
A fast algorithm for finding a maximum free multiflow
in an inner Eulerian network and some generalizations

Toshihide Ibaraki], Alexander V. Karzanov[, and Hiroshi Nagamochi]∗

Abstract. Let N = (G, T, c) be a network, where G is an undirected graph with n

nodes and m edges, T is a set of p specified nodes of G, called terminals, and each
edge e of G has a nonnegative integer capacity c(e). If the total capacity of edges with
one end at v is even for every non-terminal node v, then N is called inner Eulerian. A
free multiflow is a collection of flows between arbitrary pairs of terminals such that the
total flow through each edge does not exceed its capacity.

In this paper we first generalize a method in Karzanov [1979a] to find a maximum
integer free multiflow in an inner Eulerian network, in O(ϕ(n,m)log p) time, where ϕ

is the complexity of finding a maximum flow between two terminals. Next we extend
our algorithm to solve the so-called laminar locking problem on multiflows, also in
O(ϕ(n,m)log p) time.

We then consider analogs of the above problems in inner balanced directed networks,
which means that for each non-terminal node v, the sums of capacities of arcs entering
v and leaving v are the same. We show that for such a network a maximum integer
free multiflow can be constructed in O(ϕ(n,m)log p + n2m) time, and then extend this
result to the corresponding locking problem.

Keywords: Multicommodity flow, Edge-disjoint paths, Eulerian graph, Multiflow
locking problem.

1. Introduction

By a network we mean a triple N = (G,T, c) consisting of an undirected graph
G = (VG, EG), a subset T of nodes of G, called terminals, and a nonnegative integer-
valued function c : EG → ZZ+ of capacities of edges of G. We denote n = |VG|, m = |EG|
and p = |T | throughout this paper. A T -path is a simple path in G which connects two

] Department of Applied Mathematics and Physics, Graduate School of Engineering,
Kyoto University, Kyoto 606, Japan.

[Institute for System Analysis of RAS, 9, Prospect 60 Let Oktyabrya, 117312
Moscow, Russia; email: sasha@cs.isa.ac.ru. This research was done when the second
author was visiting Kyoto University and supported by the Scientific Grant in Aid by
the Ministry of Education, Science and Culture of Japan (Joint Research 06044112).
∗ Supported by the subsidy from the Inamori Foundation.

1

distinct terminals. A multiflow F consists of T -paths P1, . . . , Pk along with nonnegative
reals α1, . . . , αk, and F is called c-admissible if it obeys the capacity constraint

(1) ζF (e) :=
∑

(αi : e ∈ Pi) ≤ c(e) for all e ∈ EG.

Following Lomonosov (1985), such a multiflow is called free (because no pair of terminals
is forbidden to use as end nodes of paths in F). Unless otherwise stated, we assume
that any multiflow we deal with is c-admissible and free. The (total) value, val(F), of
F is α1 + . . . + αk, and F is called maximum if its value is as large as possible. For
disjoint subsets A,B ⊆ T , the subset of F concerning all the paths with one end in A

and the other in B forms the flow in F between A and B, and is denoted by FA,B or
FB,A. Also FA stands for FA,T−A. A single element set {s} is sometimes denoted by
s; e.g., Fs stands for F{s}, and A ∪ s stands for A ∪ {s}.

For X ⊆ V , δ(X) = δG(X) is the set of edges with one end in X and the other
in V −X (a cut in G). For a function g : S → IR and a subset S′ ⊆ S, g(S′) denotes∑

(g(e) : e ∈ S′). So c(δ(X)) is the capacity of a cut δ(X). For A ⊆ T , λA = λA(c)
is the minimum capacity of a cut δ(X) separating A and T − A, i.e., with X ∩ T = A

or T − A. Because of (1), the value of FA does not exceed the capacity of such a cut,
therefore, val(FA) ≤ λA.

We say that N (and also c) is inner Eulerian if c(δ(v)) is even for each inner node
v ∈ VG − T (or, equivalently, c(δ(X)) is even for every X ⊆ VG − T). Free multiflows
have the following nice property.

Theorem 1 [Cherkassky 1977, Lovász 1976]. Let N = (G,T, c) be inner Eulerian.

Then there exists a maximum free multiflow F which is integral (i.e., all numbers αi

in F are integers). Moreover, such an F satisfies val(F) = 1
2

∑
(λs : s ∈ T), or,

equivalently,

val(Fs) = λs for all s ∈ T.

This implies that if c is integral but not necessarily inner Eulerian, then there
exists a maximum half-integer multiflow, i.e., with all αi’s being multiples of 1/2 (the
corresponding, weaker, version of Theorem 1 was stated in Kupershtokh (1971)). Note
that Cherkassky’s proof of Theorem 1 is constructive and provides a solution algo-
rithm. It applies standard augmenting path techniques combined with the so-called
T-operations, and if a shortest augmenting path is always chosen at each iteration, the
algorithm becomes strongly polynomial, like those of Dinitz (1970) and Edmonds and
Karp (1972) for the maximum flow problem.

A different idea was suggested in Karzanov (1979a) to design a significantly faster
algorithm for finding a half-integer maximum multiflow for an arbitrary nonnegative

2

integer-valued c. It is based on the divide and conquer approach which recursively re-
duces the problem in the current network G′, T ′, c′ to the same problems in two smaller
networks with at most dT ′/2e+ 1 terminals in each. Eventually, there appears a set of
problems, each of which is no longer reducible and deals with exactly three terminals;
such a problem is shown to be solved by three maximum flow computations. In fact,
the whole algorithm has complexity equivalent to O(log p) max flow computations in
networks with O(n) nodes and O(m) edges (the time bound O(n3log p) pointed out
in that work comes up when an O(n3) time max flow algorithm is applied). However,
this algorithm needs not construct an integer maximum multiflow in the inner Eulerian
case.

In this paper we first improve the above method to find an integer maximum
multiflow in the inner Eulerian case. The algorithm we design has similar complexity;
it runs in O(ϕ(n, m)logp) time, where ϕ(n′,m′) is the complexity of finding a maximum
flow and minimum cut in a network with n′ nodes and m′ edges. If we apply, as a
subroutine, the currently fastest O(nmlog (n2/m)) max flow min cut algorithm due to
Goldberg and Tarjan (1988), then our algorithm runs in O(nmlog (n2/m)log p) time.

We then show that this algorithm can be modified to solve an important special
case of the so-called multiflow locking problem. In the input of this problem, one is
given a family A ⊆ 2T of subsets of T , and is asked to

(2) Find a multiflow F in N which locks simultaneously all members of A,

where a multiflow F is said to lock a set A ⊆ T if val(FA) = λA. If such a multiflow
for A ⊆ 2T exists for every network (G,T, c) with T fixed, then A is called lockable.
The following theorem gives a complete characterization of such families. Call a family
of subsets of T 3-cross-free if it has no three members such that each two of them are
crossing, where sets A,B ⊂ T are crossing if none of A∩B, A−B, B−A and T−(A∪B)
is empty.

Theorem 2 [Karzanov and Lomonosov 1978]. A is lockable if and only if A is 3-cross-

free. Moreover, if A is lockable and c is inner Eulerian, then there exists an integer
multiflow which locks all members of A.

(For a detailed proof of this theorem, see Karzanov (1979b) and Lomonosov (1985).
Shorter proofs, based on splitting-off techniques, are given in Karzanov (1984) and
Frank et al. (1992). The above papers also demonstrate use of the locking problem
with A 3-cross-free for solving certain, more traditional, problems on multiflows and
edge-disjoint paths.) Now call two sets A,B ⊆ T laminar if they are not crossing. If
every two members of A are laminar, A is called laminar. In particular, the collection

3

A of all single element sets {s}, s ∈ T , is laminar, and we observe from Theorem 1 that
for this particular A, a multiflow F is a solution to the locking problem if and only if
F is maximum. Thus, the multiflow locking problem for laminar families A generalizes
the maximum free multiflow problem, and Theorem 1 follows from Theorem 2. In this
paper we show the following.

Theorem 3. Let A be laminar and c inner Eulerian. Then an integer multiflow that

locks all sets in A can be found in O(ϕ(n, m)log p) time.

Next we consider analogs of the above problems for the directed case. We deal
with a network N→ = (D, T, c) consisting of a digraph D = (VD, ED), a set T ⊆ VD of
terminals, and a function c : ED → ZZ+ of arc capacities. For X ⊆ VD, δ+(X) = δ+

D(X)
is the set of arcs (x, y) ∈ ED leaving X (i.e., x ∈ X 63 y) and δ−(X) = δ−D(X) is the
set of arcs (x, y) entering X (i.e., x 6∈ X 3 y). Given A ⊆ T , δ+(X) is called a dicut
from A if X ∩ T = A, and the minimum capacity c(δ(X)) for such X’s is denoted by
λ+

A = λ+
A(c). Analogously, δ−(X) is a dicut to A if X ∩ T = A, and λ−A = λ−A(c) is the

minimum c(δ−(X)) among such dicuts. In the definition of a multiflow F in N→, the
only difference from the undirected case is that now the paths in F are directed T -paths
in D. For disjoint A,B ⊆ T , FA,B denotes the subset of F concerning paths from A to
B (so FA,B and FB,A are now different). As before, FA stands for FA,T−A.

We impose the condition that N→ (and also c) is inner balanced, or flow-like. This
means that c(δ+(v)) = c(δ−(v)) holds for all non-terminal nodes v ∈ VD − T (i.e., c

itself is a flow with T as the set of terminals). An important property of such networks
was established by Lomonosov.

Theorem 4 [Lomonosov 1978]. Let N→ be inner balanced. Then there exists a

maximum multiflow F which is integral. Moreover, val(Fs) = λ+
s and val(FT−s) = λ−s

hold for all s ∈ T .

(A similar result for totally balanced networks was independently obtained by
Frank (1989). A strongly polynomial algorithm for finding a maximum integer multiflow
in an inner balanced network is designed in Karzanov (1979b).) Note that the flow-
likeness of N→ implies the following property: for any s ∈ T and any X ⊂ VD with
X ∩ T = {s},

(3) c(δ+(X))− c(δ−(X)) = c(δ+(s))− c(δ−(s)).

Therefore, λ+
s − λ−s = c(δ+(s)) − c(δ−(s)) and, moreover, the minimum dicuts from s

and to s are induced by the same sets of nodes. In other words, in order to find λ+
s

and λ−s it suffices to find a minimum cut separating s and T − s in the corresponding

4

undirected network N = (G,T, c), where G is the underlying undirected graph for D

in which each edge e has the same capacity as that of the corresponding arc ~e in D,
c(e) = c(~e).

Based on this property, one can easily reduce the maximum multiflow problem
in an inner Eulerian (undirected) network N = (G,T, c) to that in an inner balanced
network, as follows. Let Q be the subset of s ∈ T with c(δG(s)) odd. Partition Q into
pairs and connect each pair by an edge with unit capacity. This makes the network
N ′ = (G′, T, c′) which is totally Eulerian. So we can represent c as a nonnegative integer
combination of (the incidence vectors of the edge-sets) of some cycles. Therefore, one
can replace each edge e = {x, y} by two arcs (x, y) and (y, x), and assign integer
capacities to these arcs with the sum to be c(e) so that the directed network obtained
this way is totally balanced. Now if we delete the “artificial” arcs between those pairs
in Q and find a maximum integer multiflow for the resulting directed network, this
gives a maximum multiflow in N .

In this paper we show that some reverse reduction is also possible. More precisely,
given an inner balanced network N→ = (D,T, c), one can transform a maximum integer
multiflow in the underlying undirected network into a maximum integer multiflow in
N→. As a result, an O(ϕ(n,m)logp+n2m) algorithm is obtained to solve the maximum
integer multiflow problem in N→.

Finally, one can suggest an analog of the locking problem for the directed case. Let
us say that a multiflow F in N→ locks a set A ⊆ T (in both directions) if val(FA) = λ+

A

and val(FT−A) = λ−A (= λ+
T−A). Then, given a family A ⊆ 2T , the directed version

of the locking problem is to find a multiflow F in N→ that locks all members of A.
For T fixed, A is called lockable with respect to the directed case if this problem has a
solution for every inner balanced N→ = (D, T, c). We prove the following fact.

Theorem 5. For the directed case, A is lockable if and only if A is laminar. Moreover,

if A is laminar and N→ = (D,T, c) is inner balanced, then the locking problem has

an integer solution, and such a solution can be found in O(ϕ(n,m)log p + n2m) time,

where n = |VD|, m = |ED| and p = |T |.

Remark 1. An instance of the locking problem may be solvable even if A is not
laminar. Given an inner balanced N→ = (D,T, c), suppose that A − AD is laminar,
where AD consists of all A ∈ A such that at least one of λ+

A(c) and λ−A(c) is zero. Then
an integer multiflow that locks all sets in A does exist (even if A is not laminar), as
we show in Section 4. This extends the part of Theorem 5 concerning the solvability of
the locking problem.

The structure of this paper is as follows. The algorithm for finding an integer

5

maximum free multiflow in an inner Eulerian network is given in Section 2. Section 3
describes how to modify this algorithm to find an integer solution to the locking problem
with A laminar and c inner Eulerian. The algorithm for inner balanced networks and
the proof of Theorem 5 are given in Section 4.

It should be noted that, in the above discussion, flows and multiflows are repre-
sented in the paths packing form (i.e., via a set of weighted T -paths), as this is often
more convenient from the combinatorial viewpoint. However, in order to be as fast as
declared above, our algorithms also use, in intermediate steps, another, more compact,
form of representation of flows and multiflows, namely, the node-arc form. More pre-
cisely, return to the undirected case, and let ~G be the digraph with the same node-set
VG whose arc-set ~EG is obtained by replacing each edge e = {x, y} of G by two arcs
(x, y) and (y, x). For disjoint subsets A,B ⊆ T , a flow from source set A to target set
B is a function f ′ = f ′A,B : ~EG → IR+ satisfying the conservation condition

df ′(x) :=
∑

y

f ′(x, y)−
∑

y

f ′(y, x) = 0 for each x ∈ VG − (A ∪B),

and its value, val(f ′), is defined to be |df ′(A)| = |df ′(B)|, where df ′(x) is called
the divergency of f ′ at x. We usually assume that df ′ is nonnegative within A, and
nonpositive within B, which will lead to no loss of generality in our considerations.
When needed, a flow F ′ between A and B in the paths packing form can be transformed
into a node-arc flow f ′ from A to B so that val(f ′) = val(F ′) and f ′(x, y) + f ′(y, x) ≤
ζF ′(e) holds for all e = {x, y} ∈ EG, and, conversely, a node-arc flow f ′ from A to B can
be transformed into a paths packing flow F ′ between A and B so that val(F ′) = val(f ′)
and ζF ′(e) ≤ |f ′(x, y)− f ′(y, x)| holds for all e = {x, y} ∈ EG (due to the well-known
flow decomposition procedure, see Ford and Fulkerson (1962)). (At this moment we
do not touch computational complexity aspects for either procedure.) To distinguish
between these two representations, we use capital (resp. small) letters for flows in the
former (resp. latter) form, and similarly for multiflows.

For terminals s, s′ ∈ T and disjoint sets A, B ⊆ T , we write {s, s′} ∈ {A,B}
if s belongs to one and s′ to the other of A, B. We will essentially use a non-
expensive representation of a free multiflow f in the node-arc form as being a collection
{fA1,B1 , . . . , fAr,Br} of flows, where the pairs {Ai, Bi} form a covering nested family.
This means that

(4) (i) for any distinct s, s′ ∈ T , there is a unique i such that {s, s′} ∈ {Ai, Bi}; and

(ii) for 1 ≤ i < j ≤ r, either (Ai ∪ Bi) ∩ (Aj ∪ Bj) = ∅ or Aj ∪ Bj ⊆ Ai or
Aj ∪Bj ⊆ Bi.

One can see (e.g., by induction on r) that r is exactly p − 1, and that for each
s ∈ T , there is an i such that either Ai = {s} or Bi = {s}. The (total) value,

6

val(f), of f is
∑

(val(f i) : i = 1, . . . , r), where f i stands for fAi,Bi
. Besides, we

will also deal with certain “local values” of f . Such a value val(f, Z) is defined for
a subset Z ⊆ T , to be the sum of numbers |dfi(Z ∩ (Ai ∪ Bi))| for i = 1, . . . , r. In
particular, val(f, Z) = val(f, T − Z), and for each terminal s, val(f, s) coincides with∑

(|dfi(s)| : i = 1, . . . , r). The above definitions are justified by the easy fact that
if F is a paths packing multiflow corresponding to f (i.e., the union of paths packing
flows obtained from the f i’s as said above), then val(F) = val(f), val(FZ) ≥ val(f, Z)
for any Z ⊆ T , and val(Fs) = val(f, s) for all s ∈ T .

Similar representations of flows and multiflows in the node-arc form are used for
the directed case as well (with the difference that for a pair {Ai, Bi}, there are two
flows fAi,Bi and fBi,Ai).

For a survey of some relevant results on flows and multiflows, we also refer the
reader to Ahuja et al. (1993), Frank (1995), and Goldberg et al. (1990).

2. Maximum multiflow algorithm

We may assume that p ≥ 3. If p > 3, the algorithm recursively applies the following
network decomposition procedure. Partition T into T1 and T2 = T − T1 such that
|Ti| ≤ d|T |/2e, i = 1, 2, and find a minimum cut C = δ(X) in (G, c) which separates
T1 and T2. Let for definiteness T1 ⊆ X; so T2 ⊆ VG − X. Shrink the subnetwork
induced by VG −X to a special node t′, forming N ′ = (G′, T ′, c′). Here T ′ = T1 ∪ t′;
VG′ = X ∪ t′; c′ coincides with c within the subgraph induced by X; each edge e of the
form {t′, x} is created by merging the (nonempty) set of edges in C with one end at
x, and c′(e) is the sum of capacities of these edges. Similarly, shrink the subnetwork
induced by X to a special node t′′, forming N ′′ = (G′′, T ′′, c′′). Let C ′ and C ′′ be the
sets of edges incident to t′ and t′′, respectively. Then

(5) c′(C ′) = c′′(C ′′) = c(C).

Unless |T ′| = 3, repeat the procedure for N ′, decomposing it into two networks
with smaller sets of terminals, do similarly for N ′′, and so on. Eventually, we obtain
a collection of networks, each one containing exactly three terminals. Obviously, each
network appeared is inner Eulerian.

In the rest of this section we first describe how to find a maximum integer multiflow
in a resulting network with three terminals (which is the core of the method), and then
we explain how to recursively combine the obtained multiflows so as to get the desired
maximum multiflow in the original network.

2.1. Algorithm for three terminal case. For convenience we keep the same

7

notation N = (G,T, c). Let T = {s1, s2, s3}. First we find a maximum integer flow f

from {s2, s3} to s1. Then

(6) −df (s1) = λs1 = c(δ(X)),

where δ(X) is a minimum cut with s1 ∈ X 63 s2, s3. Next we transform f so as to make
the divergency at s2 as large as possible while preserving the divergency at s1. This is
done by use of standard techniques of constructing a maximum flow in the digraph ~G

endowed with the arc capacities cf , defined by

(7) cf (e) = c(e)− f(e) + f(e) for e ∈ ~EG

(hereinafter, for an arc e = (x, y), e denotes the reverse arc (y, x), and c(e) = c(e) is
defined to be the capacity c on the corresponding edge {x, y}). More precisely, find a
maximum integer cf -admissible flow g from s2 to s3, and update f by

(8) f ′(e) = max{0, f(e) + g(e)− f(e)− g(e)} for e ∈ ~EG.

This together with (7) implies that f ′ is c-admissible, and df ′(v) = df (v) + dg(v)
for each node v. In particular, −df ′(s1) = −df (s1) = λs1 . To see that f ′ is maximum
at s2, consider the set Y of nodes reachable from s2 by augmenting paths with respect
to cf and g (recall that a path P = (x0, e1, x1, . . . , ek, xk) is augmenting if each forward
arc ei = (xi−1, xi) satisfies g(ei) < cf (ei) and each backward arc ei = (xi, xi−1) satisfies
g(ei) > 0). Since g is maximum, s3 6∈ Y ; also Y ∩ X = ∅ (as (6) and (7) imply that
for each e ∈ δ−(X), cf (e) = 0, whence g(e) = g(e) = 0). For each e ∈ δ+(Y), we have
g(e) = cf (e) = c(e)− f(e) + f(e) and g(e) = 0. This implies

dg(s2) = g(δ+(Y))− g(δ−(Y)) = c(δ(Y))− f(δ+(Y)) + f(δ−(Y)) = c(δ(Y))− df (s2).

Therefore, df ′(s2) = c(δ(Y)) = λs2 .

Now our aim is to transform f ′ into a maximum integer multiflow. The method
will rely on the following lemma. Note that each e ∈ ~EG satisfies cf ′(e)+cf ′(e) = 2c(e),
therefore, cf ′(e) and cf ′(e) have the same parity. For x ∈ VG, let Q(x) be the set of
edges {x, y} ∈ δ(x) with cf ′(x, y) odd.

Lemma 2.1. |Q(x)| is even for each node x ∈ VG.

Proof. Consider x ∈ VG, and let a = cf ′(δ+(x)) and b = c(δ(x)). For any e ∈ δ+(x),
cf ′(e) = c(e) − f ′(e) + f ′(e). Therefore, a = b − df ′(x). Obviously a and |Q(x)| have
the same parity, so it suffices to show that a is even. If x ∈ VG − T , the latter follows
from the facts that b is even (as c is inner Eulerian) and df ′(x) = 0.

8

Let x = s1. Consider the above minimum cut δ(X) separating s1 and {s2, s3}.
Since c(δ(y)) is even for each y ∈ X − s1, the numbers b and c(δ(X)) have the same
parity. Also −df ′(s1) = c(δ(X)). Therefore, a is even. For x = s2, the argument is
similar, considering the minimum cut δ(Y) separating s2 and {s1, s3} and using the
equality c(δ(Y)) = df (s2). Finally, for x = s3, the evenness of a follows from that for all
other nodes and the facts that

∑
(c(δ(y)) : y ∈ VG) is even and

∑
(df ′(y) : y ∈ VG) = 0.

•

Thus, the set Q = ∪(Q(x) : x ∈ VG) forms an Eulerian subgraph in G and,
therefore, can be partitioned into pairwise edge-disjoint circuits C1, . . . , Cr. We change
f ′ by one along each circuit Ci = (x0, {x0, x1}, x1, . . . , {xk−1, xk}, xk = x0). More
precisely, for each arc ej = (xj−1, xj), if f ′(ej) < c(ej), then update f ′(ej) := f ′(ej)+1,
while if f ′(ej) = c(ej) (implying f ′(ej) > 0 as cf ′(ej) 6= 0), then update f ′(ej) :=
f ′(ej) − 1. Clearly the resulting flow f ′ is c-admissible and preserves the divergencies
at all nodes. Moreover, now cf ′(e) is even for all arcs e.

Using this property of f ′, we construct the desired multiflow as follows. Define
σ = cf ′/2; then σ is integer-valued. Find a maximum integer σ-admissible flow h from
s3 to s2. This h is just the flow from s3 to s2 in the desired multiflow that we construct.
Note that 2h is a maximum cf ′-admissible flow from s3 to s2, and we are going to use
the second copy of h to update the flow f ′ from {s2, s3} to s1.

More precisely, let f ′′ be obtained as in (8) with f ′ and h in place of f and g,
respectively. Since h is integral, f ′′ is integral too. We assert that the multiflow f∗

consisting of the two flows f ′′ and h is c-admissible and maximum.

To see the maximality of f∗, consider the set Z of nodes reachable from s3 by
augmenting paths with respect to the capacities σ and flow h. Then Z is also the
reachable set for cf ′ and 2h. Since h is maximum, we have z2 6∈ Z and

(9) d2h(s3) = cf ′(δ+(Z)).

Also no node in X is reachable (since s3 6∈ X and cf ′(e) = 0 for all e ∈ δ−(X)). So
Z ∩ T = {s3}, implying cf ′(δ+(Z)) = c(δ(Z)) − df ′(s3). This and (9) give df ′(s3) +
d2h(s3) = c(δ(Z)), whence

(10) df ′′(s3) + dh(s3) ≥ λs3 .

Also df ′′(s1) = df ′(s1) = λs1 (as dh(s1) = 0, in view of cf ′(δ−(X)) = 0), while
df ′′(s2) = df ′(s2) + dh(s2) together with df ′(s2) = λs2 and dh(s2) ≤ 0 gives df ′′(s2) +
|dh(s2)| = λs2 . So f∗ is a maximum multiflow, provided that f∗ is c-admissible (in
particular, (10) turns into equality and df ′′(s3) ≥ 0).

To see that f∗ is c-admissible, consider arcs e, e and show that q := f ′′(e) +
h(e) + f ′′(e) + h(e) does not exceed c(e). To simplify our consideration, we assume

9

without loss of generality that at least one of h(e) and h(e) is zero, and similarly for
f ′. Three cases are possible, letting for definiteness f ′(e) = 0. (i) Let h(e) = 0.
Then 2h(e) ≤ cf ′(e) = c(e) − f ′(e) gives q = f ′′(e) + h(e) = f ′(e) + 2h(e) ≤ c(e).
(ii) Let h(e) = 0 and f ′(e) ≥ h(e). Then f ′′(e) = f ′(e) − h(e) and f ′′(e) = 0,
whence q = f ′′(e) + h(e) = f ′(e) ≤ c(e). (iii) Let h(e) = 0 and f ′(e) < h(e). Then
f ′′(e) = 0 and f ′′(e) = h(e) − f ′(e), and now 2h(e) ≤ cf ′(e) = c(e) + f ′(e) yields
q = f ′′(e) + h(e) = 2h(e)− f ′(e) ≤ c(e).

Thus, f∗ is integer, c-admissible and maximum, as required (it consists of two flows,
one from {s2, s3} to s1 and the other from s3 to s2). The above algorithm applies three
maximum flow computations in ~G (namely, it constructs flows f, g and h), and the
number of other operations is linear in |VG| + |EG|. Therefore, the complexity of this
algorithm is O(ϕ(n,m)).

2.2. Finding a maximum multiflow in the initial network. In the process
described in the beginning of this section, we, in fact, implicitly constructed a binary
tree τ of networks, in which every pair of children networks was created from the parent
one by applying the network decomposition procedure. Then we found a maximum
integer multiflow in each leaf (final) network of this tree. Now, going in the reverse
direction, we recursively combine the occurring multiflows in each pair of children
networks in order to eventually construct the desired multiflow in the initial network.
More precisely, the multiflow aggregation procedure considers two children networks
N ′ = (G′, T ′, c′) and N ′′ = (G′′, T ′′, c′′) of the same parent network Ñ = (G̃, T̃ , c̃),
along with their maximum integer multiflows f ′ and f ′′, respectively, and outputs a
maximum integer multiflow f in Ñ .

We assume by induction that f ′ and f ′′ are given in the node-arc form as being
collections of flows f ′1 = f ′A′1,B′1

, . . . , f ′r = f ′A′r,B′r
and f ′′1 = f ′′A′′1 ,B′′1

, . . . , f ′′q = f ′′A′′q ,B′′q
,

respectively, where ω′ = ({A′1, B′
1}, . . . , {A′r, B′

r}) and ω′′ = ({A′′1 , B′′
1 }, . . . , {A′′q , B′′

q })
are covering nested families on T ′ and T ′′, respectively (cf. (4)). Recall that by Theorem
1 the maximality of f ′ means that val(f ′, s) = λs holds for all s ∈ T ′, and similarly for
f ′′ (the local values val(·, s) are defined in the Introduction).

Let I (resp. J) be the set of indices i (resp. j) such that t′ ∈ A′i∪B′
i (resp. t′′ ∈ A′′j∪

B′′
j), where t′ and t′′ are the special terminals in N ′ and N ′′ that respectively appeared

when Ñ was decomposed as described in the beginning of this section. Reversing some
flows in f ′ and f ′′ if needed, one may assume that t′ ∈ A′i for each i ∈ I, and t′′ ∈ B′′

j

for each j ∈ J .

For each i ∈ I, apply a flow decomposition procedure to extract from f ′i a maximum
integer subflow gi from t′ to B′

i. That is, gi(e) ≤ f ′i(e) for each e ∈ ~EG′ , and dgi(t
′) =

df ′
i
(t′). Combine these flows into one flow g from t′ to T ′ − t′ such that dg(t′) =

10

∑
(dgi

(t′) : i ∈ I) = λt′(c′). Formally, for e ∈ ~EG′ , define g(e) = max{0,
∑

i∈I(gi(e)−
gi(e))}. Similarly, for each j ∈ J , extract from f ′′j a maximum integer flow hj from A′′j
to t′′, and combine these into the flow h from T ′′−t′′ to t′′ such that −dh(t′′) = λt′′(c′′).
From the minimality of the cut δG′(t′) and the maximality of f ′ at t′ it follows that
g(e) = c′(e) and g(e) = 0 for all e ∈ δ+(t′); similarly, h(e) = c′′(e) and h(e) = 0 for
all e ∈ δ−(t′′). Therefore, we can combine g and h into a flow f̂ from T̃2 = T ′′ − t′′

to T̃1 = T ′ − t′ in Ñ in a natural way, using the fact that the cuts δ(t′), δ(t′′) and
δ(X) have the same capacities in their networks, where X is the set of nodes in G̃

corresponding to VG′ − t′ (cf. (5)). Formally, f̂ coincides with g within the subgraph of
G̃ induced by X, coincides with h within the subgraph induced by V

G̃
−X, and obeys

f̂(e) = c̃(e) and f̂(e) = 0 for all e ∈ δ−(X). Then f̂ is a maximum flow from T̃2 to T̃1.

The desired multiflow f in Ñ consists of the flow f̂ , each flow f̂ ′i that is equal to
f ′i − gi if i ∈ I, and f ′i otherwise, and each flow f̂ ′′j that is equal to f ′′j −hj if j ∈ J , and
f ′′j otherwise. Note that if for some i ∈ I, the set A′i contains only one terminal t′, then
f̂ ′i has zero divergency at each node; in this case we remove this flow from f . Similarly,
f̂ ′′j vanishes in f if B′′

j = {t′′}. Then the representation of f matches the family ω on
T̃ consisting of the pair {T̃1, T̃2}, the pairs {A′i − t′, B′

i} with A′i 6= t′, and the pairs
{A′′j , B′′

j − t′′} with B′′
j 6= t′′; so ω is a covering nested family. Additional properties are

exhibited in the following statement (it will be used in full to prove locking properties
in Section 3, while now we only need case Z = {s} for s ∈ T̃).

Statement 2.2. For any Z ⊆ T̃1, val(f, Z) = val(f ′, Z). Similarly, for any Z ⊆ T̃2,

val(f, Z) = val(f ′′, Z). In particular, val(f, Z) = λZ(c̃) for Z = T̃1.

Proof. Consider Z ⊆ T̃1 and {A′i, B′
i} ∈ ω′. Let a and b be the divergencies of f̂ ′i at

A = (A′i − t′) ∩ Z and B = B′
i ∩ Z, respectively. If t′ 6∈ A′i, then f̂ ′i = f ′i , whence

a = df ′
i
(A) and b = df ′

i
(B). Let t′ ∈ A′i. Then f̂ ′i = f ′i − gi, whence a = df ′

i
(A) (since

t′ 6∈ Z, and dgi(s) = 0 for each s ∈ A′i − t′), and df ′
i
(B) = b + dgi(B) = b + d

f̂
(B) (by

the construction of f̂). These relations imply val(f, Z) = val(f ′, Z). For Z ⊆ T̃2 the
proof is similar. •

Since λs(c̃) is equal to λs(c′) for s ∈ T̃1, and to λs(c′′) for s ∈ T̃2, the maximality
of both f ′ and f ′′ together with Statement 2.2 implies val(f, s) = λs(c̃) for all s ∈ T̃ ,
i.e., f is a maximum multiflow in Ñ .

One can estimate the number of operations in the aggregation procedure for the
current Ñ ,N ′, N ′′ as follows. Let n(N),m(N), p(N) denote the numbers of nodes, edges
and terminals in a network N . We assume by induction that each flow f ′i forming
f ′ is acyclic, i.e., the subgraph S′i spanned by the support supp(f ′i) = {e ∈ ~EG′ :
f ′i(e) 6= 0} of f ′i contains no (directed) cycle; and similarly for f ′′. Then the above

11

aggregation procedure can be implemented in O(m(Ñ)(|I| + |J |)) time. Indeed, the
acyclicity of each f ′i enables us to extract gi in O(m(N ′)) time, by a straightforward
method using a topological ordering of the node set of S′i, i.e., one compatible with
its acyclic structure (details are left to the reader). Similarly, extraction of each hj is
performed in O(m(N ′′)) time. The other operations spent take O(m(Ñ)(|I|+|J |)) time
in total. Let I = {i(1), , . . . , i(d)} and i(1) < . . . < i(d). Since ω′ is nested, A′i(1) ⊃
A′i(2) ⊃ . . . ⊃ A′i(d). Moreover, the network decomposition procedure guarantees that
for k = 1, . . . , d − 1, the cardinality of A′i(k+1) is at most 1 + d|A′i(k)|/2e. Therefore,
|I| = O(log p(N ′)). Similarly, |J | = O(log p(N ′′)). Thus, the construction of f from f ′

and f ′′ takes O(m(Ñ)log p(Ñ)) time. Note that the reduced flows f ′i − gi and f ′′j − hj

are obviously acyclic because so are f ′i and f ′′j ; however, the new flow f̂ may not be
acyclic. Therefore, to be consistent with the above assumption, we must make f̂ acyclic
as well. A routine procedure that iteratively searches for a cycle within the support
of f̂ and cancels it by uniformly reducing f̂ along the cycle carries out this task in
O(n(Ñ)m(Ñ)) time (such a procedure should also be applied to make the flows in all
the leaf networks in τ acyclic before the aggregation process).

2.3. Complexity of the whole algorithm. We wish to show that the above
algorithm runs in time T that is at most C1ϕ(n,m)log p + C2nmlog p for some appro-
priately chosen constants C1 and C2. This is true if p = 3, as was shown in Subsection
2.1. For p > 3, we assume that the time bound ϕ of the max flow min cut algorithm
we apply is subject to some reasonable restrictions, namely: ϕ is monotone in both
variables, i.e., ϕ(ñ′, m̃′) ≤ ϕ(ñ, m̃) if ñ′ ≤ ñ and m̃′ ≤ m̃, and

(11) ϕ(ñ′, m̃) + ϕ(ñ′′, m̃) ≤ ϕ(ñ′ + ñ′′, m̃);

ϕ(ñ + 2, m̃) ≤ ϕ(ñ, m̃) + Dm̃log ñ,

where D is a constant. For instance, this is valid for the bound O(nmlog (n2/m)) in
Goldberg and Tarjan (1988).

For p > 3, N is decomposed into two networks N ′ = (G′, T ′, c′) and N ′′ =
(G′′, T ′′, c′′), and we have

(12) T ≤ T ′ + T ′′ + ϕ(n,m) + Knm.

Here T ′ and T ′′ are time to solve the problem in N ′ and N ′′, respectively, ϕ(n,m)
comes up when the network decomposition procedure finds a minimum cut in N , K is
a constant, and the bound Knm concerns the aggregation procedure for N ′ and N ′′

(including all other operations, of smaller order, incurred during the network decom-
position for N).

12

Assume by induction that

T ′ ≤ C1ϕ(n′,m′)log p′ + C2n
′m′log p′ and(13)

T ′′ ≤ C1ϕ(n′′,m′′)log p′′ + C2n
′′m′′log p′′,

denoting the corresponding set sizes for N ′ with primes, and for N ′′ with two primes.

We know that m′,m′′ ≤ m and n′ + n′′ = n + 2. Therefore, by (11),

ϕ(n′,m′) + ϕ(n′′,m′′) ≤ ϕ(n′, m) + ϕ(n′′,m) ≤ ϕ(n + 2, m) ≤ ϕ(n,m) + Dmlog n.

Also n′m′ + n′′m′′ ≤ nm + 2m. Let for definiteness p′ ≥ p′′ and let γ = log (p/p′).
Note that there is a constant γ0 > 0 such that γ ≥ γ0 regardless of p and p′. Then
log p′ ≤ log p− γ0, and we have

ϕ(n′,m′)log p′ + ϕ(n′′,m′′)log p′′(14)

≤ ϕ(n,m)log p− γ0ϕ(n,m) + Dmlog n log p−Dγ0mlog n

and

(15) n′m′log p′ + n′′m′′log p′′ ≤ nmlog p− γ0nm + 2mlog p− 2γ0m.

Without loss of generality one may assume that log n log p ≤ n and 2log p ≤ 1
2γ0n

(otherwise p, n,m are bounded, and we can get the desired time bound by choosing
C1, C2). Then, comparing (13) with (14) and (15), we can obtain

(16) T ′ + T ′′ ≤ C1ϕ(n, m)log p + C2nmlog p− C1γ0ϕ(n,m)− 1
2
C2γ0nm + Dnm.

Finally, choosing C1 and C2 so that C1γ0 ≥ 1 and 1
2C2γ0 ≥ D + K, we conclude

from (12) and (16) that

T ≤ C1ϕ(n,m)log p + C2nmlog p.

Thus, the algorithm runs in O(ϕ(n,m)logp) time, as required (assuming that ϕ(n,m) ≥
O(nm)).

Remark 2. A similar, though slightly worse, bound can be obtained by a direct
calculation of the number of operations, as follows. Let ∆ be the height of the above-
mentioned binary tree τ , i.e., the maximum path length from the root network N to
a leaf network. For i = 0, 1, . . . , ∆, let Qi be the set of networks in height exactly i,
and let Qi be obtained by adding to Qi all leaves with height at most i − 1. Then
∆ = O(log p), and Q∆ is the set of all leaf networks. Let ni and mi denote the total
numbers of nodes and edges, respectively, in all the members of Qi. It is easy to show

13

by induction that ni ≤ n + 2i+1 and mi ≤ m + in + 2i+1, which for i = ∆ gives
n∆ = n + O(p) and m∆ = m + O(nlog p). Thus, to compute maximum multiflows
in all leaf networks takes O(ϕ(n,m + nlog p)) time (one can even perform this by use
of one maximum multiflow computation in a combined network with three terminals,
which is formed by identifying the terminal sets of all the leaf networks). Similarly,
the running time to decompose all networks in a layer Qi is O(ϕ(n, m + in)), and the
running time for all aggregations in these networks is O(nm + in2). This gives total
time of the algorithm to be O(ϕ(n,m+nlogp)logp). There is however no contradiction
with the above bound because our direct calculation can be refined so as to get rid of
the term nlog p in ϕ.

Remark 3. One can imagine a situation (at least in future) that a bound η(n,m)
for the minimum cut problem is smaller than the ϕ for the maximum flow problem. In
this case the complexity of our algorithm becomes O(ϕ(n,m) + η(n,m)log p). Also if
the bound ϕ(n,m) would be smaller than O(nm), one should add O(nmlog p) to the
above bound.

In conclusion of this section, note that the maximum “node-arc” multiflow f found
by the above algorithm can be transformed into the paths packing form in O(nmlog p)
time. Indeed, one may assume that every flow fi = fAi,Bi in f is described via its
support and the corresponding function on it. Then to represent fi in the paths packing
form takes O(n|supp(fi)|) time. Note that if fj is another flow with Aj ∪ Bj disjoint
from Ai ∪ Bi, then the supports of fi and fj are also disjoint (this is easily shown
by induction on the height of τ). This together with the fact that every chain of
comparable members in the nested family for f has length O(log p) implies the above
bound. Note also that if we are not asked to output the multiflow in the paths packing
form, then the algorithm requires O(mlog p) space (assuming n ≤ O(m)).

3. Algorithm for the laminar locking problem

In fact, the algorithm in the previous section constructs a multiflow F in N =
(G,T, c) which, in addition to every single terminal set {s}, locks a number of other
subsets A ⊂ T . Those sets A together with their complements T − A correspond to
the partitions of terminals occurred in the network decomposition process. We can use
this fact in order to solve the locking problem for a laminar family A ⊂ 2T . As before,
N is assumed to be inner Eulerian.

We may assume that A consists of different proper subsets of T and is inclusion
maximal; otherwise we consecutively add new laminar sets to A to provide its maxi-
mality (obviously, a solution to the resulting A is a solution to the initial A). Since

14

A is maximal, it contains all singletons and contains the complement T − A of each
member A ∈ A. One may assume that p ≥ 4; else the locking problem is equivalent to
the maximum free multiflow (or flow) problem. The algorithm relies on the following
property.

Statement 3.1. There exists an A ∈ A such that 1
3 |T | ≤ |A| ≤ 1

2 |T |.

Proof. Let A be a maximum cardinality set among A′ ∈ A satisfying |A′| ≤ |T |/2.
Let B1, . . . , Bk be all the maximal sets in A − {T − A} which are disjoint from A.
Then B1, . . . , Bk are pairwise disjoint and A ∪ B1 ∪ . . . ∪ Bk = T (since {s} ∈ A for
all s ∈ T −A). Also the maximality of A implies that k ≤ 2; otherwise B1 ∪B2 is not
in A and laminar to all members of A. Since T − B1 strictly includes A and belongs
to A, one has |T − B1| > |T |/2 (by the choice of A). Therefore, |B1| < |T |/2, whence
|B1| ≤ |A| (again by the choice of A). Similarly |B2| ≤ |A|. This implies |A| ≥ |T |/3.
•

Now we modify the algorithm of Section 2 as follows. Given a maximal lami-
nar family A, we take the partition {T1, T2} in the first network decomposition to be
{A, T − A} for the A as in Statement 3.1. For the network N ′ (with T ′ = A ∪ t′), the
corresponding family A′ ⊂ 2T ′ to be locked consists of all sets B′ ∈ A such that B′ ⊆ A,
and their complements to T ′ (in particular, {t′} ∈ A′ as t′ = T ′ − A). Similarly, for
the network N ′′ (with T ′′ = (T −A) ∪ t′′), the corresponding family A′′ consists of all
B′′ ∈ A such that B′′ ⊆ T −A, and their complements to T ′′. It is easy to see that the
maximality of A ensures that both A′,A′′ are maximal. Then we decompose N ′ and
N ′′ in a similar way, and so on. Statement 3.1 ensures that the height of the binary
tree τ of networks constructed this way is O(log p). Therefore, the resulting multiflow
f in the initial network N (obtained upon termination of the aggregation process) is
constructed with the same, up to a constant factor, complexity as the complexity of the
maximum multiflow algorithm in Section 2, i.e., O(ϕ(n,m)logp). Finally, we transform
f into a corresponding multiflow F in the paths packing form; this takes O(nmlog p)
additional operations, as discussed in the end of Section 2. Thus, the whole algorithm
runs in O(ϕ(n,m)log p) time, as required in Theorem 3. The fact that F does solve
the locking problem rests on the following statement.

Statement 3.2. val(f, A) = λA holds for all A ∈ A.

Proof. By induction on p. If p = 3, then A coincides with the set of singletons {s} and
their complements, and val(f, s) = λs is provided by the algorithm in Subsection 2.1. So
assume that p > 3, and consider the networks N ′ = (G′, T ′, c′) and N ′′ = (G′′, T ′′, c′′)
and the families A′ ⊆ 2T ′ and A′′ ⊆ 2T ′′ obtained in the network decomposition when

15

T is partitioned into sets T1 = T ′ − t′ and T2 = T ′′ − t′ with T1 ∈ A. By induction, for
the corresponding multiflow f ′ in N ′, val(f ′, A′) = λA′(c′) holds for all A′ ∈ A′, and
for the corresponding multiflow f ′′ in N ′′, val(f ′′, A′′) = λA′′(c′′) holds for all A′′ ∈ A′′.

It suffices to consider A ∈ A such that either A ⊆ T1 or A ⊂ T2 (taking into account
that A and T1 are laminar, val(f,A) = val(f, T − A), and T − A ∈ A). If A ⊆ T1,
then A belongs to A′ by the construction of A′, and now val(f, A) = λA follows from
Statement 2.2 and the fact that λA(c′) = λA(c). For A ⊂ T2, the argument is similar
since A ∈ A′′. •

Now the required locking property for F follows from the fact that any A ⊆ T

satisfies val(FA) ≥ val(f, A).

4. Algorithm for balanced networks

Let N→ = (D,T, c) be an inner balanced network. First of all we note that the
maximum multiflow problem in two terminal case is reduced to one maximum flow
computation, due to the following simple, but important, fact.

Lemma 4.1. [Lomonosov 1978]. Let N ′→(D′, T ′, c′) be an inner balanced network in

which T ′ consists of two terminals s and t. Let g be a maximum c′-admissible flow

from s to t. Let h = c′ − g. Then h is a maximum flow from t to s, and therefore,

{g, h} is a maximum multiflow in N ′→, i.e., val(g) = λ+
s (c′) and val(h) = λ−s (c′).

Proof. Consider X ⊂ VD′ such that s ∈ X 63 t and c′(δ+(X)) is minimum. Since g

is maximum, we have h(e) = c′(e) − g(e) = 0 for all e ∈ δ+(X) and h(e) = c′(e) −
g(e) = c′(e) for all e ∈ δ−(X). For each x ∈ VD′ − T , dc′(x) = dg(x) = 0 implies
dh(x) = 0, i.e., h is a flow. Moreover, h is a maximum flow from t to s in N ′→ since
dh(t) = h(δ−(X))− h(δ+(X)) = c′(δ−(X)). •

In case p > 3, we apply the network decomposition method similar to that in
Subsection 2.1. More precisely, each iteration in the decomposition process deals with
one of the current children networks with ≥ 4 terminals, which for convenience is
denoted by N→ = (D, T, c), and decomposes it into two networks N ′→ = (D′, T ′, c′)
and N ′′→ = (D′′, T ′′, c′′) by choosing a partition {T1, T2} of T (with |Ti| ≤ d|T |/2e)
and finding a minimum dicut δ+(X) from T1 (implying that δ−(X) is a minimum dicut
to T1 since N→ is inner balanced). The special terminal t′ (= T ′ − T1) in N ′→ obeys
c′(δ+(t′)) = λ+

t′ (c
′) = c(δ−(X)) and c′(δ−(t′)) = λ−t′ (c

′) = c(δ+(X)); and similarly for
t′′ in N ′′→.

16

Once maximum integer multiflows f ′ in N ′→ and f ′′ in N ′′→ are found, the ag-
gregation procedure similar to that described in Subsection 2.2 combines these into a
maximum integer multiflow in N→. The only difference is that, instead of one maxi-
mum flow g between t′ and T1 in N ′, we extract from f ′ two flows: a flow g′ from t′ to
T1 with value c′(δ+(t′)) and a flow g′′ from T1 to t′ with value c′(δ−(t′)). Similarly, we
extract from f ′′ a flow h′ from t′′ to T2 with value c′′(δ+(t′′)) and a flow h′′ from T2

to t′′ with value c′′(δ−(t′′)). Then we combine g′′ with h′ and g′ with h′′ in an obvious
way to obtain maximum flows from T1 to T2 and from T2 to T1 in N→.

To complete this algorithm, we have to explain how to solve the problem (or
subproblem) for a network N→ = (D, T, c) with three terminals.

4.1. Algorithm for three terminal case. Let T = {s1, s2, s3}. First we apply
the algorithm of Section 2 to find a maximum integer multiflow f in the underlying
undirected network N ; one may assume that f consists of three flows f1,2, f1,3, f2,3,
where fi,j is a flow from si to sj given in the node-arc form. We abbreviate V = VD,
E = ED, δ+ = δ+

D, δ− = δ−D. Let E be the set of (new) arcs e reverse to arcs e in E.
Then: (i) each g = fi,j is a nonnegative integer function on E ∪ E satisfying

dg(x) =
∑

(g(e)− g(e) : e ∈ δ+(x))−
∑

(g(e)− g(e) : e ∈ δ−(x)) = 0

for all x ∈ V − {si, sj}

(ii) f is c-admissible, in the sense that

ζf (e) :=
∑

(fi,j(e) + fi,j(e) : 1 ≤ i < j ≤ 3) ≤ c(e) for all e ∈ E;

and (iii) |df1,2(si)|+ |df1,3(si)|+ |df2,3(si)| = λ+
si

+ λ−si
for i = 1, 2, 3.

For our purposes, it is convenient to assume that

(17) ζf (e) = c(e) for all e ∈ E.

This does not lose generality since the above f can be modified so that (17) holds.
To see this, consider the residual capacities cr(e) = c(e)− ζf (e), e ∈ E, for the original
f . Obviously, for each x ∈ V − T , cr(δ+(x)) + cr(δ−(x)) is an even integer; moreover,
from the maximality of f (cf. (iii) above) one can see that this value is even also for
x = s1, s2, s3. This implies that cr can be decomposed into a collection of integer
weighted cycles (not necessarily directed or simple ones); this task is carried out in
O(nm) time. In other words, we can find a function (circulation) h : E ∪ E → ZZ+

with dh(x) = 0 for all x ∈ V and ζh(e) = cr(e) for all e ∈ E. Now add h to f1,2 by
updating f1,2 := f1,2 + h. Then the new multiflow f is again integer and maximum,
and it satisfies (17).

17

Next, for a function g on E ∪ E and a node x ∈ V , define the discrepancy of g at
x to be

∆g(x) =
∑

(g(e) + g(e) : e ∈ δ+(x))−
∑

(g(e) + g(e) : e ∈ δ−(x)).

We say that g is regular at x if ∆g(x) = 0. If g is a flow from si to sj which is regular
at each node in V −{si, sj}, we call g regular. The essense of this notion becomes clear
from the following statement.

Statement 4.2. Let a flow g = fi,j be regular. For e ∈ E, define c′(e) = g(e) + g(e).
Then (i) c′ is balanced at each node x ∈ V − {si, sj}, i.e., c′(δ+(x)) = c′(δ−(x));
and (ii) λ+

si
(c′) + λ−si

(c′) ≥ val(g); in other words, there is an integer multiflow f ′ in

(D, {si, sj}, c′) for which val(f ′) = val(g).

Proof. Part (i) immediately follows from ∆g(x) = 0 for x ∈ V − {si, sj}. To see (ii),
assume for definiteness that i < j and consider X ⊂ V with si ∈ X 63 sj . We have

(18) c′(δ+(X)) + c′(δ−(X)) =
∑

(g(e) + g(e) : e ∈ δ+(X) ∪ δ−(X))

≥
∑

(g(e)− g(e) : e ∈ δ+(X))−
∑

(g(e)− g(e) : e ∈ δ−(X)) = val(g).

Since c′ is inner balanced, this implies λ+
si

(c′) + λ−sj
(c′) ≥ val(g). •

(In fact, the inequality in (ii) of this statement holds with equality; this can be observed
from (18) by considering a set X which induces a minimum cut separating si and T −si

in the underlying network N and using the maximality of f at si.)

Thus, if all f1,2, f1,3, f2,3 are regular, then, in view of Lemma 4.1, the problem
is reduced to three max flow computations. Now we explain how to make our flows
regular. Let x ∈ V − T . Denote, for brevity, g = f1,2, g′ = f1,3, g′′ = f2,3, ∆ = ∆g(x),
∆′ = ∆g′(x) and ∆′′ = ∆g′′(x). From (17) and c(δ+(x)) = c(δ−(x)) it follows that
∆ + ∆′ + ∆′′ = 0. So without loss of generality we may assume that

∆ > 0 and ∆′ ≤ ∆′′ ≤ 0

(reversing, if needed, the arcs of D and renaming the flows). Note that dg(x) = 0
together with the integrality of g implies that ∆ is even; similarly, ∆′ and ∆′′ are even.

First we modify g and g′ to make g′ regular at x and to reduce the discrepancy
of g at x by |∆′|. Using the method to be described below, we extract from g and g′

integer subflows h ≤ g and h′ ≤ g′ both from s1 to x such that

(19) dh(s1) = dh′(s1) and ∆h(x)−∆h′(x) = |∆′|.

18

Then we exchange the subflows h and h′ in g and g′. That is, we update g := g−h+h′

and g′ := g′−h′+h. By (19), g remains a flow from s1 to s2 and its value is preserved,
while its discrepancy at x becomes ∆−∆h(x)+∆h′(x) = ∆+∆′, as required. Similarly,
the new g′ is a flow from s1 to s3 with the same value as before, and ∆g′(x) becomes
∆′ −∆h′(x) + ∆h(x) = 0, i.e., g′ is now regular at x.

The new g satisfies ∆g(x) = −∆′′. If ∆′′ is nonzero, we apply a similar transfor-
mation to g and g′′. Note that g is directed from s1 to s2 while g′′ is directed from
s2 to s3; so one should first reverse g, by updating g(e) := g(e). As a result, each
flow becomes regular at x. Then we repeat the procedure for a next node x′ ∈ V − T ,
and so on. In this process, one should, however, be careful to avoid the appearance of
nonzero discrepancies at x (or other nodes treated earlier) anew when extracting the
corresponding subflows for x′. To this aim, before treating x′ we split x as follows. Let

E+ = δ+
D(x), E− = δ−D(x), E

+
= {e : e ∈ E+} and E

−
= {e : e ∈ E−}.

Since dg(x) = ∆g(x) = 0, one has g(E+) = g(E−) and g(E
+
) = g(E

−
), and similarly

for g′ and g′′. Split x into two nodes x1 and x2, making the arcs in E+ ∪ E− incident
to x1 while the arcs in E

+∪E
−

incident to x2. This gives dg(x1) = dg(x2) = 0, and we
proceed with the new graph (which automatically prevents of emerging discrepancies
at x).

When the current flows become regular at all non-terminal nodes, we treat s1, s2

and s3. For s1, the only task is to make g′′ regular at s1 (and similarly for g′ and s2

and for g and s3). This is done by a method similar to that for x ∈ V − T (we leave
details to the reader).

It remains to explain how to find the desired flows h, h′ satisfying (19). We use
standard flow decomposition techniques. First we slightly transform the graph (V, E ∪
E) and flow g: (i) Split x into x1 and x2 as above. (ii) Add new terminals s and t, and
for each (x1, y) ∈ E+ (resp. (y, x2) ∈ E

+
), add a new arc (s, y) (resp. (y, t)). (iii) Define

a nonnegative integer-valued function g̃ on the arc set of the resulting graph H so that g̃

coincide with g on (E∪E)−(E+∪E
+
), and satisfy the conditions d

g̃
(x1) = d

g̃
(x2) = 0,

g̃(s, y) + g̃(x1, y) = g(x, y) for all (x, y) ∈ E+ and g̃(y, x2) + g̃(y, t) = g(y, x) for all
(y, x) ∈ E

+
(this can be done since, obviously, g(E+) − g(E−) = g(E

+
) − g(E

−
) =

∆/2 > 0). Then g̃ is an integer flow with the source set {s1, s} and target set {t, s2};
moreover, d

g̃
(s) = −d

g̃
(t) = ∆/2. Now represent g̃ as

g̃ = α1χ
P1 + . . . + αkχPk + β1χ

Q1 + . . . + βqχ
Qq + ĝ,

where α1, . . . , αk, β1, . . . , βq ∈ ZZ+; each Pi is a simple path from s1 to t and each Qj is
a simple path from s to t in H; χR denotes the incidence vector of the arc set of a path

19

R; and ĝ is a flow from {s1, s} to s2. This task is carried out in O(nm) time [Ford and
Fulkerson 1962]. Let a = α1 + . . . + αk and b = β1 + . . . + βq; then

(20) a + b = ∆/2.

Doing similarly for g′, form the corresponding graph H ′ with node set V ∪ {s′, t′}
and flow g̃′ (where s′ concerns E

−
and t′ concerns E−), and represent g̃′ as

g̃′ = α′1χ
P ′1 + . . . + α′k′χ

P ′
k′ + β′1χ

Q′1 + . . . + β′q′χ
Q′

q′ + ĝ′,

where α′1, . . . , α
′
k′ , β

′
1, . . . , β

′
q′ ∈ ZZ+; each P ′i is a simple path from s1 to t′ and each

Q′j is a simple path from s′ to t′ in H ′; and ĝ′ is a flow from {s1, s
′} to s3. Let

a′ = α′1 + . . . + α′k′ and b′ = β′1 + . . . + β′q′ ; then

(21) a′ + b′ = −∆′/2.

Statement 4.3. There are nonnegative integers â ≤ min{a, a′}, b̂ ≤ b and b̂′ ≤ b′ such

that 2â + 2b̂ + 2b̂′ = −∆′.

Proof. If a′ ≤ a, this follows from (21) by setting â = a′, b̂ = 0 and b̂′ = b′. Suppose
a < a′. Since ∆ ≥ |∆′|, it follows from (20) and (21) that a < −∆′/2 ≤ a + b. Also
∆′/2 is an integer. Therefore, one can put â = a, b̂ = −∆′/2− â and b̂′ = 0, providing
0 ≤ b̂ ≤ b and 2â + 2b̂ + 2b̂′ = −∆′. •

Let â, b̂, b̂′ be as in Statement 4.3. Without loss of generality one may assume that
there are i, j, i′, j′ such that α1 + . . . + αi = α′1 + . . . + α′i′ = â, β1 + . . . + βj = b̂ and
β′1 + . . .+β′j′ = b̂′ (for if, say, α1 + . . .+αi−1 < â < α1 + . . .+αi for some i, we can take
two copies of Pi, one with weight ε = â − α1 − . . . − αi−1 and the other with weight
αi − ε). Form the flows

ĥ = α1χ
P1 + . . . + αiχ

Pi + β1χ
Q1 + βjχ

Qj ,

ĥ′ = α′1χ
P ′1 + . . . + α′iχ

P ′i + β′1χ
Q′1 + β′jχ

Q′j ,

and let h and h′ be their corresponding flows on E ∪ E, i.e., h and ĥ coincide within
(E ∪ E) − (E+ ∪ E

+
), h(x, y) = ĥ(x1, y) + ĥ(s, y) for (x, y) ∈ E+ and h(y, x) =

ĥ(y, x2) + ĥ(y, t) for (y, x) ∈ E
+
; and similarly for h′. Then dh(s1) = dh′(s1) = â and

∆h(x) − ∆h′(x) = 2â + 2b̂ + 2b̂′ (observing that each path Pr (resp. Qr) contributes
exactly αr (resp. 2βr) units to ∆h(x), due to the construction of H; and similarly for
paths in the representation of g̃′). This gives (19) and completes the description of the
whole algorithm.

20

The above algorithm requires three max flow computations to construct flows
f1,2, f1,3, f2,3 in the underlying network, followed by O(n) applications of a flow de-
composition procedure to make these flows regular, followed by three max flow compu-
tations to find flows according to Lemma 4.1. As a result, it finds a maximum integer
multiflow in a network with three terminals in O(ϕ(n,m) + n2m) time. Together with
the argument in Section 2 this shows that for an arbitrary inner balanced network N→,
a maximum integer multiflow can be constructed in O(ϕ(n,m)log p + n2m) time.

Remark 4. Analysis of the above algorithm shows that its complexity can also
be stated as O(ϕ(n,m)log p + nγ(n,m)), where γ(n′, m′) is a time bound to solve the
following auxiliary problem: Given an integer flow q from two sources u, u′ to one
target v whose support consists of m′ arcs and spans n′ nodes, and a nonnegative
integer d ≤ dq(u), find an integer subflow q′ ≤ q from u to v with dq′(u) = d. We
applied in the above the obvious bound O(n′m′) for γ(n′,m′), which perhaps may be
improved.

Next, arguing as in Section 3, we can conclude that if c is inner balanced and
A ⊆ 2T is laminar, then the directed locking problem is solvable, and an integer solution
can be found within the same complexity O(ϕ(n,m)log p + n2m). Finally, to complete
the proof of Theorem 5, one has to show that if A is not laminar, then there is an
inner balanced network N→ = (D,T, c) for which no solution exists. It suffices to
construct a counterexample with A consisting of two crossing sets A = {s, t} and
B = {s, u} on four terminals s, t, u, v (then a counterexample for an arbitrary non-
laminar family is obtained by appropriately adding new terminals as isolated nodes).
A counterexample is formed by the digraph D consisting of five nodes s, t, u, v, x and
four arcs (s, x), (x, t), (x, u), (v, x), each taken with unit capacity. Then λ+

A = λ−A =
λ+

B = λ−B = 1, while any nonzero multiflow F contains a path that intersects twice
some dicut which is minimum either for A or for B.

4.2. Non-laminar case. In conclusion let us consider N→ and A are as in
Remark 1 from the Introduction.

Theorem 4.4. Let N→ = (D, T, c) be inner balanced, let A ⊆ 2T , and let A−AD be

laminar. Then there exists an integer multiflow in N→ that locks all members of A.

Proof. This is provided by the possibility of performing the so-called splitting-off
operation at every non-terminal node. More precisely, one may assume that A is self-
complementary (A ∈ A implies T−A ∈ A), that c(e) > 0 for all e ∈ ED, and that every
weakly connected component of D contains a terminal. Apply induction on c(ED). The
result is obvious (for any A) if every arc of D has both ends in T . Otherwise some arc
e connects a terminal s and inner node x ∈ VD−T ; let e = (s, x) (as the case e = (x, s)

21

is symmetric).

Since c is inner balanced, there is an arc e′ = (x, y) leaving x. The splitting-off
operation for e, e′ creates a new arc (or loop) ẽ = (s, y) and defines the capacities by
c′(e) = c(e) − 1, c′(e′) = c(e′) − 1, c′(ẽ) = 1, and c′(e′′) = c(e′′) for the other arcs e′′

of the new digraph D′. Obviously, c′ is again inner balanced and c′(ED′) = c(ED)− 1.
Furthermore, if λ+

A(c′) = λ+
A(c) and λ−A(c′) = λ−A(c) hold for all A ∈ A, then the

existence of the desired multiflow for c easily follows by induction.

Suppose that the splitting-off operation for e, e′ decreases λ+ or λ− on some A ∈ A;
in this case we say that e′ is infeasible. One can see that such a decrease happens if
and only if the underlying undirected network N contains a minimum cut δ(X) with
s, y ∈ X 63 x which separates A and T − A. Since A is self-complementary, one may
assume that X ∩ T = A. In addition, assume that such A and X are chosen so that
|X| is maximum.

We observe that it is impossible that δ+(x) is entirely included in δ−(X) (otherwise
c(δ+(x)) = c(δ−(x)) and the occurrence of the arc e with c(e) > 0 in both δ−(x) and
δ+(X) would imply that c(δ(X)) > c(δ(X ∪ x)), contradicting the fact that δ(X) is a
minimum cut separating A and T −A). Therefore, some arc e′′ = (x, z) in δ+(x) does
not enter X (i.e., z 6∈ X). If this e′′ is feasible, we are done. Otherwise, arguing as
above, there are some B ∈ A and a minimum cut δ(Y) separating B and T − B such
that s, z ∈ Y 63 y; let for definiteness Y ∩ T = B. Consider the sets A and B. Since
both δ+(X) and δ−(X) are nonempty (as e ∈ δ+(X) while e′ ∈ δ−(X)), A is not in
AD. Similarly, B is not in AD. Hence, A and B are laminar, by the hypotheses of
the theorem. Also A and B are intersecting (as s is in both A and B). Consider three
possible cases.

(i) Suppose that A ⊆ B. Let X ′ = X ∩ Y and Y ′ = X ∪ Y . Then X ′ ∩ T = A and
Y ′ ∩ T = B. Now the obvious submodular inequality

(22) c(δ(X)) + c(δ(Y)) ≥ c(δ(X ′)) + c(δ(Y ′))

implies that δ(X ′) = λA(c) and δ(Y ′) = λB(c). But Y ′ strictly includes X and s, y ∈
Y ′ 63 x; contrary to the choice of A and X.

(ii) If B ⊂ A, we get a contradiction in a similar way.

(iii) Finally, suppose that A ∪ B = T . Let X ′ = Y −X and Y ′ = X − Y . Then
X ′∩T = T −A and Y ′∩T = T −B. But these X, Y, X ′, Y ′ also satisfy (22); moreover,
this inequality must be strict since the edge underlying e belongs to both δ(X) and
δ(Y) but to none of δ(X ′) and δ(Y ′). Therefore, at least one of the cuts δ(X) and δ(Y)
cannot be minimum; a contradiction. •

References

22

Ahuja, R.K., T.L. Magnanti, and J.B. Orlin [1993]. Network Flows: Theory,
Algorithms and Applications. Prentice Hall, New York, NY.

Cherkassky, B.V. [1977]. A solution of a problem on multicommodity flows in a
network. Ekonomika i Matematicheskie Metody 13 (1) 143-151, in Russian.

Dinitz, E.A. [1970], An algorithm for solution of a problem of maximum flow in
a network with power estimation, Dokl. Akad. Nauk. SSSR 194 754-757, in Russian
[translated in Soviet Math. Dokl. 111 277-279].

Edmonds, J., and R.M. Karp [1972], Theoretical improvements in algorithmic
efficiency for network flow problems, J. ACM 19 248-264.

Ford, L.R., D.R. Fulkerson [1962]. Flows in Networks, Princeton Univ. Press,
Princeton.

Frank, A. [1989], On connectivity properties of Eulerian digraphs, Ann. Discrete

Math. 41 179-194.

Frank, A. [1995], Connectivity and network flows, in: Handbook of Combinatorics,
eds. R. Graham, M. Grötschel and L. Lovász (Elsevier), pp. 111-177.

Frank, A., A.V. Karzanov, and A.Sebő [1992], On integer multiflow maximization,
SIAM J. Discrete Math. 10 (1) (1977) 158-170.

Goldberg, A.V., E. Tardos, and R.E. Tarjan [1990], Network flow algorithms, in:
Paths, Flows, and VLSI-Layout, eds. B. Korte, L. Lovász, H.J. Prömel, A. Schrijver
(Springer, Berlin), pp. 101-164.

Goldberg, A.V., and R.E. Tarjan [1988], A new approach to the maximum flow
problem, J. ACM 35 921-940.

Karzanov, A.V. [1979a], Fast algorithm for solving two known problems on undi-
rected multicommodity flows, in: Combinatorial Methods for Flow Problems (Inst. for
System Studies, Moscow, iss. 3), pp. 96-103, in Russian.

Karzanov, A.V. [1979b], Combinatorial methods to solve cut-determined multiflow
problems, in: Combinatorial Methods for Flow Problems (Inst. for System Studies,
Moscow, iss. 3), pp. 6-69, in Russian.

Karzanov, A.V. [1984], A generalized MFMC-prorerty and multicommodity cut
problems, in: Finite and Infinite Sets (Proc. 6th Hungar. Comb. Coll. Eger, 1981)
(North-Holland, Amsterdam) 2, pp. 443-486.

Karzanov, A.V., and M.V. Lomonosov [1978], Systems of flows in undirected net-
works, in: Mathematical Programming etc (Inst. for System Studies, Moscow, iss. 1),
pp. 59-66, in Russian.

Kupershtokh, V.L. [1971], A generalization of Ford-Fulkerson theorem to multiter-

23

minal networks, Kibernetika 7 (3) 87-93, in Russian [translated in Cybernetics 7 (3)
(1973) 494-502].

Lomonosov, M.V. [1978], unpublished manuscript.

Lomonosov, M.V. [1985], Combinatorial approaches to multiflow problems. Dis-

crete Applied Math. 11 (1) 1-94.

Lovász, L. [1976], On some connectivity properties of Eulerian graphs. Acta Math.

Akad. Sci. Hung. 28 129-138.

24

