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ing that the Russian mathematicians Gel'fand
and Shilov present an exhaustive and highly
useful discussion of regularization in their vol-
ume “Generalized Functions,” which is often
overlooked.

There are a few minor typographical errors:
on p. 426, second paragraph, “section
XIV.1.1” should be “section XIX.1.1,” and
“to solved” in the third paragraph should be
“to solve.” Similarly, “are closed” in the last
paragraph of p. 430 should be “are close.”

In summary, the second and revised edition
of Chadan and Sabatier’s book should prove
to be indispensable for students and researchers
alike in inverse scattering theory, not only in
the strict quantum domain, but also in diverse
areas of classical physics since many of the in-
verse methods are common to both and since
these have been treated by the authors with
superb skill. The book should also be of im-
mense value for its historical perspective and
extensive references, a must for doing good re-
search. Unfortunately, the presentations are at
times unnecessarily terse and many problems
have been treated in a sort of handbook fash-
ion. These make it difficult for an average
reader or for a more physically oriented reader
to find the book self-sufficient without having
to do extra homework. But then again, that
may also be an advantage for the reader. Over-
all, the book is recommended in highest pos-
sible terms.

DiLIP N. GHOSH ROY
TRA, Inc.
University of Utah

Tloroxosbie Asropurmbl (Flow Algorithms).
By G. M. Adel’son-Vel’ski, E. A. Dinits, and
A. V. Karzanov. Science, Moscow, 1975. 119
pp. 46 kopeks. No ISBN.

Introduction. This is a review of the book
Flow Algorithms by Adel’son-Vel’ski, Dinits,
and Karzanov, well-known researchers in the
area of algorithm design and analysis. This re-
markable book, published in 1975, is written
in Russian and has never been translated into
English. What is remarkable about the book is
that it describes many major results obtained
in the Soviet Union (and originally published
in papers by 1976) that were independently
discovered later (and in some cases much later)
in the West. The book also contains some mi-

nor results that we believe are still unknown
in the West. The book is well written and a
pleasure to read, at least for someone fluent in
Russian. Although the book is fifteen years old
and we believe that all the major results con-
tained in it are known in the West by now, the
book is still of great historical importance.
Hence a complete review is in order.

The apparent fact that, until recently, no
Western researcher had looked closely at the
book and the underlying papers serves as an
important reminder for Western researchers
to be aware of the work outside of their normal
circles. This fact is especially embarrassing be-
cause Dinits and Karzanov were well known
in the West for their work on network flows
by at least 1976, when the theoretical superi-
ority of their network flow algorithms [10],
[16], compared to contemporary ones avail-
able in the West, was recognized by Western
researchers. (The general feeling at the time
was that the significance of this work should
have been recognized sooner.) After that, these
algorithms became the object of intense studies
in the West as well as in the Soviet Union. The
book in question, however, remained unknown
in the West until recently, when it was “dis-
covered” by the second reviewer.'

Except for this introduction, we try 1o keep
the review objective; we give a section-by-sec-
tion summary of the book. All attributions in
the review are as the authors of the book make
them.? As it is not our purpose to attempt a
definitive history of network flow algorithms
in the framework of this review, we do not ex-
plicitly point out which results appeared first
in the Russian literature, nor who indepen-
dently discovered them in the West. We believe
that the information and references provided
here will enable informed readers to make their
own historical comparisons and attributions.

Although the style of the book is contem-
porary, some of the material is quite dated be-
cause of the progress made during the fifteen
years since the book was written. The body of
our review simply reflects the book’s contents.

1 It should be noted, however, that the book was
not widely circulated in the West; after an extensive
search, we found only four U.S. libraries that have
it in their catalogs.

2 We believe, however, that the references in the
book are very complete and accurately reflect the
literature, both Russian and Western, at the time the
book was written.
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No statements or conjectures from the book
have been altered to reflect current knowledge.’

In preparing this review, we also read ad-
ditional papers in Russian that contained
valuable results which were new to us, and
which we believe will be new to other Western
researchers. We invite the Western algorithms
community in general, and the network flow
community in particular, to actively read the
Russian literature and widely disseminate what
you find to be new and interesting.

Notation. Next we state some basic defini-
tions that are needed throughout the review.
Our definitions are quite standard, and we as-
sume that the reader is familiar with the con-
cepts discussed here.

A network G is a graph (directed unless ex-
plicitly stated to be undirected) where each
arc (u, v) has an assigned capacity c¢(u, v). We
use U to denote the maximum arc capacity,
and we use #n and m to denote the number of
nodes and arcs, respectively, in the network.
We use Ig to denote the base-2 logarithm.

Given two nodes s and ¢ (called the source
and sink nodes, respectively) of a directed net
work G, an s, ¢ flow f is an assignment of
nonnegative real values to the arcs such that
the following two properties hold:

(1) Capacity constraint. For any arc (v, w),
0=1(v,w) < c(v, w).

(2) Flow conservation. For any node v #
5, 1, fin(V) = fou(v) where Jfin(v) is the total
flow on arcs directed into v, and JSou(v) is the
total flow on arcs directed out of v.

The value of the flow f is the total flow en-
tering ¢, i.e., 2, f(v, t). A maximum s, t flow
in G is an s, ¢ flow whose value is maximum
over all s, 7 flows. For a given s and {, we use
M(G) to denote the value of the maximum
flow in G. We use €(v) to denote the excess
of flow fat a node v; the excess is equal to the
difference between the incoming and outgoing
flows.

If G is undirected, the maximum flow prob-
lem on G is obtained by replacing each edge
(u, v) with two arcs (u, v) and (v, u), each
with capacity c(u, v).

3For a survey of the recent developments in this
area, see, e.g., A. V. Goldberg, E. Tardos, and R. E.
Tarjan, Network flow algorithms, in Path, Flows, and
VLSI-layout, Springer-Verlag, Berlin, 1990, pp. 101-
164.

Ans, t cut(X, X)in G is a partition of the
nodes into two sets X and X such that seX
and ¢ € X. The capacity of the cut, denoted
(X, X),is Zyexper c(u, v).

The edge-connectivity of an undirected graph
(where all edges have capacity 1) is the smallest
capacity of any cut in G. The node connectivity
is similarly defined for nodes.

In a multicommodity flow more than one
type of commodity simultaneously flows on
the network, and each commodity has a given
source and sink. The total flow (of all com-
modities in both directions) on an arc must
obey the capacity constraints, and each com-
modity must obey the conservation constraints,
The multicommodity flow problem comes in
two variants, the feasibility problem and the
max-Z problem . In the feasibility problem each
source has a given supply of each commodity
and each sink has a given demand for each
commodity (a node may be a source for one
commodity and a sink for another); the prob-
lem is to determine whether there is a feasible
flow that satisfies all the stated demands for all
the commodities. In the max-3 problem, the
objective is to find a flow which maximizes the
total amount of all commodities which reach
their sinks.

In the minimum-cost flow problem each
arc (u, v) is given a number k(u, v) (called
the cost of arc (u, v)), and the objective is to
find a maximum s, ¢ flow of minimum total
cost, l.e., a maximum s, ¢ flow minimizing >

k(u, v) f(u, v).

Final remarks. Before giving the section-by-
section review of the book, we would like to
remind the reader that the body of the review
simply reflects the book’s contents. In partic-
ular, the attributions are as the authors of the
book made them and no statement from the
book has been altered to reflect today’s state
of knowledge.

We also would like to make a comment on
citations. Understandably, many citations are
to the Russian books and Jjournals; regrettably,
most of these do not have English translations.
We organize the citations in two groups: En-
glish and Cyrillic. Each group is sorted accord-
ing to the corresponding alphabet. For each
Crrillic reference, we also provide either a ref-
erence to the corresponding translation (if we
are aware of one), or an English transcription
and an English translation of the title. Although
our title translations are accurate, we cannot
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guarantee that they will be identical to those
of “professional” translators (if a paper will be
translated in the future, or if a translation al-
ready exists but is unknown to us).

1. The maximum flow problem.

1.1. Networks and network flows. This
section of the book defines the basic concepts,
such as flows, cuts, etc. It also states a flow
decomposition theorem, and gives an algo-
rithm to decompose a flow into a collection of
paths and cycles.

1.2. Ford-Fulkerson algorithm for the
maximum flow problem. The section starts by
introducing several fundamental facts about
the maximum flow problem. In particular, it
shows that the maximum flow value is equal
to the minimum cut capacity (the max-flow,
min-cut theorem) and that a flow is maximum
if and only if it admits no augmenting path
(the augmenting path theorem). Then the au-
thors introduce the Ford-Fulkerson augment-
ing path algorithm (FFA)[2], and give its im-
plementation using the labeling method. They
use the algorithm to prove the integrality theo-
rem, which states that a maximum flow prob-
Jem with integral arc capacities has an integral
optimal solution.

1.3. The shortest augmenting path algo-
rithm. This section introduces the shortest
augmenting path algorithm (SPA) of Edmonds
and Karp [1] and Dinits [10]. Tt is shown that
the augmenting path length in SPA is mono-
tone and nondecreasing, and at most m aug-
menting paths of length k, 1 = k=n-—1,
are found by the algorithm. Thus the num-
ber of iterations of the algorithm is at most
(n—1m= o(n*). This bound is tight [91.
The section concludes with a discussion of the
implementation of the SPA using breadth-first
search labeling for finding shortest augmenting
paths. The complexity of the resulting method
is O(nm?).

1.4. The layered network algorithm. In the
SPA algorithm, the work spent looking for
augmenting paths dominates the work spent
on augmenting the flow and determines the
running time of the algorithm. This motivates
the layered network algorithm (LNA) of Dinits
[10], which can be viewed as a variation of
the SPA algorithm. This variation finds shortest
augmenting paths in a more efficient way using
layered networks. The layered network is a

union of all shortest paths from s to f. The
LNA runs in O(n*m) time, which is better than
the O(nm?) time for the SPA algorithm. This
bound is tight, as shown in[12](and implicitly
in[9]).

The section ends with a discussion of the
optimized version of the layered network al-
gorithm. Each phase of this algorithm starts
with the correct layered network, but the lay-
ered network is not updated after each aug-
mentation. Instead, the network is updated
only if a “dead end” is discovered during a
search for an augmenting path.

1.5. The blocking flow algorithm. The
blocking flow method (BFM) due to Karzanov
(161,171 is based on the notion of a blocking
flow; the task of finding 2 maximum flowina
network 18 reduced to the task of finding at
mostn— 1 blocking flows in layered networks.
The preflow method (PM) uses the concept of
a preflow 10 find a blocking flow in such a net-
work in O(n?) time [16], [17]. This method
allows flow excesses at nodes in the middle of
the execution of the algorithm, giving it more
flexibility compared to the augmenting path
method. The preflow method solves the max-
imum flow problem in O(n®) time.

1.6. Algorithms with bounds depending on
Jogarithms of capacities. TWO algorithms are
described whose running time isa polynomial
inn, m,and g U. The first algorithm, due to
Edmonds and Karp [1],isa variation of FFA
that at each iteration selects the highest capacity
augmenting path. At each iteration of this al-
gorithm, the residual flow value decreases by
at least a factor of (1—1/m). For real-valued
capacities, the flow computed by the algorithm
convergestoa maximum flow. For integral ca-
pacities, the algorithm terminates in m 1g Uit-
erations. An O(n?) algorithm for computing
the highest capacity augmenting path is also
described. Combined with an O(n?) algorithm
for computing the highest capacity augmenting
path, this yields an O(n*m g U)bound on the
entire algorithm.

The second algorithm is due to Dinits [1 1]
and uses capacity scaling, an idea that was de-
veloped independently by Edmonds and Karp
[1] and Dinits [11]. The algorithm works by
maintaining the parameter K, which starts at
U Ui and decreases by @ factor of two at each
scaling iteration. During such an iteration, all
capacities are rounded down to the nearest
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multiple of X, and the maximum flow in the
resulting network is computed starting from
the flow obtained at the previous iteration, ex-
cept during the first iteration which starts with
the zero flow. If the capacities are integral and
LNA is used in the maximum flow computa-
tions, then the algorithm runs in O(nm) time
per scaling iteration, for a total of O(nm 1g U)
time.

2. Combinatorial flow problems. This
chapter addresses combinatorial problems that
can be reduced to network flow problems. Be-
low, the layered network algorithm and the
blocking flow method are referred to as aux-
iliary network algorithms (ANA). Hopcroft
and Karp [4] discovered LNA independently
of [10] for the special case of the problem of
finding systems of distinct representatives. The
material of this section is based mainly on the
work of Karzakov [14], [15].

2.1. Flow formulation of combinatorial
problems.

Problem of distinct representatives. The
classical problem of distinct representatives [ 3]
is as follows: given a collection of n subsets V;
of a set V of size r = n, find a collection of
representatives v; € V; so that representatives
of different subsets are distinct. In the problem
of restricted representatives, n and r may be
different, and the goal is to find a; represen-
tatives for each 1}, so that each v; € V represents
b; subsets.

The book describes a reduction of the gen-
eralized problem to a special kind of network
flow problem. On this network, FFA is equiv-
alent to the classical alternating path method.
Results of § 2.3 imply that ANA solves the
problem of distinct representatives in O(n>/%)
time and the generalized problem in O(rn*/3r)
time.

Another problem reducible to a special case
of the maximum flow problem is that of com-
mon restricted representatives [2]. In this
problem, the input contains two collections of
subsets of ¥, {V'!} and {V?},for 1 £/ =
n = r, and the goal is to select representatives
from each subset in such a way that for each
collection, the representatives are distinct, and
the same set of representatives is used for both
collections. Results of § 2.3 imply O(n3/%)
time bound for the problem.

Minimum cut problems. The notion of an
edge-cut and a node-cut of a graph are de-

fined, as well as the edge and node con-
nectivity problems. It is shown that these
problems can be reduced to the maximum
flow problems on special kinds of networks.
Results of § 2.3 imply that ANA finds a mini-
mum edge-cut between two subsets of nodes
in O(min (m*?, n*3m)) time and a mini-
mum node-cut between two subsets of nodes
in O( V;m) time. The algorithm of § 2.5
solves the edge-connectivity problem in
O(nm) time; the node connectivity problem
can be solved in (k + 1)(n — 1) maximum
flow computations [20] (where & is the node
connectivity of the network).

2.2. Combinatorial networks. The concepts
introduced here are used later to analyze ANA
on special networks that model combinatorial
problems. Such combinatorial networks have
unit capacities on internal arcs or nodes (where
node capacity is defined as a minimum of the
total incoming and the total outgoing arc ca-
pacity). An arc-combinatorial network is a
network with unit capacities on internal arcs.
The characteristic X of a network is the sum
of arc and node capacities over all internal arcs
and nodes. A generalized combinatorial net-
work is a network with characteristic of O(m).

2.3. Analysis for combinatorial networks.
This section analyses the performance of ANA
on combinatorial networks as a function of n,
m, and X. The material of the section is based
on [4], [11], [14], [15].

1. A phase of ANA takes O(X + m) time
on networks with integer capacities and O(m)
time on generalized combinatorial networks.

2. The number of ANA phases is less than
2Vx + 2.

3. The ANA runs in O(X + m)V; time on
networks with integer capacities and in
O(m\/;) time on generalized combinatorial
networks.

4, The number of ANA phases on an arc-
combinatorial network is less than 2723 + 2,

5. Suppose G is an arc-combinatorial lay-
ered network of length /. Then the number of
phases of ANA is less than V8IM(G) + 1.

6. Suppose all arcs in a layered network of
length / have unit capacities. Then the number
of iterations of ANA is O(min (Vnl, n??,
n?/1%)).

24. A difficult example. This section de-
scribes a (parameterized ) instance of the prob-
lem of finding a system of distinct represen-
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tatives. The ANA takes O(#°/?) time on this
instance. For the proof, the reader is referred
to [14].

2.5. Efficient algorithm for finding edge
connectivity of a graph. This section is devoted
to the problem of finding edge connectivity of
a graph with no multiple edges. It is shown
that # — 1 maximum flow computations are
sufficient to solve the problem. An algorithm
of Podderjugin [20] does this in O(nm) time.
The algorithm solves the maximum flow
problem using a slight variation of FFA, which
differs from the standard FFA in the way aug-
menting paths of length one and two are han-
dled. The cost of processing such “‘short” aug-
menting paths is O(#) per one maximum flow
computation and O(#n?) overall. The number
of other augmentations done by the algorithm
(along “long” paths) is # overall, and the cost
of these augmentations is O(nm).

3. Multiterminal and multicommodity
problems.

3.1. Multiterminal problems and solution
methods. The authors define the notion of
multiterminal single-commodity flow. This
notion leads to several flow problems, in par-
ticular the max-Z problem (where the objective
is to maximize the sum of flows out of the
sources), the feasibility problem (for capaci-
tated sources and sinks), and the problem of
finding maximum flows in networks with lower
bounds on arc flow in addition to upper
bounds. These problems reduce to the maxi-
mum flow problem [2].

The following theorem is from [7], [12]:
For any pair of maximum flows f, and f>, there
is a maximum flow f which takes the same
amount of flow as f, from every source and
puts the same amount of flow as f; into every
sink. ( This statement is not true for nonmax-
imum flows of equal value.)

3.2. Problem with priorities of terminals. A
common layered network. We consider the
following version of the multiterminal single-
commodity flow problem that was studied in-
dependently in [7], [12]. Given an ordering
S1, *+ -, s of the network sources, define a
source-maximal flow to be a flow f for which
the tuple (e/(s1), - - - €/(sx))is lexicographically
maximal. The sink-maximal flow is defined in
a similar way. A flow that is both source- and
sink-maximal is called bimaximal. Source- and

sink-maximal flows are maximum flows, and
a bimaximal flow always exists.

A bimaximal flow can be constructed from
a source-maximal and a sink-maximal flows.
The rest of the section is devoted to algorithms
for finding a sink-maximal flow. (The problem
of finding a source-maximal flow is symmet-
ric.) Several algorithms to find such a flow are
described.

The most efficient algorithm [11] is based
on LNA and runs in O(n’m) time. The al-
gorithm constructs a “‘common” layered net-
work that contains all nodes of the input graph
and all residual arcs that are on shortest paths
from s. Using the layered network, the algo-
rithm repeatedly finds shortest paths from s to
t, until no s-f, augmenting path exists; the
same procedure is repeated for 7,, f3, etc. It is
shown that distances to nodes from the source
in the residual graph are nondecreasing, and
the work involved in augmentations is
O(n*m). The section concludes by describing
a way to construct and maintain the layered
network at O(nm) cost.

3.3. Directed multicommodity prob-
lems. This section defines the directed k-com-
modity flow problem and the related demand
graph induced by arcs connecting commodity
sources to the corresponding sinks. It also dis-
cusses special cases of the problem with known
efficient solutions: the case of a unique source
(or unique sink), and the case in which the
demand graph is a complete bipartite graph.
In these cases the problem reduces to a max-
imum flow problem. The section concludes
with a discussion of a decomposition algorithm
for the directed multicommodity problem.

3.4. Undirected two commodity prob-
lem. The authors introduce the undirected
multicommodity flow problem, and comment
that the solution methods described in § 3.3
for the directed problem carry through in the
undirected case. The main result of the section
is an algorithm that solves the undirected two-
commodity problem. Algorithms for this
problem were first studied by Hu [5], [6].
Cherkassky [21] gave a polynomial-time vari-
ant of Hu’s algorichm. Then the problem was
reduced to a constant number of maximum
flow computations, by Dinits based on [21]
and by Sakarovitch [8] based on linear pro-
gramming techniques. The section describes
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an algorithm that reduces the problem to four
maximum flow computations. If the input is
integral, then each value of the solution pro-
duced by the algorithm is either an integer or
an integer plus a half.

3.5. Solved cases of the undirected feasi-
bility problem. Consider the case of the fea-
sibility problem for undirected graphs, such
that every commodity has one of two distin-
guished nodes as a terminal. In this case the
problem can be solved using the two-com-
modity flow algorithm of § 3.4 and the flow
decomposition algorithm of § 3.3. A general-
ization of this is the fact that an /-commodity
feasibility problem, where the edges of its de-
mand graph can be covered by k star graphs,
can be reduced to k-commodity max-Z prob-
lem, where the objective is to maximize the
total flow of commodities; the reduction adds
k edges and / nodes to the original network.

The following results are due to Papernov
[19]. Note that given a cut, the capacity of the
cut must be at least as big as the sum of de-
mands for pairs of terminals separated by the
cut in order for the problem to be feasible. We
call this the cut condition. For which graphs is
the converse true? That is, for which graphs is
it true that when the cut condition is satisfied
for every cut, then there is a feasible multi-
commodity flow? It is true precisely when the
graph is either (1) a union of two star graphs,
(2) a cycle of length five, or (3) a complete
graph on four nodes.

3.6. Solved cases of the undirected max-Z
problem. This section discusses special cases
of the undirected max-Z multicommodity
problem with known efficient solutions.

The first result of the section is a reduction
from a class of the problems for which demand
graphs are a union of two complete bipartite
graphs to the two-commodity multiterminal
problem. This reduction, which uses the de-
composition algorithm (see § 3.3), is due to
Cherkassky [23].

The following is a conjecture of Cherkassky,
which is an analog of the max-flow, min-cut
theorem for the case of multiterminal undi-
rected two-commodity flow problem. Let Sand
T be the sets of sources and sinks of commodity
1, respectively, and let P and Q be the sets of
sources and sinks of commodity 2. Let c(N)
denote the capacity of a minimum cut sepa-

rating the terminals in N from the remaining
terminals. Then the value of the maximum
two-commodity flow is equal to

L min (¢(X)+c(Y)+c(Z)+c(W)),

where the minimum is taken over all partitions
of terminals such that Xc SU P, Y TU P,
ZcSUQ,and W TUQ.

Now consider an instance of the problem
for which the demand graph is a complete
graph; in other words, there is a commodity
for every pair of terminals. Let ¢; be the capacity
of the minimum cut separating the ith terminal
from the remaining ones. Then the maximum
flow value is equal to 3 2; ¢;. This theorem
was stated in [18]. Cherkassky [22] found an
error in the proof of [18], gave a correct proof,
and presented a polynomial-time algorithm for
this class of problems. The section concludes
with an outline of the algorithm.

3.7. Completeness of a multicommodity flow
problem for a class of linear programming
problems. The multicommodity flow problem
is shown to be complete for a class of linear
programming problems; the problems in this
class appear to be as hard as the general linear
programming problem. They have two special
properties: the variables in the problems are
bounded and the matrix has integral coeffi-
cients. This result is due to Dinits.

4. Minimum-cost flow problem. This
chapter is devoted to the minimum-cost flow
problem and the transportation problem re-
ducible to it. Although no strongly polynomial-
time algorithm is known for these problems,
polynomial-time algorithms (whose running
time depends on logarithms of input numbers)
are known. These are scaling algorithms due
to Edmonds and Karp [1] and Dinits [11].

The main goal of this chapter is to describe
instances of the minimum-cost flow problem
resulting in exponential number of iterations
of the currently known methods. These results
are from [9], [13].

4.1. Minimum-cost augmenting path
method for finding a maximum flow of mini-
mum cost. The minimum-cost augmenting
path method (MAPM) starts with a zero flow
and iteratively augments it along a cheapest
augmenting path. The method works under the
assumption that the input network does not
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have negative cycles. It is shown that the com-
putation of MAPM can be partitioned into
phases; each phase finds a maximum flow in
the network of minimum-cost augmenting
paths using FFA. Since FFA need not termi-
nate [2], MAPM need not terminate either.
A variation of MAMP which uses a polyno-
mial-time maximum flow algorithm to find
maximum flows in networks of minimum-cost
paths always terminates. This variation is called
the generalized method (GM). For integral
capacities, MAPM terminates in time bounded
by the sum of all arc capacities.

4.2. Exponential example for the minimum-
cost augmentation method. This section de-
scribes a parameterized instance such that the
number of phases of GM on an instance with
2k nodes is 2¥7 1.

4.3. The imbalance canceling method for the
transportation problem. This section intro-
duces the transportation problem and describes
a class of imbalance canceling algorithms for
it. The imbalance at v is the difference between
the supply and the current deficitatvifvisa
source, and between the demand and the cur-
rent excess if v is a sink. An imbalance can-
celing algorithm constructs a sequence of flows
such that imbalances monotonically decrease
and each flow is optimal for the natural choice
of supplies and demands.

A common algorithm in this class is the
Hungarian method (HM). The method main-
tains a feasible price function and either aug-
ments flow on a residual path of zero reduced
cost arcs from a supply node toa demand node,
or updates the price function if no such path
exists. As in the algorithm of § 4.1, 2 finite
maximum flow algorithm can be used to guar-
antee termination. There are two variations of
HM. The regular HM starts with a zero flow
and price functions. The HM with a prepro-
cessing stage first goes through the sources s,
finding for each one the arc (s, w) of minimum
cost, sets the price of s to the cost of (s, w),
and sends as much flow as possible along

(s, w).

4.4. The network simplex method for the
transportation problem. This section describes
the primal network simplex algorithm for the
transportation problem. The particular version
described chooses the minimum reduced cost
arc to enter the basis and applies the pertur-
bation method to avoid cycling.

4.5. A relationship between the network
simplex method and the regular Hungarian
method. This section shows that the network
simplex method is equivalent to HM on a
slightly modified network.

4.6. Exponential examples for the network
simplex method and the Hungarian
method. We are given an example ofak Xk
transportation problem on which HM takes
2k=1 jterations. A modification of this example
gives an exponential lower bound on HM with
preprocessing. Results of § 4.5 imply the 2%
lower bound on the number of iterations of
the network simplex method.
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In 1859 Kirchhoff [1] extended Euler’s ear-
lier work [2] by developing a theory for the
bending and twisting of an initially straight,
prismatic, linearly elastic rod in three-dimen-
sional space (spatial elastica). In that same
work he noted that if the rod is subjected to
terminal loads and couples only, then the static
equilibrium equations are identical to the
equations of motion of a rigid body with a fixed
point; this is Kirchhoff’s dynamical analogy
[3]. For example, a particular solution cor-
responding to the regular precession of a sym-
metrical top implies that a rod with a cross
section having equal moments of inertia admits
helical solutions solely under the action of ap-
plied terminal thrust. In spite of its classical
beginning, the (finite-strain ) theory of rods re-
mained more or less dormant until 1958 when
Ericksen and Truesdell [4] resurrected and
clarified the forgotten and somewhat obscure
work of the Cosserats [ 5]. This, in turn, led to
the development of “Cosserat” rod theories (as
well as shell and continuum theories) in the
spirit of modern continuum mechanics in the
1960s, e.g., [61, [7].

While the formulation of such problems is
now well understood (if not widely known}),
the analysis is not. Indeed, rod theory remains
a rich source of interesting nonlinear problems,
as exemplified by the monograph under review.
The author takes up the problem of a trans-
versely isotropic, hyperelastic Kirchhoff rod

subject to terminal compression. (By hyper-
elastic we mean that the material behavior of
the rod is characterized by a general class of
stored-energy functions of the two curvatures
and twist of the rod (strains); the gradient of
the stored-energy function is equal to the con-
tact couple). At first glance this appears to be
a modern reformulation of the classical prob-
lem of Kirchhoff, which has been analyzed in
detail, cf. [81, [9]. However, the primary goal
of the work under review is to study the effects
of small axisymmetry-breaking body forces
(perturbations) on the local solution set
(“close” to the straight state) in two cases: (1)
the “pure orbit-breaking problem”—the com-
pressive end load is small compared to the first
buckling load of the unperturbed problem; (i1)
the “full problem”—for compressive loads
near the lowest buckling load. These problems
are more difficult than the more standard one
of local spontaneous symmetry-breaking bi-
furcation (for example, cf. [10]), by virtue of
the fact that the symmetry is purposefully bro-
ken in the model (not just by certain solu-
tions).

As suggested by the title, the author com-
bines tools and ideas from mechanics and
modern mathematics to formulate and tackle
these problems. For example, one of the first
difficulties arising in this general class of two-
point boundary value problems is the nonlin-
earity of the configuration space; the rotation
field (of the cross sections), [0, 1] D s —
R(s) € SO(3), is required. Hence, we naturally
encounter differential equations on manifolds.
The author confronts this problem head on by
presenting a self-contained, coordinate-free
formulation for both Kirchhoff and special
Cosserat rods (the latter being capable of large
shearing and stretching motions, as well as the
usual bending and twisting motions) in the
modern language of analysis on manifolds.
Workers in continuum mechanics will be es-
pecially interested in this section. For example,
by viewing moments as skew second-order
tensors and by working directly with the ro-
tation as a basic unknown field, Pierce obtains
a coordinate-free characterization of cross-sec-
tional material symmetry in a formulation free
of cross products and directors (two ortho-
normal vectors spanning a plane parallel to the
deformed cross section).

Most of the analysis is devoted to the pure
orbit-breaking problem. This is akin to the
Signorini-Stoppelli problem of three-dimen-




