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Abstract. Suppose that G = (V G, EG) is a planar graph embedded in the eu-
clidean plane, that I, J,K,O are four of its faces (called holes in G), that s1, ..., sr, t1, ...,

tr are vertices of G such that each pair {si, ti} belongs to the boundary of some of
I, J,K, O, and that the graph (V G,EG ∪ {{s1, t1}, ..., {sr, tr}}) is eulerian.

We prove that if the multi(commodity)flow problem in G with unit demands on
the values of flows from si to ti, i = 1, . . . , r, has a solution then it has a half-integral
solution as well. In other words, there exist paths P 1

1 , P 2
1 , P 1

2 , P 2
2 , ..., P 1

r , P 2
r in G such

that each P j
i connects si and ti, and each edge of G is covered at most twice by these

paths. (It is known that in case of at most three holes there exist edge-disjoint paths
connecting si and ti, i = 1, . . . , r, provided that the corresponding multiflow problem
has a solution, but this is, in general, false in case of four holes.)

Keywords. Planar graph, Edge-disjoint paths, Cut, Metric.

1. Introduction

Throughout, we deal with an undirected planar graph G; speaking of a planar
graph we mean that some its embedding in the euclidean plane IR2 (or the sphere) is
fixed. V G is the vertex set, EG is the edge set of G (multiple edges and loops are
admitted), and F = FG is the set of faces of G. A subset H ⊆ F of faces of G, called
its holes, is distinguished. Let U = {{s1, t1}, ..., {sr, tr}} be a family of pairs (possibly
repeated) of vertices of G such that each {si, ti} is contained in the boundary bd(I) of
some hole I ∈ H.

Problem (G,U, k): given an integer k ≥ 1, find P 1
1 , . . . , P k

1 , P 1
2 , . . . , P k

2 , . . . , P 1
r ,

. . . , P k
r such that each P j

i is a path in G connecting si and ti, and each edge of G occurs
at most k times in these paths.

If no restriction on k is imposed, the problem is denoted as (G, U)∗; thus (G,U)∗

is the fractional relaxation of (G,U, 1), or the multi(commodity)flow problem with unit
capacities of the edges of G and unit demands on flows connecting the pairs in U .

We prove the following theorem.
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Theorem 1. Let |H| = 4, and let the graph (V G, EG ∪ U) be eulerian, that is,

(1.1) |δX|+ |{i : δX separates si and ti}| is even for any X ⊂ V G.

Let (G,U)∗ have a solution. Then (G,U, 2) has a solution as well; in other words, there

exist P 1
1 , P 2

1 , P 1
2 , P 2

2 , . . . , P 1
r , P 2

r such that each P j
i is a path in G connecting si and ti,

and each edge of G is covered at most twice by these paths.

[ For X ⊆ V , δX = δGX denotes the set of edges of G with one end in X and the
other in V G − X; a nonempty set δX is called a cut in G; we say that δX separates
vertices x and y if exactly one of x, y is in X.] An obvious necessary condition for
solvability of (G,U, k) for arbitrary G,U, k is the cut condition:

(1.2) each cut δX in G separates at most |δX| pairs in U .

The following result is well known.

Okamura’s theorem [Ok]. If |H| = 2 and if (1) and (2) hold then the problem

(G,U, 1) has a solution (that is, there exist edge-disjoint paths P1, . . . , Pr in G such

that Pi connects si and ti).

(An analogous result for |H| = 1 was stated in [OkS].) The cut condition is, in general,
not sufficient for the solvability of (G,U, k) when |H| = 3. However, the following is
true.

Theorem 2 [Ka2]. Let |H| = 3, and let (1) hold. The problem (G,U, 1) has a solution

if (2) and the following 2,3-metric condition hold:

(1.3)
∑

e∈EG

m(e) ≥
r∑

i=1

m(si, ti) for all 2,3-metrics m on V G.

[ By a metric on a set V we mean a real-valued function m on V × V satisfying
m(x, x) = 0, m(x, y) = m(y, x) and m(x, y) + m(y, z) ≥ m(x, z) for all x, y, z ∈ V . We
say that m is induced by (H, σ), where H is a graph and σ is a mapping of V into V H,
if m(x, y) is equal to distH(σ(x), σ(y)) for all x, y ∈ V ; here distG′(x′, y′) denotes the
distance in a graph G′ between vertices x′ and y′. When it leads to no confusion, we
may say that m is induced by H or m is induced by σ. If σ(V ) = V H and H is the
complete graph K2 on two vertices (the complete bipartite graph K2,3 with parts of
two and three vertices) then m is said to be a cut metric (respectively, a 2,3-metric).]
To satisfy the inequality in (3) for any metric m on V G is necessary for the solvability
of (G,U, k) for arbitrary G,U, k because if P j

i ’s as above give a solution of (G,U, k)
then

∑

e∈EG

m(e) ≥ 1
k

r∑

i=1

k∑

j=1

∑
(m(e) : e ∈ P j

i ) ≥
r∑

i=1

m(si, ti),
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since m satisfies the triangle inequalities (here we write e ∈ P j
i considering a path as

an edge-set). Thus, if |H| ≤ 3, (1) holds, and (G,U)∗ has a solution then (G,U, 1) has
a solution as well. It turned out that such a property does not remain, in general, true
for |H| = 4, as shown in [Ka2]. Hence, when |H| = 4, Theorem 1 gives the least (in
terms of H) value of k for which (G,U, k) has a solution in the eulerian case.

Another difference between cases |H| = 3 and |H| = 4 is that in the latter case
more exotic metrics are involved in solvability conditions for (G,U)∗.

Theorem 3 [Ka1]. For |H| = 4, (G,U)∗ is solvable if and only if (1.3) holds for every

m that is a cut metric or a 2,3-metric or a metric induced by a bipartite planar graph

H with |FH | = 4.

To prove Theorem 1, we need to strengthen this result and establish, in Theorems 4
and 3.11 below, a number of additional properties of the latter kind of metrics mentioned
in Theorem 3. More precisely, suppose we are given a function c : EG → Q+ (of capac-
ities of edges) and numbers d1, . . . , dr ∈ Q+ (demands). Denote by Pi = P(G, si, ti)
the set of (simple) paths from si to ti (or si− ti paths) in G. Let P(G,U) := ∪(Pi : i =
1, . . . , r). The multiflow (multicommodity flow) problem for c and d consists in finding
a function f : P(G, U) → Q+ satisfying:

(1.4) fe :=
∑

(f(P ) : e ∈ P ∈ P(G,U)) ≤ c(e) for all e ∈ EG;

(1.5)
∑

(f(P ) : P ∈ Pi) = di for i = 1, . . . , r.

This problem is denoted by (c, d), and an f satisfying (1.4)- (1.5) is called a (c, d)-
admissible multiflow. Applying Farkas lemma, we obtain the following

Criterion of solvability of (c, d) (for arbitrary G and U): (c, d) is solvable if and
only if

(1.6)
∑

e∈EG

c(e)l(e) ≥
r∑

i=1

didistl(si, ti)

holds for any function l : EG → Q+

(cf. [Iri,KeO]); here distl(x, y) denotes the distance between vertices x and y in G whose
edges e have lengths l(e). Let us say that l is bipartite if l is integer-valued and the
length l(C) :=

∑
(l(e) : e ∈ C) of every circuit C in G is even. Clearly in the above

criterion it suffices to require satisfying (1.6) only for the bipartite l’s. In what follows
we consider only bipartite l’s.

For G and H as above let W (H) denote the set of pairs {s, t} of vertices such that
s, t are in the boundary bd(I) of some I ∈ H.

Definition. Let l, l′ : EG → ZZ+ be bipartite, l′ ≤ l and l′ 6= 0, l. We say that l′

H-reduces l if

(1.7) distl(s, t) = distl′(s, t) + distl−l′(s, t) for each {s, t} ∈ W (H).
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A triple (G,H, l) is called primitive if there is no l′ that H-reduces l.

It is easy to see that in the above criterion it suffices to consider only those l′’s for
which (G,H, l) is primitive. We prove the following theorem.

Theorem 4. Let |H| = 4, and let (G,H, l) be primitive. Then l(e) ≤ 4 for all e ∈ EG.

Note that if |H| ≤ 2 then, in view of Okamura’s theorem, for every primitive
(G,H, l), l corresponds, in a sense, to a certain cut, and hence, l(e) ≤ 1 for all e ∈ EG,
while if |H| = 3 then, in view of Theorem 2, for every primitive (G,H, l), l corresponds
to a cut or a 2,3-metric, so l(e) ≤ 2 for all e ∈ EG.

The paper has the following structure. In Section 2 we prove the existence of a
1/4-integral solution (in the eulerian case), which is relatively easy and is based on Oka-
mura’s theorem and a strengthening of the corresponding fractional version of Theorem
2 (Theorem 2’ below). Section 3 is devoted to a proper study of primitive (G,H, l) for
|H| = 4. Here we prove Theorem 4 and establish certain additional properties for the
case when there is e ∈ EG with l(e) = 4 (Theorem 3.11); this results will be one of the
main tools in the further proof of Theorem 1. The proof of Theorem 1 will consists of
three stages described in Sections 4-6.

Throughout the paper, the faces of a planar graph G′ in question are considered
as open regions in the plane. An edge of G′ is identified with the corresponding curve
without the end points in IR2. When it leads to no confusion, an edge e ∈ EG′ with
end vertices x and y may be denoted by xy; a path (circuit) P = (x0, e1, x1, . . . , ek, xk)
(where xi ∈ V G′ and ei ∈ EG′) may be denoted by x0x1 . . . xk; a path P is identified
with its image in the plane (note that P will be often considered up to reversing and/or
cyclical shifting). |P | denotes the length (i.e. the number of edges) of a path P . If
|P | = 0, P is called trivial. The boundary bd(F ) of a face F ∈ FG′ is identified with
the corresponding (possibly not simple) circuit in G′.

As mentioned above, there is a strengthening of the fractional version of Theorem
2; in particular, it demonstrates a topologic correspondence, in a sense, of “primitive
2,3-metrics” for G′,H′ with |H′| = 3 to the face structure of K2,3.

Fig. 1.1
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Theorem 2’ [Ka1]. Let |H′| = 3, c′ : EG′ → Q+ and d′ : U ′ → Q+, and let the

problem (c′, d′) have no solution. Then there exists m that is a cut- or 2,3-metric on

V G′ such that

(1.8) c′(m) :=
∑

e∈EG′
c′(e)m′(e) <

∑

{s,t}∈U ′
d(s, t)m(s, t) =: d′(m).

Moreover, if m is a 2,3-metric then it is induced by σ : V G′ → V K2,3 for which

the following properties hold: if {x1, x2, x3} and {y1, y2} are the parts in K2,3 and

Π(σ) is the (ordered) partition (S1, S2, S3, T1, T2) of V G′, where Si := σ−1(xi) and

Tj := σ−1(yj), then for some labelling I1, I2, I3 = I0 of the members of H′:

(1.9) all sets in Π(σ) are nonempty; for i = 1, 2, 3 the subgraph 〈Si〉 in G′ induced by

Si is connected; and Si ∩ bd(Ip) = ∅ if and only if p = i;

(1.10) the space Ω(σ) := R2−(I1∪I2∪I3∪Φ(S1)∪Φ(S2)∪Φ(S3)) consists of two disjoint

regions, one containing T1 and the other containing T2; here Φ(Si) is the union of

〈Si〉 and the faces F of G′ such that bd(F ) ⊆ 〈Si〉.

In particular, G′ has no edges connecting T1 and T2.

(See Fig. 1.1.)

2. EXISTENCE OF A QUARTER-INTEGRAL SOLUTION

Let us fix some solution f : P(G, U) → Q+ for (G, U)∗ = (c, d), where c and d

are the all-unit functions on EG and U , respectively. It is convenient to think of f as
consisting of four flows fI , fJ , fK , fO, where H = {I, J,K,O} and fF if the restriction
of f to the paths in P(G,U) with both ends in bd(F ). Denote by L = L(f) the set of
paths P ∈ P(G,U) with f(P ) > 0 (the support of f). Similarly, LF = LF (f) denotes
the support of fF ; thus {LI ,LJ ,LK ,LO} is a partition of L.

A path P ∈ LF (F ∈ H) divides the space IR2 − F into a pair R(P ) of closed
regions whose intersection is P and union is IR2 −F . We say that f is non- crossing if
any two paths P ∈ LF and P ′ ∈ LF ′ for F 6= F ′ do not cross, that is, P ′ is contained
entirely in one set in R(P ). Applying to f standard uncrossing techniques, it is easy
to show that

(2.1) if (G,U)∗ has a 1/k-integral solution then it has a 1/k-integral non-crossing solu-
tion.

In what follows we assume that f is non-crossing. Consider two holes F, F ′ ∈ H.
The hole F ′ lies in some component Z of the space obtained by removing from the
plane the set bd(F ) and the paths in LF . The closed set IR2 − Z is denoted by ΨFF ′ .
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From the fact that every path in LF is simple it easily follows that the boundary of
ΨFF ′ is a simple circuit; denote it by CFF ′ . The definition of Z shows that

(2.2) for each edge e ∈ CFF ′ at least one of the following true: (i) fe
F > 0, or (ii)

e ∈ bd(F ).

(Here fe
F is

∑
(f(P ) : e ∈ P ∈ LF (f)).) Next, as f is non-crossing,

(2.3) the circuits CFF ′ and CF ′F are not crossing, and ΨFF ′ ∩ΨF ′F = CFF ′ ∩ CF ′F .

We say that CFF ′ separates holes I, I ′ if they lie in different components of IR2 −
CFF ′ . Obviously, if CF,F ′ does not separate holes F ′ and F ′′ then ΨFF ′ = ΨFF ′′ , and
therefore CFF ′ = CFF ′′ . Circuits CFF ′ and CF ′F are called neighbouring if there is
no hole F ′′ 6= F, F ′ for which CF ′′F separates F and F ′′. A maximal set B ⊆ H such
that the circuits CFF ′ and CF ′F are neighbouring for any distinct F, F ′ ∈ B is called a
bunch. Clearly for any F, F ′, F ′′ ∈ B the circuit CFF ′ coincides with CFF ′′ . Regarding
B, the circuit CFF ′ (the region ΨFF ′) may be denoted as CF (resp., ΨF ); the family
of the |B| circuits CF , F ∈ B, is denoted by C(B) (note that CF and CF ′ may coincide
for some F 6= F ′). Summing up above observations we have:

(2.4) if B is a bunch then:

(i) the regions ΨF , ΨF ′ are openly disjoint for distinct F, F ′ ∈ B;

(ii) the space IR2 − ∪(ΨF : F ∈ B) contains no hole;

(iii) each edge e ∈ E belongs to at most two circuits in C(B).

For F ∈ B denote by GF (resp., HF ; UF ) the subgraph of G contained in ΨF

(resp., the set of holes F ′ ∈ H in ΨF ; the set of pairs {s, t} ∈ U belonging to bd(F ′),
F ∈ HF ). In particular, F ∈ HF , but possibly HF contains more holes. From (2.4) it
follows that the sets HF , F ∈ B, give a partition of H.

Statement 2.1. Suppose that there is F ∈ B such that CF has no edges in common

with any CF ′ , F ′ ∈ H − {F}. Then (G, U)∗ has a half-integral solution.

Proof. Consider the problems (GF , UF )∗ and (G′, U ′)∗, where G′ = (V G,EG−EGF )
and U ′ = U − UF . For F ′ ∈ HF every path in LF ′ lies in GF , and for F ′ ∈ H − HF

every path P ∈ LF ′ lies in G′ (since P uses no edges in CF ); hence both problems are
solvable. As |HF | ≤ 3 and |H − HF | ≤ 3, we deduce from Okamura’s theorem and
Theorem 2 that each problem has a half-integral solution (not necessarily integral since
(1.1) may be violated, e.g., for G′, U ′). These give a half-integral solution for (G,U)∗.
•

In what follows we assume that a non-crossing f and a bunch B = {F1, . . . , Fk}
for it are chosen so that:
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(2.5) (i) |B| is as great as possible;

(ii)
∑

((|HF |)2 : F ∈ B) is minimum subject to (i);

(iii) the number of faces in IR2 − ∪(ΨF : F ∈ B) is maximum subject to (i)-(ii);

(iv) the value
∑

(fe : e ∈ CF , F ∈ B) is minimum subject to (i)-(iii).

In particular, a bunch B (for some f) with {|HF | : F ∈ B} = {1, 1, 1, 1} is
preferable than one with {1, 1, 2}, and {2, 2} is preferable than {1, 3}. Let f

e

F stand
for

∑
(fe

F ′ : F ′ ∈ HF ).

Lemma 2.2. For each F ∈ B there exists a function hF on EGF so that:

(i) hF (e) ∈ {0, 1
2 , 1} for each e ∈ CF and hF (e) = 1 for the other edges e in GF ;

(ii) if e is a common edge for CF and CF ′ (F, F ′ ∈ B) then hF (e) + hF ′(e) ≤ 1;

(iii) each problem (hF , dF ) is solvable; here dF is the all-unit function on UF .

This lemma shows the existence of a 1/4-integral solution for (G,U)∗. Indeed,
for each F ∈ B the function 2hF is integral, hence the problem (2hF , 2dF ) has a half-
integral solution. So (hF , dF ) has a 1/4-integral solution. In view of (ii), these solutions
give us an admissible solution for (G,U)∗.

Proof of Lemma 2.2. Choose functions hF (F ∈ B) in such a way that (ii)-(iii)
hold and the value γ(h) :=

∑
F∈B |QF | is as small as possible; where QF = QF (h) is

the set of edges e ∈ CF for which hF (e) is different from 0, 1
2 , 1. Such functions exist

since we can take as hF the function that is the restriction of fF to CF and all-unit on
the other edges in GF . One has to prove that γ(h) = 0. Suppose that γ(h) > 0.

For F ∈ B let Q+
F (Q−F ) be the set of edges e ∈ QF with hF (e) > 1/2 (resp.,

hF (e) < 1/2). For ε ∈ IR+ and F ∈ B define the function hε
F as

hε
F (e) := hF (e)− ε if e ∈ Q+

F ;(2.6)

:= hF (e) + ε if e ∈ Q−F ;

:= hF (e) for the remaining e’s in GF ;

Take ε to be maximum provided that: (a) ε ≤ hF (e)− 1/2 for F ∈ B and e ∈ Q+
F ; (b)

ε ≤ 1/2− hF (e) for F ∈ B and e ∈ Q−F ; and (c) for each F ∈ B the problem (hε
F , dF )

is solvable. It is easy to see that hε
F (e) + hε

F ′(e) ≤ 1 for each edge e common for CF

and CF ′ , F, F ′ ∈ B. Furthermore, clearly γ(hε) ≤ γ(h), so γ(hε) = γ(h), by the choice
of h. By the maximal choice of ε, there is F ∈ B such that for any ∆ > ε the problem
(hε′

F , dF ) has no solution for some ε < ε′ ≤ ∆. Two cases are possible.

Case 1. |HF | ≤ 2. Then, by Okamura’s theorem, for every ε′ > ε there is
X ′ ⊂ V GF such that hε′

F (X ′) < dF (X ′), where for c′ : EGF → IR, c′(X ′) stands for∑
(c′(e) : e ∈ δX ′) and dF (X ′) stands for |{{s, t} ∈ UF : δX ′ separates s and t}|
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(letting δX ′ := δGF X ′). Hence, there is X ⊂ V GF such that

hε
F (X) = dF (X) and hε′

F (X) < dF (X) for any ε′ > ε.

Moreover, obviously, we may assume that δX is a simple cut, i.e. δX meets at
most twice the boundary of every face in GF . In particular, |δX ∩ CF | ≤ 2 since CF

is the boundary of some face in GF . Then |δX ∩ CF | = 2; let δX ∩ CF = {e, e′}. If
{e, e′} ∩Q+

F = ∅ or if {e, e′} ∩Q−F 6= ∅, then obviously hε′
F (X) ≥ hε

F (X). Hence, either
(i) e, e′ ∈ Q+

F , or (ii) one of e, e′, say e, is in Q+
F and the other, e′, is in CF −QF . Note

that dF (X) is an integer and hε
F (e′′) is an integer for each e′′ ∈ δX−{e, e′}. Therefore,

φ := hε
F (e) + hε

F (e′) = dF (X)−
∑

(hε
F (e′′) : e′′ ∈ δX − {e, e′})

is an integer. But, in case (i), 1/2 < hε
F (e) < 1 and 1/2 < hε

F (e′) < 1, and, in case (ii),
1/2 < hε

F (e) < 1 and hε
F (e) ∈ {0, 1

2 , 1}, whence φ cannot be integral; a contradiction.

Case 2. |HF | = 3. Then |B| = 2; let F = I, B = {I, K} and HI = {I, J,O}.
Apply Theorem 2’. Arguing as above, we conclude that there exists (i) X ⊆ V GI such
that hε

I(X) = dI(X) and hε′
I (X) < dI(X) for any ε′ > ε, or (ii) a 2,3-metric m on V GI

such that
hε

I(m) = dI(m) and hε′
I (m) < dI(m) for any ε′ > ε,

where, as in (1.8), hε
I(m) stands for

∑
(hε

I(e)m(e) : e ∈ EGI) and dI(m) stands for∑
(m(s, t) : {s, t} ∈ UI). If (i) takes place, we come to a contradiction as in Case 1

above.

Thus (ii) takes place. One may assume that m is induced by a mapping σ : V GI →
V K2,3 for which Π(σ) = (S1, S2, S2, T1, T2) is a partition as in Theorem 2’. Since CI is
the boundary of some face F̃ in GI and each subgraph 〈Si〉 is connected, CI can pass
across exactly one component of Ω(σ), say the component Ω1 that contains T1. Next,
if e ∈ CI is an edge connecting vertices u ∈ Si and v ∈ Sj then we may replace it by a
pair of edges in series, say e′ = uz, e′′ = zv, placing the vertex z in the region Ω1 (it is
easy to see that the new graph G′I and the corresponding metric m′ on V G′I maintain
the above properties). Thus, one may assume that each edge in CI connecting different
sets in Π(σ) connects T1 and some Si. Let ξ = (e1 = u1v1, . . . , ek = ukvk) be the
sequence of such edges in CI , and the vertices u1, v1, . . . , uk, vk occur in this order in
CI . Notice that there are no two consecutive edges ej , ej+1 in ξ such that vj , uj+1 ∈ T1

and uj , vj+1 ∈ Si for some i ∈ {1, 2, 3}. For otherwise, assuming for definiteness that
i = 1 and letting Z to be the set of vertices of the component in 〈T1〉 that contains the
part of CI from vj to uj+1, the partition (T1−Z, T2, S1∪Z, S2, S3) defines a 2,3-metric
m′ such that hε

I(m
′) < hε

I(m) and dF (m′) = dF (m), which is impossible. This and the
fact that each 〈Si〉 is connected imply that k ≤ 6 and for each i = 1, 2, 3 there is at
most one edge ej such that uj ∈ Si and vj ∈ T1. Consider three cases.
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(i) k = 2. Then a contradiction is shown in a similar way as in Case 1.

(ii) k = 6. Let for definiteness v1, u2 ∈ S1, v3, u4 ∈ S2 and v5, u6 ∈ S3; see Fig.
2.1a. Denote by Z1 (resp., Z2; Z3) the set of vertices in T1 that lie in the component
of the space Ω1 − F̃ that contains the part of CI from v4 to u5 (resp., from v6 to u1;
from v2 to u3). Then {Z1, Z2, Z3} is a partition of T1. Shrink Si to a single vertex si,
Zi to a vertex zi, and T2 to a vertex t2, obtaining the graph Γ as shown in Fig. 2.1b.

Fig. 2.1

Consider the natural mapping τ : V GI → V Γ; let m′ be the metric on V GI

induced by τ . It is easy to see that m′(e) = m(e) for each edge e ∈ EGI and m′(p, q) =
m(p, q) for each {p, q} ∈ UI . Finally, one can check that m′ = ρX(1) + ρX(2) + ρX(3),
where for i = 1, 2, 3, X(i) := τ−1({si, zi−1, zi+1}) (letting z4 = z1 and z0 = z3), and
ρ = ρX′ denotes the cut metric on V GI defined as ρ(x, y) := 1 if |X ′ ∩ {x, y}| = 1, and
ρ(x, y) := 0 otherwise. Then hε

I(X(i)) = dI(X(i)), i = 1, 2, 3. Moreover, for at least
one i we have hε′

I (X(i)) < dI(X(i)) (for ε′ > ε); a contradiction.

(iii) k = 4. Let for definiteness v1, u2 ∈ S1 and v3, u4 ∈ S2; see Fig. 2.2a. Let Z1

(Z2) be the subset of T1 in the component of Ω1− F̃ that contains the part of CI from
v2 to u3 (resp., from v4 to u1).

Consider the mapping τ : V GI → V H that brings the sets S1, S2, S3, T2, Z1, Z2 to
the vertices s1, s2, s3, t2, z1, z2 (respectively) of the graph H drawn in Fig. 2.2b. Let
m′ be the metric on V GI induced by τ . Then m′(e) = m(e) for each e ∈ EGI and
m′(p, q) = m(p, q) for each {p, q} ∈ UI . This implies

(2.7) hε
I(m

′) = dI(m′).

Let f ′ be a solution of (hε′
I , dI) (f ′ concerns GI). An easy consequence of the

equality (2.7) is that any path P ∈ L(f ′) must be shortest for m′. On the other hand, it
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is easy to see that the vertex z1 does not belong to any shortest path connecting vertices
in τ(bd(J)) or in τ(bd(O)), while s3 does not belong to any shortest path connecting
vertices in τ(bd(I)). This implies that the circuits CJI(f ′) and COI(f ′) cannot separate
I and K, while CIJ (f ′) cannot separate J and O. Now form a solution f̂ for (G,U)∗

by combining the flows f ′ and fK . From said above it follows easily that for f̂ there is
either a bunch B′ such that either |B′| ≥ 3, or |B′| = 2 and {|HF | : F ∈ B} = {2, 2}.
In each case B′ contradicts with the choice of B in (2.5).

This completes the proof of the lemma. •

Fig. 2.2

Later, in Section 4, we will need the following statement. For hF and dF as
in Lemma 2.2 a subset X ⊂ V GF , as well as the cut δX in GF , is called tight if
hF (X) = dF (X).

Statement 2.3. Let F ∈ B, |HF | ≤ 2, and let e be an edge in CF with hF (e) > 0.

Then there exists a tight X ⊂ V GF such that e ∈ δX.

Proof. Suppose that the statement is false for some e. Define c′(e) := hF (e)−1/2 and
c′(e′) := hF (e′) for e′ ∈ EGF − {e}. Obviously, the problem (c′, dF ) has a solution f ′.
One can see that the new f ′ together with a certain bunch B′ contradict to the choice
of f,B in (2.5), whence the result follows. •

Finally, for purposes of Section 4 we eliminate one more situation from further
consideration.

Statement 2.4. Let some F ∈ B satisfy hF (e) = 1/2 for all edges e ∈ CF . Then

(G,U)∗ has a half-integral solution.

Proof. Consider the problems (hF , dF ) and (c′, d′), where c′(e) := 1 − hF (e) for e ∈
EGF and d′(s, t) := 1− dF (s, t) for {s, t} ∈ U (assuming that hF and dF are extended
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by zero to EG − EGF and U − UF respectively). It is easy to see that the value
2hF (X) − 2dF (X) as well as 2c′(X) − 2d′(X) is even for any X ⊆ V . Hence the
problems (2hF , 2dF ) and (2c′, 2d′) have integral solutions, and the result follows. •

3. PRIMITIVE METRICS

In this section we prove Theorem 4 and one more theorem that describes certain
properties of the primitive (G,H, l) for which l(e) = 4 is achieved for some e ∈ EG. A
face of a graph which is not a hole in it is called intermediate.

Consider a primitive (G,H, l) with |H| = 4. Let G′ be obtained from G by replacing
each edge e ∈ EG by l(e) edges in series (if l(e) = 0 this means contraction of e); let H′
be the corresponding set of holes for G′. It easy to see that (G′,H′, 1G′) is primitive,
where 1G′ is the all-unit function on EG′ (later on we say that a pair (G′′,H′′) is
primitive if (G′′,H′′, 1G′′) is primitive).

One may assume that |H′| = 4 (as if |H′| ≤ 3 then Theorem 4 immediately follows
from Theorem 2; moreover, in this case l(e) ≤ 2 for each e ∈ EG′). In [Ka1] the
following result was obtained, which, in fact, gives a strengthening of Theorem 3. Let
ρX denote the cut metric on V induced by X ⊂ V (i.e. ρX(x, y) is 1 if |X ∩{x, y}| = 1
and 0 otherwise).

Theorem 3.1 [Ka1]. Let G̃ be a planar bipartite graph, H̃ ⊆ F
G̃

and |H̃| = 4. Let

{δX(1), . . . , δX(k)} be a maximal set of disjoint cuts in G̃ so that

(3.1) distG̃(s, t) = distQ(s′, t′) + ρX(1)(s, t) + . . . + ρX(k)(s, t)

for all {s, t} ∈ W (H̃),

where Q is the graph obtained from G̃ by contraction of the edges of δX(1), . . . , δX(k),
and z′ is the image of z ∈ V G̃ in Q. Let A be the set of (non-void) faces in Q

corresponding to those in H̃. Next, let (H,B) be a pair obtained as a result of a maximal

sequence of the following operations, each applying to the current pair (Q′,A′), starting

from (Q,A):

(i) identifying two parallel edges in Q′ bounding an intermediate face; or

(ii) identifying vertices x, y ∈ V Q′ belonging to the boundary of an intermediate

face and such that: (a) d(x, y) is even, and (b) for any {s, t} ∈ W (A′), d(s, t) ≤
min{d(s, x), d(s, y)}+ min{d(t, x), d(t, y)}; where d stands for distQ′ .

Then: either H consists of a unique vertex, or |B| = 3 and H is a θ-graph (i.e. H is

homeomorhpic to the graph of three parallel edges), or |B| = 4 and H is a bipartite

two- connected graph with FH = B.

Now we begin to prove Theorem 4. Apply Theorem 3.1 to (G′,H′) as above.
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From (3.1) and the primitivity of (G′,H′) it follows that {δX(1), . . . , δX(k)} is empty,
therefore, G′ = Q and |FH | = 4. Let σ′ be the natural mapping of V G′ to V H. It is a
mapping onto V H. Furthermore, from (i),(ii) it follows that:

(3.2) σ′ is naturally extended to a mapping of EG′ to EH, and σ′(EG′) = EH; for each
F ′ ∈ H′, σ′ brings isomorphically bd(F ′) to the boundary of the corresponding
face in H (denote this face as σ′(F ′));

(3.3) an s−t path P in G′ with {s, t} ∈ W (H′) is shortest if and only if the corresponding
path σ′(P ) in H is shortest;

(3.4) one can add a set R of new edges in the interiors of some intermediate faces in
G′, preserving planarity, so that for each V ∈ V H the subgraph Z(v) in (V G′, R)
induced by (σ′)−1(v) is a tree.

One can see that every Z(v) connects the boundaries of as many holes in G′ as the
degree of v in H.

Denote by σ the restriction of σ′ to V G. (3.2)-(3.4) imply that:

(3.5) σ can be extended to EG ∪ H so that: (i) for each e = xy ∈ EG, σ(e) is a path
in H of length l(e) connecting σ(x) and σ(y); and (ii) for F ∈ H, σ(F ) is a face
in H, σ states a one-to-one correspondence between H and FH , and σ brings the
boundary of F to the boundary of σ(F ) (with preserving orientation clockwise);

(3.6) if P is an l-shortest path in G then the image by σ of P is a shortest path in H.

[ A metric m on V G induced by (H,σ) such that H is planar and bipartite,
|FH | = 4, and (3.4)-(3.6) hold (with l to be the restriction of m to EG) is called a
4f-metric; this notion will be used in Sections 4-6.]

We say that a subset ∅ 6= B ⊂ EH ′ reduces a planar bipartite graph H ′ if

(3.7) distH′
(s, t) = distB(s, t) + distEH′−B(s, t)

holds for all {s, t} ∈ W (FH′), where for A ⊆ EH ′, distA(s, t) stands for the distance
between vertices s and t in the graph H ′ with length 1 for the edges in A and length 0
for the edges in EH ′ −A. We say that H ′ is primitive if (H ′,FH′ , 1H′) is primitive, in
other words, there is no B reducing H ′.

Obviously, the primitivity of (G,H, l) implies that for H as in Theorem 3.1. We
need a statement on a necessary and sufficient condition of the primitivity of H ′ in case
|FH′ | = 4. We call a regular dual circuit in H ′ a minimal nonempty sequence

D = (F0, e1, F1, . . . , ek, Fk)

such that: (i) F0 = Fk; (ii) Fi−1 and Fi are different faces and ei is a common edge in
bd(Fi−1) and bd(Fi); (iii) ei and ei+1 are opposite edges in bd(Fi) (letting ek+1 := e1).
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A regular dual circuit will be considered up to reversing and/or cyclical shifting it.
Therefore D is determined uniquely by any its edge, and the set of regular dual circuits
give a partition of EH ′. We say that a subset B ⊆ EH ′ is symmetric if B is the union
of the edge-sets of some regular dual circuits.

Next, a vertex in H ′ of degree 6= 2 is called essential. Let R(H ′) denote the set of
non-trivial paths in H ′ (considered up to reversing) whose end vertices and only them
are essential; these paths are called elementary.

Suppose that for some P = v0v1 . . . vk in R(H ′) one holds k = |P | > distH′
(v0, vk)

:= d. It is easy to see that the cut {v0v1, vivi+1}, where i := (k + d)/2, reduces H ′.
Hence, the graph H in Theorem 3.1 satisfies

(3.8) |P | = distH(s, t) for any s− t path P ∈ R(H).

In particular, from (3.8) it follows that

(3.9) If P, P ′ ∈ R(H) connect the same pair of vertices then |P | = |P ′|.

Lemma 3.2. Let H be a two-connected bipartite planar graph with |FH | = 4, and

let H satisfy (3.8). A set ∅ 6= B ⊂ EH reduces H if and only if B is symmetric.

Hence, H is primitive if and only if all its edges belong to the same regular dual
circuit.

Fig. 3.1

Remark 3.3. The statement of the lemma does not remain, in general, true for
|FH | = 5, as shown by the graph in Fig 3.1 (here {e, e′, u, u′} is a symmetric set for
which (3.7) is violated for some s, t.)

Proof of Lemma 3.2. Up to a homeomorphism of the sphere, H is of one of the
types H1, . . . , H4 drawn in Fig. 3.2.

One can check that for case |FH | = 4 from (3.8) it follows that

(3.10) if x, y are opposite vertices in bd(F ), F ∈ FH , then distH(x, y) = |bd(F )|/2, i.e.
each path in bd(F ) connecting x and y is shortest.

Let B reduce H, and F ∈ FH . Then, by (3.10), for any two opposite vertices x, y

in bd(F ) the paths in bd(F ) connecting x and y contain the same number of edges in
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B. Considering all such pairs {x, y} in bd(F ) we conclude that e ∈ bd(F ) belongs to
B if and only if the edge e′ ∈ bd(F ) opposite to e does. Hence, B is symmetric.

Fig. 3.2

Conversely, we prove that a symmetric B satisfies (3.7) for all {s, t} ∈ W (FH).
This is easy to check when H ≈ H1 (H is homeomorphic to H1); in this case all paths
connecting the pair of essential vertices have the same length, by (3.9).

Suppose that H ≈ H2. Let x1, . . . , x4 be the essential vertices as indicated in
Fig. 3.2b; denote by ai the distance between xi and xi+1 (letting x5 := x1). Let for
definiteness a1 ≥ a3. Consider two cases.

(i) a1 < a2 + a3 + a4. For i = 2, 4 let Pi be the elementary path connecting xi

and xi+1. One can see that there are edges e ∈ P2 and e′ ∈ P4 that are opposite in the
boundary of each of two corresponding faces. Clearly the set E′ := {e, e′} is symmetric
and reduces H.

(ii) a1 = a2 + a3 + a4. Let E(x) denote the set of edges in H incident to x ∈ V H.
One can check that the set E′ formed by the edges incident to x1 or x2 is symmetric
and reduces H.

In both cases, the graph arising as a result of contraction of E′ is homeomorphic to
one of H1,H2,H3. Therefore the result for H ≈ H2 will be implied by the proof below
for case H ≈ H3. For cases H ≈ H3 and H ≈ H4 the lemma will follow from a slightly
more general statement which will be also used later on (e.g., in the proof of Statement
3.6). We say that a graph K is a proto-graph of a planar graph H ′ if K arises from
H ′ as a result of a sequence of the following operations: choose two elementary paths
L,L′ of the current graph H ′′ such that they have the same ends, form the boundary
of some face and satisfy |L| = |L′|, and then remove one of L,L′ (i.e. delete its edges
and inner vertices from H ′′).

Statement 3.4. Let H ′ be a two-connected bipartite planar graph satisfying (3.8),

and let B be a symmetric set in EH ′. Let F ∈ FH′ , let s, t be two vertices in bd(F ),
let R1, R2 be the s− t paths in bd(F ), and let b := b(s, t) := min{|B ∩Ri| : i = 1, 2}.
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Suppose that there is a proto-graph K of H ′ such that: (i) K contains bd(F ), (ii) each

essential vertex in K has degree three, (iii) the boundary of each face in K contains at

most three essential vertices, and (iv) if the boundary of some face of K is formed by

three elementary paths Z1, Z2, Z3 then |Z1|+ |Z2| ≥ |Z3|. Then |B ∩ P | ≥ b holds for

any s− t path P in H ′.

This completes the proof of the lemma as follows. Consider vertices s, t in bd(F ),
F ∈ FH , and the s−t paths R1, R2 in bd(F ). It is easy to see that there is a proto-graph
K of H satisfying the hypotheses in Statement 3.4. Let for definiteness b(s, t) = |B∩R1|.
Since B is symmetric, |R1| ≤ |R2|; moreover, b′ := |B′ ∩ R1| ≤ |B′ ∩ R2|, where
B′ := EH − B. Now applying Statement 3.4 to an arbitrary s − t path P in H we
conclude that distB(s, t) = b and distB′(s, t) = b′, whence (3.7) (for H ′ = H) follows.

For a path P = v0v1 . . . vk and 0 ≤ i ≤ j ≤ k, P (vivj) denotes the part of P from
vi to vj . If Q = z0z1 . . . zr is a path with z0 = vk then P ·Q denotes the concatenated
path v0v1 . . . vkz1 . . . zr.

Proof of Statement 3.4. Let H ′ = H0,H1, . . . , Hk = K be the sequence of graphs
such that Hi+1 is formed from Hi by choosing paths Li, L

′
i as in the definition of K

and then by removing Li.

Consider the sequence P = P0, P1, . . . , Pk, where Pi+1 is an s − t path (perhaps
not simple) in Hi+1 such that Pi+1 = Pi if Li is not a part of Pi, and Pi+1 is formed
from Pi by replacing Li by L′i otherwise. Using the facts that |Li| = |L′i| and that B is
symmetric for H ′, by induction on i it is easy to show that:

(3.11) if for F ′ ∈ FHi , bd(F ′) is formed by two elementary paths Q,Q′ and |Q| ≤ |Q′|
then |B ∩Q| ≤ |B ∩Q′|;

(3.12) if for F ′ ∈ FHi , bd(F ′) is formed by three elementary paths Q,Q′, Q′′ and |Q| ≤
|Q′|+ |Q′′| then |B ∩Q| ≤ |B ∩Q′|+ |B ∩Q′′|.

From (3.11) it follows that |B∩Pi| = |B∩P | for all i. Next, the conditions (ii)-(iii)
on K imply that K is either a θ-graph or a circuit or K ≈ K4. Let P ′ be a simple
s− t path in Pk; then |B ∩ P ′| ≤ |B ∩ Pk|. If P ′ belongs to bd(F ) then the statement
is obvious. If K is a θ-graph, the statemets follows from (3.11). Otherwise K ≈ K4

and P ′ is of form Q1 · Q2 · Q3 · Q4, where Q2 is an x − y path, Q3 is an y − z path,
the vertices x, z belong to bd(F ), and y is the essential vertex not in bd(F ). Then the
statement follows from the condition (iv) and (3.12). ••

Remark 3.5. Statement 3.4 proves Lemma 3.2 for all cases of H’s, including
H ≈ H1 or H2. Note that for case H ≈ H2 arguments in the proof of the lemma show
that H is not primitive. Also if H ≈ H1 then obviously H is not primitive unless all
paths connecting the essential vertices are of length 1 (in this case l(e′) ≤ 1 for all
e′ ∈ EG). These facts will be used in what follows.
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Return to consideration (G,H, l), G′,H, σ, σ′ as above. Suppose that there is e =
xy ∈ EG with l(e) ≥ 4. The edge e corresponds to a path Le in H connecting the
vertices b0 := σ(x) and bk := σ(y) (k = l(e)). Note that e belongs to an l-shortest s− t

path in G with {s, t} ∈ W (H) (for otherwise the function l′ on EG, defined by l′(e) := 2
and l′(e′) := 0 for all e′ ∈ EG − {e}, obviously, satisfies (1.7) (i.e. l′ H-reduces l)).
Therefore, by (3.6),

(3.13) Le is a part of some shortest path L̃ in H connecting vertices in the boundary of
some its face.

Now we construct a graph H with |FH | = 5 as follows. By the definition of G′, e

corresponds to a path L′ = v0v1 . . . vk in G′ consisting of k = l(e) edges. Split G′ along
L′. More precisely, we form the graph G′′ containing simple paths L1 = u0u1 . . . uk

and L2 = w0w1 . . . wk so that: (i) u0 = uk and w0 = wk; (ii) L1 and L2 form the
boundary of a face F ′ in G′′; (iii) G′ is obtained from G′′ by identifying ui and wi

(which results in the vertex vi), i = 0, . . . , k, and by identifying the edges uiui+1 and
wiwi+1, i = 0, . . . , k − 1 (so F ′ disappears).

Such an operation naturally splits each tree Z(vi) (defined in (3.4)), i = 1, . . . , k−1,
into two trees: the tree Z ′i containing ui and the tree Z ′′i containing wi. Now H is
obtained from G′′ by shrinking each Z(v) for v ∈ V G′ − {v1, . . . , vk−1}, by shrinking
each Z ′i and each Z ′′i and then by identifying parallel edges forming the boundaries of
intermediate faces.

One can see that H can be obtained directly from H by “splitting” the path Le

in two “parallel” paths L1 (“right”) and L2 (“left”) that form the boundary of a new
intermediate face; denote it by F (see Fig. 3.3 for illustration). Let H := FH − {F},
and let Le = b0b1 . . . bk, L1 = x0x1 . . . xk and L2 = y0y1 . . . yk, where b0 = x0 = y0 and
bk = xk = yk.

Fig. 3.3

It is not difficult to show that the primitiwity of (G,H, l) implies the primitivity
of (H,H). In essense, we show later on that if l(e) ≥ 5 then (H,H) is not primitive.

Consider the regular dual circuit D = (F0, e1, F1, . . . , er, Fr) in H (it contains all
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edges of H, by Lemma 3.2). We say that an edge u = bibi+1 ∈ Le is right (left) if
u = ej and Fj−1 lies on the right (left) from u (regarding u as oriented from bi to bi+1).

In the further proof we shall consider a certain pair u, u′ of right (or left) edges in
Le and construct an auxiliary graph H ′ = H(u, u′) and a dual circuit D′ = D(u, u′)
(not necessarily regular) in it, as follows. Let for definiteness u = bibi+1, u′ = bjbj+1,
i < j, and both u, u′ are right. Then H ′ arises from H by identifying the vertices xd

and yd for each d ≤ i and d ≥ j + 1, and then by identifying appeared parallel edges.
Denote by A = A(u, u′) the set of faces in H ′ corresponding to the faces of H. For
definiteness one may assume that u = ep, u′ = eq and p < q. Then D′ is obtained from
the part (Fp, ep+1, . . . , eq−1, Fq, eq) of D by:

(i) replacing eq by the sequence (xjxj+1, F, yiyi+1, Fp);

(ii) replacing es by the sequence (xtxt+1, F, ytyt+1) if es = btbt+1, i < t < j, and
es is right;

(iii) replacing es by the sequence (ytyt+1, F, xtxt+1) if es = btbt+1, i < t < j, and
es is left.

Let B = B(u, u′) be the set of edges in D′, L′1 be the part L1(xi, xj) of L1 and
L′2 := L2(yi, yj). One can see that

(3.14) ∅ 6= B ⊂ EH ′, |B ∩L′1| = |B ∩L′2|, and B is symmetric for every face F ′ ∈ A (i.e.
B′ := B ∩ bd(F ′) is the union of some pairs of opposite edges).

We call a segment a maximal non-trivial part L in Le whose inner vertices are of
degree 2 (in H). Represent Le as L1 · L2 · . . . · Ld, where each Li is a segment.

Statement 3.6. Each segment Li contains at most one right edge and at most one

left edge.

Proof. Suppose that Li contains edges u = bibi+1 and u′ = bjbj+1 that are both right
(or left). One may assume that u, u′ are chosen so that |i− j| ≤ 2. Then, obviously, B

is symmetric for all faces, inclyding F . Consider the graph H ′ = H(u, u′) and the sets
B = B(u, u′) and A = A(u, u′). One can see that for each s, t ∈ bd(F ′), F ′ ∈ A, there
is a proto-graph of H ′ which satisfies the hypotheses in Statement 3.4. Now from (3.14)
and Statement 3.4 it follows that (3.7) holds for all {s, t} ∈ W (A), i.e. (H ′,A) is not
primitive. Define l′ on EG by l′(e) := |L∩B| and l′(e′) := |Le′ ∩B| for e′ ∈ EG−{e},
where L is a path in H ′ corresponding to e, and Le′ is the path in H ′ corresponding
to e′. Then l′ ≤ l and l′ 6= 0, l. Now from (3.6) and the constructions of H, H, H ′ one
can deduce that l′ satisfies (1.7). Hence, (G,H, l) is not primitive; a contradiction. •

From Statement 3.6 it follows that

(3.15) for i = 1, . . . , d, |Li| ≤ 2, and if |Li| = 2 then Li contains one right edge and one
left edge.
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Now suppose that l(e) ≥ 4. In view of Remark 3.5, it suffices to consider only
cases H ≈ H3 and H ≈ H4.

Let H ≈ H3. Let x, y, z and P1, . . . , P4, L be the vertices and the paths as indicated
in Fig. 3.2c, and let ai := |Pi|. Then a1 = a2, a3 = a4 and |L| ≥ |a1 − a3|. Consider
the vertex v in L such that a1 + |L′| = a3 + |L′′|, where L′ (L′′) is the part of L between
y and v (resp., z and v). One may assume that each Pi has the first vertex at x and
that the first edge in P1 is right (with respect to D). Since all simple paths in H from
x to v have the same length, one can see that

(3.16) all edges in every simple x− v path are right.

Now using (3.15),(3.16) and the fact that Le is contained in a shortest s− t path
for some {s, t} ∈ W (FH), a straightforward examination shows that the only possible
case is:

(3.17) a1 = a3 ≥ 3, |L| = 2, l(e) = 4, {y, z} = {b1, b3}, and b0, b4 belong to either P1 ∪P4

or P2 ∪ P3;

Fig. 3.4

see Fig. 3.4a. Thus, for H ≈ H3, l(e) ≥ 5 is impossible. Moreover, one can see that

(3.18) if H ≈ H3 and l(e) = 4 then (G,H, l) is not primitive.

Indeed, for u = b0b1 and u′ = b1b2 consider the graph H ′ = H(u, u′) and the
set B = B(u, u′), defined as above. Clearly B is a proper subset of EH ′ and B is
symmetric. Using arguments as in the proof of Statement 3.4, one can deduce from
(3.17) that (3.7) holds for all {s, t} ∈ W (FH′). Thus, H ′ is not primitive, whence
(G,H, l) is not primitive as well.

Now we consider case H ≈ H4. Let xi and F (i) (i = 0, . . . , 3) be the essential
vertices and the faces in H, as shown in Fig. 3.2d. Denote by Pij the elementary path
in H from xi to xj .

Statement 3.7. Suppose that the paths P := Pij ·Pjp and P ′ := Pij ·Pjq are shortest

for some distinct i, j, p, q. Then:
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(i) there is a vertex v ∈ Ppq such that all simple paths from xi to v have the same

number of edges;

(ii) the edges of all paths from xi to v are simultaneously right or simultaneously

left (with respect to D).

Proof. By (3.8), |Pip| = |P |, |Piq| = |P ′| and |Ppq| ≥ ||P | − |P ′||. This implies (i). (ii)
easily follows from (i). •

Combining (3.15) and Statement 3.7 with the fact that Le is a part of a shortest
s− t path with {s, t} ∈ W (FH), one can deduce that

(3.19) if Pij ·Pjp and Pij ·Pjq are shortest for some distinct i, j, p, q then the only possible
case is: l(e) = 4, |Ppq| = 2, |Pip| = |Piq| ≥ 3, {b1, b3} = {xp, xq}, and b0, b4 belong
to either Pip ∪ Piq or Pjp ∪ Pjq;

(see Fig. 3.4b). Hence, in case as in Statement 3.7, l(e) ≥ 5 is impossible. Moreover,
in this case

(3.20) |Pjp| = |Pjq| ≥ 2, and therefore, Ppq coincides with b1b2b3.

Indeed, if |Pjp| = |Pjq| = 1 then the cut {u, u′, u′′} reduces H, where u is the first
edge in Pip, u′ is the edge in Pjp and u′′ is the second edge in Ppq.

In what follows we assume that no i, j, p, q as in Statement 3.7 exist.

Statement 3.8. There are no three essential consecutive vertices bq, bq+1, bq+2 in Le.

Proof. Suppose that it is not so, and let for definiteness bq = x0, bq+1 = x1, bq+2 = x2.
Put aij := |Pij |. Since a01 = 1, |a03 − a13| = 1 (as H is bipartite). We know
that P01 · P12 is shortest, so P01 · P13 cannot be shortest, whence the case a03 > a13

is impossible. Hence, a13 = a03 + 1, and the path P10 · P03 is shortest. Similarly,
a13 = a23 + 1, and the path P12 · P23 is shortest. In addition, obviously |P02| = 2.
These facts easily imply that if |P03| > 1 then {u0, u1, u2, w0, w1, w2, z1, z2} is a proper
symmetric set in H, where u0, u1, u2 are the first edges in P30, P31, P32, respectively,
w0 ∈ P01, w2 ∈ P21, z1, z2 ∈ P02 and w1 is the last edge in P30; a contradiction. And
if |P03| = 1 then Le cannot be shortest (even for |Le| ≥ 3). •

In view of l(e) ≥ 4, from Statements 3.6 and 3.8 it follows that there are two
consecutive segments Li, Li+1 in Le such that |Li|+ |Li+1| ≥ 3. Then there are edges
u = bqbq+1 and u′ = bq′bq′+1 (q < q′) in Li ·Li+1 such that both u, u′ are right or both
u, u′ are left. Let u, u′ be chosen so that q′− q is as small as possible. One may assume
that both u, u′ are right, u ∈ P01, u′ ∈ P12 and bq+1 = x1. Then either q′ = q + 1
or q′ = q + 2 (in the latter case the edge bq+1bq′ is left). Put y := bq, v := bq′ and
z := bq′+1 (so v = x1 if q′ = q + 1). The following statement is key in the proof.
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Statement 3.9. At least one of the following paths is shortest: (i) P := P10 ·P02; (ii)

P := P02 · P̃ , where P̃ is the part of P21 from x2 to v.

Proof. Form the graph H ′ = H(u, u′) and the set B = B(u, u′) as it was explained
before Statement 3.6. One may assume that H ′ is obtained from H by adding a vertex
v′ and edges yv′, v′z in case q′ = q+1 or by adding vertices v′, x′ and edges yv′, v′x′, x′z
in case q′ = q + 2, see Fig 3.5. In case q′ = q + 1 put x′ := v′.

Denote by Q the path yvz (resp., yx1vz), and by Q′ the path yv′z (resp., yv′x′z);
let F be the face in H ′ bounded by Q and Q′, and let A := FH′ − {F}.

Fig. 3.5

The minimal choice of q′ − q implies that B is symmetric (for all faces). Further-
more, B contains exactly one pair among {u, u} and {u′, u′}, where u := zx′, u′ := yv′;
one may assume that B contains {u′, u′} (otherwise consider B := EH ′ −B instead of
B). In fact, we show that if the statement is false then B reduces (H ′,A) (i.e. (3.7)
holds for all {s, t} ∈ W (A)), which will imply that (G,H, l) is not primitive.

Suppose that for some I ′ ∈ A and s, t ∈ bd(I ′) there exists an s− t path P in H ′

such that |B ∩ P | < |B ∩ Ri| or |B ∩ P | < |B ∩ Ri| for i = 1, 2, where R1, R2 are the
s − t paths in bd(I ′). Let, in addition, P be chosen so that: (i) |P | is minimum; (ii)
the number of edges in P ∩bd(I ′) is maximum, subject to (i); and (iii) P separates the
minimum number of pairs of faces in FH′ − {I ′}, subject to (i),(ii).

From (i) it easily follows that P is simple, its ends are essential and no inner vertex
of P belongs to bd(I ′). Next, there is no face F ′ such that bd(F ′) = M · R, where
R is a part of P , and either |M | < |R|, or |M | = |R| and for the path P ′ obtained
from P by replacing the part R by M the value as in (ii) becomes more, or the values
as in (i)-(ii) remain the same but the value in (iii) decreases. For otherwise we have
|B ∩ P ′| ≤ |B ∩ P | and |B ∩ P ′| ≤ |B ∩ P | (in view of |M | ≤ |R| and the symmetry of
B), coming to a contradiction with condition (i),(ii) or (iii).

Let the faces in A be denoted as in Fig. 3.5. It is easy to see that in case I ′ = F (i)
for i ∈ {0, 1}, from said above it follows that P is contained in bd(F (i)); a contradiction.
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Now suppose that I ′ = F (2). Notice that if P contains Q′ then replacing it by Q

we would get a path P ′ which contradicts to condition (ii) for P . Now from said above
we can conclude that the only possible case is: {s, t} = {x0, x1} and P (or the opposite
path) is P02 · P21. Let L be the simple z − x1 paths in bd(F ) that contains zv, and
let L′ be the other z − x1 path in bd(F ). Denote by P ′ the path obtained from P by
replacing the part L by L′.

We have |L′| = |L| + 2, |B ∩ L′| = |B ∩ L| and |B ∩ L′| = |B ∩ L| + 2 (as u, u

belong to B). Hence, |P ′| = |P |+ 2, |B ∩P ′| = |B ∩P | and |B ∩P ′| = |B ∩P |+ 2. On
the other hand, in view of the symmetry of B for F (1) and the fact that |P | ≥ |P01|,
we have |P ′| ≥ |P01| + 2, |B ∩ P ′| ≥ |B ∩ P01| and |B ∩ P ′| ≥ |B ∩ P01|. Hence,
|B ∩ P | ≥ |B ∩ P01|, therefore, by supposition on P , one must be |B ∩ P | < |B ∩ P01|.
Then, obviously, |B∩P01| = |B∩P ′|. This means that the edge in bd(F (1)) opposite to
u = zx′ belongs to P01. Then the length of the x0 − x′ path in bd(F (1)) that contains
z is at most |bd(F (1)|/2. This implies that |P02 · P̃ | ≤ |P01|+1, whence it easily follows
that P02 · P̃ is shortest.

Finally, let I ′ = F (3). Then P = P10 ·P02. Repeating arguments as in the previous
case we conclude that |B∩P | ≥ |B∩P12|, and that |B∩P | < |B∩P12| is possible only
if P10 · P02 is shortest. •

In particular, Statement 3.9 enables us to establish the following fact (which, to-
gether with (3.18), will be important for the proof of Theorem 3.12):

(3.21) if H ≈ H4, the paths Pij · Pjp and Pij · Pjq are shortest for some distinct i, j, p, q

and l(e) = 4, then (G,H, l) is not primitive.

Indeed, by (3.19), the edges u = b0b1 and u′ = b1b2 are either both right or both
left. In view of (3.19)-(3.20), one can apply Statement 3.9 to H(u, u′) and B(u, u′).
Then at least one of the paths Psp ·Ppq, Psq ·Pqp or Pps ·Psq is shortest, where r := i if
b0, b4 belong to Pip ∪Piq, and r := j if they belong to Pjp ∪Pjq. But this is impossible
since |Prp| = |Prq| and |Pps|+ |Psq| > |Ppq| = 2.

The following assertion strengthens Statement 3.8.

Statement 3.10. There do not exist two consecutive segments Li = bp . . . bq and

Li+1 = bq . . . br in Le so that the vertices p and r are essential (in H).

Proof. This immediately follows from Statement 3.8 if q − p = r − q = 1. Let for
definiteness bp = x0, bq = x1, br = x2 and r − q = 2. Consider the edges u := bq−1bq

(in Li) and u′ := bq′bq′+1 (in Li+1) such that u, u′ are both right or both left. By
Statement 3.9, one of the paths P10 · P02 or P02 · P̃ is shortest, where P̃ is the part of
P21 from br = x2 to bq′ . But this is impossible because the path bp . . . br = P01 · P12 is
also shortest. •

This statement implies that
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(3.22) the number d of segments in Le is two or three, and Le contains at most two
essential vertices.

Put ai := |Li|, i = 1, . . . , d. Consider case d = 3. Let L1 = b0 . . . bp, L2 = bp . . . bq,
L3 = bq . . . bk. Without loss of generality one may assume that a1 + a2 ≥ 3, L1 ⊆ P21,
L2 = P10; then bp = x1, bq = x0, and L3 ⊆ P0,i for i ∈ {2, 3}. Consider two cases.

Case 1. L3 ⊆ P03, see Fig. 3.6a. Consider a shortest s− t path L containing Le,
where {s, t} ∈ bd(I ′), I ′ ∈ FH . If L passes through x2 then we come to a contradiction
using arguments as in the proof of Statement 3.10. Hence, I ′ = F (3), and L contains
P10 ·P03. Then, in view of (3.21), the path P10 ·P02 is not shortest. Consider a path P

as in Statement 3.9 for corresponding u, u′ in L1 ∪ L2. Then: (i) either P = P02 · P21,
or (ii) P = P02 · P̃ , where P̃ is the part of P21 from x2 to bp−1 (and then a1 = 2), or
(iii) P = P̃ · P02, where P̃ is the part of P10 from bp+1 to x0 (and then a2 = 2). As
L1 · L2 is shortest, cases (i),(ii) are impossible. In case (iii), consider the pair L2, L3.
Then a2 + a3 ≥ 3, and now taking into account the fact that P10 · P03 is shortest, we
get a contradiction using arguments as in the proof of Statement 3.10.

Fig. 3.6

Case 2. L3 ⊆ P02; see Fig. 3.6b. Aplying Statement 3.9 to L1, L2 and to L2, L3 (if
a2 + a3 ≥ 3), and using the fact that Le is shortest one can show that only two cases
are possible:

(3.23) a1 = a3 = 1, a2 = 2 and the paths P ·P02 and P ′ ·P12 are shortest, where P = b2b3

and P ′ = b2b1; or

(3.24) a1 = 2, a2 = a3 = 1, the path P10 · P02 is shortest, and |P02| ≥ 3.

Finally, consider case d = 2. Then ai ≤ 2 implies a1 = a2 = 2. Let for definiteness,
L1 = b0b1b2 ⊆ P21, L2 = b2b3b4 ⊆ P10, and the vertex b0 is not essential; see Fig. 3.6c.
From Statement 3.9 it follows that

(3.25) at least one of the following is true: (i) P10 ·P02 is shortest; (ii) P12 ·P20 is shortest;
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(iii) the paths P ·P02 and P ′ ·P20 are shortest, where P is the part of P10 from b3

to x0 and P ′ is the part of P12 from b1 to x2.

This completes the proof of Theorem 4. • • •

In fact, from the above proof one can obtain a stronger, in a sense, result, as
follows. For a planar graph G′ and a face F in it, a path P in G′ with both ends in
bd(F ) is called an F -path.

Theorem 3.11. Let G′ be a planar graph, H′ ⊆ FG′ and |H′| = 4. Let m be a 4f-

metric on V G′ induced by (H,σ) such that (G′,H′,m|EG′) is primitive and m(e) = 4
for some e ∈ EG′. Then:

(i) H ≈ K4, the image by σ of e is a shortest path Le = b0b1b2b3b4 in H which belongs

to the boundary of a (unique) face J̃ in H;

(ii) each shortest path in H connecting two vertices in bd(J̃)−{b1, b2, b3} lies in bd(J̃);

(iii) suppose that there is Ĩ ∈ FH − {J̃} such that some shortest Ĩ-path in H contains

b0 and some shortest Ĩ-path contains b4; then:

(a) no shortest Ĩ-path contains both b0 and b4;

(b) if b ∈ {b0, b4} is not in bd(Ĩ) and L is a shortest Ĩ-path containing b then L

separates J̃ from K̃ and Õ, where FH = {Ĩ , J̃ , K̃, Õ};
(c) no shortest Ĩ-path contains an edge common for bd(K̃) and bd(Õ).

(We say that an I ′-path L separates J ′ and K ′ if they lie in different components
of the space IR2 − (I ′ ∪ L).)

Proof. (i) has been already proved (see (3.21),(3.18) and arguments in the proof of
Lemma 3.2 showing that H is homeomorpic to neither H1 nor H2). (a) in (iii) can be
checked using (3.8)(3.21),(3.23)- (3.25), Statement 3.9 and the fact that Le is shortest
(a check-up is easy and we leave it to the reader). Let us prove (ii). By (3.21), there
are no distinct i, j, p, q such that the paths Pij · Pjp and Pij · Pjq are shortest. We use
notations as in Fig. 3.2d and assume that the case as in one of (3.23)-(3.25) takes place.

Suppose that L is a shortest s − t path in H such that s, t ∈ bd(J̃) − {b1, b2, b3}
and that L has a vertex not in bd(J̃). Then L passes through x3. Three cases are
possible.

Case 1. L contains P03 ·P31 ·L1 (here L1 ⊂ P12 is the first segment in Le). Then no
shortest path can pass through x0, x2, b1 or through x1, x0, x2 (in these orders). Hence,
cases (3.24) and (3.25) are impossible. In case (3.23), |P01| = 2 implies |P03| = |P31| =
1. Since P23 · P31 cannot be shortest (by (3.21)), we have |P23| = |P21| + 1, hence the
paths P23, P21 ·P13 and P20 ·P03 are shortest. Then the edges in P01, P03, P13 together
with the first edges in P20, P21, P23 and the last edge in P23 form a proper symmetric
subset in EH; a contradiction.
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Case 2. L contains P23 · P31 · L2 (L2 is the second segment in Le). By arguments
as in the previous case, d = 3. Then x0 = b3, whence L connects vertices in P02−{x0}.
So P02 is not shortest; a contradiction with (3.8).

Case 3. L contains P03 · P32. Then d = 2 (otherwise L would connect vertices in
P02 − {x0}). If P · P02 and P ′ · P20 are shortest (see (3.25)), then from |P | + |P02| ≤
|P12| + 1 and |P ′| + |P20| ≤ |P10| + 1 it follows that |P02| ≤ 2. Hence, without loss of
generality it suffices to consider two cases: (i) |P10| = |P12| =: k and |P02| = 2; and (ii)
P10 · P02 is shortest.

In case (i), the fact that P03 · P32 is shortest implies that |P03| = |P32| = 1. Then
|P13| = k + 1 (otherwise P03 · P31 and P23 · P31 would be shortest, contrary to (3.21)).
By arguments as in Case 1, there is a proper symmetric subset in EH; a contradiction.

In case (ii), considering L and P10 · P02 we get that the path P10 · P03 · P32 is
shortest. Hence, we have two shortest paths P10 · P03 and P10 · P02; a contradiction
with (3.21).

Thus, (ii) is true. Now we prove (iii)(b). Let L and b be as in (iii)(b). First of
all we observe that L does not contain P01 · P12 (otherwise none of the paths pointed
out in (3.23)-(3.25) could be shortest). Suppose that L does not separate J̃ from K̃ or
from Õ. We first eliminate some cases for L.

Case 4. L contains P12 ·P23. Then P12 ·P20 is not shortest (by (3.21)). If P10 ·P02

is shortest, we get a contradiction as in Case 3(ii). Thus, two cases are possible.

(i) The case as in (3.23). If Ĩ = F (0) then L must contain P01; a contradiction
as in Case 3(ii). If Ĩ = F (2) then the path passing through b4 ∈ P02 contains either
P02 · P21 or P02 · P23; a contradiction with (3.21).

(ii) d = 2, the paths P · P02 and P ′ · P20 are shortest and |P10| = |P12| =: k (see
(3.25)). Then |P02| = 2. Put r := |P23|; then |P13| = k + r. Considering P03, P02 and
P23 we observe that ||P03| − r| is an even ≤ 2 (by (3.8)), and considering P03, P01, P13

we see that |P03| ≥ r (by (3.8) for P13). If |P03| = r + 2 then P02 · P23 is shortest; a
contradiction with (3.21). If |P03| = r then the edges in P02 together with the first edges
in P10, P12, P30, P32 and the first first and last edges in P13 form a proper symmetric
set; a contradiction.

Case 5. L contains P10 · P03. If d = 2, the proof as in Case 4. Let d = 3. Since L

passes through b 6∈ bd(Ĩ), it must contain P12; a contradiction as in Case 3(ii).

Case 6. L contains P20 ·P03. This case arises only when L passes through b4 (since
if L passes through b0 6∈ bd(Ĩ) then L contains P12; a contradiction as in Case 3(ii)).
From (3.23)- (3.25) it follows that |P01| ≤ 2. In addition, P10 · P02 is not shortest (by
(3.21)).

(i) The case as in (3.23). Then our case is similar to Case 4(i).
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(ii) The case as in (3.25). From the facts that |P01| = 2 (since b4 = x0) and that
Le is shortest it follows that the only possible case is when P10 ·P12 is shortest (in view
of (3.25)). A contradiction with (3.21).

Case 7. L contains P02 · P23. Clearly only Ĩ = F (2) is possible. Then there is a
shortest path L′ containing P12 · P23 or P12 · P20 (as b0 is neither in bd(Ĩ) nor in L); a
contradiction with (3.21).

Thus, L contains either P02 · P21 (and then Ĩ = F (2)) or P10 · P02 (and then
Ĩ = F (3)). This proves (b) in (iii). Finally, if P02 · P21 ⊆ L then, by (3.21), neither
P02 · P23 nor P12 · P23 are shortest. Hence, no shortest F (2)-path contains an edge in
bd(F (3))∩bd(F (0)). Similarly, if P10 ·P02 ⊆ L then no shortest F (3)-path has an edge
in bd(F (2)) ∩ bd(F (0)).

The proof of Theorem 3.11 is complete. •

Theorems 3,4 and 3.11 give the following consequence.

Corollary 3.12. Let |H| = 4, c : EG → IR+, d : U → IR+, and let the problem (c, d)
have no solution. Suppose that c(m′) ≥ d(m′) holds for all cut- and 2,3-metrics m′ on

V G. Then there exists a 4f-metric m on V G induced by (H, σ) such that c(m) < d(m)
holds and m(e) ≤ 4 for all e ∈ EG. Moreover, m can be chosen so that if for some

e ∈ EG one holds m(e) = 4 then m satisfies the properties (i)-(iii) in Theorem 3.11.

Fig. 3.7

Remark. A primitive triple (G,H, l) with |H| = 4 and l(e) = 4 for some e ∈ EG

does exists, as shown in Fig. 3.7. Here H = {I, J,K,O} and the numbers on the edges
indicate the values of l on them.

4. PROOF OF THEOREM 1. EXCLUSION OF |B| = 2

We use some ideas of the proof of Theorem 2 in [Ka2]. Without loss of generality
one may assume that: G is connected; all s1, . . . , sr, t1, . . . , tr are distinct and of valency
1 (since for each i one can add new vertices s′i, t′i and edges {s′i, si},{t′i, ti} to G and
consider the pairs {s′i, t′i} instead of {si, ti}). Let T := {s1, . . . , sr, t1, . . . , tr}. Also one
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may assume that each inner vertex x (i.e. x ∈ V G− T ) is of valency 2 or 4 (otherwise
one can repeatedly transform G at x as shown in Fig. 4.1; obviously, this does not
change, in essense, our problem).

Fig. 4.1

Supposing that Theorem 1 is not true, we consider a counterexample with |EG|
as small as possible. Then G has neither loops nor inner vertices of valency 2.

For x ∈ V G let E(x) denote the set of edges of G incident to x and ordered
clockwise in the plane. Consider x ∈ V G − T and two consecutive edges e, e′ ∈ E(x).
The triple τ = (e, x, e′) is called a fork. Denote by Gτ the graph obtained from G by
adding a new edge (or a loop) eτ connecting the ends of the edges e and e′ different
from x. Define the function ωτ on EGτ by

ωτ (u) := 1 for u = e, e′,

:= −1 for u = eτ ,

:= 0 otherwise.

For 0 ≤ ε ≤ 1, let cτ,ε denote the function on EGτ taking the value 1− ε on e and e′,
ε on eτ , and 1 on the edges in EG − {e, e′}. We say that ε is feasible if the problem
(cτ,ε, d) has a solution. In particular, ε = 0 is feasible. The maximum feasible ε ≤ 1 is
denoted by α(τ).

Suppose that there is a fork τ = (e, x, e′) with α(τ) = 1. Then one can split off
e, e′ at x preserving solvability of the problem. More precisely, let G′ arise from G by
deleting e,e′ and adding eτ . Since |EG′| = |EG| − 1 and (G′, U)∗ is solvable, it has
a half-integral solution; this easily implies that (G,U)∗ has a half-integral solution as
well.

Thus, α(τ) < 1 for all forks τ in G. Consider a fork τ = (e, x, e′); let y (z) be the
end of e (e′) different from x. For α(τ) < ε ≤ 1 the problem (cτ,ε, d) has no solution,
therefore, there is a metric m on V G for which

(4.1) cτ,ε(m)− d(m) < 0.

Moreover, by Theorem 3 one can choose m which is either a cut metric or a 2,3-metric
or a 4f-metric on V Gτ = V G. Define ωτ (m) := m(e) + m(e′)−m(eτ ); then ω(m) ≥ 0
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(since m is a metric). Clearly cτ,ε(m) = c(m)−ωτ (m), and now c(m) ≥ d(m) (as (c, d)
is solvable) implies that ωτ (m) > 0. Thus, the following is true.

Statement 4.1. α(τ) can be determined as

(4.2) α(τ) = min{(c(m)− d(m))/ωτ (m)},

where the minimum is taken over all cut-, 2,3-, and 4f-metrics m for which ωτ (m) > 0.

•

A metric m that achives the minimum in (4.2) is called critical for τ .

Statement 4.2. For any cut-, 2,3- or 4f-metric m the values c(m)− d(m) and ωτ (m)
are even.

Proof. Since such a metric is induced by a bipartite graph, and ωτ (m) ≡ ∑
(m(u) :

u ∈ C) (mod2), where C is the circuit formed by the edges e, e′, eτ , the value ωτ (m) is
even. Next, the graph (V G,EG∪U) is eulerian, therefore it is represented as the union
of pairwise edge-disjoint circuits C1, . . . , Ck. For each i the value

∑
(m(u) : u ∈ Ci)

is even, and c(m) − d(m) ≡ ∑k
i=1

∑
(m(u) : u ∈ Ci) (mod2). Hence, c(m) − d(m) is

even. •

Notice that for any u ∈ EG one has: m(u) ≤ 1 if m is a cut metric; m(u) ≤ 2 if m

is a 2,3-metric; and, by Theorem 4, m(u) ≤ 4 if m is a 4f-metric. Hence,

ωτ (m) ∈ {0, 2} if m is a cut metric;(4.3)

∈ {0, 2, 4} if m is a 2,3-metric;

∈ {0, 2, 4, 6, 8} if m is a 4f-metric.

Summing up (4.3) and Statements 4.1 and 4.2, we get the following.

Statement 4.3. Let 0 < α(τ) < 1, and let m be a metric critical for τ . Then:

(i) m is not a cut metric;

(ii) if m is a 2,3-metric then α(τ) = 1/2 (cf. [Ka2]);

(iii) if m is a 4f-metric then α(τ) ∈ { 1
4 , 1

3 , 1
2 , 2

3 , 3
4}, and in case α(τ) = 3/4 the

equalities m(e) = m(e′) = 4 and m(y, z) = 0 hold. •

The case α(τ) = 3/4 will be of most interest for us in what follows.

Now we continue considerations begun in Section 2. Let us fix f and B as in
(2.5), and let hF , F ∈ B, be functions satisfying the properties as in Lemma 2.2 and
Statement 2.3. In view of Statements 2.1 and 2.4, one may assume that

(4.4) for any F ∈ B the circuit CF has at least one edge common with CF ′ for some
F ′ ∈ B − {F}, and hF is not equal identically to 1/2 on CF .
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Following [Ka2], introduce the value β(τ) which, as we shall see later, gives a lower
bound for α(τ):

β(τ) := 1 + fe,e′ − 1
2
fe − 1

2
fe′ (

= 1− 1
2
(fe,u + fe,u′ + fe′,u + fe′,u′)

)
,

where E(x) = (e, e′, u, u′), and for a pair e′′, u′′ of edges, fe′′,u′′ denotes
∑

(f(L) : L ∈
L, e′′, u′′ ∈ L). By symmetry,

(4.5) β(e, x, e′) = β(u, x, u′).

Statement 4.4 [Ka2]. β(τ) ≤ α(τ).

Proof. Let for definiteness fe ≥ fe′ . Define the capacity function c′ on EGτ as:
c′(e) := fe − fe,e′ ; c′(e′) := fe′ − fe,e′ ; c′(eτ ) := 1 + fe,e′ − fe; and c′(w) := c(w) for
the other edges w. It is easy to see that (c′, d) has a solution. Now put c′′ := cτ,β(τ)

and ε := (fe − fe′)/2. A straightforward check-up shows that c′′(w) − c′(w) is equal
to ε for w = e′, eτ ; −ε for w = e; and 0 for the other w ∈ EGτ . Since ε > 0, the
solvability for (c′, d) implies that for (c′′, d). Hence α(τ) ≥ β(τ). •

Remark 4.5. Statements 4.3 and 4.4 imply that if β(τ) = 3/4 holds for a fork τ

then α(τ) = β(τ). Moreover, from the proof of Statement 4.4 one can see that in this
case f can be easily transformed locally, “within the edges e, e′, eτ”, to give a solution
f ′ for (cτ,3/4, d). More precisely, let fe ≥ fe′ and P ∈ L. If e 6∈ P , put f ′(P ) := f(P ).
If e, e′ ∈ P then P is transformed into P ′ with f ′(P ′) := f(P ) by replacing e, e′ by
the edge eτ . If e ∈ P 63 e′ then put f ′(P ) := f(P )

(
1
2fe + 1

2fe′ − fe,e′
)
/(fe − fe,e′)

and form a new path P ′ from P by replacing e by the edges e′, eτ , for which one puts
f ′(P ′) := f(P )

(
1
2fe− 1

2fe′
)
/(fe−fe,e′). One can check that f ′ is (cτ,3/4, d)-admissible

and gives a solution for (cτ,3/4, d). Note also that if m is critical for τ then m is a
4f-metric, by Statement 4.3. Moreover, cτ,3/4(m) = d(m) and the fact that f ′ is a
solution for (cτ,3/4, d) imply that

(4.6) each edge w ∈ EGτ with m(w) > 0 is saturated by f ′ (i.e. (f ′)w = cτ,3/4(w)) and
every path P ∈ L(f ′) is shortest for m.

Return to consideration of the bunch B as above.

Statement 4.6.

(i) If e is a common edge for CF and CF ′ (F, F ′ ∈ B) and hF (e) = hF ′(e) = 0
then (G,U)∗ has a half-integral solution.

(ii) If e, e′ are two edges incident to a vertex x, and if e ∈ CF and e′ ∈ CF ′ for

distinct F, F ′ ∈ B and hF (e) = hF ′(e) = 0, then (G,U)∗ has a half-integral solution.-
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Proof. (i) By (2.2), e is a common edge in the boundaries of F and F ′. Delete e from
G, forming G′; as a result, the holes F and F ′ merge into one face. Clearly f gives a
solution for (G′, U)∗. Since the number of holes for G′, U is three then, by Theorem 2,
(G′, U)∗ has a half-integral solution (not necessarily an integral one because the graph
(V G′, EG′ ∪ U) is not eulerian). This implies (i).

(ii) By (2.2), e ∈ bd(F ) and e′ ∈ bd(F ′). Obviously, G can be splitted at x in
such a way that the holes F and F ′ merge into one face of the resulting graph G′, and
f gives a solution for (G′, U)∗. Now we apply arguments as in the proof of (i). •

Thus, the situation as in the hypotheses of Statement 4.4 cannot occur. The
following statement of topologic character will play important role as being a tool that
will be often used in what follows. Its proof appeals to (3.6),(4.6) and simple topological
observations, and we leave it to the reader.

Statement 4.7. Let f ′ be a solution for some G′, c′, d′, and let B be a bunch for f ′

(assuming that f ′ is non-crossing). Let m′ be a 4f-metric on V G′ induced by σ : V G′ →
V H such that c′(m′) = d′(m′). Next, let CF = (v0, e1, v1, . . . , ek, vk) be a circuit in

C(B), and let C be its image (in the sense of (3.5)) in H. Then C is a simple circuit,

and CF separates holes F ′, F ′′ ∈ H if and only if C separates the corresponding faces

σ(F ′), σ(F ′′) in H. •

Lemmas 4.8 and 4.9 bellow will be key in this section. Obviously, one may assume
that

(4.7) hF (e) =
1
2
d2f

e

F e for any e ∈ CF , F ∈ B

(f
e

F was defined before Lemma 2.2). For a vertex x in CF (F ∈ B) let EF (x) denote
the set of edges incident to x and contained in ΨF − CF (then |EF (x)| ≤ 2).

Lemma 4.8 . Let L be a maximal path in CF ∩ CF ′ (F, F ′ ∈ B). Then either

hF (e) = hF ′(e) = 1/2 for all e ∈ L, or hF (e) = 0 and hF ′(e) > 0 for all e ∈ L, or

hF ′(e) = 0 and hF (e) > 0 for all e ∈ L.

Proof. Let each of hF and hF ′ be not equal to zero identically on L. One must prove
that hF (e) = hF ′(e) = 1/2 for all e ∈ L. Suppose this is not so. Then for some
F ′′ ∈ {F, F ′} there is a pair e, e′ of consecutive edges in L such that hF ′′(e) 6= 0 =
hF ′′(e′); let for definiteness F ′′ = F . By Statement 4.6, hF ′(e) 6= 0 6= hF ′(e′), hence
hF (e) = hF ′(e) = 1/2 and hF ′(e′) ∈ { 1

2 , 1}. Let x be a vertex incident to e and e′.
Since hF (e) 6= hF (e′), EF (x) 6= ∅ (in view of (4.7)). Consider two possible cases.

Case 1. |EF (x)| = 1. Let for definiteness F = I, F ′ = J , E(x) = (e, u, e′, u′)
and EI(x) = {u}; see Fig. 4.2. Clearly fu,e′ = fu,u′ = 0. Also fe,e′ + fe,u′ ≤ 1/2
(as any path in L(f) passing through e and some of e′, u′ concerns the flow fJ , and
the total amount of flow over these paths is at most hJ (e) = 1/2). Hence, for the fork
τ = (e, x, u) one has α(τ) = β(τ) = 3/4.
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Consider the solution f ′ for Gτ , cτ,3/4, U obtained from f as in Remark 4.5 (for
τ = (e, x, u)), and a 4f-metric m critical for τ . By Statement 4.3(iii), m(e) = m(u) = 4
and m(y, z) = 0, where y (z) is the end of e (u) different of x. One may assume
that m is induced by a mapping σ : V Gτ → V H as in Theorem 3.11, and σ(x) = b4,
σ(y) = σ(z) = b0. We observe that there is a path in LJ(f ′) passing through x and
y. Hence, by (4.6) and (i),(iii)(a) in Theorem 3.11, σ(J) = J̃ . On the other hand,
e′ ∈ bd(I) (as fe′

I ≤ hI(e′) = 0), whence u = xz ∈ bd(I) (as u lies in ΨI and u, e′

are consecutive in E(x)). This implies that b0 = σ(z) and b4 = σ(x) belong to the
boundary of σ(I) in H. Hence, b0, b4 belong to a shortest σ(I)-path; a contradiction
with (iii)(a) in Theorem 3.11.

Fig. 4.2

Case 2. |EF (x)| = 2. Let for definiteness F = J , F ′ = I, E(x) = (e, u, u′, e′); then
EJ(x) = {u, u′}; see Fig. 4.3a. Since EI(x) is empty, hI(e) = hI(e′) = 1/2 (in view
of (4.7)). We observe that β(τ) = 3/4 for τ = (e, x, e′) (since fe′,u = fe′,u′ = 0 and
fe,u + fe,u′ ≤ hJ(e) = 1/2).

Fig. 4.3

Consider the solution f ′ for Gτ , cτ,3/4, U as in Remark 4.5, and a 4f-metric m

critical for τ . By Statement 4.3(iii), m(e) = m(e′) = 4 and m(y, z) = 0, where y
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(z) is the end of e (e′) different of x. One may assume that m is induced by σ :
V Gτ → V H as in Theorem 3.11, and that σ(x) = b4, σ(y) = σ(z) = b0. One can
see that (f ′)e

J = (f ′)e′
J > 0 (taking into account that hJ(e) = 1/2, hJ(e′) = 0 and

cτ,3/4(e) = cτ,3/4(e′) = 1/4), whence σ(J) coincides with J̃ as in Theorem 3.11. Next,
since (f ′)eτ

I > 0 (as hI(e) = hI(e) = 1/2), b0 belongs to a shortest σ(I)-path in H.
However, in contrast to the previous case, we cannot assert that both b0, b4 belong
to a shortest σ(I)-path. To this reason, we need additional arguments that rely on
Statement 4.7.

One may assume that m(w) ≤ 1 for each w ∈ EGτ−{e, e′} (for if m(w) = k > 1 for
some w then one can subdivide w into k edges in series, each of m-length 1, accordingly
defining f ′ and σ for the resulting graph).

Form the circuit C ′J in Gτ corresponding to CJ in G; clearly C ′J is obtained from
CJ be replacing e, e′ by eτ . Put X := σ−1(b4) and Y := σ−1(b0). Apply Statement 4.7
to Gτ , cτ,3/4, d, f ′ and C ′J . It follows from (ii) in Theorem 3.11 that the image C in H

of C ′J is the circuit forming the boundary of J̃ . Therefore, by Statement 4.7, the closed
region Ψ′J bounded by C ′J and containing J does not contain any other hole. Let G be
the subgraph of Gτ lying in Ψ′J .

By the property (3.4) of a 4f-metric, one can span X by a tree TX whose edges are
embedded (with preserving planarity) in intermediate faces of Gτ . As TX connects J

with another hole, X meets C ′J in some vertex x′. Moreover, some vertex v ∈ bd(J)∩X

is connected with x by a path L and connected with x′ by a path L′ such that L, L′ lie
in TX ∩G.

Consider the region Ω ⊂ Ψ′J that contains no hole and is bounded by L,L′ and
the part D of CJ from x to x′; see Fig 4.3b. Next, consider two consecutive vertices
p, q in D − {x} such that p ∈ Y 63 q. Then m(p, q) = 1; let b := σ(q). We observe that
b ∈ {b0, . . . , b4}. Indeed, the set Q := σ−1(b) ∩ V G can be spanned by a tree T of new
edges lying in Ψ′J and intersecting neither edges of Gτ nor vertices in X ∪ Y . Hence,
T ⊂ Ω− {L,L′}. But b 6∈ {b0, . . . , b4} would imply that Q contains a vertex in bd(J);
a contradiction.

Thus, b = b1 (since σ(p) = b0 and m(p, q) = 1). Obviously, the edge w = pq cannot
belong to bd(J), whence (f ′)w

J > 0. Choose a J-path P = z0 . . . zr in Gτ such that
f ′(P ) > 0, zi = q, zi+1 = p, and let P ′ be its part from q to zr. Since b1, b0, b4 cannot
occur (in this order) in any shortest path in H, P ′ must pass through the edge eτ .
On the other hand, from the construction of f ′ (see Remark (4.5)) and the facts that
hJ(e) = 1/2 and hJ(e′) = 0 it follows that any path in LJ(f ′) containing eτ traverses
e or e′. This again implies that P is not shortest for m; a contradiction. •

Lemma 4.9. Let F, F ′ ∈ B, and let P = (v0, e1, v1, . . . , ek, vk) and P ′ = (v′0, e
′
1, v

′
1,

. . . , e′q, v
′
q) be paths (possibly circuits) in CF and CF ′ , respectively, such that v0 = v′0,

e1 = e′1, e2 6= e′2 and vk = v′q. Let hF (e1) = hF ′(e1) = 1/2. Let the region bounded

by P and P ′ (outside ΨF and ΨF ′) contain no hole. Then (G,U)∗ has a half-integral
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solution.

Proof. Put e := e1, x := v1, e′ := e2, u′ := e′2. Since e, e′, u′ are distinct, |EF (x)| +
|EF ′(x)| ≤ 1. Therefore, one may assume that EF (x) = ∅. Let for definiteness F = I

and F ′ = J . We observe that hI(e′) = hI(e) = 1/2, that fe′,u + fe′,u′ = 0 (taking into

account that fe′ = f
e′

I and fu′ = f
u′

J since there is no hole between P and P ′), and
that fe,u + fe,u′ ≤ hJ(e) = 1/2, where {u} := E(x)−{e, e′, u′}. Hence, β(τ) = 3/4 for
τ = (e, x, e′). Let f ′ be the solution for Gτ , cτ,3/4, U as in Remark 4.5, and let m be
a 4f-metric critical for τ and induced by σ : V Gτ → V H as in Theorem 3.11. Let for
definiteness σ(x) = b4 and σ(y) = σ(z) = b0, where y (z) is the end of e (e′) different
of x, see Fig. 4.4.

Fig. 4.4

One can see that (f ′)e
J , (f ′)e′

J > 0 and that the corresponding circuit C ′I for f ′ is
formed from CI by replacing e, e′ by eτ , while C ′J is formed from CJ by replacing e by
e′, eτ . Hence, by (i),(iii)(a) in Theorem 3.11, σ(J) = J̃ . By (ii) in Theorem 3.11, the
image C of C ′J is the circuit in H forming the boundary of J̃ . In addition, b0 belongs
to a shortest Ĩ-path, where Ĩ := σ(I) (since y ∈ C ′I).

Hence, b4 belongs to a shortest Ĩ-path. By (iii)(a) in Theorem 3.11, some b ∈
{b0, b4} is not in bd(Ĩ). Let w ∈ {x′, y} be the vertex such that σ(w) = b. Since σ−1(b)
does not meet bd(I), and w is in C ′I , there is an I-path Q in Gτ passing through w and
such that f ′(Q) > 0. Hence, the image L of Q is a shortest Ĩ-path in H. Moreover, L

separates J̃ from K̃ and Õ (by (iii)(b) in Theorem 3.11), whence FH = {Ĩ , J̃ , K̃, Õ}.
In view of Statement 4.7, this means that C ′I (and hence CI too) separates J from K

and O, whence we conclude that |B| = 2, |HI | = 3 and |HJ | = 1. On the other hand,
(iii)(c) in Theorem 3.11 implies that CIK does not separate K and O. Hence, there is
a bunch B′ for f such that either |B′| = 3, or |B′| = 2 and {|HF | : F ∈ B′} = {2, 2}.
A contradiction with the choice of B in (2.5).

Statement 4.10. Let F ∈ B and let {P1, . . . , Pk} be the set of all maximal nontrivial

paths in CF such that for i = 1, . . . , k, Pi is a part of CF (i) for some F (i) ∈ B − {F}.
Let either hF (e) = 0 for all e ∈ Pi or hF (i)(e) = 0 for all e ∈ Pi, i = 1, . . . , k. Then
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(G,U)∗ has a half-integral solution.

Proof. Let N be the set of i ∈ {1, . . . , k} for which hF (e) = 0 for all e ∈ Pi. Define
capacities c′ on EGF by

c′(e) := 0 if e ∈ Pi and i ∈ N,

:= 1 otherwise,

and define capacities c′′ on EG− (EGF − CF ) by

c′′(e) := 0 if e ∈ Pi and i 6∈ N,

:= 1 otherwise.

Then c′(e) + c′′(e) ≤ 1 for each e ∈ CF . Since c′ is integral, and |HF | ≤ 3, the
problem for c′ and UF has a half-integral solution, and similarly for c′′ and U − UF ,
whence the result follows. •

Now Lemmas 4.8, 4.9 and Statement 4.10 enable us to exclude case |B| = 2, as
follows. Let for definiteness B = {I, J}, and let {P1, . . . , Pk} be the set of maximal
nontrivial paths in CI ∩ CJ . The result follows immediately from Lemmas 4.8 and 4.9
if for some i one has cI(e) = cJ (e) = 1/2 for e ∈ Pi. Otherwise, by Lemma 4.8, there
is N ⊆ {1, . . . , k} such that: if i ∈ N then cI(e) = 0 for all e ∈ Pi , and if i 6∈ N then
cJ(e) = 0 for all e ∈ Pi. In this case the result follows from the Statement 4.10.

5. EXCLUSION OF |B| = 4

We assume that |B| ≥ 3. First of all we state several statements which will be
used for both cases |B| = 4 and |B| = 3 (the latter is considered in the next section).

Lemma 5.1. Let F, F ′, F ′′ ∈ B, and let e, u be two consecutive edge in CF such that

e ∈ CF ′ and u ∈ CF ′′ . Let x be a common vertex for e, u, and let e′ (u′) be the edge

in CF ′ (CF ′′) incident to x and different of e (u). Then:

(i) hF (e) = hF ′(e) = hF (u) = hF ′′(u) = 1/2;

(ii) if either |B| = 3, or |B| = 4 and x does not belong to C
F̃
, where {F̃} =

B − {F, F ′, F ′′}, then e′ = u′ (and therefore, hF ′(e′) = hF ′′(e′) = 1/2).

Proof. Suppose that (i) is false. Let for definiteness F = I, F ′ = J , F ′′ = K.
By Statement 4.6, among hI(e), hI(u), hJ(e), hJ (e′), hK(u), hK(u′) there are no zero
numbers hQ(q), hQ′(q′) for Q 6= Q′. In particular, it is impossible that hI(e) = hI(u) =
1 (as then hJ(e) = hK(u) = 0), or hI(e) = 0 and hI(u) = 1 (as then hK(u) = 0).
Consider possible cases (we omit symmetric cases).

(a) hI(e) = hI(u) = 0. If e′ 6= u′ then β(τ) = 1 for τ = (e, x, e′) (as, obviously,
fe,u = fe,u′ = fe′,u = fe′,u′ = 0). Hence, e′ = u′. Let for definiteness EJ(x) = ∅.
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Since hJ(e′) 6= 0 and hK(e′) 6= 0, we have hJ(e′) = hK(e′) = 1/2. This implies that
hJ(e) = 1/2 and β(τ) = 3/4 for τ = (e, x, e′). Let f ′ be the solution for Gτ , cτ,3/4, U as
in Remark 4.5, and let m be a 4f-metric critical for τ and induced by σ : V Gτ → V H as
in Theorem 3.11. Then {σ(x), σ(y) = σ(z)} = {b0, b4}, where y (z) be the end of e (e′)
different of x. Since x, y ∈ bd(I), σ(I) = J̃ (by (i),(iii)(a) in Theorem 3.11). On the
other hand, from construction of f ′ and the facts that 1 = fe′ > fe = 1/2 and fe′

K > 0
it follows that there exists a K-path P in Gτ containing e and such that f ′(P ) > 0.
Hence, the image of P is a shortest σ(K)-path in H containing b0, b4; a contradiction
with (iii)(a) in Theorem 3.11.

(b) hI(e) = 1/2 and hI(u) = 0. Then |EI(x)| = 1; let EI(x) = {e′′}. It is easy
to see that β(τ) = 3/4 for τ = (e, x, e′′). A contradiction is shown similarly to as it is
done in Case 1 in the proof of Lemma 4.8.

(c) hI(e) = 1 and hI(u) = 1/2. Then |EI(x)| = 1, whence e′ = u′. Moreover, from
the facts that hI(e) = 1 and EJ (x) = ∅ it follows that hJ (e) = hJ(e′) = 0. Hence, this
case is similar to (a).

(d) hI(e) = hI(u) = 1/2 and hJ (e) = 0. If EI(x) 6= ∅ then EJ(x) = ∅, e′ = u′ and
hJ(e′) = 0; so this case is similar to (a). Let EI(x) = ∅. From hJ(e) = 0 it follows that
β(τ) = 3/4 for τ = (e, x, u); further arguments are similar to those applied in case (a)
(for I instead of J).

To prove (ii), suppose, for converse, that e′ 6= u′, and consider the fork τ = (e, x, e′).
From (i) and the hypothesis in (ii) it easily follows that β(τ) = 3/4. Now a contradiction
is shown similarly to as it is done in Case 1 in the proof of Lemma 4.8. •

The following statement strengthens Statement 2.3 in case |HF | = 1.

Statement 5.2. Let F ∈ B and |HF | = 1. Then each edge e ∈ CF belongs to a tight

cut for GF , hF , dF .

Proof. In view of Statement 2.3, it suffices to consider e ∈ CF with hF (e) = 0. Then
e ∈ bd(F ). Suppose that the statement for e is wrong. Then

(5.1) hF (X)− dF (X) ≥ 1
2

for any X ⊆ V GF

(h′(X) and d′(X) are defined as in the proof of Lemma 2.2)). Let x and y be the
ends of e. Add to UF one more demand pair w = {x, y} for which we put demand
dF (w) = 1/2. In view of (5.1), from Okamura’s theorem it follows that the problem
(hF , d′) (where d′ denotes the demand function on UF ∪ {w}) has a solution f ′. Let L

be a path with f ′(L) > 0 connecting x and y. Taking into account that e ∈ bd(F )∩CF ,
one can see that every cut δX which meets both bd(F ) and CF must have a common
edge with L, therefore hF (X) > dF (X). This implies that no edge in CF belongs to a
tight cut for hF and dF , whence, by Statement 2.3, hF (e′) = 0 for all e′ ∈ CF . Then,
obviously, (G,U)∗ has a half-integral solution. •
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We call a 1/2-segment for F ∈ B a maximal non-trivial path P in CF with hF (e) =
1/2 for all e ∈ P ; let ωF denote the number of 1/2-segments in CF . A cut δX in GF

is called simple if the subgraphs of GF induced by X and V GF −X are connected. If
δX is simple then, obviously, |δX ∩ bd(F ′)| ∈ {0, 2} for every face F ′ in GF . Clearly if
δX ′ is tight (for GF , hF , UF ) then δX ′ = δX1 ∪ . . . ∪ δXk, where each δXi is a simple
tight cut. In what follows by a cut we shall always mean a simple cut.

Consider some F with |HF | = 1. The following lemma plays important role in the
proof.

Lemma 5.3.

(i) For GF , hF , UF each tight cut meets each 1/2-segment in CF at most in one

edge.

(ii) ωF is even.

(iii) If S0, S1, . . . , S2k−1 are the 1/2-segments occurring in this order in CF then

every tight cut meeting some Si meets Si+k (indices are taken modulo 2k).

Proof. Let for definiteness F = I. Consider a tight cut δX with |δX ∩ CI | = 2; let
{e, e′} = δX ∩ CI . This cut can be naturally associated with the dual curcuit (or the
circuit of the dual graph) DX = (F0, e1, F1, . . . , ek, Fk) for which F0 = Fk = F̃ , e1 = e

and ek = e′, where F̃ is the face in GF bounded by CF . Let Fi = I. We define a
partition DX into two dual paths:

DX(e) := (F0, e1, . . . , Fi) and DX(e′) := (Fi, ei+1, . . . , Fk).

Since dI(X) is an integer and hI(ej) is an integer for j = 2, . . . , k − 1, we have

(5.2) either hI(e), hI(e′) ∈ 1
2 or hI(e), hI(e′) ∈ {0, 1}.

First of all we prove two claims.

Claim 1. Let δX, δY be two tight cuts such that δX∩CI = {u, u′}, δY ∩CI = {z, z′},
hI(u), hI(u′) ∈ 1

2 and hI(z), hI(z′) ∈ {0, 1}. Then DX and DY have no common faces

except I and F̃ .

Proof. Consider the dual paths DX(u), DX(u′) in DX = (F0, e1, F1, . . . , ek, Fk) and
the dual paths DY (z), DY (z′) in DY = (F ′0, e

′
1, F

′
1, . . . , e

′
k′ , F

′
k′). Suppose, e.g., that

DX(u) = (F0, e1, . . . , ej , Fj) and D(z) = (F ′0, e
′
1, . . . , ej′F

′
j′) have a common face Fi =

F ′i′ different from I and F̃ . Put E1 := {e1, . . . , ej , e
′
j′+1, . . . , e

′
k′} and E2 := {e′1, . . . , e′j′ ,

ej+1, . . . , ek}. It is not difficult to show that there are tight cuts δX ′ ⊆ E1 and δY ′ ⊆ E2

such that δX ′ contains e1 = u and e′k′ = z′, while δY ′ contains e′1 = z and ek = u′.
Since hI(u) = 1/2 and hI(z′) ∈ {0, 1}, we get a contradiction with (5.2) (for δX ′,
e := u, e′ := z′). •

Claim 2. Let δX, δY, u, u′, z, z′ be as in the hypotheses in Claim 1. Then the pairs
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{u, u′} and {z, z′} are crossing in CI (that is, up to permutation of u, u′ and permutation

of z, z′, these edges occur in CI in order u, z, u′, z′).

Proof. Suppose, e.g., that these edges occur in CI in order u, u′, z, z′ (clockwise
from a point a in F̃ ). Let u, u′, z, z′ be the edges in DX(u), DX(u′), DY (z), DY (z′),
respectively, that belong to bd(I). From Claim 1 it follows that the latter edges
occur in bd(I) in order u, u′, z, z′ (clockwise from a). Let δX ′ (δY ′) be the cut
formed by the edges in DX(u) ∪ DY (z) (resp., DX(u′) ∪ DY (z′)). One can see that
dI(X ′) + dI(Y ′) ≥ dI(X) + dI(Y ), whence we conclude that δX ′ and δY ′ are tight. A
contradiction with (5.2). •

Now suppose that there are a tight cut δX and a 1/2-segment S having two
common edges u, u′. Since S 6= CI (by Statement 2.4), there is an edge z ∈ CI with
hI(z) ∈ {0, 1}. By Statement 5.2, z belongs to a tight cut δY ; let δY ∩ CI = {z, z′}.
By (5.2), hI(z′) is an integer, so z′ 6∈ S. This contradicts to Claim 2 and proves (i).

Let us prove (ii)-(iii). From (i) and (5.2) it follows that ωI ≥ 2 and that (iii) is
true for ωI = 2. Let CI = S0 · L0 · S1 · L1 · . . . · Sk′ · Lk′ (k′ = ωI − 1 ≥ 2), where each
Si is a 1/2-segment. It is easy to see from (i) that if (ii) or (iii) is not true then there
are indices (up to a cyclical shift) 0 ≤ i ≤ i′ < j′ < j ≤ k′ and tight cuts δX, δX ′ so
that δX meets Si and Sj while δX ′ meets Si′ and Sj′ . Choose an edge z ∈ Lj′ and a
tight cut δY containing z. Clearly at least one of the pairs {δX, δY } and {δX ′, δY }
contradicts to Claim 2. ••

An edge e ∈ CF is called a 1-edge if e 6∈ CF ′ for any F ′ ∈ B − {F}, and a 2-edge
otherwise. A maximal non-trivial path in CF all edges of which are 1-edges (resp.,
2-edges common for CF and CF ′ for some (fixed) F ′ ∈ B − {F}) is called a 1-path
(resp., a 2-path). A 2-path P is called strong if for some (or, in view of Lemma 4.8, for
any) edge e ∈ P one has hF (e) = hF ′(e) = 1/2, where F ′ 6= F and e ∈ CF ′ ; and P is
called weak otherwise. Note that each strong path P is contained in some 1/2-segment
S (but, in general, P and S may not coincide).

We say that a strong path in SF is reducible if it belongs to a 1/2-segment S such
that the 1/2-segment S′ opposite (in the sense of Lemma 5.3) to S consists only of
1-edges. Define the function hF on EGF by

hF (e) := 0 if e belongs to a reducible (strong) path in CF ,(5.3)

:= 0 if e belongs to a weak path and hF (e) = 0,

:=
1
2

if e belongs to a non-reducible (strong) path in CF ,

:= 1 otherwise.

One can see that

(5.4) for each F ∈ B the problem (hF , dF ) is solvable.
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This implies that

(5.5) if for some F ∈ B every strong path in CF is reducible then (G,U)∗ has a half-
integral solution.

Thus, each CF contains a non-reducible (strong) path. Moreover,

(5.6) there are at least two different 1/2-segments in CF containing non-reducible paths.

In order to exclude |B| = 4 (and also |B| = 3 later) we need one more statement.
We say that two elements x, y ∈ V G ∪ EG are dually connected if they belong to the
boundary of the same intermediate face in G.

Lemma 5.4. Let P = x1 . . . xk, P ′ = y1 . . . yr, P ′′ = z1 . . . zq be 1-paths in CF , CF ′ ,

CF ′′ for distinct F, F ′, F ′′ ∈ B so that x1 = yr, y1 = zq, z1 = xk. Let CF and CF ′

have a common edge e with an end at x1 for which hF (e) = hF ′(e) = 1/2. Then there

exists 1 < i ≤ q such that for the edge u = zi−1zi one holds:

(i) hF ′′(u) = 1;

(ii) u is dually connected with x1.

Proof. Let F = I and F ′ = J . One may assume that e and e′ = xx2 are consecutive
edges in E(x), where x := x1. Then hI(e′) = 1/2 and β(τ) = 3/4 for τ = (e, x, e′).
Let f ′ be a solution as in Remark 4.5 for Gτ , cτ,3/4. Let C ′J be the circuit for Gτ , f ′

corresponding to CJ ; then C ′J is formed from CJ by replacing e by e′, eτ , see Fig. 5.1.

Fig. 5.1

Next, let m be a critical 4f-metric for τ induced by σ : V Gτ → V H as in Theorem
3.11. Then fe′

J > 0, whence, by (i),(iii)(a) in Theorem 3.1, σ(J) = J̃ . Furthermore,
the region Ω ⊂ IR2 bounded by P, P ′, P ′′ contains no hole, therefore, as it follows from
Statement 4.7, the closed path that is the image of the circuit P ·P ′′·P ′ does not separate
any two face of H. This implies that there is a vertex x′ ∈ {x3, . . . , xk, z2, . . . , zq−1}
such that σ(x′) = σ(x). Notice that x′ = xj (for some j) is impossible; otherwise we
get a contradiction using arguments as in the proof of Lemma 4.9.

Hence, x′ = zi for some 1 < i < q. Let i be chosen minimum subject to σ(zi) = b0
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(letting for definiteness that σ(x) = b0). Then σ(zi−1) ∈ {b1, b3} (assuming, without
loss of generality, that m(w) ≤ 1 for all w ∈ EGτ −{e, e′}. Now the result follows from
the facts that each edge w ∈ EGτ with m(w) > 0 must be saturated by f ′, that for any
edge w′ in the interion of Ω we have (f ′)w′ = 0, and that the image of each of P̃ , P ′, P ′′

is a simple path in H, where P̃ is the part of P from x2 to xk (the latter follows from
Statement 4.7). •

Now we begin to consider the case |B| = 4. Denote by Q the graph that is the
union the circuits CF , F ∈ B, and denote by Q′ the graph that is obtained from Q

by shrinking each 1-edge; let µ be the natural mapping of Q to Q′. For F ∈ B let
R(F ) denote the set of all maximal paths P = v0v1 . . . vk in CF such that: (i) v0v1

and vk−1vk are 2-edges, (ii) there is F ′ ∈ B −{F} such that each 2- edge in P belongs
to CF ′ , (iii) for each 1-edge e ∈ P (if any) there is a simple circuit C in P ∪ CF ′ such
that C contains e and one component in IR2−C contains no hole. It is easy to see that
|R(F )| is equal to the number of essential (i.e. of degree ≥ 3) vertices in µ(CF ).

First of all we observe that:

(5.7) for each P ∈ R(F ) either P is a strong 2-path or every 2-path in P is weak (in
view of Lemma 4.9);

(5.8) R(F ) contains at least two non-reducible (strong) 2- paths so that the 1/2-segments
in CF containing these paths are distinct, and if there are exactly two non-reducible
paths then their 1/2-segments are opposite (in view of (5.6)).

In particular, |R(F )| ≥ 2 for any F ∈ B, therefore, Q′ is of one of types Q′1, Q
′
2, Q

′
3,

Q′4, as drawn in Fig. 5.2.

Fig. 5.2

Let Z denote the set of essential vertices in Q′, and Z0 denote the set of x ∈ Z for
which µ−1(x) consists of a unique vertex in Q. For F ∈ B we keep notation F for the
corresponding faces in Q and Q′.

In the sequal of the proof we use one sort of transformations of functions hF , as
follows. Let π = (P1, . . . , Pk) be a sequence of some paths in CF and ρ = (∗1, . . . , ∗k)
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be a sequence of signs + or −. We say that a function h′ on EGF is formed from hF

by use of π and ρ if

h′(e) := 1 if e ∈ Pi and ∗i = +,(5.9)

:= 0 if e ∈ Pi and ∗i = −,

:= hF (e) otherwise,

where hF is defined as in (5.3).

Statement 5.5. Suppose that for each F ∈ B there are no two non-reducible (strong)

paths which belong to the same 1/2-segment in CF . Then (G,U)∗ has a half-integral

solution.

Proof. Consider a sequence ξ = (L0, F1, L1, . . . , Fr, Lr), r ≥ 1, such that ξ is maximal
unless L0 = Lk, and for i = 1, . . . , r: (i) Fi ∈ B, and (ii) Li−1 and Li are non-reducible
paths for Fi which are contained in opposite 1/2-segments in CF−i. Let Ξ be the set of
all such sequences ξ considered up to reversing and/or cyclical shifting (when L0 = Lk).
Then each non-reducible path (for some F ∈ B) belongs to a unique sequence ξ ∈ Ξ.

For F ∈ B let πF = (P1, . . . , Pk(F )) be a sequence of all non- reducible paths in
CF . Define ρF = (∗1, . . . , ∗k(F )) as follows:

(5.10) for i = 1, . . . , k(F ), if ξ = (L0, F1, L1, . . . , Fr, Lr) is the sequence in Ξ such that
Pi = Lj for some j then put ∗i := + if F = Fj+1 and put ∗i := − if F = Fj .

One can check that if for each F ∈ B, h′F is the function on EGF formed (as in
(5.9)) from hF by use of πF and ρF defined as in (5.10), then each problem (h′F , dF )
is solvable and the collection {h′F : F ∈ B} is admissible (i.e. h′F (e) + h′F ′(e) ≤ 1 for
any F, F ′ ∈ B and e ∈ CF ∪ CF ′). •

From (5.8) and Statement 5.5 it follows immediately that

(5.11) there is F ∈ B such that |R(F )| ≥ 3, and R(F ) contains three strong paths
P1, P2, P3 so that P1 and P2 belong to the same 1/2-segment in CF that is opposite
to the 1/2-segment containing P3.

In particular, (5.11) shows that Q′ as above cannot be of type Q′
1. Also if |R(F )| =

2 then each of two (essential) vertices in Q′ belonging to bd(F ) cannot be in Z0. Hence,
if Q′ is of type Q′

2 or Q′3 then Z0 = ∅, and therefore Q is of type Q2 or Q3 as drawn in
Fig. 5.3. Now we consider the other possible types for Q (or Q′). We use notations as
in Fig. 5.3–5.5.

A. Q is of type Q2. Let for definiteness the paths L1, L2, P in R(F (1)) are strong;
S1, S2, S are the 1/2-segments in CF (1) containing them, respectively; two of these
segments are the same and opposite to the third one. From Lemma 5.4 it follows that
S 6= S1, S2 (as, e.g., the 1-path connecting the vertices y, z in Fig. 5.3a contains an
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edge u with hF (1)(u) = 1, by Lemma 5.4 applied to the 1-paths connecting x, y, z).
Hence, S1 = S2 (and similarly for F (3) if two of paths L0, L3, P belong to the same
1/2-segment for CF (3)). For i = 0, 1, 2, 3 let hi be the function on EGF (i) formed from
hF (i) by use of πi, ρi, where

π0 = (L0, L1) and ρ0 = (−,+),(5.12)

π1 = (L1, L2, P ) and ρ1 = (−,−, +),

π2 = (L2, L3) and ρ2 = (+,−),

π3 = (L3, L0) and ρ3 = (+,+,−),

Fig. 5.3

Fig. 5.4

see Fig 5.4. One can check that each (hi, dF (i)) is solvable and the collection {h1, h2, h3,

h4} is admissible. Hence, (G,U)∗ has a half-integral solution.

B. Q is of type Q3. Without loss of generality one may assume that P1 is a non-
reducible path for F (1), and that P1 and L1 belong to the same 1/2-segment in CF (1).
On the other hand, by Lemma 5.4 (applied to the 1-paths connecting the vertices
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x, y, z as in Fig. 5.3b) the 1-path connecting y and z must contain an edge u with
hF (1)(u) = 1. Hence, P1 and L1 belong to different 1/2-segments; a contradiction.

C. Q′ is of type Q′4. Then |R(F )| = 3 for all F ∈ B. Let B = {F (i) : i = 0, 1, 2, 3},
and let Pij = Pji denote the maximal path in Q′4 common for bd(F (i)) and bd(F (j)).
Consider two cases.

Case 1. Z0 6= ∅. Let for definiteness v ∈ Z0, where v is the vertex indicated in
Fig. 5.2d. By Lemma 5.1, for j = 0, 1, 2 the paths Pj−1,j and Pj,j+1 belong to the
same 1/2-segment for CF (j) (indices are taken modulo 3); therefore, Pj,3 must belong
to the opposite segment in CF (j). In particular, |Z0| = 1, and Q is of type as in Fig.
5.5a.

Fig. 5.5

Next, the path P01 is strong, so by Lemma 5.4 (applied to the 1-paths connecting
the vertices x, y, z as in Fig. 5.5a) the 1-path connecting y and z contains an edge u

with hF (3)(u) = 1. Hence, P30 and P31 belong to different 1/2-segments in CF (3), and
similarly for P30, P32 and for P31, P32. Then (by Lemma 5.3 and (5.8)) some of P3,j ,
say P32, is reducible for F (3). For i = 0, 1, 2, 3 let hi be the function on EGF (i) formed
from hF (i) by use of πi, ρi, where

π0 = (P01, P02, P03) and ρ0 = (+, +,−),(5.13)

π1 = (P10, P12, P13) and ρ1 = (−,−,+),

π2 = (P20, P21, P23) and ρ2 = (−,−,+),

π3 = (P30, P31, P32) and ρ3 = (+,−,−),

see Fig. 5.5a.

Case 2. Z0 = ∅. Then Q is of type as in Fig. 5.5b. Let for definiteness P20

and P21 belong to the same 1/2-segment in CF (2). Then Lemma 5.4 (for the 1-paths
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connecting x, y, z as in Fig. 5.5b) implies that P01 is not a strong path. Hence, all paths
P3,j , j = 0, 1, 2, are strong. Next, applying Lemma 5.4, we observe that the paths P30

and P32 belong to different 1/2-segments in CF (3), and similarly for P31 and P32. For
i = 0, 1, 2, 3 let hi be the function on EGF (i) formed from hF (i) by use of πi, ρi, where

π0 = (P02, P03) and ρ0 = (+,−),(5.13)

π1 = (P12, P13) and ρ1 = (+,−),

π2 = (P20, P21, P23) and ρ2 = (−,−,+),

π3 = (P30, P31, P32) and ρ3 = (+, +,−),

see Fig. 5.5b.

A straightforward check-up shows that in both cases each problem (hi, dF (i)) is
solvable and the collection {hi} is admissible, whence (G,U)∗ has a half-integral solu-
tion.

Thus, the case |B| = 4 is impossible.

6. EXCLUSION OF |B| = 3

We show that in this case either (G,U)∗ has a half-integral solution, or there is
a reduction to case |B| = 2 or |B| = 4, whence Theorem 1 will follow. We need the
following lemma which strengthens, in a sense, Lemma 5.4.

Lemma 6.1. Let F (0), F (1), F (2) ∈ B be distinct holes so that for i = 0, 1, 2:

(a) there is a 1-path Pi = xi
1x

i
2 . . . xi

k(i) in CF (i), and xi
1 coincides with xi+1

k(i+1);

(b) CF (i) and CF (i+1) have a common edge ei one end of which is xi
1, and hF (i)(ei)

= hF (i+1)(ei) = 1/2 (indices are taken modulo 3).

For i = 0, 1, 2 let r(i) and l(i) be the minimum and maximum indices so that for the

edges ui = xi
r(i)x

i
r(i)+1 and u′i = xi

l(i)x
i
l(i)−1 one has hF (i)(ui), hF (i)(u′i) ∈ {0, 1}. Then:

(i) all the edges ui, u
′
i (i = 0, 1, 2) belong to the boundary of the same face of G in

the region Ω ⊂ IR2 bounded by P1, P2, P3; and

(ii) hF (i)(ui) = hF (i)(u′i) = 1.

Proof. Since each Pi is a 1-path, Ω contains no hole. Notice that there is no vertex
x ∈ V G in the interior of Ω (otherwise there would exist a fork τ = (e, x, e′) with
fe = fe′ = 0, whence β(τ) = 1). Hence, every edge lying in the interior of Ω connects
vertices in P1 ∪ P2 ∪ P3.

Suppose that (i) is not true for some w ∈ {ui, u
′
i} and w′ ∈ {ui′ , u

′
i′} for i 6= i′; let

for definiteness w = u1. Then one can yield from Lemma 5.4 that in the interior of Ω
there is an edge e with ends x = x1

j and y = x1
j′ for some 1 ≤ j ≤ r(1) < j′ ≤ k(1).
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Consider the edge e′ different from xx1
j+1 and such that τ = (e, x, e′) is a fork, see Fig.

6.1.

Fig. 6.1

We show that β(τ) = 3/4. Clearly e′ does not lie in the interior of Ω (otherwise
from fe = fe′ = 0 it would follow that β(τ) = 1). Hence, only the following two cases
are possible.

(i) j > 1 and e′ = xx1
j−1. Then fe′ = 1/2 (as j ≤ r(1)), whence β(τ) = 3/4 (in

view of fe = 0).

(ii) j = 1 and e′ = xx2
k(2)−1. Obviously, EF (2)(x) = ∅. Therefore fe

F (2) = fe1
F (2) =

1/2, and we again obtain β(τ) = 3/4.

Let E(x) = {e, e′, u, u′} and τ ′ = (u, x, u′), then u′ = xx1
j+1 and β(τ ′) = 3/4 (by

(4.5)). Denote z := x1
j+1.

Consider a solution f ′ for Gτ ′ , cτ ′,3/4 obtained from f as in Remark 4.5, and
a 4f-metric m critical for τ ′ and induced by σ : V G → V H as in Theorem 3.11.
Let C ′ = C ′F (1) be the circuit for f ′ corresponding to CF (1). Since σ(y) = σ(x) (as

(f ′)e = 0), y, z ∈ C ′ and {σ(x), σ(z)} = {b0, b4}, we have σ(F (1)) = J̃ (by (i),(iii)(a) in
Theorem 3.11). This shows that the case (ii) as above is impossible (otherwise we would
have (f ′F (2))

u′ > 0, whence σ(F (2)) = J̃). Hence, j > 1, which implies C ′ = CF (1) and
u′ ∈ C ′.

Let for definiteness σ(x) = b0. The vertices x, z, y occur in this order in C ′, and we
have σ(x) = σ(y) = b0 and σ(z) = b4. Therefore, in view of Statement 4.7, σ(x′) = b0

for all vertices x′ in the part of C ′ between x and y that does not contain z. But then
the whole circuit C̃ formed from C ′ by replacing the path x1

jx
1
j+1 . . . x1

j′ by the edge e

is mapped by σ into the unique point b0, which is impossible (since, e.g., C̃ separates
some holes).

From proved above it obviously follow that all the edges ui, u
′
i (i = 0, 1, 2) belong

to the same face in Ω.

Finally, suppose that for some u ∈ {ui, u
′
i}, hF (1)(u) = 0; let for definiteness

u = u1. Consider the fork τ = (u, x, e) belonging to the boundary of some face in Ω,
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where x := x1
r(1). One can see that either (i) r1 > 1 and e = x1

r(i−1)x, or (ii) r(1) = 1
and e = xx2

k(2)−1. Also one can see that in both cases, fe = 1/2, whence β(τ) = 3/4.
In case (i), we get a contradiction using arguments as above (with τ instead of τ ′). In
case (ii), e belongs to both circuits C ′F (1) and C ′F (2) (for f ′ defined as in Remark 4.5),
which leads to a contradiction with (i),(iii)(a) in Theorem 3.11. •

Fig. 6.2

Now we begin to consider the case |B| = 3. Let B = {I, J,K} and HK = {K, O}.
The graph Q′ (defined as in the previous section) can be only as drawn in Fig. 6.2a.

By (5.8) (for F = I, J), the paths P1, P2, P3 are strong, P1, P2 are non-reducible
for I, while P2, P3 are non-reducible for J . In particular, the graph Q is of form as in
Fig. 6.2b. Let eI be the first edge with hI(eI) ∈ {0, 1} contained in the 1-path L1 from
x to y in CI , and eJ be the first edge with hJ (eJ) ∈ {0, 1} contained in the 1-path L2

from x to z in CJ . Let uI be the last edge with hI(uI) ∈ {0, 1} contained in the 1-path
L′1 from x′ to y′ in CI , and uJ be the first edge with hJ (uJ) ∈ {0, 1} contained in the
1-path L′2 from x′ to z′ in CJ , see Fig. 6.2b. By Lemma 6.1,

(6.1) hI(eI) = hI(uI) = hJ(eJ ) = hJ(uJ ) = 1; eI and eJ are dually connected; uI and
uJ are dually connected.

Statement 6.2. eI and uI belong to a tight cut δXI for GI , hI , UI (and similarly, eJ

and uJ belong to a tight cut δXJ for GJ , hJ , UJ).

Proof. Let for definiteness L1 = x1 . . . xk and L′1 = y1 . . . yr, where x1 = x and
y1 = x′, and let eI = xixi+1 and uI = yjyj+1. In view of (5.2) and the fact that the
1/2-segments containing P1 and P2 are opposite in CI , every tight cut δX containing
eI meets L′1 in some edge w = yj′yj′+1 with hI(w) ∈ {0, 1}. Similarly, every tight cut
δY containing uI meets L1 in some edge z = xi′xi′+1 with hI(z) ∈ {0, 1}. Let δX (δY )
be chosen so that j′ is maximum (resp., i′ is minimum). Suppose that j′ < j; then
i′ > i. Consider the dual paths

D = (F̃ , e1, F1, . . . , ep−1, Fp−1, ep, F̃ ) and D′ = (F̃ , e′1, F
′
1, . . . , e

′
q−1, F

′
q−1, e

′
q, F̃ ),
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where {e1, . . . , ep} = δX, {e′1, . . . , e′q} = δY , e1 = eI , ep = w, e′1 = z, e′q = uI , and F̃

is the face in GI bounded by CI . Let es, e
′
t, e

′
t+1, es+1 lie in bd(I). Using arguments

similar to those in the proof of Lemma 5.3 and taking into account the choice of i′, j′,
one can show that D and D′ have no common face different of I and F̃ . This implies
that es, e

′
t, e

′
t+1, es+1 occur in this order in bd(I). Then the sets

δX ′ := {e1, . . . , es, e
′
t+1, . . . , e

′
q} and δY ′ := {e′1, . . . , e′t, es+1, . . . , ep}

are tight cuts. A contradiction with the maximality of i′. •

From Statement 6.2 and Lemma 6.1 it follows that δXI ∪ δXJ forms a strong cut
δZ in GI ∪GJ (with all-unit capacities of the edges), that is,

|δZ| = dI(Z) + dJ(Z).

This means that for any solution f ′ of (G, U)∗ the edges in δZ must be saturated by
the flow f ′I + f ′J , therefore,

(6.2) for any solution f ′ of (G,U)∗, I and J belong to some bunch B′.

Now we consider the graph GK . Let R be the set of (simple) tight (for hK , UK)
cuts in GK that meet twice the edge-set in P1 ∪ P3. Suppose that some of P1 and P3,
say P1, has the property that no cut δX in R meets twice P1. Then define the function
h′K on EGK by

h′K(e) := 0 if e ∈ P1,

:= 1 otherwise,

and define h′I , h
′
J on EGI , EGJ , respectively, by

h′I(e) := 0 if e ∈ P2,

:= 1 otherwise;

h′J(e) := 0 if e ∈ P3,

:= 1 otherwise.

Then each (h′F , dF ), F ∈ {I, J,K}, is solvable, and the collection {h′I , h′J , h′K} is
admissible. Therefore, (G,U)∗ has a half-integral solution.

Thus, there is a cut δX ∈ R that meets twice P1, and similarly, there is a cut δX ′

that meets twice P3. Let L (L′) be the 1- path in CK from z to y (resp., from z′ to y′),
and let F̃ be the face in GK bounded by CK , see Fig. 6.3a.

Next, denote by Q the set of edges w in L ∪ L′ with hK(w) ∈ {0, 1}. Let a (b) be
the first edge in L (resp., in L′) belonging to Q. By Lemma 6.1,
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(6.3) hK(a) = hK(b) = 1; a is dually connected with eI and eJ ; b is dually connected
with uI and uJ .

Fig. 6.3

Let A be the set of all tight cuts in GK that meet Q. From arguments as in the
proof of Lemma 5.3 it follows that

(6.4) for any δY ∈ A and δZ ∈ R their corresponding dual paths DY and DZ in GK

have no common face different from F̃ , K,O, and if they have a common face
F ∈ {K, O} then they are crossing at this face.

Statement 6.3. There exists δZ ∈ A that meet both bd(K) and bd(O) and contains

the edges a and b.

Proof. Suppose that some of δX, δX ′, say δX, meets only one of bd(K), bd(O), say
bd(K). From (6.4) it follows that each cut in A meets only O, which implies that δX ′

meets bd(K), see Fig. 6.3a. But then for at least one L̃ ∈ {L,L′} the dual path DZ

for any cut δZ ∈ A which meets L̃ must have a common face F 6= F̃ with DX or a
common face F 6= F̃ ,K, O with δX ′; a contradiction with (6.4).

Hence, each δX, δX ′ meets both bd(K) and bd(O). Applying (6.4), it is not
difficult to show that every cut in A meets L,L′, bd(K), bd(O). Now the statement is
proved by use of arguments as in the proof of Statement 6.2. •

From (6.1),(6.3) and Statements 6.2 and 6.3 it follows that

(6.5) if f ′ is an arbitrary solution of (G,U)∗ that all edges in the set δXI are saturated
by the flow f ′I , all edges in δXJ are saturated by f ′J , and all edges in δZ are
saturated by f ′K + f ′O.

Now using (6.5) it is easy to show that

(6.6) for any solution f ′ for (G,U)∗ the circuits CIJ and CJI are neighbouring, CIJ does
not separate J,K,O, and CJI does not separate I, K, O.
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Return to the flow f , and consider the bunch B′ = {K, O}. Apply the operation
of “balancing” to CKO and COK as in the proof of Lemma 2.2. From the proof of
Lemma 2.2 one can see that as a result we get a solution f ′ for (G,U)∗ and a bunch B̃

satisfying the statement of this lemma and such that K, O ∈ B̃. Two cases are possible.

(i) |B̃| = 2. Then (G,U)∗ has a half-integral solution according to proved in
Section 4.

(ii) |B̃| > 2. Then, in view of (6.6), B̃ = {I, J,K, O}, whence (G,U)∗ has a
half-integral solution according to proved in Section 5.

This completes the proof of Theorem 1. • • •
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