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Abstract. This paper studies the class of rational-valued metrics µ on finite sets T

such that the set Π(µ) of primitive extensions of µ is finite. Here a positive extension
m of µ to a set V ⊇ T is said to be primitive if m dominates no convex combination of
other extensions of µ.

We show that Π(µ) is finite if and only if there exists a graph H such that its
path metric dH has no primitive extensions except itself and λµ is a submetric of dH

for some integer λ > 0. We also give a combinatorial characterization for such metrics
µ, explain that the finiteness of Π(µ) can be recognized efficiently, show that Π(µ)
is finite if and only if the tight span of µ is 2-dimensional, demonstrate applications
to multicommodity flows, and present other results. Our results rely on properties of
graphs H with |Π(dH)| = 1 established in [10].
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1. Introduction

This paper continues a study of finite metrics from the viewpoint of their primitive
extensions begun in [10] where necessary and sufficient conditions for a graph metric
that admits a unique primitive extension are described. Here we give a complete char-
acterization of the set of finite metrics that have possibly more than one but a finite
number of primitive extensions, thus answering a question raised in [9].

Throughout by a metric on a set X we mean a nonnegative real-valued function d

that establishes distances on the pairs of elements of X satisfying (i) d(x, x) = 0, (ii)
d(x, y) = d(y, x), and (iii) d(x, y)+d(y, z) ≥ d(x, z), for all x, y, z ∈ X. Unless otherwise
is explicitly said, we assume that X is finite and allow zero distances between different
elements (i.e., d is, in fact, a semimetric); d is called positive if d(x, y) > 0 for all distinct
x, y ∈ X. We usually do not distinguish between the metric d and metric space (X, d);
elements of X are called points of this space. Because of (i) and (ii), it suffices to define
d on the set EX of unordered pairs of distinct elements of X, or, equivalently, on the
edge set of the complete (undirected) graph KX = (X,EX). We write xy and d(xy)
in place of {x, y} and d(x, y), respectively. A special case of positive metrics is the
distance function, or path metric, dG of a connected graph G = (V, E), where dG(xy)
is the minimum number of edges of a path in G connecting nodes x and y. When the
edges e of G are endowed with nonnegative lengths `(e), the corresponding path metric
is denoted by dG,` (i.e., dG,`(xy) is the minimum length

∑
(`(ei) : i = 1, . . . , k) of a

path P = (x0, e1, x1, . . . , ek, xk) in G connecting x = x0 and y = xk).

We consider a positive rational-valued metric µ on a set T . Let m be a metric on
V ⊇ T . If m(st) = µ(st) for all s, t ∈ T , then m is called an extension of µ to V , and
µ a submetric of m on T , denoted as µ = m

T
. The set of extensions of µ to V forms

a polyhedron in IREV , and the vertices of the dominant of this polyhedron are called
extreme extensions. That is, an extension m of µ to V is extreme if m dominates no
convex combination of other extensions, i.e., m ≥ λm′ + (1 − λ)m′′ cannot hold for
any extensions m′,m′′ 6= m and real 0 ≤ λ ≤ 1. A positive extreme extension is called
primitive; let Π(µ) denote the set of such extensions (regarding all finite sets V ⊇ T ).
In particular, µ ∈ Π(µ).

Obviously, m(xy) = 0 for some x, y ∈ V provides that m(xz) = m(yz) for all z ∈ V .
This easily implies that m is extreme if and only if the submetric of m on V − {x} is
extreme, or, equivalently, if and only if shrinking each maximal subset of points with
zero distances between them into a single point results in a primitive extension of µ

to the factor set. Thus, each primitive extension represents the corresponding set of
extreme extensions; the members of this set are called similar.

We are interested in the question: given a metric µ, how large is the set Π(µ)?
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Earlier necessary and sufficient conditions have been found for the path metrics dH

that admit no primitive extensions except themselves.

Theorem 1.1 [10]. Let H be a connected graph. Then |Π(dH)| = 1 if and only if

H is bipartite, orientable and contains no isometric k-cycle with k ≥ 6.

Here a k-cycle is a (simple) circuit Ck on k nodes (considered as a closed path
or as a graph depending on the context). A graph H is orientable if the edges of H

can be oriented so that for any 4-cycle C = (v0, e1, v1, ..., e4, v4 = v0), the orientations
of the opposite edges e1 and e3 are different along the cycle, and similarly for e2 and
e4 (a feasible orientation is depicted in Fig. 2). A subgraph H ′ of H is isometric if
dH′

(xy) = dH(xy) for any nodes x, y of H ′. The graphs H as in Theorem 1.1 are called
frames. We refer to [10] for other results on frames, in particular, those related to a
generalization of the multiterminal cut problem from [6].

Fig. 1

v1 • • v2

v0 • • v3

CIn this paper we focus on the case when Π(µ) is finite. Such a metric µ is called
primitively finite, or a PF-metric. (Our initial motivation for studying this case came
up from the multiflow (multicommodity flow) area. Extreme extensions arise as optimal
dual solutions in one sort of multiflow problems where one is asked for maximizing the
sum of flow values weighted by a given metric µ on the set of terminals. The finiteness
of Π(µ) means that, up to the similarity, the number of unavoidable optimal dual
solutions occurring in the problem instances concerning this µ is finite. These aspects
will be discussed in Section 6.) Our main result is the following.

Theorem 1.2. Let µ be a positive rational metric on a finite set T . The following

are equivalent:

(i) Π(µ) is finite;

(ii) there exist a frame H and an integer λ > 0 such that λµ is a submetric of dH ;

(iii) the least generating graph G = (V, E) for a modular closure (V,m) of µ is

bipartite and contains as an isometric subgraph neither Ck with k ≥ 6 nor K−
3,3.

We have to explain the notions used in (iii) of this theorem that gives a combina-
torial characterization of the PF-metrics.

First, for a metric m on V , a point v ∈ V is called a median of a triple {s0, s1, s2}
in V if

(1.1) m(siv) + m(vsj) = m(sisj) for all 0 ≤ i < j ≤ 2.
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When a median exists for each triple, m is called modular. By a modular closure
of µ we mean a certain its extension (V,m) which is modular and is constructed by the
following process. Initially set V := T and m := µ. Choose in V a triple {s0, s1, s2}
without a median, add a new point v to V and define the distances from v to the
si’s so as to satisfy (1.1) (such distances exist and are unique). Then define distances
from v to the other points in V as follows. Let V ′ ⊂ V be the set of points of which
distances from v have already been defined; initially V ′ = {s0, s1, s2, v}. Choose a point
u ∈ V − V ′ and put

(1.2) m(uv) := max{m(ux)−m(xv) : x ∈ V ′ − {v}}.
Update V ′ := V ′ ∪ {u} and iterate until V ′ = V . One can see that m remains an
extension of µ. Repeat this procedure for a next medianless triple in the current (V, m),
and so on.

When the process terminates, the resulting (V, m) has medians for all triples and
is just the desired extension of µ. Note that a priori m depends on the order in which
the medianless triples are treated (however, it is invariant when µ is primitively finite,
as we explain in Section 5). We show in Section 2 that for a rational metric µ the above
process does terminate in a finite number of steps and, moreover, that the resulting m

is a primitive extension of µ.

Second, a spanning subgraph G of KV is said to generate m if m coincides with
the path metric defined by G whose each edge e has length m(e). The least graph
generating, or, briefly, LG-graph, of m is obtained by deleting all redundant edges from
KV , where xy is redundant if there is z ∈ V − {x, y} with m(xz) + m(zy) = m(xy)
(such a z is said to be between x and y).

Third, K−
3,3 is the graph obtained by deleting one edge from K3,3, where Kp,q is

the complete bipartite graph whose parts (i.e., the maximal stable sets) consist of p and
q nodes; see Fig. 2. We call a bipartite graph without isometric subgraphs Ck, k ≥ 6,
and K−

3,3 a semiframe. Note that K−
3,3 is non-orientable, so every frame is a semiframe.

On the other hand, every graph Kp,q is a semiframe, but it is not a frame if p, q ≥ 3.
In a bipartite graph an induced subgraph C6 or K−

3,3 is, obviously, isometric.

Fig. 2

2 • • 3

1 • • 6

4 • • 5

(a) K3,3

2 • • 3

1 • • 6

4 • • 5

(b) K−
3,3

We now briefly outline the method of proof of Theorem 1.2. Implication (ii)→(i)
will follow from Theorem 1.1 and a rather simple fact that if µ is a submetric of a
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positive metric d, then every primitive extension of µ corresponds to a submetric of a
primitive extension of d. So |Π(µ)| does not exceed the number of submetrics of dH

and is, therefore, finite. The proof of implication (i)→(iii) relies on the following result.

Theorem 1.3 [10]. If a connected graph H contains a 6-cycle or K−
3,3 as an isometric

subgraph, then there exists a primitive extension m′ of dH which has a submetric m′′

on six points such that m′′ = 1
2dK−

3,3 .

This will enable us to recursively construct an infinite sequence of primitive ex-
tensions of µ in the case when G = (V, E) as above is not a semiframe. Implication
(iii)→(ii) is more complicated to prove. To this aim, we elaborate a so-called orbit
splitting method that transforms, step by step, the semiframe G figured in (iii) into the
desired frame H (with λµ to be a submetric of dH).

Next, obviously, for any λ > 0, m′ ∈ Π(µ) if and only if λm′ ∈ Π(λµ). Therefore,
without affecting our problem one may assume that µ is integer-valued (as we deal
with a rational metric on T ). For our purposes it is more convenient to assume that
µ is cyclically even. This means that µ(xy) + µ(yz) + µ(zx) is an even integer for all
x, y, z ∈ T (in particular, µ(xy) is an integer for all x, y ∈ T since µ(xy)+µ(yy)+µ(yx)
is even). Then a modular closure m of such a µ is cyclically even as well, as explained
in Section 2. This property is used in our construction of the desired frame H in the
proof of (iii)→(ii). Moreover, the factor λ in the embedding λµ → dH turns out to be 1
or 2. As a consequence, we obtain the following result on the fractionality of primitive
extensions of PF-metrics.

Theorem 1.4. If µ is a cyclically even PF-metric, then every primitive extension of

µ is half-integral. If, in addition, the LG-graph of a modular closure of µ is a frame,

then every primitive extension of µ is integral.

The next result concerns tight spans of metrics (also known in literature as injective
envelopes or TX -spaces). For a positive metric d on a (not necessarily finite) set X, an
extension d′ of d to X ′ ⊇ X is called tight if d′ dominates no other extension d′′ of d

to X ′ (i.e. d′′ ≤ d′ is impossible). The tight span of d is its positive tight extension
T (d) = (X , δ) such that every tight extension (X ′, d′) of d is isometrically embeddable
in (X , δ), in the sense that there exists a mapping γ : X ′ → X satisfying γ(x) = x for
all x ∈ X and δ(γ(x)γ(y)) = d′(xy) for all x, y ∈ X ′. Isbell [8] and Dress [7] proved the
existence and uniqueness of such an (X , δ) for any metric space (X, d). Moreover, when
X is finite, X can be represented as a polyhedral complex whose dimension is shown to
be at most |X|/2 (formally, for X finite, let Q be the set of nonnegative vectors ξ ∈ IRX

satisfying ξx + ξy ≥ d(xy) for all x, y ∈ X; then X is the part of (the boundary of) Q

formed by the vectors ξ ∈ Q dominating no vector in Q − {ξ}, each point x ∈ X is
identified with the vector ξ such that ξy = d(xy) for all y ∈ X, and δ is the `∞-metric,
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i.e., δ(ξξ′) = max{|ξx − ξ′x| : x ∈ X}).
It is shown in [10] that T (dH) is at most 2-dimensional for any frame H (by

giving an explicit combinatorial construction of T (dH)). We generalize this result by
completely characterizing the set of 2-dimensional tight spans of rational finite metrics
(it is known that the 1-dimensional tight spaces arise from tree-wise metrics [7]).

Theorem 1.5. Π(µ) is finite if and only if the tight span of µ has dimension at most

two. Moreover, for any PF-metric µ, T (µ) is isomorphic to T (dH/λ) for some frame

H and integer λ > 0. In other words, up to proportionality, the 2-dimensional tight

spans of rational finite metrics are exactly the tight spans of the path metrics of frames

(different from trees).

Next, Dress pointed out two important local properties of metrics.

Theorem 1.6 [7]. For a metric space (X, d),

(i) if T (d) is k-dimensional (k < ∞), then there is a submetric d′ of d on 2k-points

such that T (d′) is k-dimensional;

(ii) if |X| = 2k, then T (d) is k-dimensional if and only if there exists a bijection (i.e.,

a one-to-one mapping) π : X → X satisfying π(v) 6= v and π(π(v)) = v for all v ∈ X

(i.e., π is an involution) and such that
∑

(m(vπ(v)) : v ∈ X) >
∑

(m(vπ′(v)) : v ∈ X)
holds for any other bijection π′ : X → X.

Statement (i) of this theorem and Theorem 1.5 provide the following characteriza-
tion of PF-metrics in local terms.

Corollary 1.7. µ is primitively finite if and only if each submetric of µ on six points

is so.

In its turn, (ii) in Theorem 1.6 together with Theorem 1.5 shows that the problem of
deciding whether Π(µ) is finite or not is solvable in strongly polynomial time. Indeed, we
can simply enumerate all six-element subsets T ′ of T , and for each such T ′, enumerate
all bijections T ′ → T ′ and verify the corresponding inequalities.

This paper is organized as follows. Section 2 justifies the process of constructing
a modular closure m of µ and exhibits basic properties of m and its LG-graph G.
Section 3 proves (ii)→(i) and (i)→(iii) in Theorem 1.2. Section 4 describes the orbit
splitting method and applies it to prove (iii)→(ii) in Theorem 1.2. Section 5 explains
how Theorems 1.4 and 1.5 follow and gives some additional results. In particular, we
show there that for any PF-metric µ, the modular closure of µ is determined uniquely,
and there is a canonical pair (H, h), where H is a frame and h is a length function on its
edges, such that dH,h is a primitive extension of µ and every primitive extension of µ is
isomorphic to a submetric of dH,h. The concluding Section 6 demonstrates applications
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to multiflows.

Among a variety of tools used in our proofs, we, in particular, apply results of
Bandelt on hereditary modular graphs. A graph H is called modular if dH is modular,
and hereditary modular if each isometric subgraph of H is modular. In particular, any
modular graph is bipartite.

Theorem 1.8 [3]. Let H = (T,U) be a graph.

(i) H is hereditary modular if and only if H is bipartite and contains no isometric

k-cycle with k ≥ 6.

(ii) If H is modular but not hereditary modular, then H contains an isometric

6-cycle that, in its turn, is contained in a (not necessarily induced) cube in H (see Fig.

3).

(iii) If H is bipartite but not modular, then H contains a medianless triple {s0, s1,

s2} with dH(s0s1) = dH(s0s2) ≥ 2 and dH(s1s2) = 2.

Fig. 3

•

• •
•
•

• •

•

In view of (i), the frames (semiframes) are exactly those hereditary modular graphs
which are orientable (respectively, without induced subgraphs K−

3,3).

A majority of results in this paper can be extended, with a due care, to arbitrary,
not necessarily rational and finite, metrics µ; we, however, consider only the finite
rational case to make our description shorter and technically simpler.

2. The modular closure and least generating graph

Let m be an extension of µ to V . A sequence P = (x0, x1, . . . , xk) of points of V is
called a path on V ; we refer to P as a T -path if x0, xk ∈ T , and a cycle if x0 = xk. For
brevity we write P = x0x1 . . . xk. The length of P with respect to m, or the m-length,
is m(P ) = m(x0x1) + . . . + m(xk−1xk), and P is called m-shortest if m(P ) = m(x0xk).
The set of m-shortest T -paths is denoted by G(m) = G(T, m).

If extensions m,m′,m′′ of µ to V satisfy m ≥ λm′+(1−λ)m′′ with 0 < λ ≤ 1, we
say that m′ decomposes m. So m is extreme if and only if no m′ 6= m decomposes m.
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It is easy to see that m′ decomposes m if and only if G(m) ⊆ G(m′). A practical use of
this property is that if we can show, by one or another method, that m is determined
uniquely by µ and the set of m-shortest T -paths and, then we can declare that m is
extreme (or primitive when m is positive).

In what follows we assume that µ is cyclically even. First of all we show that the
construction of a modular closure (V, m) for µ described in the Introduction is well-
defined. Here and later on we need a simple characterization of tight extensions in
terms of shortest paths (see, e.g., [8]), namely: an extension m′ of µ to V ′ is tight if
and only if

(2.1) for any x, y ∈ V ′, there are s, t ∈ T such that m′(sx) + m′(xy) + m′(yt) = m′(st)
(= µ(st)), i.e., x, y are contained in an m′-shortest T -path.

Statement 2.1. The process of constructing a modular closure (V, m) terminates

in a finite number of iterations. Moreover, m is cyclically even and primitive.

Proof. Suppose that after a number of iterations we have obtained a cyclically even
primitive extension m on a current set V , and let the next iteration add a median v

for a triple {s0, s1, s2}. By (1.1), m(s0v) is uniquely determined to be 1
2 (m(s0s1) +

m(s0s2)−m(s1s2)), and similarly for m(s1v) and m(s2v). So the numbers m(siv) are
positive integers. Moreover, the submetric of m on V 0 = {s0, s1, s2, v} is, obviously,
cyclically even.

Let V − V 0 consist of points s3, . . . , sn which are chosen in this order when the
distances from v to these points are determined. By rule (1.2), for each i = 3, . . . , n,
there is j < i such that m(siv) + m(vsj) = m(sisj), i.e., the path Pi = sivsj is m-
shortest. Then (by induction on i) m(siv) is an integer and the m-length of the cycle
sivsjsi is even. This easily implies that the m-length of any cycle of the form spvsqsp,
p, q = 1, . . . , n is even, and now the fact that the metric on V := {s0, . . . , sn, v} is
cyclically even follows from a similar property for its submetric m̃ on Ṽ = {s0, . . . , sn}.
Also the new m is positive (for if m(vsi) = 0 for some i, then si is a median for
{s0, s1, s2}).

Assume by induction that the previous metric m̃ is primitive. To see that the new
m is primitive, consider the paths Pi, i = 3, . . . , n as above and the paths P0 = s0vs2,
P1 = s1vs0 and P2 = s2vs1. Since m̃ is primitive and, therefore, tight, the ends si and
sj of each Pi are contained in an m̃-shortest T -path ssisjt (cf. (2.1)). Then the T -path
P ′i = ssivsjt is m-shortest. Suppose that an extension m′ of µ to V decompose m.
Since m̃ is primitive, m(xy) = m′(xy) = m̃(xy) for all x, y ∈ Ṽ . Also G(m) ⊆ G(m′)
implies that each P ′i is m′-shortest. Then each Pi is m′-shortest. But the system
{P0, . . . , Pn} of shortest paths determine the distances on vs0, . . . , vsn uniquely; so
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m(vsi) = m′(vsi), i = 0, . . . , n. Therefore, m′ = m, yielding the primitivity of m.

To estimate the number of iterations in the process, associate with each point x of
the current (V,m) the vector ξ(x) = (m(xs) : s ∈ T ). Since m is tight and positive,
(2.1) implies that m(sx) ≤ max{µ(s′t′) : s′, t′ ∈ T} =: a and that ξ(x) 6= ξ(y) for any
distinct x, y ∈ V . Thus, |V | < a|T |, and the process is finite. •

In the proof of Theorem 1.2 given in next sections we will essentially use the
fact that the shortest paths of a modular closure of µ are closely related to the shortest
paths of its LG-graph; such a property was established by Bandelt for arbirtary modular
metric spaces. For a graph G = (V, E), a path P = x0x1 . . . xk on V is a path in G if
xi−1xi ∈ E for i = 1, . . . , k. If x0 = xk and all edges xi−1xi are different, P is a cycle
in G. The number k of edges of P is denoted by |P | and called the G-length of P . A
shortest path in G is called G-shortest. An s–t path is a path with ends s, t.

Statement 2.2 [2] (see also [4]). Let m be a positive modular metric on a set V , and

G = (V, E) its LG-graph. Then a path in G is m-shortest if and only if it is G-shortest.

Therefore, the sets of m-shortest and dG-shortest paths on V are the same.

To make our description more self-contained, we give a proof of this statement.

Proof. First we observe that

(2.2) every simple path P ′ with |P ′| = 2 in G is simultaneously m-shortest and G-
shortest.

Indeed, let P ′ = xyz. Take a median v w.r.t. m for {x, y, z}. If v = y then
m(xy) + m(yz) = m(xz). So P ′ is m-shortest, whence P ′ is G-shortest (since y is
between x and y for m). And if v 6= y then, letting for definiteness that v 6= x,
the equality m(xv) + m(vy) = m(xy) shows that the edge xy is redundant in G; a
contradiction.

Consider two paths P = sx1 . . . xkt and Q = sy1 . . . yqt in G with the same ends
such that P is G-shortest and Q is m-shortest. It suffices to show that m(P ) = m(Q)
and |P | = |Q|. We use induction on |P |. Case |P | = 1 is obvious.

(i) Let |P | = 2, i.e., k = 1. By (2.2), m(P ) = m(Q). Suppose that |Q| ≥ 3. Since
no edge in G is redundant, each of y1, . . . , yq is different from x = x1. Take a median
v for {s, x, yq}. If v 6= s, x then the edge sx is redundant, while if v = x then the edge
xt is redundant (since Q and svyq are m-shortest, whence m(vyq) + m(yqt) = m(vt)).
Therefore, v = s. This implies that the path xsy1 . . . yq is m-shortest, whence m(xyq) >

m(xy1) (as q > 1 and m is positive). Arguing similarly for the triple {t, x, y1}, we obtain
the reverse inequality m(xy1) > m(xyq); a contradiction. Thus, |Q| = 2.
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(ii) Let |P | ≥ 3 (then |Q| ≥ 3). Take a median v for {s, xk, yq}. We show that it
suffices to consider the case when

(2.3) v = s and the path D = xk . . . x1sy1 . . . yq is m-shortest.

Indeed, choose in G an m-shortest s–xk path R containing v. Since P ′ = sx1 . . . xk

is G-shortest and |P ′| < |P |, we have by induction that |P ′| = |R| and m(P ′) = m(R).
So we may assume that P is chosen so that P ′ = R; then v = xi for some i (letting
x0 = s). Case i = 0 gives (2.3) (in view of m(xkv) + m(vyq) = m(xkyq)). Let i > 0.
Consider the concatenation L of the path sx1 . . . xi, an m-shortest xi–yq path, and the
path yqt. One can see that L is m-shortest. Let L′ and L′′ be the parts of L from s to
yq and from xi to t, respectively. By induction the paths P ′′ = xi . . . xkt and L′′ satisfy
|P ′′| = |L′′| and m(P ′′) = m(L′′), whence P is m-shortest and L is G-shortest. Again
applying induction to L′ and Q′ = sy1 . . . yq, we have |L′| = |Q′|, which implies that Q

is G-shortest.

Finally, consider D in (2.3) and P̃ = xktyq. By (2.2), P̃ is G-shortest. Then
|D| = |P̃ | = 2, by (i). Therefore, D = x1sy1 (and k = q = 1). This gives |P | = |Q| = 2,
and the result follows. •

This statement provides that G is modular. Indeed, for any s0, s1, s2 ∈ V , there
are s0–s1, s1–s2 and s2–s0 paths in G which are m-shortest and share a common node
v. Then these paths are G-shortest, therefore, v is a median for {s0, s1, s2} w.r.t. dG.
Another corollary from Statement 2.2 is that every isometric subgraph (or cycle) G′ in
G is m-isometric, i.e., any two nodes in G′ are connected by an m-shortest path which
is entirely contained in G′. Moreover, in view of (2.1), the tightness of m enables us to
sharpen this property as follows:

(2.4) if G′ = (V ′, E′) is an isometric subgraph (or cycle) in G, then any two x, y ∈ V ′

belong to an m-shortest T -path in G whose part between these nodes is contained
in G′.

3. Proof of (ii)→(i)→(iii) in Theorem 1.2

We need two simple facts about extreme extensions.

Statement 3.1 [12]. (i) If (T ′, µ′) is a submetric of (V ′, m′), and (V ′′, m′′) is an

extreme extension of µ′ with V ′ ∩ V ′′ = T ′, then there exists an extreme extension m̃

of m′ to W = V ′ ∪ V ′′ such that m̃ coincides with m′′ on V ′′.

(ii) If (V1,m1) is an extreme extension of (V2,m2) which, in its turn, is an extreme
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extension of (V3,m3), then m1 is extreme for m3.

(To see (i), define d(xy) to be m′(xy) for x, y ∈ V ′, m′′(xy) for x, y ∈ V ′′, and
min{m′(xs) + m′′(sy) : s ∈ T ′} for x ∈ V ′ and y ∈ V ′′. One can check that d is a
metric on W and, therefore, an extension of m′. Let m̃ be an extreme extension of m′ to
W which decomposes d. Then m̃

V ′′
is an extension of µ′ which decomposes m′′. Since

m′′ is extreme for µ′, we have m̃
V ′′

= m′′; so m̃ is as required. To see (ii), consider
an extreme extension q of m3 which decomposes m1; then q′ = q

V2
decomposes m2 ,

whence q′ = m2, implying q = m1.)

Now we can prove (ii)→(i) in Theorem 1.2 as follows. Let a metric µ on T be such
that µ′ = λµ is a submetric of m′ = dH for a frame H = (V ′, E′) and number λ > 0.
Consider a primitive extension (V ′′,m′′) of µ′, assuming V ′∩V ′′ = T . Take an extreme
extension m̃ of m′ to W = V ′ ∪ V ′′ with m̃

V ′′
= m′′, existing by (i) in Statement 3.1.

By Theorem 1.1, m′ has only one primitive extension, namely, m′ itself. Therefore, m̃

and m′ are similar, which means that each point v ∈ W is at zero m̃-distance from
some point v′ = γ(v) of V ′. Then m′′(uv) = m′(γ(u)γ(v)) for any u, v ∈ V ′′, i.e., m′′

is isomorphic to the submetric of m′ on the set γ(V ′′). Thus, the number of primitive
extensions of µ does not exceed the number 2V ′ of submetrics of dH , whence Π(µ) is
finite.

Next we prove (i)→(iii) in Theorem 1.2. Let the LG-graph G = (V, E) of a modular
closure m of µ is not a semiframe. We recursively construct an infinite sequence of
different primitive extensions of µ, using Theorem 1.3 and Statement 3.1.

As mentioned in Section 2, G is modular. In particular, G is bipartite and, there-
fore, any 4-cycle in G is isometric. Consider an isometric cycle C = v0v1 . . . v2k−1v0

in G. By (2.4) (with G′ = C), for each i = 0, . . . , k − 1, the opposite nodes vi and
vi+k belong to a shortest T -path whose part P between these nodes is of the form
vivi+1 . . . vi+k, taking indices modulo 2k. Then

∑
(m(vi+qvi+q+1) : q = 0, . . . , k − 1) =

∑
(m(vi+qvi+q+1) : q = k, . . . , 2k − 1),

Comparing two such equalities for i = j, j + 1 shows that the distances of any two
opposite edges in C are the same,

(3.1) m(vjvj+1) = m(vj+kvj+k+1) for j = 0, . . . , k − 1.

Avis [1] and Lomonosov [14] used isometric even cycles and relations of the form
(3.1) to prove irreducibility of the metrics of certain graphs. We apply a similar ap-
proach to construct the desired primitive extensions in our case. Edges e, e′ of G are
called dependent if there is a sequence e = e0, e1, . . . , ep = e′ in which each two consec-
utive edges ej , ej+1 are opposite in some (even) isometric cycle of G. The dependency
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relation is symmetric and transitive, and we call a maximal set of dependent edges an
orbit of G. Then (3.1) implies that

(3.2) the distances m(e) of all edges e of an orbit of G are the same.

Now suppose that G contains an induced subgraph H ′ = (T ′, U ′) isomorphic to
K−

3,3 (notation H ′'K−
3,3). Note that H ′ is isometric since G is bipartite. Moreover, it

is easy to check that all edges of H ′ are dependent (via 4-cycles in H ′), therefore, by
(3.2),

(3.3) the submetric µ′ of m to T ′ is λdH′
for some λ > 0.

A feature of K−
3,3 is that its metric d = dK−

3,3 has a primitive extension which, in
its turn, has a proper submetric d′ isomorphic to 1

2d. Then d′ can be extended in a
similar way, and one can repeat such a procedure as many times as one wishes, every
time obtaining a new primitive extension of the initial metric, due to (i) and (ii) in
Statement 3.1. More precisely, the following is true (cf. Theorem 1.3).

Statement 3.2 [10]. For H ′ = (T ′, U ′)'K−
3,3, there exists a bipartite graph G′′ =

(V ′′, E′′) with V ′′ ⊃ T ′ such that: (i) m′′ = 1
2dG′′ is a primitive extension of dH′

, and

(ii) G′′ contains K−
3,3 as an induced subgraph.

Fig. 4

2 ¯ ¯ 3

1 ¯ ¯ 6

4 ¯ ¯ 5

(a) H ′'K−
3,3

2 ¯ • ¯ 3

• •
•

x y
1 ¯ • • ¯ 6

•
• •

4 ¯ • ¯ 5

(b) G′′

The desired graph G′′ is drawn in Fig. 4b where for convenience the nodes of H ′

are labelled by 1, . . . , 6 as indicated in Fig. 4a. This G′′ is obtained by splitting each
edge e = ij of H ′ into two edges ize and zej in series, and adding: (a) two extra nodes
x and y, (b) edges xze for all e = ij ∈ U ′ with i, j ≤ 5, and (c) edges yze for all
e = ij ∈ U ′ with i, j ≥ 2. An induced subgraph K−

3,3 in G′′ is drawn bold in Fig. 4b.
It is not difficult to check that m′′ is an extension of dH′

and, moreover, that m′′ is
a tight extension of dH′

(e.g., x and y belong to a shortest path of length six in G′′

which connects nodes 1 and 4). However, a direct verification of the primitivity of m′′
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would take some efforts. Instead, we can observe that all edges of G′′ are dependent
(via 4-cycles) and use the following fact (a sharper version of which occurs in [10]); we
will use this fact once again later.

Statement 3.3. Let µ′ be a metric on a set T ′, and let G′′ = (V ′′, E′′) be a graph

with V ′′ ⊇ T ′ such that: (i) for some α > 0, m′′ = αdG′′ is a tight extension of µ′, and

(ii) all edges of G′′ are dependent. Then m′′ is a primitive extension of µ′.

Proof. By (i) and (2.4), any two opposite nodes x, y in an even isometric cycle C of
G′′ belong to some shortest T ′-path whose part between x and y is contained in C.
This implies that any extension m̃ of µ′ to V ′′ such that any shortest T ′-path of G′′ is
m̃-shortest satisfies (3.2) (with m = m̃ and G = G′′), by the argument above. Then
m̃(e) is a constant β for all e ∈ E′′, by (ii). Since m′′ is tight, any two nodes u, v ∈ V ′′

belong to a shortest T ′-path P in G′′. This implies m̃(uv) = β|P ′| = (µ′(st)/|P |)|P ′|,
where s, t are the ends of P and P ′ is the subpath of P between u and v. Hence,
m̃(uv) = m′′(uv) for all u, v ∈ V ′′, i.e., m′′ is primitive. •

Formally, the process is as follows. Take the primitive extension λm′′ of µ′, where
µ′, λ are as in (3.3) and m′′ is as in Statement 3.2. By (i) and (ii) in Statement 3.1,
there exists an extreme extension of µ to V ∪V ′′ which coincides with λm′′ on V ′′. This
gives a primitive extension of µ which has a submetric µ′′ isomorphic to 1

2λdK−
3,3 . Then

we extend µ′′ in a similar way, using again the construction involving a copy of the
graph G′′. This results in a new primitive extension of µ with a submetric of the form
1
4λdK−

3,3 . Continuing this process, we obtain an infinite sequence of different primitive
extensions of µ, as required.

Next we suppose that G is not hereditary modular. Since G is modular, G contains
an isometric 6-cycle C = v0v1 . . . v5v0, by (ii) in Theorem 1.8. By (3.1),

m(v0v1) = m(v3v4) =: α, m(v1v2) = m(v4v5) =: β, m(v2v3) = m(v5v0) =: γ.

Let µ̃ be the submetric of m on T̃ = {v0, . . . , v5}. Our goal is to find a primitive
extension m̃ of µ̃ such that m̃ has a submetric µ′ of the form αdK−

3,3 . Then one can
apply to µ′ the above construction which provides infinitely many primitive extensions
for the initial µ.

The desired m̃ is easy to construct when α = β = γ. More precisely, let ui = vi,
i = 0, . . . , 5, and let Γ be the graph on eight nodes u0, . . . , u5, x, y drawn in Fig. 5a.
One can see that dΓ is a tight extension of dC and that the edges of Γ are dependent.
Therefore, dΓ is a primitive extension of dC , whence there is an extreme extension of
µ to V ∪ {x, y} whose submetric on the node set of Γ is αdΓ. Since Γ contains K−

3,3 as
an induced subgraph (drawn in bold in Fig. 5a), the result follows.
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Fig. 5

u2 ¯ ¯ u3

u1 ¯ • • ¯ u4
x y

u0 ¯ ¯ u5

(a) Γ

v2 v3• •

u2 • • u3 • v4

u1 = v1 • • u4

• • •
u0 = v0 u5 v5

(b)

Now assume that the α, β, γ are not the same, α < β ≤ γ say. Let ρ be the distance
function for a set W of ten points u0 = v0, u1 = v1, v2, . . . , v5, u2, . . . , u5, defined by

ρ(vivj) = m(vivj),(3.4)

ρ(uiuj) = αϕ(i, j),

ρ(uivj) = m(v0vj)− αϕ(0, j) + αϕ(i, j)

for i, j = 0, . . . , 5, where ϕ(i′, j′) = dC(vi′vj′). One can check that ρ is indeed a metric
on W (Fig. 5b illustrates the LG-graph for ρ). Moreover, by (3.4), for each i = 0, . . . , 5,
the ρ-length of the path Pi = viuiui+1ui+2ui+3vi+3 is equal to

ρ(viui) + ρ(uiui+3) + ρ(ui+3vi+3)

= (m(v0vi)− αϕ(0, i)) + 3α + (m(v0vi+3)− αϕ(0, i + 3))

= m(vivi+3) + 3α− αϕ(i, i + 3) = m(vivi+3) (= α + β + γ),

taking indices modulo 6 and using the facts that m(v0vi)+m(v0vi+3) = m(vivi+3) and
ϕ(0, i)+ϕ(0, i+3) = 3. So Pi is a ρ-shortest T̃ -path. Since each two points of W occur
in some Pi, ρ is a tight extension of µ̃. But ρ is not primitive for µ̃. Nevertheless, we
can use the fact that the submetric ρ′ of ρ on {u0, . . . , u5} is αdC6 . We further extend
ρ by use of the metric αdΓ (which first extends ρ′), where Γ is the above-mentioned
graph depicted in Fig. 5a. Then the resulting metric ρ̃ on W ∪ {x, y} is already a
primitive extension of µ̃. This follows from the observation that the collection of the
above ρ-shortest paths Pi together with the shortest paths between ui and ui+3 in Γ,
i = 0, 1, 2, determines ρ̃ uniquely. Again, µ has a primitive extension in which some
submetric is proportional to dK−

3,3 , providing the existence of infinitely many primitive
extensions for µ. This completes the proof of implication (i)→(iii) in Theorem 1.2.

4. Proof of (iii)→(ii) in Theorem 1.2

Let the graph G = (V, E) as above be a semiframe. We show that in this case
there exists a frame H such that λµ is a submetric of dH for some λ > 0.

14



A complete bipartite graph with parts A and B is denoted by (A; B). A maximal
complete bipartite subgraph K = (A;B) in G is called a bi-clique if |A|, |B| ≥ 2. First
of all we observe the following.

Statement 4.1. Let K = (A; B) and K ′ = (A′; B′) be two different bi-cliques such

that K ∩K ′ is nonempty. Then K ∩K ′ is connected and contains at most one edge.

In particular, every 4-cycle of G is contained in exactly one bi-clique.

Proof. Let for definiteness A ∩ A′ 6= ∅. Suppose that A ∩ A′ contains two different
nodes x, y. Since K and K ′ are different, w.l.o.g. we may assume that there are u ∈ A

and v ∈ B′ which are not adjacent in G. Choose two different nodes z, z′ in B (existing
because |B| ≥ 2). Then the subgraph induced by {x, y, u, v, z, z′} is K−

3,3, contradicting
the fact that G is a semiframe. Thus, |A ∩ A′| = 1. Similarly, |B ∩ B′| ≤ 1, and the
result follows. •

The core of our construction of the desired frame H involves orbit splitting oper-
ations that we now describe. Recall that an orbit of G is a maximal set of dependent
edges in it; since G has no isometric k-cycle with k > 4, the dependency relation
involves only 4-cycles. The simplest case of an orbit is a bridge of G (i.e., an edge
whose removal makes G disconnected). Each non-bridge edge belongs to a 4-cycle and,
therefore, to a unique bi-clique (by Statement 4.1).

Consider an orbit Q. Let K(Q) be the set of bi-cliques whose edge sets meet Q. It
is easy to see that all edges of a bi-clique K = (A;B) ∈ K(Q) with |A| + |B| ≥ 5 are
dependent; so they are entirely contained in Q. On the other hand, if |A| = |B| = 2,
it is possible that Q includes only one pair of opposite edges of the 4-cycle K; in this
case the bi-clique K is called simple. The orbit splitting operation for Q transforms G

into G′ = (V ′, E′) as follows.

(4.1) (i) Split each edge e = xy ∈ Q into two edges xze and yze in series.

(ii) If K ∈ K(Q) is simple and K ∩Q = {e, e′}, connect ze and ze′ by an edge (see
Fig. 6a).

(iii) If K = (A; B) ∈ K(Q) is non-simple, add a new node vK and connect it by
an edge to ze for each edge e of K (see Fig. 6b where |A| = 2 and |B| = 3).

One can see that each simple bi-clique in K(Q) generates two bi-cliques (4-cycles)
and each non-simple bi-clique (A;B) ∈ K(Q) generates |A| + |B| bi-cliques in G′.
Moreover, these new bi-cliques together with the bi-cliques of G not in K(Q) constitute
the full list of bi-cliques of G′. From this fact one can deduce that G′ is bipartite.

We call edges xze and yze in (i) of (4.1) split-edges, edges zeze′ in (ii) bridge-edges,
and edges zevK in (iii) star-edges. Let us say that an orbit Q of G is orientable if there
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exists a feasible orientation of the edges of this orbit, i.e., each two opposite edges of any
4-cycle of G either are not oriented or have different orientations along this cycle (this
matches the definition of the orientability in the Introduction). Note that Q may be
orientable while the whole G is not. The graph G′ has important properties exhibited
in the following three lemmas.

Fig. 6

• •
• •
e e′ ze¯ ¯ ze′

• •
• •

(a)

•
• ¯ ¯ ¯

• • • • ¦ • •
• ¯ ¯ ¯

•
(b)

Lemma 4.2. G′ is a semiframe.

Lemma 4.3. Let Q1, . . . , Qr be the orbits of G, and let G′ = (V ′, E′) be obtained

from G by the orbit splitting operation applied to Q1. Then G′ has r or r + 1 orbits.

Moreover,

(i) for i = 2, . . . , r, Qi induces an orbit Q′i in G′ formed by the edges of Qi and all

bridge-edges zeze′ such that the 4-cycle in G containing e, e′ has the other two

edges in Qi; also Q′i is orientable if and only if Qi is so;

(ii) if Q1 is non-orientable, then Q1 induces one orbit Q′1 in G′, which is orientable

and formed by all the split- and star-edges;

(iii) if Q1 is orientable, then Q1 induces two orbits Q′1 and Q′′1 in G′, and the set Q′
1∪Q′′

1

consists of all the split- and star-edges; also both Q′
1 and Q′′1 are orientable, and for

each e = xy ∈ Q1, one of the edges xze, yze belongs to Q′1 while the other to Q′′1 .

Lemma 4.4. Let ρ be the length function on the edges of G defined as follows (using

notation from the previous lemma):

(4.2) (i) for i = 2, . . . , r, the ρ-length of each edge in Q′
i is equal to the distance m(e)

of an edge e ∈ Qi;

(ii) if Q1 is non-orientable and e ∈ Q1, then the ρ-length of each edge in Q′
i is

equal to m(e)/2;

(iii) if Q1 is orientable and e ∈ Q1, then fix an arbitrary number 0 < α < m(e)
and put ρ(e′) = α for all e′ ∈ Q′

1 and ρ(e′′) = m(e′′)− α for all e′′ ∈ Q′′1 .

Then the path metric mρ = dG′,ρ on V ′ coincides with ρ on E′ and is a tight

extension of µ.
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These lemmas will be proved later, and now we explain how they help us to find
the required frame H.

First we apply the orbit splitting operation consecutively to each of the orbits
Q1, . . . , Qr of G (more precisely, to the images of Qi’s in the current graphs). This
results in a semiframe G̃ = (Ṽ , Ẽ) and a function ρ̃ on Ẽ such that m̃ = dG̃,ρ̃ is an
extension of µ (by repeatedly applying Lemmas 4.2-4.4). One can see that G̃ can also
be directly constructed from G as follows (cf. (4.1)).

(4.3) (i) Split each edge e ∈ E into two edges xze and yze in series.

(ii) For each bi-clique K of G, add a new node vK and edges zevK for all edges e

of K.

This enables us to show the following important property.

Statement 4.5. G̃ is a frame.

Proof. We observe from (4.3) that each 4-cycle C̃ of G̃ is of the form xzevKze′x, where
e and e′ are edges in a bi-clique K of G which are incident to a node x. Therefore,
we can orient each split-edge xze from x to ze and each star-edge zevK from ze to vK ,
obtaining a feasible orientation for all 4-cycles of G̃. Thus, G̃ is orientable, and now
the fact that G̃ is a semiframe (by Lemma 4.2) implies that G̃ is a frame. •

Remark 4.6. In fact, in the above method we do not need to split all orbits of
G to transform it into a frame. Lemma 4.3 shows that it suffices to split only each
non-orientable orbit. We will use this fact in Section 5.

Next, since µ can be considered up to proportionality, we may assume that all
numbers m(e), e ∈ E, are even integers (this is slightly stronger than the above as-
sumption that µ is cyclically even). We also assume that for each orientable orbit of
G the number α figured in (iii) of Lemma 4.4 is chosen to be an integer. Then the
function ρ̃ (as well as metric m̃) is integer-valued. We now repeatedly split each orbit
of G̃ so as to get a frame with unit lengths of all edges.

More precisely, starting from G = G̃ and ρ = ρ̃, choose an orbit Q of the current
graph G such that the current length ρ(e) =: δ of an edge e ∈ Q is still greater than
one. Split Q with an arbitrary integer α (0 < α < δ); this transforms Q into two
orbits Q′ and Q′′ with length α of all edges in Q′ and length δ − α of all edges in
Q′′ (taking into account that Q is orientable, by Lemma 4.3). Choose an appropriate
orbit in the new current graph and do similarly, and so on. Eventually, we obtain a
frame H = (W,U) with unit length of each edge (as before, this follows by induction,
using Lemmas 4.2-4.4). The resulting metric on W is just dH and this metric is an
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extension of µ (by Lemma 4.4). So µ is a submetric of dH , yielding (ii) in Theorem
1.2, as required.

It remains to prove Lemmas 4.2-4.4 (at the first glance, these lemmas look rather
transparent; however, they will take some technical efforts to be carefully proved). Let
Q1, . . . , Qr be the orbits of G, and let G′ = (V ′, E′) be formed by the orbit splitting
operation applied to Q = Q1.

Proof of Lemma 4.3. (i) in this lemma is easily shown by use of Statement 4.1.

To see (iii), fix a feasible orientation of the edges of Q and form Q′ and Q′′ as
follows. If e = xy ∈ Q is oriented as (x, y), then orient xze as (x, ze) and include it in
Q′, and orient yze as (ze, y) and include it in Q′′.

To assign membership for the star-edges, consider a non-simple bi-clique K =
(A; B) ∈ K(Q), and choose a 4-cycle C = v0v1v2v3v0 in K. Assume that the edges of
C are oriented as drawn in Fig. 1, and let v0, v2 ∈ A. Then |A| = 2 (otherwise the
above orientation for C cannot be extended to a feasible orientation in K), and for each
x ∈ B, the edges v0x and v2x must be oriented as (v0, x) and (x, v2). For each x ∈ B

and e = v0x, orient zevK as (ze, vK) and include it in Q′, while for e′ = v2x, orient
ze′vK as (vK , ze′) and include it in Q′′.

One can check that each of Q′, Q′′ is indeed an orbit of G′ and that the orientation
we constructed is feasible for both Q′ and Q′′.

To see (ii), orient each split-edge xze as (x, ze) and each star-edge zevK as (ze, vK).
This gives a feasible orientation of the split- and star-edges (compare with the orienta-
tion in the proof of Statement 4.5). Next, since Q is non-orientable, for any edge e ∈ Q,
there exists a sequence (orientation-reversing dual cycle) D = (e0, F 1, e1, . . . , F q, eq)
consisting of edges ei = xiyi and 4-cycles F i of the form xi−1yi−1yixixi−1 in G such that
e = e0 = eq, x0 = yq and y0 = xq. One can see that the edges x0ze0 , x1ze1 , . . . , xqzeq

of G′ are dependent, and now the fact that xqzeq = y0ze0 (as xq = y0) shows that
all split-edges generated by the edges of D are dependent. This easily implies that all
split- and star-edges in G′ are dependent, and hence, they constitute one orbit of G′. •

It is convenient to prove the other two lemmas together because their proofs involve
some common arguments.

Proof of Lemmas 4.2 and 4.4. It falls into several claims. Let m′ = mρ. We call
nodes of G′ of the form ze and vK split- and star-nodes, respectively.

Claim 1. m′ is an extension of m (and therefore, an extension of µ).

Proof. Consider a V -path P = x0 . . . xk in G′. We show that ρ(P ) ≥ m(x0xk).
Apply induction on |P |. One may assume that P is simple and |P | ≥ 3 (for if k = 1,
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then e = x0x1 ∈ E and ρ(P ) = m(e), and if k = 2 and P is not a path of G, then
e = x0x2 ∈ E and x1 = ze, whence ρ(P ) = m(e), by (4.2)(ii),(iii)). Also one may
assume that no intermediate node of P occurs in V ; otherwise partition P into two
V -paths and apply induction.

We show that P can be transformed into an x0–xk path P ′ in G′ such that either
|P ′| < |P | and ρ(P ′) < ρ(P ), or |P ′| = |P |, ρ(P ′) = ρ(P ) and P ′ has an intermediate
node in V . In both cases the result follows by induction.

Obviously, x1 is a split-node ze, where e = x0y ∈ E. If x2 is also a split-node
ze′ , then zeze′ is a bridge-edge. Hence, there is a 4-cycle C = x0yy′x′x0 of G with
e′ = x′y′. Then x0x1x2x

′x0 is a 4-cycle of G′, and we have ρ(x0x1) = ρ(x2x
′) and

ρ(x0x
′) = ρ(x1x2). So the path P ′ = x0x

′x2 . . . xk is as required (it contains x′ ∈ V as
an intermediate node).

Now suppose that x2 is a star-node vK . Then x3 is a split-node ze′ , and both e, e′

belong to a 4-cycle C = x0yy′x′x0 in K. Three cases are possible.

(i) e′ = x0x
′. Then x0x1x2x3x0 is a 4-cycle in G′. Since ρ(x0x3) = ρ(x1x2) (by

(4.2)), the path P ′ = x0x3x4 . . . xk satisfies |P ′| < |P | and ρ(P ′) < ρ(P ).

(ii) e′ = yy′. Then x1x2x3yx1 is a 4-cycle in G′, whence ρ(x1x2) = ρ(yx3) and
ρ(x1y) = ρ(x2x3). Hence, the path P ′ = x0x1yx3 . . . xk in G′ satisfies |P ′| = |P | and
ρ(P ′) = ρ(P ) and contains y ∈ V as an intermediate node.

(iii) e′ = x′y′. Let e′′ = x0x
′ and z = ze′′ . Then both x0x1x2zx0 and zx2x3x

′z are
4-cycles in G′, whence ρ(x0x1) = ρ(zx2) = ρ(x′x3), ρ(x1x2) = ρ(x0z) and ρ(x2x3) =
ρ(zx′). Therefore, the path P ′ = x0zx′x3 . . . xk is as required.

Thus, m′
V
≥ m. To see equality, let P = x0 . . . xk be an m-shortest path in G,

and let γ(P ) be the path in G′ obtained from P by replacing each edge e = xi−1xi

occurring in Q by xi−1zexi. For such an edge e, we have ρ(xi−1ze) + ρ(zexi) = m(e).
This implies m(P ) = ρ(γ(P )). •

A path P ′ in G′ is called regular if P ′ = γ(P ) for some path P in G, where γ is as
above. Arguing as in the prove of Claim 1, we have:

(4.4) for each m-shortest path P in G, the path γ(P ) is ρ-shortest, and ρ(γ(P )) = m(P );

(4.5) for any s–t path L′ in G′ with s, t ∈ V , there is a regular s–t path L such that
|L| ≤ |L′|.

Two graphs will play a special role later on. The grid Γp,q, or p × q grid, is the
graph whose nodes correspond to the vectors (i, j) for i = 0, 1, . . . , p and j = 0, 1, . . . , q

and edges correspond to the pairs {(i, j), (i′, j′)} with |i − i′| + |j − j′| = 1. A part
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Γ of Γp,q bounded by two shortest paths from s = (0, 0) to t = (p, q) is called a net
from s to t, or an s–t net. That is, Γ is a subgraph of Γp,q induced by the nodes
(i, j) satisfying aj ≤ i ≤ bj for two sequences 0 = a0 ≤ a1 ≤ . . . ≤ aq ≤ p and
0 ≤ b0 ≤ b1 ≤ . . . ≤ bq = p with aj ≤ bj , j = 0, . . . , q. Figure 7b illustrates a net Γ for
p = 4 and q = 3. The rightmost (resp. leftmost) path from s to t in Γ is denoted by
RΓ (resp. LΓ). Sometimes a node with coordinates (i, j) in Γ is denoted by (i, j)Γ.

Fig. 7

• • • • •

• • • • •

• • • • •

• • • • •
(a) Γ4,3

LΓ

s

• • • t

• • • • •

• • • • RΓ

• • •
(b) Γ

We will use as an important tool the property that any two shortest paths with
the same ends in G can be linked by an isometric net. More precisely,

(4.6) (i) for any s, t ∈ V and shortest s–t paths P and P ′ in G, there exists an s–t net
Γ in G such that RΓ = P and LΓ = P ′;

(ii) any 2-connected net in G is isometric.

This property was proved in [10] concerning the frames; however, the proof remains
valid for the semiframes as it does not really uses the orientability of the hereditary
modular graph in question but only absence of induced subgraphs K−

3,3 in it. We outline
the proof for completeness of our description.

Sketch of the proof of (4.6). We show (i) by induction on |P |. Let P = sx1 . . . xkt

and P ′ = sy1 . . . ykt. Case |P | ≤ 2 is obvious, so assume |P | ≥ 3. Also one may assume
that xi 6= yj for i, j = 1, . . . , k (otherwise the result easily follows by induction). Since G

has no isometric n-cycle with n > 4, there are i, j such that dG(xiyj) < i+j, 2k+2−i−j;
one may assume that i + j ≤ 2k + 2− i− j, that i ≥ j, and that i + j is minimum.

Choose a shortest path yjz1 . . . zqxi in G. The above assumptions and the bipar-
titeness of G imply that the paths L = yj−1 . . . y1sx1 . . . xi, L′ = yj−1yjz1 . . . zqxi

and L′′ = yj . . . y1sx1 . . . xi−1 are shortest (letting x0 = y0 = s). By induction
there is a yj−1–xi net Γ′ with RΓ′ = L and LΓ′ = L′. Clearly L′′ can be short-
est only if Γ is the (i + j − 2) × 1 grid in which yj , xi−1, xi, s have the coordinates
(0, 1), (0, i + j − 2), (1, i + j − 2), (j − 1, 0), respectively (in view of i ≥ j). Then
D = szj−1 . . . zqxi . . . xkt and D′ = szj−1 . . . z1yj . . . ykt are shortest paths in G. By
induction there is a zj−1–t net Γ′′ with RΓ′′ and LΓ′′ to be the parts of D and D′ from
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zj−1 to t, respectively.

We assert that j = 1 (and s = (0, 0)Γ′). Indeed, if j > 1, then G contains the
6-cycle sx1zjvzj−2y1s, where v = (1, 1)Γ′′ , taking into account that zj = (1, 0)Γ′′ and
zj−2 = (0, 1)Γ′′ (letting z0 = yj and zq+1 = xi). Since C is not isometric, some pair of
opposite nodes of C is connected by an edge. Then the facts that zj−1 is adjacent to
zj , zj−2, s, while s and v are not adjacent (as zj−1 and v occur in a shortest s–t path in
this order) imply that G contains an induced K−

3,3; a contradiction. Thus, j = 1. Next,
for r = 0, . . . , q + 1, we have zr = (r, 0)Γ′′ (otherwise for some 1 ≤ r ≤ q, the nodes
zr−1, zr, zr+1 are (r−1, 0), (r, 0), (r, 1) in Γ′′, respectively, and we can reveal an induced
K−

3,3 in G by considering the 6-cycle xrxr+1zr+1wzr−1xr−1xr, where w = (r− 1, 1)Γ′′).
Now the union of Γ′ and Γ′′ gives the desired s–t net Γ.

To see (ii), suppose that some 2-connected net Γ is not isometric and choose
x = (p, q)Γ and y = (p′, q′)Γ with ∆ := |p − p′| + |q − q′| minimum provided that
∆ > dG(xy). Let L = x0 . . . x∆ be an x–y path of length ∆ in Γ. Since Γ is 2-
connected and ∆ ≥ 3, L can be chosen so that some of p0 = p2, q0 = q2, p∆ = p∆−2

q∆ = q∆−2 holds. Let for definiteness p0 = p2 and q2 = q0 + 2. Since Γ is 2-connected,
it contains nodes vi = (p, qi), i = 0, 1, 2, where p ∈ {p0 − 1, p0 + 1}. Let P be the
concatenation of x1x and a shortest x–y path in G. By the minimality of x, y, the
paths P and L′ = x1 . . . x∆ are shortest, so there is an x1–y net Γ′ with RΓ′ = P and
LΓ′ = L′, by (i). Considering the 6-cycle xv0v1v2x2ux, where u = (1, 1)Γ′ , we can
reveal an induced K−

3,3; a contradiction. •

Property (4.6) enables us to show the following.

Claim 2. For s, t ∈ V , let P be a shortest s–t path and P ′ be an s–t path in G.

Then |P ∩Q| ≤ |P ′ ∩Q| and |P −Q| ≤ |P ′ −Q|.

Proof. First suppose that P ′ is also shortest. Take a net Γ as in (4.6), and let s =
(0, 0)Γ and t = (p, q)Γ. Observe that any two edges e = (i, j)(i + 1, j) and e′ =
(i, j′)(i + 1, j′) are dependent; so e ∈ Q if and only if e′ ∈ Q. Similarly, any two edges
(i, j)(i, j + 1) and (i′, j)(i′, j + 1) are dependent. This implies |RΓ ∩Q| = |LΓ ∩Q|.

Next suppose that |P ′| ≥ |P |; let P = sx1 . . . xkt and P ′ = sy1 . . . yqt. We use
induction on |P ′|. One may assume that no intermediate node of P ′ is in P . Take a
median v for {s, xk, yq}. In light of the previous case, we can consider as P any shortest
s–t path. So one may assume that P contains v (as v is in a shortest s–xk path); let
v = xk′ . By (2.2), the path xktyq is shortest, and a shortest xk–yq path D containing
v satisfies |D| = 2. If k′ = k, then the path L = sx1 . . . xktyq is shortest, and now the
required inequalities for P and P ′ immediately follow by induction from those for L

and P ′′ = sy1 . . . yq.
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Now let k′ 6= k. Then D = xkvyq, whence k′ = k − 1. Applying induction to the
shortest path R = sx1 . . . xk−1yq and the path P ′′ as above, we have |R∩Q| ≤ |P ′′∩Q|
and |R − Q| ≤ |P ′′ − Q|. Also xk−1xk ∈ Q if and only if yqt ∈ Q, and similarly for
xk−1yq and xkt (regarding the 4-cycle xk−1xktyqxk−1). Therefore, |P ′∩Q|− |P ∩Q| =
|P ′′ ∩Q| − |R ∩Q|, and the result follows. •

This claim together with (4.4), (4.5) and Statement 2.2 shows that

(4.7) a path P in G is shortest if and only if γ(P ) is G′-shortest and if and only if γ(P )
is ρ-shortest.

Let d and d′ stand for the metrics dG and dG′ , respectively. In order to prove
the remaining statements in Lemmas 4.2 and 4.4, we need the following corollary from
(4.6) (which occurred in [10] for frames):

(4.8) if a, c, b1, b2 ∈ V are different nodes such that abi ∈ E and d(bic) < d(ac) for
i = 1, 2, then there is a unique node a′ ∈ V such that a′b1, a

′b2 ∈ E and d(ac) =
d(a′c) + 2.

Indeed, take an a–c net Γ with RΓ containing b1 and LΓ containing b2. Then
a′ = (1, 1)Γ is adjacent to b1 and b2 and satisfies d(ac)+ d(a′c)+ 2. Suppose that there
is another node a′′ with a similar property. Then Γ can be chosen so that RΓ passes
b1, a

′ and LΓ passes b2, a
′′. Since a′ 6= a′′, w.l.o.g. one may assume that a′′ = (0, 2)Γ

(and b1 = (1, 0)Γ and b2 = (0, 1)Γ). By (4.6)(ii), the subnet of Γ induced by the points
(i, j) for i = 0, 1 and j = 0, 1, 2 is isometric; therefore, d(a′′b1) = 3. So a′′ cannot be
adjacent to b1; a contradiction.

The further proof will rely on the following key claim. For x ∈ V ′, let N(x) denote
the set of nodes in G closest to x, i.e., N(x) is {x} if x ∈ V , {u, v} if x is a split-node
zuv, and the node set of the bi-clique K if x is a star-node vK . If (x0, x1, . . . , xk) is a
sequence of nodes which occur in this order in a shortest path in G (resp. G′), we call
this sequence G-shortest (resp. G′-shortest).

Claim 3. Let x, y ∈ V ′. Then there exist s ∈ N(x) and t ∈ N(y) such that

d′(sx) + d′(xy) + d′(yt) = d′(st), i.e., (s, x, y, t) is G′-shortest.

Proof. One may assume that x 6= y; otherwise the result is trivial. For z ∈ V ′, let
ϕ(z) denote d′(zv), where v ∈ N(z), i.e., ϕ(z) is 0 if z ∈ V , 1 if z is a split-node, and
2 if z is a star-node. First of all we show that

(4.9) if z ∈ V ′ and u ∈ V , and if v is an element of N(z) with d(uv) maximum, then
(u, v′, z, v) is G′-shortest for some v′ ∈ N(z), or, equivalently, d′(uv) = d′(uv′) +
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2ϕ(z).

This is obvious if z ∈ V . Suppose that z is a split-node zvv′ . Since G is bipartite,
d(uv) 6= d(uv′); therefore, d(uv) > d(uv′) (by the maximality of v), and (u, v′, v) is G-
shortest. This implies that (u, v′, z, v) is G′-shortest, by (4.7). Now suppose that z is
a star-node vK for K = (A; B). Let for definiteness v ∈ A. Choose two different nodes
p1, p2 ∈ B. Then d(upi) < d(uv). By (4.8) for v, u, p1, p2, there is v′ ∈ V adjacent to
both p1, p2 and satisfying d(uv′) = d(uv)− 2. Then v ∈ N(z) (by Statement 4.1) and
(u, v′, v) is G-shortest, whence (u, v′, z, v) is G′-shortest.

Note that (4.9) is equivalent to d(uv) = d(uv′)+ϕ(z) (in view of (4.7)). We choose
the desired s ∈ N(x) and t ∈ N(y) so that the distance d(st) (or d′(st)) is maximum.
By (4.9), there are s′ ∈ N(x) and t′ ∈ N(y) such that each of (s, x, s′, t) and (s, t′, y, t)
is G′-shortest. If (s, s′, t′, t) is shortest, we are done. In particular, this happens if at
least one of x, y is in V . So assume that d(st) < d(s′t′) + ϕ(x) + ϕ(y) and consider
possible cases.

(i) Suppose that both x, y are split-nodes. Then x = zss′ and y = ztt′ . Also
ϕ(x) = ϕ(y) = 1, and d(st) − d(s′t′) is an even integer ≤ 2. So we need to consider
only the case when d(s′t′) = d(st) =: α. Take an s–t net Γ in G with RΓ containing s′

and LΓ containing t′. Observe that d(s′t′) = d(st) is possible only if Γ is a 1× (α− 1)
grid in which s′ = (1, 0)Γ and t′ = (0, α − 1)Γ. Then the edges of Γ of the form
(0, j)(1, j) belong to the orbit Q. The split-nodes induced by these edges together with
the star-nodes induced by the non-simple bi-cliques including 4-cycles from Γ generate
in a natural way an x–y path P ′. Moreover, the concatenation of sx, P ′ and yt gives an
s–t path P which, obviously, has the same length as that of γ(RΓ). Hence, (s, x, y, t)
is G′-shortest.

(ii) Next suppose that both x, y are star-nodes, x = vK=(A;B) and y = vK′=(A′;B′).
Assuming that s ∈ A and t ∈ A′, we have s′ ∈ A and t′ ∈ A′. Let α = d(st). Since
ϕ(x) + ϕ(y) = 4, we need to consider two cases, namely, d(s′t′) = α and α− 2.

(a) Let d(s′t′) = α. Consider an s–t net Γ such that RΓ contains s′ and LΓ

contains t′. Observe that d(s′t′) = d(st) is possible only if Γ is a 2 × (α − 2) grid in
which s′ = (2, 0)Γ and t′ = (0, α − 2)Γ. Note that α ≥ 3 (otherwise K = K ′ and
x = y). Consider the subnet Γ′ of Γ induced by the points (i, j) for i = 0, 1, 2 and
j = 0, 1, and take a node q ∈ B different from (1, 0)Γ (q exists since |B| ≥ 2). Since Γ′

is isometric (by (4.6)(ii)) and G is bipartite, q is different from all nodes of Γ′. Let H

be the subgraph of G induced by the nodes of Γ′ and q. If q is adjacent to (1, 1)Γ, then
H contains K−

3,3, and if not, then H contains an isometric 6-cycle. Thus, the given case
is impossible.

(b) Let d(s′t′) = α − 2. Choose p ∈ B and q ∈ B′ with d(pq) maximum; clearly
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d(pq) ∈ {α, α − 2}. If d(pq) = α, take an s–t net Γ in G with RΓ containing p, s′ and
LΓ containing q, t′. Since d(st) = d(pq), Γ is a 1× (α− 1) grid in which p, s′, t′, q have
the coordinates (1, 0), (1, 1), (0, α − 2) and (0, α − 1), respectively. This implies that
(s, x, y, t) is G′-shortest (by the argument similar to that in (i)). Now let d(pq) = α−2.
Then (s, p, q, t) is G-shortest. Choose p′ ∈ B − {p} and q′ ∈ B′ − {q}. We have
d(p′q) = d(pq) < d(sq) (by the choice of p, q); hence, there is s′′ ∈ A such that
d(s′′q) = α− 3 (by (4.8)). Similarly, there is t′′ ∈ A′ such that d(t′′p) = α− 3. We can
consider s′′, t′′ instead of s′, t′; so we may assume that d(s′′t′′) = α− 2. Then a p–q net
Γ in G with RΓ containing s′′ and LΓ containing t′′ is a 1× (α− 3) grid. One can see
that none of s, t, p′, q′ occurs in Γ. Therefore, adding to Γ these nodes and the edges
sp, sp′, p′s′′, tq, tq′, q′t′′ makes a 1× (α− 1) grid Γ′. Since Γ′ is isometric (by (4.6)(ii)),
d(p′q′) = α, contrary to the choice of p, q.

The remaining case when one of x, y is a split-node and the other is a star-node
combines arguments from (i) and (ii) and is left to the reader as an exercise. •

This claim shows that any two nodes x, y ∈ V ′ are contained in a G′-shortest s–t

path L for some s ∈ N(x) and t ∈ N(y). Moreover, starting from an arbitrary L

with such a property, one can transform it, step by step, into a regular G′-shortest s–t

path L′ (not necessarily including x and y) by performing elementary transformations
described in the proof of Claim 1. We have seen that each elementary transformation
does not change the ρ-length of a path (when its G′-length preserves). This together
with the fact that the resulting path L′ is ρ-shortest (by (4.7)) shows that the initial
path L is ρ-shortest as well. Thus, mρ(sx) + mρ(xy) + mρ(yt) = mρ(st) = m(st)
(in view of Claim 1), i.e., mρ is a tight extension of m and, therefore, mρ is a tight
extension of µ. Also, considering L for the case when xy is an edge of G′, we conclude
that ρ(xy) = mρ(xy). So Lemma 4.4 is proven.

We now use Claim 3 to show that G′ is a semiframe.

Claim 4. G′ is modular.

Proof. By (iii) in Theorem 1.8, it suffices to prove the existence of a median for a
triple {u1, u2, y} in V ′ such that d′(u1u2) = 2 and d′(u1y) = d′(u2y) ≥ 2. Let x ∈ V ′

be adjacent to both u1, u2. If d′(xy) = d′(u1y)− 1, then x is a median for u1, u2, y. So
assume that d′(xy) = d′(uiy) + 1, i.e., (x, ui, y) is G′-shortest. We will use many times
the following corollary from (4.7) and the bipartiteness of G:

(4.10) if (a, b, c) is G′-shortest, a, c ∈ V , and b is a split-node zaa′ , then d(ac) > d(a′c)
and, therefore, (a, a′, c) is G-shortest.

Indeed, if (a, a′, c) is not G-shortest, then (a′, a, c) is G-shortest (as G is bipartite
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and aa′ ∈ E). So a occurs in a shortest a′–c path P in G. By (4.7), γ(P ) is G′-shortest.
Hence, (a′, b, a, c) is G′-shortest, contradicting the fact that (a, b, c) is G′-shortest.

Choose s, t as in Claim 3 for our x, y. Then (s, x, ui, y, t) is G′-shortest for i = 1, 2.
Let Li be a G′-shortest s–t path containing x, ui, y. We examine possible cases for x.

(i) Suppose that x is a star-node vK for K = (A; B). Then u1 = ze and u2 = ze′

for some edges e = p1q1 and e′ = p2q2 in K. Let for definiteness s, q1, q2 ∈ A (and
p1, p2 ∈ B). Since (s, x, ui) is shortest, d′(sui) > 1, whence qi 6= s. Moreover, the
s–t path L′i obtained from Li by replacing its part from s to ui by szspi

piui is again
G′-shortest. So (pi, ui, t) is G′-shortest, whence (pi, qi, t) is G-shortest (by (4.10)). This
implies that

(4.11) for i = 1, 2, (s, pi, qi, t) is G-shortest.

By (4.8), there is a unique node in G adjacent to both p1, p2 and closer to t than pi.
Hence, q1 = q2 =: q (since any pi and qj are adjacent). If y ∈ V (i.e., y = t), then q

is the desired median for u1, u2, y (in view of (4.7) and (4.11)). We show that q is a
median in two remaining cases for y as well.

Let y be a split-node ztt′ . Since s, pi, y, t occur in this order in L′i, (s, pi, t
′, t) is

G-shortest (by (4.10) for t, y, pi). By (4.8), there is a node q′ ∈ V adjacent to p1, p2

and such that (pi, q
′, t′) is G-shortest. We assert that q′ = q. Indeed, if q′ 6= q, we

can apply (4.8) to p1, t, q, q
′ (because of d(qt) = d(q′t) = d(p1t) − 1) to obtain a node

q′′ adjacent to q, q′ and satisfying d(q′′t) < d(qt). One can see that the subgraph of G

induced by {s, p1, p2, q, q
′, q′′} is K−

3,3; a contradiction. Thus, q = q′, and now the fact
that (pi, q

′, t′, t) is G-shortest implies that (ui, q, y) is G′-shortest, whence q is a median
for {u1, u2, y}.

Now let y be a star-node vK′ for K ′ = (A′;B′). We may assume that L′i ends with
zt′hvK′zhtt. Then the path zt′hhzhtt is also G′-shortest, whence d′(pit

′) < d′(pit). This
implies that (pi, t

′, t) is G-shortest, and we now proceed as in the previous case.

(ii) Next suppose that x is a split-node zss′ . Consider five possible cases, depending
on the types of u1, u2 (symmetric cases are omitted).

(a) Let u1 be a split-node zpq and u2 ∈ V ; then u2 = s′. One may assume that
sp ∈ E (then u2q ∈ E). Since the path obtained from L1 by replacing the part sxu1

by spu1 is G′-shortest, (p, q, t) is G-shortest (by (4.10) for p, u1, t). Also (u2, q, t) is
G-shortest. So q is a median for p, u2, t in G, whence q is a median for u1, u2, t in G′.
Now arguing as in (i), we conclude that q is a median for (u1, u2, y) too.

(b) Let ui be a split-node zpiqi for i = 1, 2 (i.e., xui is a bridge-edge), and assume
that both p1, p2 are adjacent to s. Then (s, pi, ui, t) is G′-shortest, whence (s, pi, qi, t)
is G-shortest (by (4.10)). Take q ∈ V adjacent to both p1, p2 and giving d(qt) < d(pit).
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Note that all nodes in Z = {s, s′, p1, q1, p2, q2} are different (otherwise they belong to
the same bi-clique of G, whence x and u1 cannot be adjacent). Also q 6= q1, q2 (otherwise
the induced subgraph on Z is K−

3,3). Now considering the 6-cycle C = qp1q1s
′q2p2q,

one can see that either C is isometric (when qs′ 6∈ E) or G contains an induced K−
3,3

(otherwise). Thus, this case is impossible.

(c) Let u1 be a split-node zpq and u2 a star-node vK . Assuming that sp ∈ E and
sp′ is an edge in K with p′ 6= s′, and considering corresponding G′-shortest s–t paths,
we observe that d(pt), d(p′t) < d(st). Now one shows that this case is impossible by
arguing as in (b).

(d) In the case when both u1, u2 are star-nodes, we come to a similar contradiction.

(e) Let u1 be a star-node vK , and u2 ∈ V ; then u2 = s′. This case is analogous
to (a). More precisely, for an edge sp in K with p 6= s′, (s, zsp, u1, t) is G′-shortest,
implying that (s, p, t) is G-shortest. Also (s, s′, t) is G-shortest. Take a median q for
p, s′, t in G. This q is in K. Arguing as in (i), we observe that q is a median for {p, s′, y}
in G′. This implies that zs′q is a median for {u1, u2, y}.

(iii) Finally, suppose that x ∈ V , i.e., x = s. Up to symmetry, three cases are
possible. (a) If u1, u2 ∈ V , take a median q for {u1, u2, t} in G. Then q is a median
for u1, u2, y in G′ (by the argument in (i)). (b) Let both u1, u2 be split-nodes, i.e.,
u1 = zsp and u2 = zsp′ for some p, p′ ∈ V . Then d(pt), d(p′t) < d(st), and a median
q for p, p′, t in G is a median for p, p′, y in G′. This implies that the star-node vK for
the bi-clique K including the 4-cycle spqp′s is a median for u1, u2, y. (c) Let u1 be a
split-node zsp and u2 ∈ V . Then a median q for p, u2, t is a median for p, u2, y, whence
the split-node z′ = zu2q is a median for u1, u2, y (observing that u1 and z′ are connected
by a bridge-edge).

Thus, G′ is modular. •

Next two claims finish the proof that G′ is a semiframe. Let G(x0, . . . , xk) denote
the subgraph of G induced by (not necessarily distinct) nodes x0, . . . , xk ∈ V , and
similarly for G′.

Claim 5. G′ has no induced subgraph K−
3,3.

Proof. We use the fact that K−
3,3 is non-orientable and all its edges are dependent.

Suppose that G′ has an induced subgraph F = (X, W )'K−
3,3. Then all edges of F

belong to the same orbit Q̃ in G′. By Lemma 4.3, each orbit of G′ induced by Q1 (i.e.,
Q′1 or Q′′

1) is orientable. Therefore, Q̃ = Q′
i for some 2 ≤ i ≤ r.

We know that no induced subgraph of G is isomorphic to K−
3,3, so at least one

edge of F is not in G. Also F contains no split- or star-edges (since such edges belong
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to Q′1 or Q′′
1). These facts imply that each node of F is a split-node and each edge of

F is a bridge-edge. Let the nodes of F be numbered as shown in Fig. 2b, let a node i

arise by splitting an edge uivi of G, and assume that for each ij ∈ W , uiuj and vivj

are edges of G. Observe that all u1, . . . , u6 are different (e.g., u1 = u6 is impossible as
G is bipartite, while u2 = u4, say, would imply that the subgraph G(u1, u2, v1, v2, v4) is
K2,3 and, therefore, its edges belong to Q1). So Γ = G(u1, . . . , u6) includes K−

3,3. Since
Γ is bipartite and different from K−

3,3, Γ is K3,3. Similarly, Γ′ = G(v1, . . . , vk) is K3,3.
But then nodes 1 and 6 of F must be connected by a bridge-edge; a contradiction. •

Claim 6. G′ is hereditary modular.

Proof. Suppose this is not so. Since G′ is modular (by Claim 4), G′ contains an
isometric 6-cycle C and, moreover, C is contained in a cube H in G′, by (ii) in Theorem
1.8. Note that if a bipartite graph B contains a cube D and B has no induced K−

3,3,
then the subgraph of B induced by the nodes of D is either D or K4,4.

Let H be formed by nodes x0, . . . , x3, y0, . . . , y3 and edges xixi+1, yiyi+1 and xiyi,
i = 0, 1, 2, 3 (taking indices modulo 4). Since G′ has no induced K−

3,3 (by Claim 5)
and H is not contained in K4,4 (as C ⊂ H is isometric), H is an induced cube in G′.
Suppose that some node of H, y0 say, is a star-node vK . Then x0, y1, y3 are split-nodes
generated by some edges of K. This easily implies that x1, y2, x3 are nodes of K and
that each two of them are connected by an edge, which is impossible.

So, all nodes of H are only split-nodes or nodes of G. Suppose that some edge of
H, x0y0 say, is a split-edge; let for definiteness x0 ∈ V and y0 = ex0v0 . Then xi ∈ V

and yi is a split-node exivi for each i = 0, 1, 2, 3. We observe that the subgraph Γ =
G(x0, . . . , x3, v0, . . . , v3) includes a cube. Indeed, obviously, vivi+1 ∈ E and vi 6= xi+2

(otherwise Γ is not bipartite). Also v0 6= v2 (otherwise G(x0, x1, x2, x3, v0) is K2,3,
whence the edge x0x1 must be split). Similarly, v1 6= v3. So Γ is K4,4. But then all
edges of Γ are dependent and belong to Q, which is impossible.

When all the nodes x0, . . . , x3, y0, . . . , y3 are in V , these induce a subgraph of G

including the cube H, and we also come to a contradiction. Finally, if all nodes of H are
split-nodes, then all its edges are bridge-edges. Let xi = zuivi , and let ui be adjacent
to ui+1 in G, i = 0, 1, 2, 3. Considering Γ = G(u0, . . . , u3, v0, . . . , v3) and arguing as
above, we again observe that Γ includes a cube Γ′ and come to a contradiction. •

By Claims 5 and 6, G′ is a semiframe, as required in Lemma 4.2. This completes
the proof of (iii)→(ii) in Theorem 1.2. • •

5. Proofs of Theorems 1.4 and 1.5 and additional results
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In fact, Theorem 1.4 is a by-product of the orbit splitting method described in the
previous section. More precisely, let µ be a cyclically even PF-metric. By Statement
2.1, the modular closure m for µ is integral. If the LG-graph G = (V, E) for m is a
frame, i.e., all orbits of G are orientable, then every time we split an orbit in question,
we can choose a number α figured in (4.2)(iii) to be an integer. As a result, we obtain
a frame H such that µ is a submetric of dH . Then every primitive extension m̃ of µ is
isomorphic to a submetric of dH (by the argument in the proof of (ii)→(i) in Theorem
1.2 given in Section 3), i.e., m̃ is integral. And if G has a non-orientable orbit, then we
can apply the construction to m′ = 2m. Then the first splitting of each non-orientable
orbit Q creates two orientable orbits Q′, Q′′ with the integer length q/2 of each edge,
where q is the length of an edge of Q, by Lemmas 4.3 and 4.4. So the resulting frame
H is such that µ is a submetric of dH/2 and, therefore, every primitive extension of µ

is half-integral, as required.

Note that we cannot avoid the half-integrality in a general case of cyclically even
PF-metrics. E.g., the modular metric µ = dK3,3 has the half-integer primitive extension
dΓ/2, where Γ is the graph obtained by splitting the orbit of K3,3. Theorem 1.4 has
the following weakened version.

Corollary 5.1. If µ is an integer PF-metric, then every primitive extension of µ is

quarter-integral, and it is half-integral when the LG-graph of a modular closure of µ is

a frame. •

We cannot decrease the fractionality in this case too. µ = dK3 gives the simplest
example when the LG-graph is a frame and µ has a non-integer primitive extension.
Examples with the quarter-integrality also exist. E.g., let T = {s1, . . . , s6}, µ(sisj) = 3
for 1 ≤ i < j ≤ 3, and µ(sisj) = 2 otherwise (i 6= j). One can check that the LG-
graph G of the (unique) modular closure m of µ is a semiframe which contains an
induced subgraph K3,3 with the length m(e) = 1/2 of each edge e. Since dK3,3/2 has a
quarter-integer primitive extension, so does µ (in view of Statement 3.1).

Now we explain how to obtain Theorem 1.5. We rely on the following simple facts
(cf. [7,8]):

(5.1) (i) if (X ′, d′) is a submetric of (X, d), then T (d′) ⊆ T (d);

(ii) if (X ′′, d′′) is a tight extension of (X, d), then T (d′′) = T (d).

(Property (i) is based on the observation that any tight extension (Y, q) of d′ with
Y ∩X = X ′ can be extended to Y ∪X so as to give a tight extension q̃ of d (by defining
q̃(xy) = min{d(xs) + q(sy) : s ∈ X ′} for x ∈ X and y ∈ Y ; cf. the proof of Statement
3.1). Property (ii) follows from (i) and the fact that any tight extension of d′′ is a tight
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extension of d, which is, e.g., easily seen from (2.1).)

As before, let m be a modular closure of a given metric µ, and G = (V, E) the
LG-graph of m. By Statement 2.1, m is a primitive extension of µ; so m is tight. If µ

is primitively finite, then by Theorem 1.2 µ is a submetric of m̂ = dH/λ for some frame
H and number λ > 0. Moreover, Lemma 4.4 provides that the frame H obtained by
use of the orbit splitting method is such that m̂ is a tight extension of m and, therefore,
of µ. Thus, T (µ) = T (dH/λ) (by (5.1)(ii)), whence the dimension of T (µ) is at most
two, in view of a result from [10] mentioned in the Introduction.

To see the other direction, note that if µ is not primitively finite, then some prim-
itive (and, therefore, tight) extension of µ has a submetric adK−

3,3 with a > 0, by the
argument in Section 3. For d = dK−

3,3 , dim(T (d)) = 3 (this follows, e.g., from (ii)
in Theorem 1.6 because d admits a strictly dominating bijection, namely, that corre-
sponding to the pairs {1, 6}, {2, 4}, {3, 5} in Fig. 2b). By (5.1), T (ad) ⊆ T (µ), whence
dim(T (µ)) ≥ 3, as required.

Next we derive some additional results from the above method of proof of Theorem
1.2. Throughout µ is a rational PF-metric on T .

1. The upper bound on the number of primitive extensions of µ given in Section 3
depends on the size of the frame H figured in (ii) of Theorem 1.2. Under the method
in Section 4, the size of H (and, therefore, the bound) can grow significantly if we
replace µ by 2µ, say, though the number of primitive extensions remains the same.
The following lemma suggests a more efficient way of choosing the desired frame, which
depends only on the LG-graph G = (V,E) of a modular closure m of µ. More precisely,
let H = (W,U) and d be the frame and metric on W obtained from G and m by
consecutively splitting the non-orientable orbits (see Remark 4.6). One can see that H

and d do not depend on the order in which these orbits are treated.

Lemma 5.2. (i) d is a primitive extension of µ, and (ii) every primitive extension

of µ is isomorphic to a submetric of d.

Proof. Consider a non-orientable orbit Q of G, and let G′ = (V ′, E′) and m′ be the
semiframe and metric on V ′ obtained from G and m by splitting Q. Then Q induces one
orbit Q′ in G′. Let Z and Z ′ be the sets of ends of edges in Q and Q′, respectively. The
submetric g′ = m′

Z′
is a tight extension of g = m

Z
and all edges of Q′ are dependent

w.r.t. 4-cycles of G′ meeting Q′. Hence, g′ is a primitive extension of g. Also m is
a primitive extension of µ (by Statement 2.1). So there is an extreme extension m′′

of µ to V ′ which coincides with m on V and with g′ on Z ′ (by Statement 3.1). Then
the tightness of m′ for µ (by Lemma 4.4) implies m′ = m′′. Repeatedly applying this
argument to the non-orientable orbits of the currect graphs (arising from G in the orbit
splitting process), we obtain (i).
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To see (ii), we observe that the splitting operation applied to an orientable orbit of
H (as well as of any other currect graph in the orbit splitting process starting with H)
does not maintain the primitivity. More precisely, let H ′ = (W ′, U ′) and d′ be obtained
from H and d by splitting an (orientable) orbit Q into two orbits Q′ and Q′′ with a
number α as defined in Lemma 4.4. Fix the orientations of Q,Q′, Q′′ as indicated in
the proof of Lemma 4.3. For each split-node z = zxy, define γ1(z) = x and γ2(z) = y,
where xy ∈ Q has the orientation (x, y). For each star-node v = vK , define γ1(v) = s

and γ2(v) = t, where s (t) is the node of K whose all incident edges in K are oriented
from s (resp. to t). Define γ1(x) = γ2(x) = x for the other nodes of H ′.

For i = 1, 2, let mi be the metric on W ′ induced by d and γi, i.e., mi(xy) =
d(γi(x)γi(y)) for x, y ∈ W ′. It is not difficult to check that d = q−α

q m1 + α
q m2, where

q = d(e) for e ∈ Q. Thus, d′ is a convex combination of two extensions of µ similar
to d. Now using induction, one can conclude that if H is the final frame with the
all-unit lengths of the edges in the orbit splitting process for (G,m) (assuming that
m is cyclically even), then dH is a convex combination of extensions of µ similar to d.
This implies that each submetric of dH is a convex combination of metrics isomorphic
to submetrics of dH , whence (ii) follows by the argument in the proof of (ii)→(i) of
Theorem 1.2. •

2. Every semiframe serves as the LG-graph of a modular closure for a representative
class of PF-metrics on the same set, reflecting the fact that “stretching” the edge
lengths of orbits preserves the set of shortest paths. More precisely, we say that a
positive function on the edges of a semiframe is conform if it is constant within each
orbit.

Statement 5.3. Let G = (V, E) be a semiframe, and ` a conform function on E.

Let m = dG,`. Then the sets of G-shortest and m-shortest paths in G are the same. In

particular, m(e) = `(e) for all e ∈ E.

Proof. Consider two paths P and P ′ with the same ends in G such that P is G-
shortest. Let Q1, . . . , Qk be the orbits of G, and denote ni = P ∩Qi, n′i = P ′ ∩Qi and
`i = `(e) for e ∈ Qi. We have `(P ) = `1n1+. . .+`knk and `(P ′) = `1n

′
1+. . .+`kn′k. By

Claim 2 in Section 4, ni ≤ n′i for each i. Hence, `(P ) ≤ `(P ′). Moreover, if |P | < |P ′|,
then ni < n′i for some i, whence `(P ) < `(P ′) (since ` is positive). •

(A similar property holds for arbitrary modular graphs and positive functions invariant
on dependent edges (cf. [2,4]); it can be shown in a similar fashion as that in the proof
of Statement 2.2.) This implies the following.

Corollary 5.4. Let G = (V, E) be the LG-graph of a modular closure m of µ. Let
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` be a conform function on E, and let m′ = dG,` and µ′ = m′
T
. Then m′ is a modular

closure of µ′ and G is the LG-graph of m′.

Proof. By Statements 2.2 and 5.3, m and m′ have the same sets of shortest paths on
V . Then the betweenness relations for m and m′ are the same, whence G is the LG-
graph for m′. Also one can see that all steps in the process of determining the modular
closure m for µ remain applicable to µ and, terefore, result in m′ (by the primitivity).
•

3. Results in the above enable us to show invariantness of the modular closure of a
PF-metric. To be precise, we say that extensions (V, m) and (V ′,m′) of µ (resp. the
LG-graphs G = (V, E) for m and G′ = (V ′, E′) for m′) are the same if there is a one-
to-one mapping ω : V → V ′ satisfying ω(s) = s for s ∈ T and m(xy) = m′(ω(x)ω(y))
(resp. xy ∈ E ⇐⇒ ω(x)ω(y) ∈ E′) for x, y ∈ V , and different otherwise.

Theorem 5.5. For any PF-metric µ on T , the modular closure (V, m) of µ is

determined uniquely.

Proof. Suppose there exists a modular closure (V ′,m′) of µ different from (V, m). Let
G = (V, E) and G′ = (V ′, E′) be the LG-graphs for m and m′, respectively. Since
m is a primitive extension of µ, it is determined uniquely by the sets of G-shortest
T -paths, and similarly for m′ and G′ (in view of Statement 2.2). Therefore, G and G′

are different. Consider three cases.

(i) Let both G and G′ be frames, and let for definiteness |V | ≤ |V ′|. By Lemma
5.2(ii), one may assume that m′ is a submetric of m. Then |V | ≤ |V ′| implies V = V ′,
whence m = m′; a contradiction.

(ii) Let G′ be a frame and G not, i.e., G has a non-orientable orbit. Let H and h be
obtained from G and m by splitting the non-orientable orbits. By the argument in (i),
one may assume that h = m′ and H = G′. Consider the metric ν = dG

T
. By Lemma

5.2 and Corollary 5.4, dG is a modular closure for ν. Moreover, splitting the non-
orientable orbits for G and dG makes the same frame H = G′ and the corresponding
metric g on V . By Statements 5.3 and 2.2, g and m′ have the same sets of shortest
paths. This implies that g is a modular closure for ν. So, by Statement 2.1, g must
be integral because ν is cyclically even (as G is bipartite). But g takes a non-integer
value. Indeed, take an edge e = xy in a non-orientable orbit of G. Then e generates
two split-edges xze and yze in H, and we have g(xze) = 1/2; a contradiction.

(iii) Let both G,G′ have non-orientable orbits. Let H and h (H ′ and h′) be
obtained from G and m (resp. G′ and m′) by splitting the non-orientable orbits. Then
H = H ′ and h = h′. Assume for definiteness that |V | ≤ |V ′| and consider the metric
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ν = dG
T
. Then dG is a modular closure for ν, and splitting the non-orientable orbits

for G and dG makes the same frame H and the corresponding metric g on V . By
the argument as in (ii), f = g

V ′
is a modular closure for ν and G′ is the LG-graph

for f . Since ν is cyclically even (as G is bipartite), f is integral. Now we come to a
contradiction by showing that f takes a non-integer value.

Indeed, G and G′ are different, V ∪ V ′ is in H and |V | ≤ |V ′|; so there is a node
v ∈ V ′ which is not in V . Then v is either a split-node or a star-node in H (w.r.t.
G). Suppose v is a split-node zxy for an edge xy ∈ E. Since g is tight for ν, there
are s, t ∈ T such that g(sx) + g(xy) + g(yt) = ν(st). This implies g(sv) = g(sx) + 1

2 .
But g(sv) = f(sv) and g(sx) = dG(sx), whence f(sv) is not integral. Now suppose v

is a star-node vK , where K = (A; B) is a 2-clique in G. Take x ∈ A and y ∈ B. Let
s, t, s′, t′ ∈ T be such that g(sx) + g(xv) + g(vt) = ν(st) and g(s′y) + g(yv) + g(vt′) =
ν(s′t′). Then g(sv) = g(sx) + g(xv) and g(s′v) = g(s′y) + g(yv), whence f(sv) =
dG(sx) + 1 and f(s′v) = dG(s′y) + 1 (since g(xv) = g(xzxy) + g(zxyvK) = 1

2 + 1
2 = 1,

and similarly g(yv) = 1). This and the evenness of f(sv) + f(s′v) + f(ss′) imply
that dG(sx) + dG(s′y) + f(ss′) is even. But f(ss′) = dG(ss′) and dG(xy) = 1; so
dG(sx) + dG(xy) + dG(ys′) + dG(ss′) is odd; a contradiction. •

We can summarize the above results as follows.

Corollary 5.6. For any PF-metric µ, there are unique modular closure m of µ,

LG-graph G of m, and pair (H,h), where H = (W,U) is a frame and h is a conform

function on U such that dH,h is a primitive extension of µ and every primitive extension

of µ is isomorphic to a submetric of dH,h. The pair (H, h) is formed from (G,m) by

splitting the non-orientable orbits of G. •

We call G and H in this corollary the canonical semiframe and frame for µ, respec-
tively (possibly G = H) and call (H,h) the generator of primitive extensions of µ. It is
tempting to hope that every submetric (W ′, g′) of dH,h with T ⊆ W ′ ⊆ W is primitive
for µ (which would imply the exact formula |Π(µ)| = 2|W |−|T |). However, this need
not hold. E.g., let G = (V,E)'K3,3 and µ = dG. Then H = (W,U) is obtained by
splitting of the orbit of G and h is identically 1/2. One can see that for any e ∈ E, the
submetric of dH,h on W ′ = V ∪ {ze} is the half-sum of two metrics on W ′ similar to
dG.

4. As mentioned in the Introduction, [10] gives an explicit combinatorial construction
of the tight span T (dH) for an arbitrary frame H. Using the orbit splitting method,
we can generalize that construction to the metrics dH,h, where H is a frame and h

is a rational conform function on its edges, and, as a result, describe the “canonical
structure” of the tight span of a PF-metrics µ (such a structure looks somewhat different
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from the polyhedral structure of tight spans mentioned in the Introduction).

First we recall the construction of T (dH) for a frame H = (W,U). Each edge e of
H is regarded as being homeomorphic to the closed interval (segment) [0, 1] ⊂ IR1 with
the natural metric σe on it. Each 4-cycle C = v0v1v2v3v0 (considered up to reversing
and cyclically shifting) is expanded into a 2-dimensional disc DC . Formally, DC is
homeomorphic to [0, 1]×[0, 1] ⊂ IR2, the nodes v0, v1, v2, v3 are identified with the points
(0,0),(0,1),(1,1),(1,0), respectively, and the edges with the corresponding segments. DC

is endowed with the `1-metric σC = σv0v1 ⊕ σv1v2 , i.e., for points x = (ξ, η) and
y = (ξ′, η′) in DC , σC(xy) = |ξ − ξ′| + |η − η′|. If two 4-cycle C = v0v1v2v3v0 and
C ′ = u0u1u2u3u0 have three common nodes, vi = ui for i = 0, 1, 2 say, we identify the
corresponding halves (triangles) in DC and DC′ ; namely, assuming for definiteness that
v0, v1, v2 are represented as (0,0),(0,1),(1,1) in both discs, respectively, we identify each
point (ξ, η) for 0 ≤ ξ ≤ η ≤ 1 in DC with the (ξ, η) in DC′ . As a result, every bi-clique
K = (A;B) with A = {s1, s2} and B = {t1, . . . , tk} produces the shape F (K), called
the folder of K, homeomorhic to the space formed by sticking together k copies of the
triangle {(ξ, η) : 0 ≤ ξ ≤ η ≤ 1} along the side {(α, α) : 0 ≤ α < 1}; see Fig. 8 for
k = 5. The above metrics σC for 4-cycles C in K give the metric σK on F (K). In view
of Statement 4.1, two different folders have at most one vertex or one edge in common.

Fig. 8

• s2

t1 • t2 • t3 • t4 • t5 • becomes

• s1

t3 •
t2 • s2 • t4•

t1 • • t5

s1 •

The resulting space is just T (dH) = (X , σ), where X = ∪(F (K) : K ∈ K(H)) and
the global metric σ on X is defined in a natural way: for x, y ∈ X , σ(xy) is the infimum
of values σq1(x0x1) + . . . + σqr (xr−1xr) over all finite sequences x = x0, x1, . . . , xr = y

in which each two xi−1, xi occur in the folder F (qi) of a bi-clique qi or in a bridge qi.

Now suppose that h takes value 2 on the edges of some orbit Q of H, and 1 on
the other edges of H. Let H ′ be obtained by splitting the orbit Q, taking α = 1 (see
Lemma 4.4). Since dH′

is a tight extension of g = dH,h, we have T (g) = T (dH′
); so

the folder structure of T (dH′
) describes T (g). However, we can describe T (g) = (X̂ , σ̂)

in terms of H and h themselves, as follows.

(i) Let K = xyuvx be a simple bi-clique (4-cycle) in K(Q) with xy, uv ∈ Q (see the
definition in the beginning of Section 4). Then K induces two bi-cliques (4-cycles) K ′ =
xzz′vx and K ′′ = zyuz′z in H ′, where z = zxy and z′ = zuv. Each of F (K ′), F (K ′′) is
represented as the square [0, 1]×[0, 1], and the common segment between z and z′ sticks
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them together into a rectangle of size 2 × 1. In other words, one may think that the
region of X̂ spanned by K is again F (K) = DK but now with the “stretched” metric
σ′ = (2σxy) ⊕ σyv, defined by σ′((ξ, η)(ξ′, η′)) = |ξ − ξ′| + 2|η − η′| (letting x = (0, 0)
and y = (1, 0)).

(ii) Let K = (A; B) be a non-simple bi-clique in K(Q). Then h(e) = 2 for all edges
e of K, and K induces |A| + |B| bi-cliques Ka = ({a, vK}; {zab : b ∈ B}), a ∈ A, and
Kb = ({b, vK}; {zab : a ∈ A}), b ∈ B, in H ′. One can see that the union F ′ of folders
F (Ks), s ∈ A ∪ B, is naturally homeomorphic to F (K), but the metric σ′ on F ′ is
twice as much stretched, i.e., σ′ = 2σK .

In case of a general rational conform function h on U , we can apply similar argu-
ments (or use induction) to conclude with the following.

Theorem 5.7. Let µ be a PF-metric, and (H,h) the generator of primitive ex-

tensions of µ. Let T (µ) = (X̂ , σ̂) and T (dH) = (X , σ). Then X̂ = X and σ̂ is the

globalization of the metrics σ̂K on folders F (K) of bi-cliques and the metrics σ̂e on

bridges e of H, where: (i) for each simple bi-clique K with edges e, e′ in different orbits,

σ̂K = (h(e)σe)⊕ (h(e′)σe′); (ii) for each non-simple bi-clique K, σ̂K = h(e)σK (e is an

edge of K); and (iii) for each bridge e, σ̂e = h(e)σe. •

Remark 5.8. Theorem 5.7 describes the structure of T (µ) in terms of the canonical
frame. In a similar fashion, we can represent T (µ) by use of the canonical semiframe
G = (V, E) and length function g = m

E
, where m is the modular closure of µ. To

this purpose, we observe that for each bi-clique K = (A; B) with |A|, |B| ≥ 3 in G, the
space T (dK) = (F (K), σK) is again obtained by identifying the corresponding halves
of discs DC and DC′ for all 4-cycles C and C ′ in K with three common nodes; this
can be shown by considering the frame H(K) obtained from K by splitting its only
orbit and using the fact that T (dK) = T ( 1

2dH(K)). By analogy, we call such an F (K)
the folder of K (now it has a more complicated facet structure; in particular, it is not
homeomorphically embeddable in IR3). Then Theorem 5.7 remains valid with (G, g) in
place of (H, h).

An interesting question is how the above folder structure of T (µ) is related to its
polyhedral structure defined in [7,8].

6. A relationship to multicommodity flows

Results on PF-metrics find applications to one sort of multiflow (multicommodity
flow) problems. An instance of this problem is given by an (undirected) graph G =
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(V, E), a capacity function c : E → IR+ on its edges, and a metric µ on a subset T ⊆ V

(of which nodes are called terminals). A (c-admissible) multiflow f consists of T -paths
P1, . . . , Pk in G along with nonnegative real weights λ1, . . . , λk satisfying the capacity
constraint

(6.1) fe :=
∑

(λi : Pi contains e) ≤ c(e) for all e ∈ E

(as before, a T -path is a simple path connecting distinct s, t ∈ T ). For s, t ∈ T , define
val(fst) =

∑
(λi : Pi connects s and t), the value of the flow fst in f between terminals

s and t. The gain of each fst is defined to be µ(st)val(fst).

In the metric-weighted maximum multiflow problem (briefly, MMP), one is asked
to maximize the total gain 〈µ, f〉 :=

∑
(µ(st)val(fst) : s, t ∈ T ) of a multiflow f . This

is a linear program and, assigning dual variables `(e), e ∈ E, to the inequalities in (6.1),
we can consider the dual linear program that consists in minimizing c` =

∑
(c(e)`(e) :

e ∈ E) over the “length functions” ` : E → IR+ such that the length `(P ) of any T -path
P connecting terminals s, t is at least µ(st). Since c is nonnegative, we can replace `(e)
by dG∪KT ,`(e) for e ∈ E∪ET , letting `(st) = µ(st) for s, t ∈ T . Then the dual problem
becomes equivalent to the following:

(6.2) minimize cm over all extensions m of µ to V

(assuming w.l.o.g. that c(xy) = 0 if x, y ∈ V and xy 6∈ E). So max{〈µ, f〉} = min{cm},
where f ranges the multiflows for G, c, T and m ranges the extensions of µ to V . This
relation occurred in [11] where other properties and applications of MMP are also
shown.

Note that if m,m′,m′′ are extensions of µ to V such that m ≥ λm′ + (1 − λ)m′′

for some 0 ≤ λ ≤ 1, then cm ≥ λcm′ + (1 − λ)cm′′ (since c ≥ 0), implying cm ≥
min{cm′, cm′′}. Therefore, an optimal solution to (6.2) is achieved by some extreme
extension m of µ to V . On the other hand, by linear programming arguments, every
extreme extension m occurs as a unique optimal solution to (6.2) for a certain capacity
function c on EV . (One can give a direct construction of such a c as follows. Let
V ′ ⊆ V be a maximal subset with m

V ′
positive, let E′ = {e ∈ EV : m(e) = 0}, and

let P1, . . . , Pk be all m-shortest T -paths in KV ′ . Then the multiflow f formed by these
paths taken with unit weights is optimal for the capacities c(e) = fe for e ∈ EV −E′ and
c(e) = 1 for e ∈ E′. Moreover, these paths must be m-shortest for any optimal solution
m to (6.2) for this c. Then m is determined uniquely on V ′ (since m is extreme),
whence m is so on V (since fe = 0 < c(e) for e ∈ E′ implies m(e) = 0).)

Thus Π(µ) gives the minimal list of (unavoidable) positive metrics whose similar
metrics occur as optimal dual solutions to MMP among all graphs G = (V, E) with
V ⊇ T and capacities c on E. Roughly speaking, for µ fixed, MMP admits a finite
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number of “types” of optimal dual solutions if and only if µ is primitively finite. Also
Theorem 1.4 implies the following.

Corollary 6.1. If µ is a cyclically even PF-metric, then (6.2) has an integer optimal

solution.

Example. If |T | ≥ 3 and µ(st) = 1 for all distinct s, t ∈ T (i.e., µ = dKT ), then
µ has, besides itself, only one primitive extension m = 1

2dH , where H = (W,U) is
the graph with W = T ∪ {v} and U = {sv : s ∈ T}. This gives the well-known
minimax relation proved in [5,15] (originally stated in [13]): for any G,T, c as above,
the maximum total value of a multiflow consisting of flows between arbitrary pairs of
distinct terminals is equal to 1

2

∑
(qs : s ∈ T ), where qs is the maximum capacity of a

cut in (G, c) separating s and T − {s}.
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