (a)={X: a(X)> 0}

Define %, to be Xext(w): vy,€0X} (= 1,...,k). We ob-
served that AS(p) =2 (aX): XEZ )+ 2(aX): XeZp=2 for
any 1<i<j<k. Nowput l'(e)=¢ (i=1,...,k) and I'(e) = l(e)

for the remaining e’s in E(V), where 0< e < 2. Choose some function
o': (V,85) > R, satisfying d'X)<aX) XeT), 2@'(X): Xe x)=

=% for i=1,....k and &(V)=all) for YeZ(V,5)- U
i=1,...,k). Obviously, « is [-admissible. We claim that &' is an
optimum solution of Z(V,S,1'). Forlet Q=B—{vy:i=1,...,k}
and weRE()  be defined by w(e)=1 (e€Q), w(ei)=% (i=
=1,...,k) and w(e)=0 (e€E()—-(QU{e,... , €, 1). One can
check that w(dX)=1 for all Xe& &(V,S), )\""(e) =l'(e) forall e€
€QU{e,...,¢} and w(@X)=1 forall X¢& 2% ('), whence o is

an optimum solution of 2(¥,S,!"). Since % (V,S) has the MFMC-
property, there is a minimal subset B' & E(V) meeting all cutsin % (V,S5)

such that 1-a'=I'(B). A0y)=5<I'0y)=1 (=1,....k) im

plies B'S QU {e), - e, }. Furthermore, for i=1,...,k and arbi-
trary X€ X, we have {el., €1 } € 9X, whence, by additional slackeness
relations for «' and B', exactly one of e;e; , belongs to B’
(assuming e, =¢;). Thus, k is even and we may assume that B'=
=QU{e,e;5,...,€,_,} Because |B'| < |B|, by induction, there is a
representation B'=U (L L'€ £'), where £’ is a collection of dis-
joint 7T-terminus chains such that, for any A4 € S, thereis L'€ &' with
one end in A4 and the other onein 7 — A. Now a required collection
% for B is obtained from %' by replacing the chain L'€ %' con-
taining e, by the chain (L' —{e,HV {vy, vy, |} for i= 1,..., k.1
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Corollary 7.2. Let TSV, SC 2T andlet €(V,S) have the MFMC-
property. Then, for any 1€ RED) p(V, 8, 1) = min {Z'(,(w): ue )},
where U ranges over the subsets of E(T) such that Un3TA +# ¢ for
A€ES.

Proof. Indeed, let B be a minimal subset meeting all members of
#(V,S) and such that p(V,S,0)=1UB), and let U(L: L€ &) be a
representation for B as in Theorem 7.1. We claim that each L€ & is
shortest. For if L' is a chain such that eL' = eL and I(L') < I(L), then
the subset B'=(B— L)U L' meets every cutin #(V,S) and I(B)<
< I(B), a contradiction. &

Now we give a theorem describing a class of cut families having the

MFMC-property. (The proof will appear in a forthcoming paper.) We say
that a'scheme S C 27T is non-reducible if

(i) for every pair of elements in 7 there is a subset A €S con-
taining exactly one member of the pair,

(ii) thereisno T'C T and §'C 2T such that 2(7,S’') is equiva-
lent to S (two collections Z and &' of subsets of a set W is called
equivalent if they generate the same cut families in X,, ie. {E C E(W):
E=03X some X€EZ}={ECEW): E= 93X some XEI'}).

Obviously, we may restrict our consideration of the non-reducible
schemes.

Theorem 7.3. Let SC 27T be a non-reducible scheme, VO T and
{VI2|T|+ 2. Then <¥(V,S) has the MEMC-property if and only if §
is equivalent to a scheme S'C 2T of one of the following three types:

(1) §'=1{{0,1},{0,2}} for T=1{0,1,2,3} (see Example 2),

(2) S' is the set of odd-size subsets of T, |T| is even (see Exam-
ple 3),

(3) S' is a ring of subsets of T with the miminal member {s} and
the maximal member T — {t} forsome s,t€ T.
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