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Earlier necessary and sufficient conditions have been found for the path metrics df
that admit no primitive extensions except themselves.

Theorem 1.1 [10].  Let H be a connected graph. Then |II(d*)| = 1 if and only if

H is bipartite, orientable and contains no isometric k-cycle with k > 6.

[Tere a k-cycle is a (simple) circuit Ck on k nodes (considered as a closed path
or as a graph depending on the context). A graph H is orientable if the edges of H
can be oriented so that for any 4-cycle C' = (vo, €1, v, ..., €4,v4 = vy), the orientations
of the opposite edges e; and ez are different along the cycle, and similarly for es and
eq (a feasible orientation is depicted in Fig. 2). A subgraph H' of H is isometric if
d?' (zy) = d¥ (xy) for any nodes x, y of H'. The graphs H as in Theorem 1.1 are called
frames. We refer to [10] for other results on frames, in particular, those related to a
generalization of the multiterminal cut problem from [6].

(14 (5]

Fig. 1 Ug U3

CIn this paper we focus on the case when TI(y) is finite. Such a metric u is called
primitively finite, or a PF-metric. (Our initial motivation for studying this case came
up from the multifiow (multicommodity flow) area. Extreme extensions arise as optimal
dual solutions in one sort of multiflow problems where one is asked for maximizing the
sum of flow values weighted by a given metric p on the set of terminals. The finiteness
of TI{(;1) means that, up to the similarity, the number of unavoidable optimal dual
solutions occurring in the problem instances concerning this y is finite. These aspects
will be discussed in Section 6.) Our main result is the following.

Theorem 1.2.  Let y be a positive rational metric on a finite set T'. The following
are equivalent:

(i) T(p) is finite;

(1) there exist a frame H and an integer A > 0 such that Ay is a submetric of d¥ ;

(i) the least generating graph G = (V| E) for a modular closure (V,m) of p is
bipartite and contains as an isometric subgraph neither Cy with k > 6 nor Ky .

We have to explain the notions used in (iii) of this theorem that gives a combina-
torial characterization of the PF-metrics.

First, for a metric m on V, a point v € V is called a median of a triple {s¢, $1, s2}
in V if

(1.1) m(siv) + m(vs;) = m(s;s;)  forall 0<i<j<2.
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When a median exists for each triple, m is called modular. By a modular closure
of 1 we mean a certain its extension (V,m) which is modular and is constructed by the
following process. Initially sct V := T and m := p. Choose in V a triple {s0, 81,82}
without a median, add a new point v to V' and define the distances from v to the
$;'8 50 as to satisfy (1.1) (such distances exist and are unique). Then define distances
from v to the other points in V' as follows. Let V' C V be the set of points of which
distances from v have already been defined; initially V' = {s¢, s1. s2,v}. Choose a point
we V -V and put

(1.2) m(uv) = max{m(uz) - m(zv) : z € V' — {v}}.

Update V' := V' U {u} and iterate until V/ = V. One can see that m remains an
extension of ;. Repeat this procedure for a next medianless triple in the current (V,m),
and so on.

When the process terminates, the resulting (V, m) has medians for all triples and
is just the desired extension of . Note that a priori m depends on the order in which
the medianless triples are treated (however, it is invariant when ft Is primitively finite,
as we explain in Section 5). We show in Section 2 that for a rational metric u the above
process does terminate in a finite number of steps and, moreover, that the resulting m

1s a primitive extension of p.

Sccond, a spanning subgraph G of Ky is said to generate m if m coincides with
the path metric defined by G whose each edge ¢ has length m(e). The least graph
generating, or, briefly, LG-graph, of m is obtained by deleting all redundant edges from
Ky, where zy is redundant if there is z € V — {x,y} with m(z2) + m(zy) = m(zy)
(such a z is said to be between x and y).

Third, Ky is the graph obtained by deleting one cdge from Kj 3, where Ky, is
the complete bipartite graph whose parts (i.e., the maximal stable scts) consist of p and
g nodes; see Fig. 2. We call a bipartite graph without isometric subgraphs Cy, k > 6,
and K35 a semiframe. Note that K5, is non-orientable, so every frame is a semiframe.
On the other hand, every graph K, , is a semiframe, but it is not a frame if p,q > 3.
In a bipartite graph an induced subgraph Cg or Ky 5 is, obviously, isometric.

2 3 2 3
1 6 1 6
4 5 4 5
Pig. 2 (a) K:;,:f (b) Ky

We now briefly outline the method of proof of Theorem 1.2. Implication (ii)—(1)
will follow from Theorem 1.1 and a rather simple fact that if y is a submetric of a
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to multiflows.

Among a variety of tools used in our proofs, we, in particular, apply results of
Bandelt on hereditary modular graphs. A graph H is called modular if d¥ is modular,
and hereditary modular if each isometric subgraph of H is modular. In particular, any

modular graph is bipartite.

Theorem 1.8 [3]. Let H = (T,U) be a graph.

(i) H is hereditary modular if and only if H is bipartite and contains no isometric
k-cycle with k > 6.

(i) If H is modular but not hereditary modular, then H contains an isometric
6-cycle that, in its turn, is contained in a (not necessarily induced) cube in H (see Fig.
3).

(iii) If H is bipartite but not modular, then H contains a medianless triple {so, s1,
So} with dH(sosl) = dH (sps2) > 2 and dH(sl.sQ) = 2.

Fig. 3

In view of (i), the frames (semiframes) are exactly those hereditary modular graphs

which are orientable (respectively, without induced subgraphs K 3)-

A majority of results in this paper can be extended, with a due care, to arbitrary,
not necessarily rational and finite, metrics u; we, however, consider only the finite

rational case to make our description shorter and technically simpler.

2. The modular closure and least generating graph

Let m be an extension of i to V. A sequence P = (20, T1,. .. , x1;) of points of V' is
called a path on V; we refer to P as a T-path if g,z € T, and a cycle if xg = zp. For
brevity we write P = xgzy... 2. The length of P with respect to m, or the m-length,
is m(P) = m(zowy) + ...+ m(ar_1xk), and P is called m-shortest if m(P) = m(zozk).
The set of m-shortest 7-paths is denoted by G(m) = G(T,m).

If extensions m, m’, m’ of  to V satisfy m > Am/ + (1 = \)m” with 0 <A < 1, we

say that m’ decornposes m. So m is extremc if and only if no m' # m decomposes m.



relation is symmetric and transitive, and we call a maximal set of dependent edges an
orbit of (. Then (3.1) implics that

(3.2) the distances m(e) of all edges ¢ of an orbit of ¢ are the same.

Now suppose that G contains an induced subgraph II’ = (T",U’) isomorphic to
K3, (notation H'>~K,,). Note that H' is isometric since G is bipartite. Moreover, it
is easy to check that all edges of H' are dependent (via 4-cycles in H' ), therefore, by
(3.2),

(3.3) the submetric i’ of m to 7" is Ad?" for some A > 0.

A feature of Ky, is that its metric d = d%3s has a primitive extension which, in
its turn, has a proper submetric ' isomorphic to %d. Then d’ can be extended in a
similar way, and one can repecat such a procedure as many times as one wishes, every
time obtaining a new primitive extension of the initial metric, due to (i) and (ii) in
Statement 3.1. More precisely, the following is true (cf. Theorem 1.3).

Statement 3.2 [10]. For H' = (7", U')=K, 5, there exists a bipartite graph G =

V" E") with V" > T" such that: (i) m" = 14¢" is a primitive extension of A7, and
2

(ii) G contains K3 4 as an induced subgraph.

Fig. 4 (a) H'>Ky, (b) G

The desired graph G” is drawn in Fig. 4b where for convenience the nodes of &
arc labelled by 1,...,6 as indicated in Fig. 4a. This G" is obtained by splitting each
cdge e = ij of H' into two edges iz, and z.j in series, and adding: (a) two extra nodes
zand y, (b) edges zz, for all e = ij € U’ with i,j < 5, and (c) cdges yz,. for all
e=1j € U with i,j > 2. An induced subgraph Ky 4 in G” is drawn bold in Fig. 4b.
It is not difficult to check that m” is an extension of d¥’ and, morcover, that m” is
a tight extension of d#' (c.g., = and y belong to a shortest path of length six in G
which connects nodes 1 and 4). However, a direct verification of the primitivity of m”
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U2 U3

Uy = v Uy

Uy = Vo Us Vg
Fig. 5 (a) T (b)

Now assume that the «, 3, are not the same, a < § <y say. Let p be the distance
function for a set W of ten points uy = vy, u1 = v1,v9,...,Us, Uz, ..., Us, defined by

(3.4) p(viv;) = m(vy),
p(“"iuj) = CY(,O(’i, J)
pluv;) = mlvev;) — ap(0, ) + ap(i, j)

fori,j =0,...,5, where p(i', j') = d%(vivj-). One can check that p is indeed a metric
on W (Fig. 5b illustrates the LG-graph for p). Moreover, by (3.4), for each i = 0,...,5,
the p-length of the path £; = v;u;u 414 12U+ 3043 1S equal to

plvcu) + pluitiys) + p(uissvivs)
= (m(vovy) — aw(0,1)) + 3a + (m(voviys) — ap(0,i+ 3))
= m(vviga) + 3 — ap(i, i+ 3) = m(vivigs) (= a+6+7),

taking indices modulo 6 and using the facts that m(vov;) +m(voviy3) = m(vivi+3) and
©0(0,1)+ (0,14 3) = 3. So F; is a p-shortest T-path. Since each two points of W occur
in some P;, p is a tight cxtension of ji. But p is not primitive for jz. Nevertheless, we
can use the fact that the submetric p’ of p on {ug,...,us} is ad®. We further extend
p by use of the metric ad? (which first cxtends p’), where T is the above-mentioned
graph depicted in Fig. 5a. Then the resulting metric p on W U {z,y} is already a
primitive extension of fi. This follows from the observation that the collection of the
above p-shortest paths P; together with the shortest paths between u; and w43 in T,
i = 0,1,2, determines p uniquely. Again, p has a primitive extension in which some
submetric is proportional to dK;ﬁ, providing the existence of infinitely many primitive
extensions for p. This completes the proof of implication (i)—(iii) in Theorem 1.2.

4. Proof of (iii)—(ii) in Theorem 1.2

Lot the graph G = (V, E) as above be a semiframe. We show that in this case
there exists a frame H such that Ay is a submetric of d¥ for some A > 0.
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exists a feasible orientation of the edges of this orbit, i.e., each two opposite edges of any
4-cycle of G either are not oriented or have different orientations along this cycle (this
matches the definition of the orientability in the Introduction). Note that ) may be
orientable while the whole (G is not. The graph G’ has important properties exhibited

in the following threc lemmas.

Fig. 6 (a) (b)
Lemma 4.2. (' is a semiframe.

Lemma 4.3. Let Q1,...,Q, be the orbits of G, and let G’ = (V', &) be obtained
from G by the orbit splitting operation applied to Q1. Then G" has r or r -+ 1 orbits.
Moreover,

(i) fori = 2,...,r, Q; induces an orbit (J; in G’ formed by the edges of Q; and all
bridge-edges zezer such that the 4-cycle in G containing e, €’ has the other two
edges in Q;; also Q) is orientable if and only if (; Is s0;

(ii) if ()1 is non-orientable, then Qy induces one orbit )} in G', which is orientable
and formed by all the split- and star-edgcs;

(iii) if Q is orientable, then Q1 induces two orbits Q1 and QY in G, and the set Q1uQY
consists of all the split- and star-edges; also both @} and Q){ are orientable, and for
cach e = zy € Q1, one of the edges xz,yz. belongs to QY while the other to Q.

Lemma 4.4. Let p be the length function on the edges of G defined as follows (using

notation from the previous lemima):
(4.2) (i) fori=2,...,r, the p-length of each edge in )} is equal to the distance m(e)
of an edge ¢ € Q;

(i) if Q is non-orientable and ¢ € @y, then the p-length of each edge in Q; is
equal to m(e)/2;

(iii) if Qy is orientable and e € (1, then fix an arbitrary number 0 < a < m(e)
and put p(e') = o for all ¢’ € Q) and p(e’) = m(e") — a for all e’ € QY.

Then the path metric mf = d P on V' coincides with p on E' and is a tight

extension of pi.
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[' of I'y 4 bounded by two shortest paths from s = (0,0) to t = (p,q) is called a net
from s to ¢, or an s-t net. That is, I' is a subgraph of ', , induced by the nodcs
(i,7) satisfying a; < 4 < b; for two sequences 0 = ag < a; < ... < ag < p and
0<bp <01 <... <bg=pwith a; <b;, j=0,...,¢. Figure 7b illustrates a net I for
p =4 and ¢ = 3. The rightmost (resp. leftmost) path from s to ¢ in [' is denoted by
RY (vesp. L'). Sometimes a node with coordinates (i, j) in I is denoted by (4, j)r.

vt

LF

Fig. 7 (a) ]—‘4,3 (b) T

We will use as an important tool the property that any two shortest paths with
the same ends in GG can be linked by an isometric net. More precisely,

(4.6) (i) for any s,t € V and shortest s— paths P and P’ in G, there exists an s net
I' in G such that R' = P and L' = P";

(ii) any 2-connccted net in G is isometric.

This property was proved in [10] concerning the frames; however, the proof remains
valid for the semiframes as it does not really uses the orientability of the hereditary
modular graph in question but only absence of induced subgraphs K3 5 in it. We outline
the proof for completeness of our description.

Sketch of the proof of (4.6). We show (i) by induction on |P|. Let P = sx; ...zt
and P’ = sy, ...yxt. Case |P| <2 is obvious, so assume |P| > 3. Also one may assume
that z; # y; fori,j = 1,..., k (otherwise the result easily follows by induction). Since G
has no isometric n-cycle with n > 4, there are 7, j such that d%(2;y;) < i+j, 2k+2—i—j;
one may assume that 1 4 j < 2k +2 — ¢ — 7, that ¢ > j, and that ¢ + j is minimum.

Choose a shortest path y;z;... 2,2, in G. The above assumptions and the bipar-
titencss of G imply that the paths L = y; 1...y1swy ... 25, L' = y; 1y521 ... 2424
and L" = y;...y1521 ... 2, are shortest (letting zop = yo = s). By induction
there is a y;_,-z; net I with RT = L and L' = L’. Clearly L” can be short-
est only if I' is the (¢ 4 j — 2) x 1 grid in which y;,x;_1,;,s have the coordinates
(0,1),(0,i + j — 2),(1,i+ 7 — 2),(j — 1,0), respectively (in view of i > j). Then
D = sz_y...zqr;... 74t and D' = SZj—1 . A1Yj yrt are shortest paths in G. By
induction there is a z;_1~¢ net I with R"" and L' to be the parts of D and D’ from
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from the polyhedral structure of tight spans mentioned in the Introduction).

First we recall the construction of 7(d”) for a frame H = (W, U). Each edge e of
H is regarded as being homeomorphic to the closed interval (segment) [0,1] € R' with
the natural metric ¢¢ on it. Each 4-cycle C = vyv1vov3vg (considered up to reversing
and cyclically shifting) is expanded into a 2-dimensional disc D, Formally, D¢ is
homeomorphic to [0, 1] % [0, 1] € IR?, the nodes vy, v1, va, v3 are identified with the points
(0,0),(0,1),(1,1),(1,0), respectively, and the edges with the corresponding scgments. D¢
is endowed with the ¢;-metric ¢© = o%"1 @ ¢¥1*2| ic., for points z = (£, 1) and
y = (£,7') in DY, 0 (zy) = |6 - & +|n —1/|. If two d-cycle C' = vguivav3v and
C" = upuquguzup have three common nodes, v; = u; for i = 0,1, 2 say, we identify the
corresponding halves (triangles) in DY and DY, namely, assuming for definiteness that
vg, v1, Uz are represented as (0,0),(0,1),(1,1) in both discs, respectively, we identify each
point (£,7) for 0 < € <n < 1in D with the (€,7) in D", As a result, every bi-clique
K = (A; B) with A = {s],s2} and B = {t],...,t;} produces the shape F(K), called
the folder of K, homeomorhic to the space formed by sticking together & copies of the
triangle {(£,n) : 0 < & < n <1} along the side {{(a, &) : 0 < o < 1}; see Fig. 8 for
k = 5. The above metrics ¢© for 4-cycles C in K give the metric ¢ on F(K). Tn view

of Statement 4.1, two different folders have at most one vertex or one edge in common.
t3

4

t1 becomes 4,

Flg 8 51 81

The resulting space is just 7 (d) = (X, 0), where X = U(F(K) : K € K(H)) and
the global metric o on A is defined in a natural way: for z,y € X, o(zy) is the infimum
of values 09" (zgz1) + ... + 0¥ (z,_12,) over all finite sequences = = xy,x1,..., 2, =y
in which each two x;_1,x; occur in the folder F(g¢;) of a bi-clique ¢; or in a bridge g;.

Now suppose that h takes value 2 on the edges of some orbit ) of H, and 1 on
the other edges of H. Let H' be obtained by splitting the orbit @, taking « = 1 (see
Lemma 4.4). Since d"" is a tight extension of ¢ = d*", we have T(g) = T(A"); so
the folder structure of 7(d¥") describes T (g). However, we can describe T(g) = (X, 5)
in terms of H and A themselves, as follows.

(i) Let K = xyuve be a simple bi-clique (4-cycle) in K(Q) with zy, uv € Q (see the
definition in the beginning of Section 4). Then K induces two bi-cliques (4-cycles) K/ =
zzz've and K" = zyuz’z in H', where z = z,,, and 2’ = zy,. Each of F(K'), F(K") is

represented as the square [0, 1] x [0, 1], and the common scgment between z and 2’ sticks
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