
On the structure of the system of minimum edge cuts of a
graph1

Efim A. Dinitz, Alexander V. Karzanov, and Michael V. Lomonosov

1. We consider a class of undirected connected finite graphs. A graph G from this
class has the vertex set V = V (G) and the edge set U = U(G), and each edge is
endowed with a positive real weight c(u).

A cut in a graph is meant to be a partition R = (V1, V2) of the vertices into two
subsets V1 and V2, i.e. V1 ∪ V2 = V and V1 ∩ V2 = ∅. An edge u ∈ U having one
endvertex in V1 and the other in V2 is called an edge of the cut R. The set of these
edges is denoted by U(R). The weight of the cut R is the value c(R) :=

∑
u∈U(R) c(u).

We assume by definition that if V1 or V2 is empty, then c(V1, V2) := ∞. A cut having
the minimum possible weight, denoted by ĉ = ĉ(G), is called a minimum cut, or an
m-cut ; the set of m-cuts is denoted by M(G).

In this paper, we associate to an arbitrary graph G a certain “structural graph”
Γ = Γ(G) yielding information about all minimum cuts and their interrelations in G.

For any graph G, its associated “structural graph” Γ possesses the property

I: any two distinct simple cycles of Γ have at most one vertex in common.

This is equivalent to the property

II: any edge of Γ belongs to at most one simple cycle

(see Fig. 1b). The graphs of this sort generalize trees and so-called cactuses2. We call
a graph satisfying I (or, equivalently, II) a plant.

Let us call a cut proper if the removal of its edges makes exactly two connected
subgraphs. It is easy to see that a minimum cut is always proper (since c is positive).
The set of proper cuts of G is denoted by P(G). It is not difficult to realize that the set
of proper cuts of a plant consists of: (a) one-edge cuts, each corresponding to a non-
cyclic edge (an edges contained in no cycle); and (b) two-edge cuts, each corresponding
to a pair of cyclic edges contained in the same cycle.

The weights of edges of the “structural graph” Γ are defined as follows:
1) if u ∈ U(Γ) is a non-cyclic edge, then c(u) := ĉ;
2) if u ∈ U(Γ) is a cyclic edge, then c(u) := ĉ/2.
A plant with the edge weights defined in this way is called a ĉ-plant.
By the above observations, the “structural graph” Γ has the following properties:

(a) ĉ(Γ) = ĉ(G) = ĉ; and (b) each proper cut in Γ is a minimum cut, and vice versa,
i.e. M(Γ) = P(Γ).

1Translated by A.V. Karzanov (preserving the original style and notation as much as possible)
from: Е.А. Диниц, А.В. Карзанов, М.В. Ломоносов, О структуре системы минимальных реберных
разрезов графа, В кн.: Исследования по Дискретной Оптимизации (ред. А.А. Фридман), Наука,
Москва, 1976, с. 290–306. ( E.A. Dinitz, A.V. Karzanov, and M.V. Lomonosov, O strukture sistemy
minimal’nykh rebernykh razrezov grafa, In.: Issledovaniya po Diskretnŏı Optimizatsii (A.A. Fridman,
ed.), Nauka, Moscow, 1976, pp. 290–306, in Russian.) For pictures, see the Russian original.

2Here by a “cactus” one means a graph in which each edge belongs to exactly one simple cycle.
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Let G′ = (V ′, U ′) and G = (V, U) be two graphs, and ρ : V ′ → V a map. Then each
cut R = (V1, V2) of G determines the cut ρ∗(R) := (ρ−1(V1), ρ

−1(V2)) of G′.

Main result. For any graph G with edge weights c, there exists a ĉ-plant Γ and a
map ϕ : V (G) → V (Γ) such that:

(a) for v1, v2 ∈ V (Γ), ϕ(v1) = ϕ(v2) holds if and only if the vertices v1 and v2 are
separated by none of the m-cuts in G;

(b) the map ϕ∗ brings the set of proper (=minimum) cuts of Γ onto the set of
minimum cuts of G. (See Fig. 1.)

In fact, ϕ∗ establishes an almost one-to-one correspondence between M(G) and
P(Γ). At the same time, the formation of the “structural graph” and its interrelation
to the initial graph are rather simple. This makes the graph Γ as a good model in
studying the minimum cuts in G. It should be noted that there exists an algorithm
of constructing the “structural graph” whose complexity (in standard operations) is of
order close to np, where n is the number of vertices and p is the number of edges of
the initial graph (this algorithm is beyond this paper).

It will be shown later that the main result implies the following two properties.

Theorem on circumference disposition. The vertices of G can be represented
as points on a circumference so that each minimum cut of G corresponds to a section
of the circumference into two arcs.

Theorem on the number of minimum cuts. The number of minimum cuts of
G does not exceed n(n− 1)/2, where n := |V (G)|. This bound is attained by the cycle
with n vertices whose edges have equal weights.3

2. Let R = (V1, V2) and R′ = (V ′
1 , V

′
2) be distinct cuts in a graph. Two cases of

their mutual disposition are possible: 1) all sets V1 ∩ V ′
1 , V1 ∩ V ′

2 , V2 ∩ V ′
1 , V2 ∩ V ′

2 are
nonempty; and 2) some of these sets is empty.

The cuts R and R′ are called transversal in the former case (see Fig. 2a), and
parallel in the latter case (Fig 2b).4

We call an m-cut of G a p-cut if it is parallel to any other m-cut; otherwise we call
it a t-cut. The set of p-cuts of G is denoted by Mp(G), and the set of t-cuts is denoted
by Mt(G).

In this section we study interrelations of p-cuts and show the following.

Proposition on the structure of the system of p-cuts. For any graph G,
there exists a “structural tree” ∆ (with all edges of weight ĉ) along with a map ψ :
V (G) → V (∆) such that:

(a) ψ(v1) = ψ(v2) if and only if v1 and v2 are separated by none of p-cuts;
(b) the map ψ∗ gives a one-to-one correspondence between the proper (=minimal,

=one-edge) cuts of the tree ∆ and the p-cuts of G.5

3Using the proof of this theorem given later, one can show that this bound is attained by only
those graphs which result in cycles with the edges of the same weight after combining each tuple of
parallel edges into one edge.

4Transversal and parallel cuts are often called crossing and laminar, respectively.
5From the further description the reader can realize that the fact that V (G) is the set of vertices of

a graph is not important; an important thing is that we deal with a finite system of “parallel partitions”
of a set V .
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Let R = (V1, V2) and R′ = (V ′
1 , V

′
2) be p-cuts and let V1 ∩ V ′

2 = ∅. We say that
a cut R′′ = (V ′′

1 , V ′′
2 ) lies between R and R′ (or separates R and R′) if V1 ⊂ V ′′

1 and
V ′

2 ⊂ V ′′
2 (or V1 ⊂ V ′′

2 and V ′
2 ⊂ V ′′

1 ). We say that a vertex v ∈ V lies between R and
R′ if v ∈ V ′

1 ∩ V2.
For a set X ⊂ V , define X := V − X. Consider an arbitrary p-cut R = (X, X)

and all p-cuts separating X (then they do not separate X). A p-cut R′ from this set
is called neighboring to R if there exists no p-cut lying between R and R′. Denote the
set of p-cuts separating X and neighboring to R by S(X). Let R′ = (X ′, X

′
) ∈ S(X)

and let R separates X ′. Then it is easy to check that any p-cut R′′ ∈ S(X) ∪ {R}
different from R′ is neighboring to R′. Therefore, each (maximal) collection of pairwise
neighboring p-cuts is constructed canonically and is determined by a p-cut and one of
the two sets X, X forming it. We call such a collection a p-bundle (see Fig. 3).

Let us say that a vertex v ∈ V is attributed to a p-bundle S if v lies between any
two cuts in S (when S consists of a single cut R = (X, X) and is determined by R and
X, v is attributed to S if v ∈ X). The set of such vertices for S is denoted by V (S).
It is possible that V (S) = ∅, in which case we say that the p-bundle S is degenerate.
One can see that every vertex v ∈ V is attributed to exactly one p-bundle.

Two distinct bundles S ′ and S ′′ are called neighboring if they share a cut. Such
a cut is unique; we denote it by R(S ′, S ′′). Every p-cut R belongs to (or “separates”)
two bundles S ′ and S ′′; they “lie on different sides” from R, and R is just of the form
R(S ′, S ′′).

Let {v1, v2} be an edge of G. The set of p-cuts separating v1 and v2 (if any) can be
ranged as a sequence R1, R2, . . . , Rk, where Ri = (Xi, X i), v1 ∈ Xi, and X1 ⊂ X2 ⊂
. . . ⊂ Xk. One easily shows that the pairs of consecutive cuts in this sequence are
neighboring, i.e. belong to the same p-bundle: for i = 2, . . . , k, the cuts Ri−1, Ri belong
to the bundle S(Xi)∪{Ri} = S(X i−1)∪{Ri−1}, denoted as Si(v1, v2). Also denote the
p-bundle S(v1) by S1(v1, v2), and S(v2) by Sk+1(v1, v2).

In order to obtain the desired “structural graph” ∆ for the system of p-cuts of G,
we transform the graph G as follows.

1) For each p-bundle S, merge all vertices attributed to S into one vertex, denoted
as xS; if S is degenerate, we add the “dummy” vertex xS (see Fig. 4, fragments 1,2).

2) Accordingly, each edge {v1, v2} ∈ U is transformed into the “edge” {xS(v1), xS(v2)};
the latter is replaced by the corresponding sequence of edges {xSi(v1,v2), xSi+1(v1,v2)},
i = 1, . . . , k, when S(v1) 6= S(v2), and is deleted otherwise (see Fig. 4, fragments 2,3).

3) Merge each set of parallel edges into one edge whose weight is equal to the sum
of weights of merged edges (see Fig. 4, fragments 3,4).

Proposition. (a) The constructed graph ∆ is a tree in which all edges have the
weight ĉ(∆) = ĉ = ĉ(G).

(b) The vertices xS of ∆ one-to-one correspond to the p-bundles S of the graph G,
and the edges {xS, xS′} to the pairs of neighboring p-bundles S and S ′, or to the p-cuts
R = R(S, S ′) of G.

Proof. Each proper cut in the tree consists of a single edge, and conversely,
each edge determines a proper cut. The weight of each of these cuts is equal to ĉ(G).
Therefore, P(∆) = M(∆) = Mp(∆).
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There is a natural map ψ : V (G) → V (∆) which brings a vertex v ∈ V (G)
attributed to a bundle S to the vertex xS ∈ V (∆). The induced map ψ∗ brings the
one-edge cut determined by an edge {xS′ , xS′′} to the cut R(S ′, S ′′). It is easy to check
that ψ∗ is bijective.

This implies the proposition.

3. Now we include into consideration the t-cuts of G. Let R be a t-cut. Any p-cut
in G is parallel to R (by the definition of p-cuts). Consider the system of mutually
parallel cuts Mp ∪ {R}. Select in it the cuts neighboring to R (from both sides). One
can check that these p-cuts form a p-bundle S. Obviously, R separates no two cuts of
a bundle different from S. We say that the cut R is internal for S.

The main role in our study of t-cuts plays the following lemma. Let R′ and R′′ be
transversal minimum-weigh cuts of a graph, and let these cuts partition the vertices of
the graph into the (nonempty) subsets A1, A2, A3, A4; let for definiteness R′ = (A1 ∪
A2, A3∪A4) and R′′ = (A1∪A4, A2∪A3) (see Fig. 5a). Denote by c(Ai, Aj) the sum of
weights of the edges connecting vertices in Ai and in Aj. Also we denote a cut (X, X)
by RX .

Lemma on a quadrangle. (a) c(A1, A3) = c(A2, A4) = 0; c(A1, A2) =
c(A2, A3) = c(A3, A4) = c(A4, A1) = ĉ/2;

(b) The “corner” cuts RAi
, i = 1, 2, 3, 4, are minimum. (See Fig. 5b.)

Proof. We have:

c(RAi
) ≥ ĉ implies 2ĉ ≤ 1

2

∑
i

c(RAi
) =

∑
i<j

c(Ai, Aj); and

2ĉ = c(R′) + c(R′′) = c(A1, A3) + c(A2, A4) +
∑
i<j

c(Ai, Aj).

Comparing these, we obtain c(A1, A3)+c(A2, A4) ≤ 0. This implies two facts, in view of
the nonnegativity of c. Firstly, c(A1, A3) = c(A2, A4) = 0. Secondly, 1

2

∑
i R(Ai) = 2ĉ,

whence c(RAi
) = ĉ for each i, i.e. the cuts RAi

are minimum.
Let c(A1, A2) = d. Then from proved above it follows that c(A4, A1) = c(A2, A3) =

ĉ− d. Similarly, c(A3, A4) = d. Therefore, 2d = c(R′′) = ĉ, implying d = ĉ− d = ĉ/2.

This lemma implies the following

Theorem on crossing minimum cuts. If R′ = (X, X) and R′′ = (Y, Y ) are
minimum cuts of a graph and if X ∩ Y 6= ∅ 6= Y ∩ Y , then R := (X ∩ Y, X ∪ Y ) is a
minimum cut as well.6

Given a collection L of cuts, we refer to an (inclusion-wise) maximal subset of
vertices separated by none of the cuts in L as an L-class (obviously the L-classes are
pairwise disjoint and their union is the whole vertex set).

Proposition. The set of Mp-classes coincides with the set of M-classes.

Proof. It suffices to show that if vertices v1 and v2 are separated by some m-cut,
then they are separated by some p-cut as well. Take a minimal subset X of vertices

6Below we prove in essence that if a set V and a system of its partitions satisfy the assertion in
this theorem, then the related “structural graph” for this system is a plant.
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such that v1 ∈ X, v2 ∈ X, and (X, X) is an m-cut. We assert that (X, X) is a p-
cut. Indeed, suppose that this cut is transversal to some m-cut (Y, Y ), and let for
definiteness v1 ∈ Y . By the theorem on crossing minimum cuts, (X ∩ Y, X ∪ Y ) is an
m-cut. Since it separates the vertices v1 and v2, and X ∩ Y is strictly included in X,
we obtain a contradiction with the minimality of X.

4. In this section we study a local structure of the system of t-cuts in G. Namely,
we consider the t-cuts which are internal for some p-bundle S. As a model in our study,
we introduce the graph GS obtained from G as follows. Each subset of vertices of G
separated from S by a cut R ∈ S is shrunk into one vertex xR, followed by merging
possible parallel edge and deleting loops (see Fig. 6). (The graph GS is viewed, to some
extent, as the star of the vertex xS in the tree ∆: each pendant vertex xS′ of this star,
related to a p-bundle S ′ neighboring to S and separated from S by the cut R(S, S ′),
corresponds to the vertex xR(S,S′) in GS.)

The “images” in GS of p-cuts in S are called extreme; they separate one vertex (of
the form xR) from the other vertices in GS. These and only these are (minimum) p-cuts
in the graph GS.

If two t-cuts internal for S are transversal, then their images in GS are transversal
as well. The images of internal t-cuts for S and only these are (minimum) t-cuts in the
graph GS.

A cycle whose all edges have the weight ĉ/2 is called a ĉ-cycle.

Theorem on cycle. If a p-bundle S has an interior t-cut, then the graph GS is a
ĉ-cycle on the vertices xR, R ∈ S.

Proof. Suppose we are given some partition of the vertex set of GS. We refer to
each set in this partition as a class. The factor-graph of GS induced by this partition is
the graph whose vertices are the classes; two classes A and B are connected by an edge
in the factor-graph if and only if they are connected by at least one edge in GS, and
the sum of weights of such edges is regarded as the weight c(A, B) of the edge {A,B}.

We are interested in those partitions of V (GS) whose induced factor-graphs are ĉ-
cycles. When there are several partitions of this sort, we will construct a new partition,
with a greater number of elements than each of those, and prove that its factor-graph
is again a ĉ-cycle. Eventually we will come to a partition consisting of single vertices
of GS, which will imply that GS is a ĉ-cycle. Each vertex v of the latter is separated
from the other vertices by a minimum cut; this is a p-cut, and therefore, v is of the
form xR, implying the theorem.

We start with taking an arbitrary pair of interior t-cuts in GS. By the lemma on
quadrangle, the factor-graph induced by the partition (into four sets) of V (GS) by
these cuts is a ĉ-cycle on four vertices.

Suppose we have a partition P whose factor-graph is a ĉ-cycle Q with m vertices.
Consider a cut in GS separating one set in P , say, A, from the other ones; then RA

is a minimum cut. Suppose that A contains two or more vertices. Since any p-cut in
GS separates a single vertex of GS, RA is a t-cut. Then RA is transversal to another
t-cut R in GS, and the latter separates A into two subsets A1 and A2 (see Fig. 7).
Applying the lemma on quadrangle to R and RA, we have c(A1, A2) = ĉ/2. Since
c(R) = ĉ, it follows that R separates at most two classes in P . Therefore, at least
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one of the two classes neighboring to A in the cycle Q is not separated by R. Let B
be such a class, and let for definiteness R separates B from A2 (otherwise take A1).
By the lemma on quadrangle (applied to R,RA), c(B, A2) = 0; this together with
c(B,A) = ĉ/2 gives c(B,A1) = ĉ/2. Let C be the other class in Q neighboring to A.
Since A is connected by edges only with vertices in B and C, and taking into account
the equalities c(A2, A2) = ĉ, c(A2, A1) = ĉ/2 and c(A2, B) = 0, one can conclude that
c(A2, C) = ĉ/2.

Thus, replacing A by two sets A1, A2, we obtain a partition of V (G) whose factor-
graph is a ĉ-cycle with m + 1 vertices, and the theorem follows.

Remark. The t-cuts in GS are exactly the cuts separating the cycle GS into two
connected parts, each of which consisting of at least two vertices.

5. The “structural graph” Γ = Γ(G) is constructed from the “structural tree”
∆ = ∆(G), as follows. Label the vertices xS of ∆ such that the p-bundle S has an
interior t-cut. For each labeled vertex xS and each of its incident edges {xS, xS′},
“insert” a new vertex xS,S′ on this edge “in a vicinity” of the vertex xS. As a result,
some edges turn into pairs of edges in series or even into triples of edges in series (with
two intermediate vertices of the form xS,S′ and xS′,S). Let ∆′ be the obtained tree (see
Fig. 8, fragments 1,2).

Remove from ∆′ the stars of all labeled vertices xS. The pendant vertices xS,S′ of
the star of xS are not removed and we connect them by edges of weight ĉ/2 in the same
order as the corresponding vertices xS′ are connected in the cycle GS. The resulting
graph Γ′ is, obviously, a ĉ-plant.
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