The preflow algorithm for the maximum flow problem

Karzanov’s max-flow algorithm of 1974 given in [1] is based on a concept of pre-
flow introduced there, which is a function on the arcs that may violate, in a certain
way, the flow conservation condition in nonterminal nodes. The algorithm, called the
preflow algorithm (method), takes advantages of handling preflows on intermediate it-
erations (rather than handling flows, as in the previous algorithms), due to which the
running time of the algorithm reduces to O(n?) (compared with O(mn?) for Dinitz’
algorithm [2]); hereinafter n and m are the numbers of nodes and arcs in the input
digraph G = (V(G), A(G)). Subsequently preflows and the idea of push operations
have been widely used in other max-flow algorithms (having the same or smaller run-
ning time), in particular, in Cherkassky’s algorithm [3] (which is slightly faster) and in
Goldberg’s push-relabel algorithm [4] of the same complexity O(n3).

Similar to Dinitz’s algorithm, the preflow algorithm consists of O(n) stages (big
iterations), each solving the following auziliary problem: find a blocking flow in a
layered network (i.e. a network where all paths from the source to the sink have the
same length; such a network is formed by the nodes and arcs contained in shortest
source-to-sink paths of the residual network w.r.t. the current flow). The preflow
algorithm solves the auxiliary problem in O(n?) time, thus yielding the time bound
O(n?) for the whole algorithm.

In fact, the algorithm of finding a blocking flow given in [1] can be slightly modified
so as to work with an arbitrary acyclic, not necessarily layered, network, and below we
give a description just for this more general situation.

We start with specifying definitions and settings. Consider a network N =
(G,s,t,c), where G = (V, A) is a directed graph, s and t are two distinguished nodes
in G, the source and the sink, respectively, and ¢ : A — R, is a nonnegative real
function of arc capacities. For a function f: A — R, the excess of f at a node v € V
is defined to be exs(v) 1= 3 cgin(y) [(a) = D pegouty) f(a) (Where 6 (v) (6°*(v)) is the
set of arcs in G entering (resp. leaving) a node v). Then f is a flow from s to t if
f<c(ie f(a) <c(a)for each a € A), and f satisfies ex;(¢t) > 0 and ex;(v) = 0 for
all v € V — {s,t}. We say that f is a preflow in N if f < ¢ and ex;(v) > 0 for all
v €V —{s}. A flow or preflow f is called blocking if any (directed) path from s to ¢
contains at least one saturated arc a, i.e. such that f(a) = c(a).

Theorem. Let N = (G = (V, A),s,t,c) be an acyclic network. A blocking flow f
from s tot in N can be found in O(n?) time.

Proof. First of all we order the nodes of G topologically, i.e. label them as
V1,...,Un SO that (v;,v;) € A imply ¢ < j (this takes O(m) time). One may assume
that s = v;, t = vy, and each arc lies on an s—t path and has nonzero capacity.

The algorithm iteratively handles a preflow f: A — R, . For each node v € V, the
following data are explicitly maintained:

(i) The excess ex(v) = exs(v).

(ii) A (double-linked) list Out(v). It is formed by the arcs of G leaving v (each arc
occurs in the list exactly once). Each arc e can be either scanned or unscanned. If e

1

is unscanned, then f(e) = 0. One arc in this list is distinguished, called active and
denoted by €,. The following condition holds:

(C1) all arcs of Out(v) before €, are scanned, while all arcs after €, are unscanned (the
arc e, itself may be either scanned or not).

Also some arcs in Out(v) can be labeled as “frozen” (the meaning will be clear later).

(ili) A stack In(v) (to work with on the “last come first serve” basis). Its elements
are pairs (e, A), where e is an arc entering v and A is a nonnegative real. Each arc e
entering v may occur in this stack once or several times or it may not occur there at
all, and the sum of numbers A over the pairs (e, A) with the same e is equal to f(e).
In particular, if e does not occur in In(v), then f(e) = 0.

The algorithm starts with the function f such that f(e) = c(e) for all arcs e leaving
the source s, and f(e) = 0 otherwise (in the latter case e is unscanned). Accordingly,
for each arc e = (s,v), the pair (e, f(e)) is inserted (as a unique element) in the stack
In(v). The initial stacks In(v’) for the remaining nodes v’ are empty. Clearly f is a
blocking preflow.

The algorithm alternates “pushing” and “balancing” iterations. Although the first
iteration is “pushing”, it is more convenient for us (and more enlightening) to start
with describing a “balancing” iteration.

Balancing. We assume that at the moment of beginning a “balancing” iteration,
the following condition holds:

(C2) fis a blocking preflow; moreover, for each node v with ex;(v) > 0, any v—t path
contains a saturated arc e.

Using the topological order on V, we find the node v = v; # t such that ex;(v) > 0
and exs(v;) = 0for j =i+1,...,n—1. If such a node does not exist, then f is already
a blocking flow, and the algorithm terminates.

We perform “balancing” at this v so as to reduce the excess at it to zero. To
do so, we use the stack In(v) and decrease the numbers A there step by step in a
natural way. More precisely, take the last (chronologically) member (e, A) of In(v)
and let § := min{A,exs(v)}. Update f(e) := f(e) — 4§, Ae) := A(e) — 4, and
ex(v) := ex(v) — 6. If the new A(e) becomes 0, we handle the previous pair (¢/, A)
in In(v) is a similar way (whenever ex(v) is still nonzero), and so on. Eventually, we
obtain f with ex;(v) = 0.

All arcs of G entering v are labeled as “frozen” (which means that the function f
on such arcs should not be changed on subsequent iterations).

Pushing. Note that after performing a balancing iteration, the current function
f is a preflow and, moreover, a blocking preflow (which can be easily checked), but the
second condition in (C2) need not hold. A “pushing” iteration increases f on certain
arcs and restores validity of (C2). Recall that the first iteration in the algorithm is
“pushing” as well.

We scan the nodes in the increasing order, starting with vy (where v; = s). Every
time we meet a node v = v; with ex;(v) > 0 (for a current f), we try to reduce the

2

excess at v as much as possible by increasing f on appropriate arcs leaving v. (Note
that a growth of f at an arc (v, u) increases the excess at u (which may be zero before).
However, since v = v; for some j > 7, the node u will be scanned on a subsequent step
of this iteration.)

More precisely, we take the active arc e, and do the following:

(P) starting from €,, we scan step by step the (unscanned) arcs in Out(v) skipping
the “frozen” arcs (if they exist); when scanning a current arc e = (v, u) (which is
made “active” at this moment), we increase f(e) as much as possible, i.e. letting
0 :=min{c(e) — f(e), exg(v)}, we update f(e) := f(e) + 9 and ex(v) := ex(v) — 4,
and accordingly insert the pair (e, d) in the stack In(u).

We stop as soon as either the list Out(v) terminates, or the excess at v becomes zero.
In the former case, all arcs in Out(v) are saturated or “frozen” (and the active arc is
formally the last arc), and in the latter case, the current arc e = (v,u) becomes active,
the arcs before e are saturated or “frozen”, and the arcs after e remain unscanned.

After scanning v = v;, we repeat the procedure with the next vertex v' = v; (j > 1)
where the excess w.r.t. the current f is positive. And so on (until we reach the sink ¢).
One can see that the number of operations during a “pushing” iteration is O(n + q),
where ¢ is the number of (new) arcs that become saturated at the iteration plus the
number of “frozen” arcs skipped when scanning the lists Out(v).

The following fact is easy.

Lemma 1. After performing a “pushing” iteration, the obtained f satisfies (C2).

This implies that the next “balancing” iteration has a correct input, and the whole
process of alternating “pushing” and “balancing” iterations is well-defined. The key
observation is as follows.

Lemma 2. Suppose a node v = v; is handled at some “balancing” iteration. Then
for any arc e incident to v, the value f(e) is not changed on subsequent iterations.

Proof. This relies on the fact that at the moment of balancing f at v, one has
exs(vj) =0for j =i+ 1,...,n — 1. Analyzing the algorithm and using this fact, one
can realize that for any subsequent function f’ and for any arc €’ incident to v;, the
value f'(e’) cannot be less than f(e). In particular, f'(e) > f(e) for each e leaving v.

On the other hand, since all arcs entering v becomes “frozen”, the value of a sub-
sequent function f’ on an arc e cannot be greater than f(e).

This implies that f preserves on the arcs incident to v (in view of exs(v) =0). |

As a result, any node can be balanced at most once, implying that the number
of iterations is O(n). Also if an arc e = (u,v) becomes saturated, the number of
subsequent operations involving e is O(1) (a possible operation is a decrease of f(e)
during balancing v, after which e becomes “frozen” and it can be scanned once during
pushing from).

Thus, using the above-mentioned bound O(n + ¢) for one “pushing” iteration, we
can conclude that to perform all “pushing” iterations takes O(n? +m) time. A similar
bound is valid for all “balancing” iterations taken together.

Thus, the algorithm runs in O(n? + m) time, yielding the theorem.]

3

References

[1] A.V. Karzanov, Determining a maximal flow in a network by the method of pre-
flows, Doklady Akademii Nauk SSSR, 215, 1974, 49-52, in Russian. (English
translation in Soviet Math. Dokl., 15, No.2, 1974, 434-437.)

[2] E.A. Dinic, Algorithm for solution of a problem of maximum flow with power esti-
mation, Doklady Akademii Nauk SSSR, 194, 1970, 754-757, in Russian. (English
translation in Soviet Math. Dokl., 11, 1970, 1277-1280.)

(3] B.V. Cherkassky, Algorithm for construction of maximal flow in networks with
complexity of (O(n®,/p) operations, In: Mathematical Methods in Economical
Research, issue 7, Nauka, Moscow, 1977, pp. 117-126.

[4] A.V. Goldberg, A new max-flow algorithm, Technical Report MIT/LCS/TM-291,
Cambridge, 1985.

Dokl. Akad. Nauk SSSR Soviet Math. Dokl.
Tom 215 (1974), No. 1 Vol. 15 (1974), No. 2

DETERMINING THE MAXIMAL FLOW IN A NETWORK
BY THE METHOD OF PREFLOWS

UDC 518.5
A. V. KARZANOV

An algorithm is presented for determining the maximal flow in a network with an
upper bound O(n”) on the number of operations, where 7 is the number of vertices of

the network.

L. A flow network is an oriented graph G = [V; Ul with a set of vertices v, |V| =
n, a set of arcs U, |U| = p, a real function, the ‘‘transmission capacity”’ of an arc,
c(w) >0, u € U, a “*source’” s €V, a ““sink’® ¢ € V. A function (@), u € U, is called a
flow if

1) 0<f(u)<c(u) VueU,

2) Div(z)= Z f((z,y))— Z 1((z,2))=0 VzeV/s, 1.
(=) €U (zmev

A flow with greatest output v(f) = Div(s) = =Div(¢) [1], is called maximal.

In [2] the problem is in effect reduced to the solution of not more than n — 1 prob-
lems of the following type:

A network is given (a manual of shortest paths) S, = [Vk; Uk V.| <n, [U| <p,
1 <k<n-1, with “source’” s, “*sink’’ ¢, and *‘transmission capacity’’ ck(u), u €U,
such that any vertex, and also any arc, belong to some shortest (oriented) path from s
to ¢ (with a number k£ of arcs). Find a flow fk such that for any (oriented) path & from
s to ¢ there is a saturated arc u € &, i.e. /k(”) = ck(u). [, is called a dead-end flow.

An algorithm is presented for solving this problem in O(n?) operations.

2. In the manual § = [v; U] (we shall omit the index £ in what follows), by the
Ith layer, [=0, 1,+++, k, is meant the set 0,= fx:x eV, x being situated at distance
[from s}. In accordance with the definition 0,= {s, 0, = {t}. '

Let plu), u € U, be an admissible function, i.e. 0 < p(u) < c(u). Let & be called
p-blocked if there is a saturated arc u € £, i.e. p(u) = c(u). An arc u = (x, y) (respec-
tively, vertex x') is called p-blocked if any path & of the form x, u, y,+++, ¢ (respec-
tively, path ¢’ of the form x',+++, 1) is p-blocked. Thus a dead-end flow is a flow /
for which the source s is f-blocked.

We shall employ the following notation: a(x), x € V, is the set of arcs originating

from x, and B(x) is the set of incoming arcs at x;

——

AMS (MOS) subject classifications (1970). Primary 90B10.

Copyright © 1975, American Mathematical Society

434

V=Vt pW)=p@le, (U @)=Y p@), U'SU

uaU

(the symbol == denotes equality by definition).
We call a function g(u), u € U, a preflow if the following properties are satisfied:
P1. 0 < g(u) < ().
P2. |g(B(x))] > |glalx))| Vx € V.
P3. 1f |g(B(x))] > |glalx)|, x € V (x is called a deficient vertex), then the vertex
x is g-blocked.
P4. The vertex s is g-blocked.

If the preflow g does not contain deficient vertices, then g is a dead-end flow.

3. Description of the algorithm. A dead-end flow in § is constructed iteratively.
The ith iteration, i = 1, 2,+++, consists of two parts: a) completion to a preflow, b)
balancing of the deficient vertices. The function obtained at the ith iteration as a re-
sult of completion we shall denote by g;, and the function resulting from balancing by
g?al .
Each arc has a flow index: open or closed. If an arc becomes closed, then it re-
mains so until the end of operation of the algorithm. Initially all arcs are open.

We shall consider that the set M = {ml, My, sse, m } is given in the form of a list

q
if a certain ordering Mp s My ettty Mp is fixed by the designation of an initial ele-
q

ment (minit
2

=my 1)’ a terminal element (mtet= mpq), and for each element mpj, i=1,
+++, g, a preceding element (mpj_ 1) and a succeeding element (mpjﬂ); we shall
m =&.

bysy =2

The following flow sets are given in the form of lists:

’

set mpo =,

a) alx) Vx € V is the set of open unsaturated arcs;
b) Ba(x) Vx €V is a set whose meaning can be made precise as follows. For each
z € Balx) a real number A(z) > 0 is determined, called an addition. Initially, a(x) =
alx) Vx € V; B,olx) =g Vx e V.
Completion to a preflow. Let 7 —1 iterations, i > 2, already have been effected,
the function gi’fll determined, and the assertions verified (for r = 7 — 1):
1°. For g:’al properties P1, P2, P4 are satisfied, and a layer OS(T) is determined
such that Vx € U:fz(rl)-l Ol P3 is satisfied and in the layers Os(r)+1' Os(1)+2' cen,
0, _, there are no deficient vertices.
2°. All closed arcs of g:’a[are blocked.
39, For each arc u € alx) Vx € V, except perhaps for the first, gl’al(u) =0.
Completion at the ith iteration consists in the construction of a preflow g, from
gifll. We shall say that on the arc u € U an active assignment is produced, if gl.(u) >
3?311(”)’ We shall say that in all the remaining arcs a passive assignment is produced.
For all the arcs incident to vertices of the layers O\, O, «--, Os(i- -1 V€

bal

assume g, =g; (passive assignment).

1
A layered circuit of the vertices of the layers Ogiz1y Ostim1y+1r** %2 Opy is

produced: first the vertices of the layer O . _,, are sorted out, then those of

435

Og(i-1+1? and so forth up to O, _y, inclusively. Suppose the vertices X, X, ***. N
have already been traversed in a layered circuit, and let x5, € O]. be the next vertex.

gi(B(af)) is already determined for any vertex x € O].,and

lg:(p (Zn+1)) 1218?—&11 (a(xzv+1)) |

a) If \gi(B(xNﬂ))\ = \g?fll(a(xNﬂ))\, then we set gi(a(xNH)) = g‘z?fll(a(xNH))
(passive assignment).

b) If \gi(B(xNH))\ < \g:fll(a(xNﬂ))\ and 'o'L(xNﬂ) = & then we set gi(a(xN“)) =
g?fll(a(xNH)) (passive assignment).

c) Let \gi(B(xNﬂ))\ > \g?_all(a(xNﬂ))\ and a(xN+l) L &. Let alx) = {ul, Uy, v

7 8

' a
We set gi(a(xNH)/a(xNﬂ)) = g?fll(a(xN +1)/a(xN+1)) (passive assignment). For
the arcs u, =@ Uy Uy oty Ups 0 <1< g, suppose g; has already been determined

0) I PP i y
and \8i(a("N+1))\ < \gi(B(xNﬂ))\, where a(xNﬂ) =alxy_ 1)/5‘("N+1) U bge @ uli
is the set of arcs with already given g.. For the next arc u of the list alx,) we
ve i 1+1 N+l

set

gi(taer) =min {¢(uir), |8:(B(@x+))| —gi(a(zxs)) [}

(active assignment). We make active assignments up to the arc # (inclusive) for
which either: 1) \gi(a(xNﬂ)/a(xNﬂ) Ulug ugueers ”mm = \gi(,@(xNﬂ))l, or2) m=q.
For the arcs #, 410 Uy 490" "0 u, (in case 1) we set g, = g:’fll =0 (passive assignment).
The new list alxy ;) takes the form tu _, u 4p00 " uq} if gi(um) < clu,), and takes
the form {umﬂ, Uy sprt " uq} if m<gq and gi(um) = c(um).

If an active assignment is made on the arc u = (xN+1, y), then z is added to the
end of the list B,(y) (even if the arc u is already contained in Baly)) and we define
A(z) to be equal to gi(u) - g?fll(u).

In the construction of g, we set ggal =0, s(0) =0, gi(a(s))'= clals)) (active
assignment) and proceed further in accordance with the completion algorithm.

Balancing. Let d(i) be the maximal index of a layer in which g, has a deficient
vertex (x). At the vertex X an operation of balancing is effected, i.e. determination of
gi?al(B(x)) so that \g;’al(ﬁ(x»\ = \gi(a(x))\ and gP*Nw) < g (W) Yu € B(x). We effect

i
balancing at the vertex X in accordance with the list BA(x), starting from its terminus

and decreasing g; at the expense of “‘additions’’. Let u; be the next element in B,(%)

~

and suppose lg?al(,@(x))l + |gi(B(X)/,3(x))\ > \gi(a(x))l, where B(x) C B(x) is the set

of arcs for which gli”‘1 is defined. We set
281 = maxlg;) = B g, () - g} RO - e, (BB G/u)l}

(active assignment) and proceed to u;_;, and so on until \g'i’al(B(xm + |gi(B(x)/I§(x))|

= \gi(a(x))\, where B(x) is the (new) set with already determined g;’al

. Forall u €
,B(x)/B(x) we put g;’al(u) = gl.(u) (passive assignment). Each arc u = (y, x) € Blx) is
ttclosed”’ and is stricken from the list aly) (if it is present in it).

If there are deficient vertices in the layer O 4.y then we effect balancing inde-

436

pendently for each one. For all arcs with not already designated glt.”‘1 we set g?al =

g, (passive assignment). We set s(z) = d(i) - 1.

Lemma 1. 1) g; isa preflow. 2) assertions 1°=3° are valid for r = i. 3) If a vertex

xeV is g?al-blocked, then it is g -blocked and g}’al-blocked.

The lemma is proved by induction on 7 (for i =1 the proof is immediate).

To each *‘addition’ A we associate the index e(A) of that iteration at which it
occurred as a result of completion. Let ki,j be the maximal index of the additions
relative to all the arcs incoming to vertices of the layer O]. before commencement of

balancing in the ith iteration.

Lemma 2. In the balancing at the ith iteration an active assignment can be made
only for those arcs u € Blx), x € O 4¢;y for which e(A(w)) =k, d(i)g}’al(u) > g, () - Aw).

With the aid of Lemmas 1 and 2 one can prove the
Theorem. At each vertex x € V balancing is carried out not more than once.

It follows from the theorem that the number of iterations is not greater than n — 2.
The final function is a flow, and since s is g;-blocked, it follows from Lemma 1 that

this flow is dead-end.

4. Estimate of the number of operations. In a passive assignment no operations
are effected. Owing to the utilization of lists, the number of operations in the construc-
tion of a dead-end flow is 7 = 0(n? + 7)), where 7 is the number of active assignments.
From the Theorem it follows that 7 = O(p + na), where 7, is the number of active
assignments in the completions. We say that as a result of an active assignment in
completion on an arc u the event A occurs if the arc u is saturated, and the event B

occurs if it is not saturated.

Lemma 3. 1) The total number of events A is not greater than p.

2) In the course of one iteration in alx), Vx € V not more than one event B occurs.

From Lemma 3 it follows that 7_ = p + 7' and 7' = 0(n?), where 7' is the total
number of events B, whence it follows that 7= 0(n® — 7") = 0(n?).

There is a modification of the method presented for finding a dead-end flow for
which 7= O(p + n"). One can construct extremal examples of networks supporting the
precision of the estimate 0(n?) for finding the maximal flow by means of the given

and modified methods.
Institute for Control Problems Received 16/APR/73

BIBLIOGRAPHY

1. L. R. Ford, Jr. and D. R. Fulkerson, Flows in networks, Princeton Univ, Press, Prince-
ton, N. J., 1962. MR 28 #2917.

2. E. A. Dinic, Algorithm for solution of a problem of maximum flow in a network with
power estimation, Dokl. Akad. Nauk SSSR 194 (1970), 754—757 = Soviet Math. Dokl. 11 (1970),
1277—-1280. MR 44 #5178.

Translated by R. F. RINEHART

437

