HALF-INTEGRAL FLOWS IN A PLANAR GRAPH
WITH FOUR HOLES

Alexander V. Karzanov #

Abstract. Suppose that G = (VG, EG) is a planar graph embedded in the eu-
clidean plane, that I, J, K, O are four of its faces (called holesin G), that s1, ..., s, t1, ..

t,. are vertices of G such that each pair {s;,t;} belongs to the boundary of some of
I,J,K,O, and that the graph (VG, EGU {{s1,t1},...,{sr,tr}}) is eulerian.

°9

We prove that if the multi(commodity)flow problem in G with unit demands on
the values of flows from s; to ¢;, ¢ = 1,...,r, has a solution then it has a half-integral
solution as well. In other words, there exist paths P!, P, Py, P3,..., P!, P? in G such
that each Pl-j connects s; and t;, and each edge of GG is covered at most twice by these
paths. (It is known that in case of at most three holes there exist edge-disjoint paths
connecting s; and t;, i = 1,...,r, provided that the corresponding multiflow problem

has a solution, but this is, in general, false in case of four holes.)
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1. Introduction

Throughout, we deal with an undirected planar graph G; speaking of a planar
graph we mean that some its embedding in the euclidean plane R? (or the sphere) is
fixed. VG is the vertex set, EG is the edge set of G (multiple edges and loops are
admitted), and F = F¢ is the set of faces of G. A subset H C F of faces of G, called
its holes, is distinguished. Let U = {{s1,t1}, ..., {sr, ¢+ }} be a family of pairs (possibly
repeated) of vertices of G such that each {s;,¢;} is contained in the boundary bd(I) of
some hole I € 'H.

Problem (G,U, k): given an integer k > 1, find P},...,PF, Ps, ... ,P¥ ... Pl

..., P¥ such that each Pij is a path in G connecting s; and t;, and each edge of G occurs

at most k times in these paths.

If no restriction on k is imposed, the problem is denoted as (G,U)*; thus (G,U)*
is the fractional relaxation of (G, U, 1), or the multi(commodity)flow problem with unit
capacities of the edges of G and unit demands on flows connecting the pairs in U.

We prove the following theorem.
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Theorem 1. Let |H| =4, and let the graph (VG, EGUU) be eulerian, that is,

(1.1) |0X| + |{i : 0X separates s; and t;}| is even for any X C VG.

Let (G,U)* have a solution. Then (G,U,2) has a solution as well; in other words, there
exist P}, P?, Ps, PZ,..., P!, P? such that each P! is a path in G connecting s; and t;,
and each edge of G is covered at most twice by these paths.

[For X CV, 6X = 0%X denotes the set of edges of G with one end in X and the
other in VG — X; a nonempty set 0X is called a cut in G; we say that 0X separates
vertices x and y if exactly one of z,y is in X.] An obvious necessary condition for
solvability of (G, U, k) for arbitrary G, U, k is the cut condition:

(1.2) each cut 6X in G separates at most [0.X| pairs in U.

The following result is well known.

Okamura’s theorem [Ok]. If |H| = 2 and if (1) and (2) hold then the problem
(G,U,1) has a solution (that is, there exist edge-disjoint paths Pi,..., P, in G such
that P; connects s; and t;).

(An analogous result for |H| = 1 was stated in [OkS].) The cut condition is, in general,
not sufficient for the solvability of (G, U, k) when |H| = 3. However, the following is
true.

Theorem 2 [Ka2|. Let |H| = 3, and let (1) hold. The problem (G, U, 1) has a solution
if (2) and the following 2,3-metric condition hold:

(1.3) Z m(e) > Zm(si,ti) for all 2,3-metrics m on VG.
ecEG =1

| By a metric on a set V' we mean a real-valued function m on V x V satisfying
m(z,z) =0, m(z,y) = m(y,z) and m(z,y) + m(y, z) > m(z,z) for all z,y,z € V. We
say that m is induced by (H, o), where H is a graph and o is a mapping of V into V H,
if m(z,y) is equal to dist” (o(z),0(y)) for all 2,y € V; here dist®’ (',y’) denotes the
distance in a graph G’ between vertices 2’ and y’. When it leads to no confusion, we
may say that m is induced by H or m is induced by o. If (V) = VH and H is the
complete graph Ky on two vertices (the complete bipartite graph Kj 3 with parts of
two and three vertices) then m is said to be a cut metric (respectively, a 2,3-metric).|
To satisfy the inequality in (3) for any metric m on VG is necessary for the solvability
of (G,U,k) for arbitrary G,U, k because if Pij’s as above give a solution of (G,U, k)
then

r k r
Z m(e) > %ZZZ(m(e) re€ Pf) > Zm(Si,tz’),

ecEG =1 j=1 i=1



since m satisfies the triangle inequalities (here we write e € Pij considering a path as

an edge-set). Thus, if |[H| < 3, (1) holds, and (G,U)* has a solution then (G, U, 1) has
a solution as well. It turned out that such a property does not remain, in general, true
for |H| = 4, as shown in [Ka2]. Hence, when |H| = 4, Theorem 1 gives the least (in
terms of H) value of k for which (G, U, k) has a solution in the eulerian case.

Another difference between cases |H| = 3 and |H| = 4 is that in the latter case
more exotic metrics are involved in solvability conditions for (G, U)*.

Theorem 3 [Kal]. For |H| =4, (G,U)* is solvable if and only if (1.3) holds for every
m that is a cut metric or a 2,3-metric or a metric induced by a bipartite planar graph
H with |Fyg| = 4.

To prove Theorem 1, we need to strengthen this result and establish, in Theorems 4
and 3.11 below, a number of additional properties of the latter kind of metrics mentioned
in Theorem 3. More precisely, suppose we are given a function ¢ : EG — Q_ (of capac-
ities of edges) and numbers di,...,d, € Q, (demands). Denote by P; = P(G, s;,1;)
the set of (simple) paths from s; to t; (or s; —t; paths) in G. Let P(G,U) :=U(P; : i =
1,...,7). The multiflow (multicommodity flow) problem for ¢ and d consists in finding
a function f: P(G,U) — Q. satisfying:

(1.4) fo=> (f(P):ec PeEP(GU)) <cle) forall e€ EG;
(1.5) S (f(P): PeP)=d; for i=1,....r.

This problem is denoted by (c,d), and an f satisfying (1.4)- (1.5) is called a (c,d)-
admissible multiflow. Applying Farkas lemma, we obtain the following

Criterion of solvability of (c,d) (for arbitrary G and U): (c,d) is solvable if and
only if

(1.6) > ele)ie) > Zdidistl(si,ti)

ec EG

holds for any function [ : EG — Q.

(cf. [Iri,KeO]); here dist;(z, y) denotes the distance between vertices x and y in G whose
edges e have lengths [(e). Let us say that [ is bipartite if [ is integer-valued and the
length [(C) := > (I(e) : e € C) of every circuit C in G is even. Clearly in the above
criterion it suffices to require satisfying (1.6) only for the bipartite I’s. In what follows
we consider only bipartite [’s.

For G and H as above let W (H) denote the set of pairs {s,t} of vertices such that
s,t are in the boundary bd([) of some I € H.

Definition. Let [,I’ : EG — Z. be bipartite, I’ <[ and I’ # 0,1. We say that [’
H-reduces 1 if

(1.7) disty(s, t) = disty (s, t) + dist;_y/(s,t)  for each {s,t} € W(H).
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A triple (G, H,1) is called primitive if there is no !’ that H-reduces I.

It is easy to see that in the above criterion it suffices to consider only those I"’s for
which (G, H, 1) is primitive. We prove the following theorem.

Theorem 4. Let |H| =4, and let (G, H,l) be primitive. Then l(e) < 4 for alle € EG.

Note that if |H| < 2 then, in view of Okamura’s theorem, for every primitive
(G,H,1), | corresponds, in a sense, to a certain cut, and hence, I(e) < 1 for all e € EG,
while if |H| = 3 then, in view of Theorem 2, for every primitive (G, H,1), [ corresponds
to a cut or a 2,3-metric, so l(e) < 2 for all e € EG.

The paper has the following structure. In Section 2 we prove the existence of a
1/4-integral solution (in the eulerian case), which is relatively easy and is based on Oka-
mura’s theorem and a strengthening of the corresponding fractional version of Theorem
2 (Theorem 2’ below). Section 3 is devoted to a proper study of primitive (G, H, ) for
|H| = 4. Here we prove Theorem 4 and establish certain additional properties for the
case when there is e € EG with [(e) = 4 (Theorem 3.11); this results will be one of the
main tools in the further proof of Theorem 1. The proof of Theorem 1 will consists of
three stages described in Sections 4-6.

Throughout the paper, the faces of a planar graph G’ in question are considered
as open regions in the plane. An edge of G’ is identified with the corresponding curve
without the end points in R?. When it leads to no confusion, an edge e € EG’ with
end vertices x and y may be denoted by zy; a path (circuit) P = (zg, e1,x1, ..., €k, Tk)
(where z; € VG’ and e; € EG’) may be denoted by xoz1 ...xz); a path P is identified
with its image in the plane (note that P will be often considered up to reversing and/or
cyclical shifting). |P| denotes the length (i.e. the number of edges) of a path P. If
|P| =0, P is called trivial. The boundary bd(F') of a face F' € F¢ is identified with
the corresponding (possibly not simple) circuit in G'.

As mentioned above, there is a strengthening of the fractional version of Theorem
2; in particular, it demonstrates a topologic correspondence, in a sense, of “primitive
2,3-metrics” for G',’H’ with |H’| = 3 to the face structure of Ks 3.

Fig. 1.1



Theorem 2’ [Kal]. Let [H'| =3, ¢ : EG' — Q, and d' : U' — Q,, and let the
problem (¢’,d") have no solution. Then there exists m that is a cut- or 2,3-metric on
VG’ such that

(1.8) d(m):= Y d(em'(e)< Y d(s tym(s,t) =: d(m).

e€EG {s,t}eU’

Moreover, if m is a 2,3-metric then it is induced by ¢ : VG' — V Ky 3 for which
the following properties hold: if {z1,x2,23} and {y1,y2} are the parts in K, 3 and
(o) is the (ordered) partition (Si,S2,Ss,T1,Ts) of VG', where S; := o~ (x;) and
T; := o~ (y;), then for some labelling I, Is, I3 = Iy of the members of H':

(1.9) all sets in II(o) are nonempty; for i = 1,2,3 the subgraph (S;) in G’ induced by
S; Is connected; and S; Nbd(I,) = 0 if and only if p = i;

(1.10) the space Q(c) := R? — (I; UL, UI3UP(S1)UP(Sy) UP(S3)) consists of two disjoint
regions, one containing Ty and the other containing Ts; here ®(.S;) is the union of
(S;) and the faces F' of G’ such that bd(F') C (S;).

In particular, G’ has no edges connecting T} and T5.

(See Fig. 1.1.)

2. EXISTENCE OF A QUARTER-INTEGRAL SOLUTION

Let us fix some solution f : P(G,U) — Q_ for (G,U)* = (c,d), where c and d
are the all-unit functions on EG and U, respectively. It is convenient to think of f as
consisting of four flows f7, fs, fx, fo, where H = {I,J, K,O} and fr if the restriction
of f to the paths in P(G,U) with both ends in bd(F'). Denote by £ = L(f) the set of
paths P € P(G,U) with f(P) > 0 (the support of f). Similarly, Lr = Lr(f) denotes
the support of fr; thus {L;,L;, Lk, Lo} is a partition of L.

A path P € L (F € H) divides the space R* — F into a pair R(P) of closed
regions whose intersection is P and union is R* — F. We say that f is non- crossing if
any two paths P € Lr and P’ € Lp/ for F' # F’ do not cross, that is, P’ is contained
entirely in one set in R(P). Applying to f standard uncrossing techniques, it is easy
to show that

(2.1) if (G,U)* has a 1/k-integral solution then it has a 1/k-integral non-crossing solu-
tion.

In what follows we assume that f is non-crossing. Consider two holes F, F' € H.
The hole F’ lies in some component Z of the space obtained by removing from the
plane the set bd(F) and the paths in £z. The closed set R? — Z is denoted by U ppr.
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From the fact that every path in Lp is simple it easily follows that the boundary of
Vg is a simple circuit; denote it by Crp/. The definition of Z shows that

(2.2) for each edge e € Crps at least one of the following true: (i) fg > 0, or (ii)
e € bd(F).

(Here fgis Y (f(P) : e€ P € Lp(f)).) Next, as f is non-crossing,
(2.3) the circuits Cpps and Cprp are not crossing, and Vpp NV p = Cpp N Cpip.

We say that Cpps separates holes I, I’ if they lie in different components of R?* —
Crpr. Obviously, if Cr g/ does not separate holes F’ and F” then ¥pp/ = ¥ ppr, and
therefore Cppr = Cppr. Circuits Cppr and Cprp are called neighbouring if there is
no hole F” # F, F’ for which Cp. separates F and F”. A maximal set B C H such
that the circuits Crpr and Cp g are neighbouring for any distinct F, F’ € B is called a
bunch. Clearly for any F, F’, F"" € B the circuit Crp/ coincides with Crp. Regarding
B, the circuit Cpps (the region ¥pp/) may be denoted as Cp (resp., ¥r); the family
of the | B| circuits Cr, F' € B, is denoted by C(B) (note that Cr and Cp/ may coincide
for some F' # F’). Summing up above observations we have:

(2.4) if B is a bunch then:
(i) the regions ¥, Wy are openly disjoint for distinct F, F’ € B;
(ii) the space R? — U(Vr : F € B) contains no hole;

(iii) each edge e € E belongs to at most two circuits in C(B).

For F € B denote by G (resp., Hr; Ur) the subgraph of G contained in ¥p
(resp., the set of holes F’ € H in Wp; the set of pairs {s,t} € U belonging to bd(F"),
F € Hp). In particular, F' € Hp, but possibly Hp contains more holes. From (2.4) it
follows that the sets Hp, F' € B, give a partition of H.

Statement 2.1. Suppose that there is F' € B such that C'r has no edges in common
with any Cp/, F' € H—{F}. Then (G,U)* has a half-integral solution.

Proof. Consider the problems (Gp,Up)* and (G',U’)*, where G' = (VG, EG — EGF)
and U’ = U — Ug. For F' € Hr every path in Lp lies in G, and for F/ € H — Hp
every path P € Lp lies in G’ (since P uses no edges in Cr); hence both problems are
solvable. As |Hp| < 3 and |H — Hp| < 3, we deduce from Okamura’s theorem and
Theorem 2 that each problem has a half-integral solution (not necessarily integral since
(1.1) may be violated, e.g., for G’,U"). These give a half-integral solution for (G, U)*.

In what follows we assume that a non-crossing f and a bunch B = {F},..., F}
for it are chosen so that:



(2.5) (i) |B| is as great as possible;
(i) S ((|HF|)? : F € B) is minimum subject to (i);
(iii) the number of faces in R* — U(¥x : F € B) is maximum subject to (i)-(ii);
(iv) the value > (f¢ : e € Cp, F € B) is minimum subject to (i)-(iii).

In particular, a bunch B (for some f) with {|Hr| : F € B} = {1,1,1,1} is
preferable than one with {1,1,2}, and {2,2} is preferable than {1,3}. Let f5 stand
for Y (fe : F' € Hp).

Lemma 2.2. For each F' € B there exists a function hg on EG g so that:
(i) hr(e) € {0,1,1} for each e € Cp and hp(e) =1 for the other edges e in Gp;
(ii) if e is a common edge for Cr and Cg: (F,F' € B) then hp(e) + hp(e) < 1;
(iii) each problem (hp,dr) is solvable; here dp is the all-unit function on Up.

This lemma shows the existence of a 1/4-integral solution for (G,U)*. Indeed,
for each F' € B the function 2hp is integral, hence the problem (2hp,2dr) has a half-
integral solution. So (hp,dr) has a 1/4-integral solution. In view of (ii), these solutions
give us an admissible solution for (G, U)*.

Proof of Lemma 2.2. Choose functions hp (F € B) in such a way that (ii)-(iii)
hold and the value y(h) := > e 5 |QF| is as small as possible; where Qr = Qr(h) is
the set of edges e € Cp for which hp(e) is different from 0, 1,1. Such functions exist
since we can take as hr the function that is the restriction of f to C'r and all-unit on

the other edges in Gr. One has to prove that v(h) = 0. Suppose that v(h) > 0.

For F € B let Q} (QF) be the set of edges e € Qp with hgr(e) > 1/2 (resp.,
hr(e) <1/2). For e € Ry and F € B define the function h% as

(2.6) h%(e) :=hp(e) —e if e € QFf;
=hp(e) +e¢ if e€ Qp;

:= hp(e)  for the remaining e’s in Gp;

Take & to be maximum provided that: (a) e < hp(e) —1/2 for F € B and e € QF; (b)
€ <1/2—hp(e) for F € B and e € Q5; and (c) for each F' € B the problem (h%,dr)
is solvable. It is easy to see that h%(e) + h% (e) < 1 for each edge e common for Cp
and Cp/, F, F' € B. Furthermore, clearly v(h®) < ~(h), so v(h®) = v(h), by the choice
of h. By the maximal choice of ¢, there is F' € B such that for any A > ¢ the problem
(hS,,dp) has no solution for some ¢ < &’ < A. Two cases are possible.

Case 1. |Hp| < 2. Then, by Okamura’s theorem, for every & > ¢ there is
X' ¢ VGp such that h5 (X') < dp(X'), where for ¢ : EGp — R, ¢(X’) stands for
Y(d(e) : e € 0X') and dp(X') stands for [{{s,t} € Urp : 60X’ separates s and t}|
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(letting 6 X’ := §F X'). Hence, there is X C VG such that

B (X) = dp(X) and hi(X) < dp(X) for any £ > e.

Moreover, obviously, we may assume that 60X is a simple cut, i.e. §X meets at
most twice the boundary of every face in Gp. In particular, [§X N Cg| < 2 since Cg
is the boundary of some face in Gp. Then [0 X NCr| = 2; let 60X NCrp = {e,e'}. If
{e,}NQF =0 orif {e,e'} NQx # 0, then obviously h%/(X) > h%(X). Hence, either
(i) e,e’ € QF, or (ii) one of e, €', say e, is in Q} and the other, ¢/, is in Cp — Qp. Note
that dp(X) is an integer and hS:(e”) is an integer for each e” € §X —{e, e’}. Therefore,

¢ :=h%(e) +h%(e) =dp(X) — Z(h%(e") s e €dX —{e€e'})

is an integer. But, in case (i), 1/2 < h%(e) <1 and 1/2 < h%(e’) < 1, and, in case (ii),
1/2 < h%(e) < 1 and h%(e) € {0, 1,1}, whence ¢ cannot be integral; a contradiction.
Case 2. |Hp| = 3. Then |B| =2;let F =1, B={I,K} and H; = {I,J,0}.
Apply Theorem 2’. Arguing as above, we conclude that there exists (i) X C VG such
that h$(X) = d;(X) and hS (X) < d;(X) for any &’ > ¢, or (ii) a 2,3-metric m on VG
such that
h5(m) = dr(m) and A5 (m) < dr(m) for any & > e,

where, as in (1.8), h5(m) stands for > (h5(e)m(e) : e € EGy) and dj(m) stands for
Y (m(s,t) : {s,t} € Ur). If (i) takes place, we come to a contradiction as in Case 1
above.

Thus (ii) takes place. One may assume that m is induced by a mapping o : VG| —
V K 3 for which II(o) = (51, S2, S2,T1,T%) is a partition as in Theorem 2’. Since Cf is
the boundary of some face F in G; and each subgraph (S;) is connected, C; can pass
across exactly one component of (o), say the component €27 that contains 7). Next,
if e € Oy is an edge connecting vertices u € S; and v € S; then we may replace it by a
pair of edges in series, say €/ = uz, e’ = zv, placing the vertex z in the region Qq (it is
easy to see that the new graph G’; and the corresponding metric m’ on V G’y maintain
the above properties). Thus, one may assume that each edge in C; connecting different
sets in II(o) connects 77 and some S;. Let & = (e; = wjvy,...,ex = ugvk) be the
sequence of such edges in C7, and the vertices uy,v1, ..., U, vx occur in this order in
C'1. Notice that there are no two consecutive edges e;, ;41 in £ such that vj,u;4q1 € Th
and u;,vj41 € S; for some i € {1,2,3}. For otherwise, assuming for definiteness that
i =1 and letting Z to be the set of vertices of the component in (73) that contains the
part of C from v; to u;41, the partition (17 — Z,T5, 51U Z, Sa, S3) defines a 2,3-metric
m’ such that h7(m’) < h5(m) and dp(m’) = dp(m), which is impossible. This and the
fact that each (S;) is connected imply that & < 6 and for each i = 1,2,3 there is at
most one edge e; such that u; € S; and v; € T7. Consider three cases.
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(i) k = 2. Then a contradiction is shown in a similar way as in Case 1.

(ii) k = 6. Let for definiteness vy, us € S, vs,uy € Sy and vs,ug € S3; see Fig.
2.1a. Denote by Z; (resp., Z2; Z3) the set of vertices in 77 that lie in the component
of the space 2; — F that contains the part of C; from vy to us (resp., from vg to uy;
from vy to uz). Then {Z;, Z5, Z3} is a partition of T}. Shrink S; to a single vertex s;,
Z; to a vertex z;, and T5 to a vertex to, obtaining the graph I' as shown in Fig. 2.1b.

Fig. 2.1

Consider the natural mapping 7 : VG; — VT; let m’ be the metric on VG
induced by 7. It is easy to see that m’(e) = m(e) for each edge e € EG; and m/(p, q) =
m(p, q) for each {p,q} € U;. Finally, one can check that m’ = px 1) + px(2) + pPx(3)
where for i = 1,2,3, X (i) := 77 ({ss, zi_1, 2i21}) (letting z4 = 21 and 2y = 23), and
p = px denotes the cut metric on VG defined as p(z,y) := 1 if | X' N{z,y}| =1, and
p(x,y) := 0 otherwise. Then h7(X (7)) = d;(X(3)), i = 1,2,3. Moreover, for at least
one i we have h$' (X (i)) < d;(X(i)) (for &’ > ¢); a contradiction.

(iii) kK = 4. Let for definiteness v1,us € S; and vs, uy € So; see Fig. 2.2a. Let Z;
(Z3) be the subset of T} in the component of {23 — F' that contains the part of C; from
vy to ug (resp., from vy to uq).

Consider the mapping 7 : VG; — V H that brings the sets S1,.59,.53,Ts, Z1, Z5 to
the vertices s1, sa, s3,t2, 21, 22 (respectively) of the graph H drawn in Fig. 2.2b. Let
m’ be the metric on VG induced by 7. Then m/(e) = m(e) for each e € EG; and
m’(p,q) = m(p, q) for each {p,q} € Ur. This implies

(2.7) he(m') = dy(m').

Let ' be a solution of (hS,dy) (f’ concerns Gr). An easy consequence of the
equality (2.7) is that any path P € L(f’) must be shortest for m’. On the other hand, it
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is easy to see that the vertex z; does not belong to any shortest path connecting vertices
in 7(bd(J)) or in 7(bd(O)), while s3 does not belong to any shortest path connecting
vertices in 7(bd(I)). This implies that the circuits C;;(f’) and Cos(f’) cannot separate
I and K, while C7;(f") cannot separate J and O. Now form a solution f for (G,U)*
by combining the flows f/ and fx. From said above it follows easily that for fthere is
either a bunch B’ such that either |B’| > 3, or |B’| =2 and {|Hp| : F € B} ={2,2}.
In each case B’ contradicts with the choice of B in (2.5).

This completes the proof of the lemma. °

Fig. 2.2
Later, in Section 4, we will need the following statement. For hrp and dp as

in Lemma 2.2 a subset X C VGp, as well as the cut 6X in Gp, is called tight if
hp(X) =dp(X).

Statement 2.3. Let F € B, |Hp| < 2, and let e be an edge in Cr with hg(e) > 0.
Then there exists a tight X C VGp such that e € 6X.

Proof. Suppose that the statement is false for some e. Define ¢/(e) := hp(e) —1/2 and
cd(€e):=hp(e) for ¢ € EGr — {e}. Obviously, the problem (¢/,dr) has a solution f’.
One can see that the new f’ together with a certain bunch B’ contradict to the choice
of f, B in (2.5), whence the result follows. °

Finally, for purposes of Section 4 we eliminate one more situation from further
consideration.

Statement 2.4. Let some F € B satisfy hp(e) = 1/2 for all edges e € Cp. Then
(G,U)* has a half-integral solution.

Proof. Consider the problems (hp,dr) and (¢/,d"), where ¢’(e) := 1 — hp(e) for e €
EGp and d'(s,t) :=1—dp(s,t) for {s,t} € U (assuming that hr and dp are extended
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by zero to EG — EGp and U — Up respectively). It is easy to see that the value
2hp(X) — 2dp(X) as well as 2¢/(X) — 2d'(X) is even for any X C V. Hence the
problems (2hp,2dr) and (2¢/,2d") have integral solutions, and the result follows. e

3. PRIMITIVE METRICS

In this section we prove Theorem 4 and one more theorem that describes certain
properties of the primitive (G, H,[) for which [(e) = 4 is achieved for some e € EG. A
face of a graph which is not a hole in it is called intermediate.

Consider a primitive (G, H, 1) with |H| = 4. Let G’ be obtained from G by replacing
each edge e € EG by I(e) edges in series (if [(e) = 0 this means contraction of e); let H’
be the corresponding set of holes for G’. Tt easy to see that (G',H’,1¢) is primitive,
where 1g/ is the all-unit function on EG’ (later on we say that a pair (G”,H") is
primitive if (G”,H"”, 1) is primitive).

One may assume that |H'| =4 (as if [H’| < 3 then Theorem 4 immediately follows
from Theorem 2; moreover, in this case [(e) < 2 for each e € EG’). In [Kal] the
following result was obtained, which, in fact, gives a strengthening of Theorem 3. Let
px denote the cut metric on V induced by X C V (i.e. px(x,y) is 1 if | X N{z,y}| =1
and 0 otherwise).

Theorem 3.1 [Kal]. Let G be a planar bipartite graph, H C Fz and |H| = 4. Let
{6X(1),...,0X(k)} be a maximal set of disjoint cuts in G so that

(3.1) dist® (s, 1) = dist@ (s, ') + px)(s,t) + ...+ px)(s, )
for all {s,t} € W(H),

where () is the graph obtained from G by contraction of the edges of X (1),...,0X (k),
and 7' is the image of z € VG in Q. Let A be the set of (non-void) faces in Q
corresponding to those in H. Next, let (H, B) be a pair obtained as a result of a maximal
sequence of the following operations, each applying to the current pair (Q', A’), starting

from (Q,.A):
(i) identifying two parallel edges in Q' bounding an intermediate face; or

(ii) identifying vertices x,y € V Q' belonging to the boundary of an intermediate
face and such that: (a) d(z,y) is even, and (b) for any {s,t} € W(A’), d(s,t) <
min{d(s,z),d(s,y)} + min{d(t, ), d(t,y)}; where d stands for dist< .

Then: either H consists of a unique vertex, or |B| = 3 and H is a 0-graph (i.e. H is
homeomorhpic to the graph of three parallel edges), or |B| = 4 and H is a bipartite
two- connected graph with Fy = B.

Now we begin to prove Theorem 4. Apply Theorem 3.1 to (G',’H’) as above.
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From (3.1) and the primitivity of (G’, H’) it follows that {§.X(1),...,0X (k)} is empty,
therefore, G' = @ and |Fg| = 4. Let ¢’ be the natural mapping of VG’ to VH. It is a
mapping onto V H. Furthermore, from (i),(ii) it follows that:

(3.2) o' is naturally extended to a mapping of EG’ to EH, and o/(EG") = EH; for each
F' € H', o' brings isomorphically bd(F’) to the boundary of the corresponding
face in H (denote this face as o/ (F"));

(3.3) an s—t path P in G’ with {s,t} € W(H’) is shortest if and only if the corresponding
path ¢’(P) in H is shortest;

(3.4) one can add a set R of new edges in the interiors of some intermediate faces in
G’, preserving planarity, so that for each V' € VH the subgraph Z(v) in (VG', R)
induced by (¢/)71(v) is a tree.

One can see that every Z(v) connects the boundaries of as many holes in G’ as the
degree of v in H.

Denote by o the restriction of ¢’ to VG. (3.2)-(3.4) imply that:

(3.5) o can be extended to EG UH so that: (i) for each e = xy € EG, o(e) is a path
in H of length I(e) connecting o(z) and o(y); and (ii) for F' € H, o(F) is a face
in H, o states a one-to-one correspondence between ‘H and Fp, and o brings the
boundary of F' to the boundary of o(F") (with preserving orientation clockwise);

(3.6) if P is an [-shortest path in G then the image by o of P is a shortest path in H.

[ A metric m on VG induced by (H,o) such that H is planar and bipartite,
|Fu| = 4, and (3.4)-(3.6) hold (with [ to be the restriction of m to EG) is called a
4f-metric; this notion will be used in Sections 4-6.]

We say that a subset ) # B C EH’ reduces a planar bipartite graph H' if
(3.7) distHl(s, t) = distp(s,t) + distpr _p(s,t)

holds for all {s,t} € W (Fg), where for A C EH’, dist 4(s,t) stands for the distance
between vertices s and ¢ in the graph H’ with length 1 for the edges in A and length 0
for the edges in EH' — A. We say that H' is primitive if (H', Fys, 1g/) is primitive, in
other words, there is no B reducing H'.

Obviously, the primitivity of (G,H,!) implies that for H as in Theorem 3.1. We
need a statement on a necessary and sufficient condition of the primitivity of H' in case
|Fr| = 4. We call a regular dual circuit in H' a minimal nonempty sequence

D = (Fo,e1, Fi,... ek, Fy)

such that: (i) Fy = Fy; (ii) F;—1 and F; are different faces and e; is a common edge in
bd(F;—1) and bd(F;); (iii) e; and e;41 are opposite edges in bd(F;) (letting ex41 := e1).
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A regular dual circuit will be considered up to reversing and/or cyclical shifting it.
Therefore D is determined uniquely by any its edge, and the set of regular dual circuits
give a partition of EH’. We say that a subset B C EH’ is symmetric if B is the union
of the edge-sets of some regular dual circuits.

Next, a vertex in H' of degree # 2 is called essential. Let R(H') denote the set of
non-trivial paths in H’ (considered up to reversing) whose end vertices and only them
are essential; these paths are called elementary.

Suppose that for some P = vgv; ... v in R(H’) one holds k = |P| > distH/(vo, V)
:= d. It is easy to see that the cut {vovi,v;v;41}, where i := (k 4 d)/2, reduces H'.
Hence, the graph H in Theorem 3.1 satisfies

(3.8) |P| = dist™ (s,t) for any s — ¢ path P € R(H).

In particular, from (3.8) it follows that

(3.9) If P, P’ € R(H) connect the same pair of vertices then |P| = |P’|.
Lemma 3.2. Let H be a two-connected bipartite planar graph with |Fy| = 4, and
let H satisfy (3.8). A set ) # B C E'H reduces H if and only if B is symmetric.

Hence, H is primitive if and only if all its edges belong to the same regular dual
circuit.

Fig. 3.1

Remark 3.3. The statement of the lemma does not remain, in general, true for
|Fr| = 5, as shown by the graph in Fig 3.1 (here {e, e/, u,u’} is a symmetric set for
which (3.7) is violated for some s, t.)

Proof of Lemma 3.2. Up to a homeomorphism of the sphere, H is of one of the
types Hy,...,H, drawn in Fig. 3.2.

One can check that for case |Fg| = 4 from (3.8) it follows that

(3.10) if 2,y are opposite vertices in bd(F), F € Fg, then dist” (z,y) = [bd(F)|/2, i.e.
each path in bd(F) connecting x and y is shortest.

Let B reduce H, and F' € Fy. Then, by (3.10), for any two opposite vertices x,y
in bd(F") the paths in bd(F") connecting = and y contain the same number of edges in
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B. Considering all such pairs {z,y} in bd(F') we conclude that e € bd(F') belongs to
B if and only if the edge ¢’ € bd(F') opposite to e does. Hence, B is symmetric.

Fig. 3.2

Conversely, we prove that a symmetric B satisfies (3.7) for all {s,t} € W(Fp).
This is easy to check when H ~ H; (H is homeomorphic to Hy); in this case all paths
connecting the pair of essential vertices have the same length, by (3.9).

Suppose that H ~ H,;. Let x1,...,x4 be the essential vertices as indicated in
Fig. 3.2b; denote by a; the distance between x; and x;11 (letting x5 := z1). Let for
definiteness a1 > a3. Consider two cases.

(i) a1 < ag + ag + a4. For i = 2,4 let P; be the elementary path connecting x;
and x;11. One can see that there are edges e € P, and €’ € P, that are opposite in the
boundary of each of two corresponding faces. Clearly the set E' := {e, e’} is symmetric
and reduces H.

(ii) a1 = ag + a3 + a4. Let E(x) denote the set of edges in H incident to z € VH.
One can check that the set E’ formed by the edges incident to x; or xy is symmetric
and reduces H.

In both cases, the graph arising as a result of contraction of E’ is homeomorphic to
one of Hy, Hy, H3. Therefore the result for H ~ H, will be implied by the proof below
for case H ~ H3. For cases H ~ H3 and H ~ H, the lemma will follow from a slightly
more general statement which will be also used later on (e.g., in the proof of Statement
3.6). We say that a graph K is a proto-graph of a planar graph H’ if K arises from
H’ as a result of a sequence of the following operations: choose two elementary paths
L, L' of the current graph H” such that they have the same ends, form the boundary
of some face and satisfy |L| = |L’|, and then remove one of L, L’ (i.e. delete its edges
and inner vertices from H").

Statement 3.4. Let H' be a two-connected bipartite planar graph satisfying (3.8),
and let B be a symmetric set in EH'. Let F' € Fy, let s,t be two vertices in bd(F),
let Ry, Ry be the s —t paths in bd(F), and let b := b(s,t) := min{|BN R;| : i =1,2}.
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Suppose that there is a proto-graph K of H' such that: (i) K contains bd(F'), (ii) each
essential vertex in K has degree three, (iii) the boundary of each face in K contains at
most three essential vertices, and (iv) if the boundary of some face of K is formed by
three elementary paths Zy,Zy, Z3 then |Z1| + |Z2| > |Z3|. Then |B N P| > b holds for
any s —t path P in H'.

This completes the proof of the lemma as follows. Consider vertices s,t in bd(F),
F € Fg, and the s—t paths Ry, Rs in bd(F'). It is easy to see that there is a proto-graph
K of H satisfying the hypotheses in Statement 3.4. Let for definiteness b(s,t) = |BNRy|.
Since B is symmetric, |Ri| < |Rz|; moreover, b’ := |B’ N Ry| < |B’ N Ry|, where
B’ := FH — B. Now applying Statement 3.4 to an arbitrary s —t path P in H we
conclude that distg(s,t) = b and distp/(s,t) = V', whence (3.7) (for H' = H) follows.

For a path P = vgvy ... v, and 0 <14 < j <k, P(v;v;) denotes the part of P from
v; to vj. If Q = 2921 ... 2, is a path with zg = v, then P - @ denotes the concatenated
path vouy ... vp21 ... 2p.

Proof of Statement 3.4. Let H = Hy, Hq, ..., H, = K be the sequence of graphs
such that H;;q is formed from H; by choosing paths L;, L} as in the definition of K
and then by removing L;.

Consider the sequence P = Py, P,..., Py, where P;;1 is an s — ¢t path (perhaps
not simple) in H;y1 such that P41 = P; if L; is not a part of P;, and P11 is formed
from P; by replacing L; by L, otherwise. Using the facts that |L;| = |L}| and that B is
symmetric for H’, by induction on 7 it is easy to show that:

(3.11) if for F' € Fpy,, bd(F’) is formed by two elementary paths Q,Q’ and |Q| < |Q’|
then |[BN Q| < |BNQ'|;

(3.12) if for F' € Fp,, bd(F’) is formed by three elementary paths @, Q’, Q" and |Q| <
Q[+ [Q"] then [BNQ| < [BNQ'|+[BNQ".

From (3.11) it follows that |[BNP;| = |[BN P| for all i. Next, the conditions (ii)-(iii)
on K imply that K is either a 6-graph or a circuit or K ~ Ky. Let P’ be a simple
s —t path in Pg; then |BN P’| < |BN Pg|. If P’ belongs to bd(F) then the statement
is obvious. If K is a f-graph, the statemets follows from (3.11). Otherwise K ~ K4
and P’ is of form Q1 - Q2 - Q3 - Q4, where Q2 is an x — y path, Q3 is an y — 2z path,
the vertices x, z belong to bd(F’), and y is the essential vertex not in bd(F'). Then the
statement follows from the condition (iv) and (3.12). oo

Remark 3.5. Statement 3.4 proves Lemma 3.2 for all cases of H’s, including
H =~ H, or Hy. Note that for case H ~ H, arguments in the proof of the lemma show
that H is not primitive. Also if H ~ H; then obviously H is not primitive unless all
paths connecting the essential vertices are of length 1 (in this case I(e’) < 1 for all
¢’ € EG). These facts will be used in what follows.
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Return to consideration (G, H,1),G’, H,o,0’ as above. Suppose that there is e =
xy € EG with l(e) > 4. The edge e corresponds to a path L. in H connecting the
vertices by := o(x) and by := o(y) (k =(e)). Note that e belongs to an [-shortest s —t
path in G with {s,t} € W(H) (for otherwise the function I’ on EG, defined by I'(e) := 2
and ['(e) := 0 for all ¢ € EG — {e}, obviously, satisfies (1.7) (i.e. I’ H-reduces I)).
Therefore, by (3.6),

(3.13) L. is a part of some shortest path Lin H connecting vertices in the boundary of
some its face.

Now we construct a graph H with |Fz| = 5 as follows. By the definition of G, e
corresponds to a path L' = vgv; ... v, in G’ consisting of & = [(e) edges. Split G’ along
L'. More precisely, we form the graph G” containing simple paths L1 = wugu; ... ug
and Ly = wowy ... wy so that: (i) ug = ux and wy = wy; (ii) Ly and Lo form the
boundary of a face F’ in G”; (iii) G’ is obtained from G” by identifying u; and w;
(which results in the vertex v;), i = 0,...,k, and by identifying the edges u;u;11 and
wiwit1, 1 =0,...,k—1 (so F’" disappears).

Such an operation naturally splits each tree Z(v;) (defined in (3.4)),i=1,...,k—1,
into two trees: the tree Z! containing u; and the tree Z! containing w;. Now H is
obtained from G” by shrinking each Z(v) for v € VG’ — {v1,...,vx_1}, by shrinking
each Z! and each Z!" and then by identifying parallel edges forming the boundaries of
intermediate faces.

One can see that H can be obtained directly from H by “splitting” the path L.
in two “parallel” paths L; (“right”) and Lo (“left”) that form the boundary of a new
intermediate face; denote it by F (see Fig. 3.3 for illustration). Let H := Fz — {F},
and let L, = boby ...by, L1 = xox1...x5 and Ly = You1 - - - Yk, where by = g = yo and
bk =T = Yk-

Fig. 3.3

It is not difficult to show that the primitiwity of (G, H,[) implies the primitivity
of (H,H). In essense, we show later on that if I(e) > 5 then (H,H) is not primitive.

Consider the regular dual circuit D = (Fp,eq, F1,...,e., F,) in H (it contains all
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edges of H, by Lemma 3.2). We say that an edge u = b;b;+1 € L. is right (left) if
u = e; and Fj_; lies on the right (left) from u (regarding u as oriented from b; to b;41).

In the further proof we shall consider a certain pair u,u’ of right (or left) edges in
L. and construct an auxiliary graph H' = H(u,u’) and a dual circuit D’ = D(u,u’)
(not necessarily regular) in it, as follows. Let for definiteness v = b;bj+1, v’ = b;bj41,
i < j, and both u,u’ are right. Then H’ arises from H by identifying the vertices x4
and yg for each d < ¢ and d > j + 1, and then by identifying appeared parallel edges.
Denote by A = A(u,u’) the set of faces in H' corresponding to the faces of H. For
definiteness one may assume that u = e,, v’ = e, and p < ¢. Then D’ is obtained from
the part (Fp,ept1,...,€q-1,Fy,eq) of D by:

(i) replacing e, by the sequence (x;xj41, F, yiVit1, Fp);

(ii) replacing es by the sequence (x4 y1, F, yryer1) if es = by, @ < t < j, and
es is right;

(iii) replacing es by the sequence (yiyi11, F,xixis1) if es = bebpy1, @ < t < j, and
e 1s left.

Let B = B(u,u’) be the set of edges in D', L} be the part L;(x;,z;) of L; and
LY := La(yi,y;). One can see that

(3.14) 0 # B C EH', |BNLy| =|BNL4|, and B is symmetric for every face F’ € A (i.e.
B’ := BN bd(F") is the union of some pairs of opposite edges).

We call a segment a maximal non-trivial part L in L. whose inner vertices are of
degree 2 (in H). Represent L. as Ly - Ly - ... Ly, where each L; is a segment.

Statement 3.6. Fach segment L; contains at most one right edge and at most one
left edge.

Proof. Suppose that L; contains edges u = b;b; 11 and u’ = b;b;;1 that are both right
(or left). One may assume that u,u’ are chosen so that |i — j| < 2. Then, obviously, B
is symmetric for all faces, inclyding F'. Consider the graph H' = H(u,u’) and the sets
B = B(u,u’) and A = A(u,u’). One can see that for each s,t € bd(F"), F’ € A, there
is a proto-graph of H’ which satisfies the hypotheses in Statement 3.4. Now from (3.14)
and Statement 3.4 it follows that (3.7) holds for all {s,t} € W(A), i.e. (H',A) is not
primitive. Define I’ on EG by I'(e) := |LN B| and I'(¢/) := |Le N B| for ¢’ € EG — {e},
where L is a path in H' corresponding to e, and L. is the path in H’ corresponding
to ¢/. Then I’ <1 and I’ # 0,1. Now from (3.6) and the constructions of H, H, H' one
can deduce that [” satisfies (1.7). Hence, (G, H, 1) is not primitive; a contradiction. e

From Statement 3.6 it follows that
(3.15) fori=1,...,d, |L;] <2, and if |L;| = 2 then L; contains one right edge and one

left edge.
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Now suppose that I(e) > 4. In view of Remark 3.5, it suffices to consider only
cases H ~ H3 and H ~ H,.

Let H ~ H3. Let x,y,z and P, ..., Py, L be the vertices and the paths as indicated
in Fig. 3.2c, and let a; := |P;|. Then a; = az, ag = a4 and |L| > |a; — as|. Consider
the vertex v in L such that a; +|L'| = az+|L"”|, where L' (L") is the part of L between
y and v (resp., z and v). One may assume that each P; has the first vertex at x and
that the first edge in P is right (with respect to D). Since all simple paths in H from
x to v have the same length, one can see that

(3.16) all edges in every simple = — v path are right.

Now using (3.15),(3.16) and the fact that L. is contained in a shortest s — ¢ path
for some {s,t} € W(Fg), a straightforward examination shows that the only possible
case is:

(317) a; =as > 3, |L| = 2, l(e) = 4, {y,Z} = {bl, bg}, and bo, b4 belong to either P1 UP4
or P2 Upg;

Fig. 3.4

see Fig. 3.4a. Thus, for H ~ Hs, l(e) > 5 is impossible. Moreover, one can see that
(3.18) if H ~ Hj and l(e) = 4 then (G, H,!) is not primitive.

Indeed, for u = bpb; and w' = bibs consider the graph H' = H(u,u’) and the
set B = B(u,u’), defined as above. Clearly B is a proper subset of FH’ and B is
symmetric. Using arguments as in the proof of Statement 3.4, one can deduce from
(3.17) that (3.7) holds for all {s,t} € W(Fp+). Thus, H' is not primitive, whence
(G,H,1) is not primitive as well.

Now we consider case H ~ H,. Let x; and F (i) (i = 0,...,3) be the essential
vertices and the faces in H, as shown in Fig. 3.2d. Denote by P;; the elementary path
in H from z; to x;.

Statement 3.7. Suppose that the paths P := P;;- P;, and P’ := P;; - Pj, are shortest
for some distinct i, j, p,q. Then:
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(i) there is a vertex v € P,, such that all simple paths from z; to v have the same
number of edges;

(ii) the edges of all paths from z; to v are simultaneously right or simultaneously
left (with respect to D).

Proof. By (3.8), |Pip| = |P|, |Pig| = |P’| and |Ppq| > ||P| — |P’||. This implies (i). (ii)
easily follows from (1i). o

Combining (3.15) and Statement 3.7 with the fact that L. is a part of a shortest
s —t path with {s,t} € W(Fg), one can deduce that

(3.19) if P;; - Pj, and P;; - Pj, are shortest for some distinct 4, j, p, ¢ then the only possible
case is: l(e) =4, |Ppy| =2, |Pip| = |Pig| > 3, {b1,b3} = {z}p, x4}, and by, by belong
to either Pip U Piq or Pjp U ij;

(see Fig. 3.4b). Hence, in case as in Statement 3.7, I(e) > 5 is impossible. Moreover,
in this case

(3.20) |Pjp| = |Pjq| > 2, and therefore, P,, coincides with b;b2bs.

Indeed, if |Pj,| = |Pjq| = 1 then the cut {u,u’, "} reduces H, where u is the first
edge in P;,, v’ is the edge in P;, and u” is the second edge in P,,.

In what follows we assume that no 7, j, p, ¢ as in Statement 3.7 exist.

Statement 3.8. There are no three essential consecutive vertices by, by41,bq42 In Le.

Proof.  Suppose that it is not so, and let for definiteness by, = o, bg+1 = =1, bg+2 = Z2.
Put a;; := |P;;|. Since apr = 1, |aps — a13] = 1 (as H is bipartite). We know
that Py; - P12 is shortest, so Py - P13 cannot be shortest, whence the case ag3 > a3
is impossible. Hence, a13 = ag3 + 1, and the path Pjg - Py3 is shortest. Similarly,
a13 = agz + 1, and the path Pjy - Pa3 is shortest. In addition, obviously |Pys| = 2.
These facts easily imply that if |Pys| > 1 then {ug, u1, ue, wo, wy, we, 21, 22} is a proper
symmetric set in H, where ug, uy,us are the first edges in Psq, P31, P32, respectively,
wo € Po1, wo € Poy1, 21,29 € Py and wy is the last edge in P3g; a contradiction. And
if |Py3| = 1 then L, cannot be shortest (even for |L.| > 3). )

In view of l(e) > 4, from Statements 3.6 and 3.8 it follows that there are two
consecutive segments L;, L; 1 in L, such that |L;| + |L; 1] > 3. Then there are edges
u = bgbgr1 and v = bybyy1 (¢ < ¢')in L; - L1 such that both u, v are right or both
u,u’ are left. Let u,u’ be chosen so that ¢’ — ¢ is as small as possible. One may assume
that both u, v’ are right, u € Py, v’ € Pi2 and byy1 = x1. Then either ¢ = ¢+ 1
or ¢ = g+ 2 (in the latter case the edge byy1by is left). Put y := by, v := by and
z:=byy1 (sov=u if ¢ =g+ 1). The following statement is key in the proof.
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Statement 3.9. At least one of the following paths is shortest: (i) P := Piy- Pyy; (ii)
P := Py, - P, where P is the part of Py, from x5 to v.

Proof. Form the graph H' = H(u,u’) and the set B = B(u,u’) as it was explained
before Statement 3.6. One may assume that H' is obtained from H by adding a vertex
v’ and edges yv’, v’z in case ¢ = g+ 1 or by adding vertices v’, 2’ and edges yv’, v'2’, 2’2
in case ¢’ = q + 2, see Fig 3.5. In case ¢’ = ¢+ 1 put 2/ :=v’.

Denote by @ the path yvz (resp., yr1vz), and by @’ the path yv'z (resp., yv'z'z);
let F' be the face in H' bounded by @ and @', and let A := Fy, — {F'}.

Fig. 3.5

The minimal choice of ¢’ — ¢ implies that B is symmetric (for all faces). Further-
more, B contains exactly one pair among {u,u} and {u’,u’'}, where w := za/, @' := yv';
one may assume that B contains {u’,u’'} (otherwise consider B := EH' — B instead of
B). In fact, we show that if the statement is false then B reduces (H',.A) (i.e. (3.7)
holds for all {s,t} € W(A)), which will imply that (G,H,1) is not primitive.

Suppose that for some I’ € A and s,t € bd(I’) there exists an s — ¢ path P in H’
such that |[BN P| < |[BN R;| or |[BNP| < |[BNR;| for i = 1,2, where Ry, Ry are the
s — t paths in bd(I’). Let, in addition, P be chosen so that: (i) |P| is minimum; (ii)
the number of edges in PNbd(I’) is maximum, subject to (i); and (iii) P separates the
minimum number of pairs of faces in Fg — {I’}, subject to (i),(ii).

From (i) it easily follows that P is simple, its ends are essential and no inner vertex
of P belongs to bd(I’). Next, there is no face F’ such that bd(F’') = M - R, where
R is a part of P, and either |M| < |R|, or |[M| = |R| and for the path P’ obtained
from P by replacing the part R by M the value as in (ii) becomes more, or the values
as in (i)-(ii) remain the same but the value in (iii) decreases. For otherwise we have
|IBNP'|<|BNP|and |BNP'| <|BnNP| (in view of |M| < |R| and the symmetry of
B), coming to a contradiction with condition (i),(ii) or (iii).

Let the faces in A be denoted as in Fig. 3.5. It is easy to see that in case I’ = F(i)
for i € {0, 1}, from said above it follows that P is contained in bd(F'(i)); a contradiction.
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Now suppose that I’ = F'(2). Notice that if P contains @’ then replacing it by Q
we would get a path P’ which contradicts to condition (ii) for P. Now from said above
we can conclude that the only possible case is: {s,t} = {xo,x1} and P (or the opposite
path) is Ppo - Po1. Let L be the simple z — 7 paths in bd(F') that contains zv, and
let L' be the other z — x; path in bd(F). Denote by P’ the path obtained from P by
replacing the part L by L'.

We have |L/| = |L|+2, |BNL'| = |BNL|land [BNL'| = |[BNL|+2 (as u,u
belong to B). Hence, |P'| = |P|+2, |BNP'| =|BNP|and |[BNP'| = |BNP|+2. On
the other hand, in view of the symmetry of B for F/(1) and the fact that |P| > | Pp|,
we have |P'| > |Po1| +2, [BN P'| > |BN Pyy| and |[BN P'| > |B N Py;|. Hence,
|B N P| > |BnN Py, therefore, by supposition on P, one must be [BN P| < |B N Py|.
Then, obviously, | BN Py;| = |[BN P’|. This means that the edge in bd(F (1)) opposite to
u = za' belongs to Py;. Then the length of the 2o — 2’ path in bd(F (1)) that contains
2 is at most [bd(F(1)|/2. This implies that |Pys- P| < |Po1|+ 1, whence it easily follows
that Pys - P is shortest.

Finally, let I’ = F(3). Then P = Pjo- Py2. Repeating arguments as in the previous
case we conclude that [BN P| > |BN Pja|, and that |BN P| < |BN Py3| is possible only
if PlO . P02 is shortest. o

In particular, Statement 3.9 enables us to establish the following fact (which, to-
gether with (3.18), will be important for the proof of Theorem 3.12):

(3.21) if H ~ Hy, the paths P;; - P;, and P;; - Pj, are shortest for some distinct 1, j,p, ¢
and [(e) = 4, then (G, H, 1) is not primitive.

Indeed, by (3.19), the edges u = byb; and u’ = byby are either both right or both
left. In view of (3.19)-(3.20), one can apply Statement 3.9 to H(u,u’) and B(u,u’).
Then at least one of the paths P, - Ppy, Psq - Pyp or Pps - Py is shortest, where r := i if
bo, by belong to P;, U Py, and r := j if they belong to P;, U Pj,. But this is impossible
since |Prp| = |Prq| and |Pps| + |Psq| > | Ppql = 2.

The following assertion strengthens Statement 3.8.

Statement 3.10. There do not exist two consecutive segments L; = b, ...b, and
Liy1 =by...b, in L. so that the vertices p and r are essential (in H ).

Proof. This immediately follows from Statement 3.8 if ¢ — p = r — ¢ = 1. Let for
definiteness b, = xg, by = 21, b, = 22 and r — ¢ = 2. Consider the edges u := by_1b,
(in L;) and v’ := bybyy1 (in L;y1) such that u,u’ are both right or both left. By
Statement 3.9, one of the paths Py - Pys or Pys - Pis shortest, where P is the part of
Py from b, = x5 to by. But this is impossible because the path b, ...b, = Py; - P12 is
also shortest. °

This statement implies that
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(3.22) the number d of segments in L. is two or three, and L. contains at most two
essential vertices.

Put a; :=|L;|,i=1,...,d. Consider case d =3. Let L1 =bgy...by, Ly = b, ...bq,
L3 =b,...b,. Without loss of generality one may assume that a; + az > 3, L; C Py,
Ly = Pyy; then b, = 1, by = o, and Ly C Py ; for i € {2,3}. Consider two cases.

Case 1. L3 C Pys, see Fig. 3.6a. Consider a shortest s — ¢ path L containing L.,
where {s,t} € bd(I'), I' € Fg. If L passes through x2 then we come to a contradiction
using arguments as in the proof of Statement 3.10. Hence, I’ = F(3), and L contains
Py - Poz. Then, in view of (3.21), the path Pyq - Pys is not shortest. Consider a path P
as in Statement 3.9 for corresponding w,u’ in L1 U Ly. Then: (i) either P = Py - Poy,
or (ii) P = Pyy - ﬁ, where P is the part of P from z to b,—1 (and then a; = 2), or
(iii) P = P - Py, where P is the part of Py from bp+1 to xo (and then ay = 2). As
Ly - Ly is shortest, cases (i),(ii) are impossible. In case (iii), consider the pair Lo, Ls.
Then as + a3 > 3, and now taking into account the fact that Pjg - Pys is shortest, we
get a contradiction using arguments as in the proof of Statement 3.10.

Fig. 3.6

Case 2. L3 C Pyo; see Fig. 3.6b. Aplying Statement 3.9 to Ly, Lo and to Lo, L3 (if
as + az > 3), and using the fact that L. is shortest one can show that only two cases
are possible:

(3.23) a3 = a3 =1, ag = 2 and the paths P- Py and P’- Pj5 are shortest, where P = bybs
and P’ = baby; or

(3.24) a1 =2, as = ag = 1, the path Py - Pys is shortest, and |Py| > 3.
Finally, consider case d = 2. Then a; < 2 implies a; = ay = 2. Let for definiteness,
L1 = bgb1bas C Psy, Ly = babsby C Pig, and the vertex by is not essential; see Fig. 3.6c.

From Statement 3.9 it follows that

(3.25) at least one of the following is true: (i) Pyo- Pp2 is shortest; (ii) Po- Pog is shortest;
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(iii) the paths P - Pyy and P’ - Py are shortest, where P is the part of Pjg from b3
to xg and P’ is the part of P from by to xs.

This completes the proof of Theorem 4. o o o

In fact, from the above proof one can obtain a stronger, in a sense, result, as
follows. For a planar graph G’ and a face F in it, a path P in G’ with both ends in
bd(F) is called an F-path.

Theorem 3.11. Let G’ be a planar graph, H' C Fg and |H'| = 4. Let m be a 4f-
metric on VG’ induced by (H, o) such that (G',H',m|gg+) is primitive and m(e) = 4
for some e € EG’'. Then:

(i) H =~ K4, the image by o of e is a shoﬁr;test path L., = byb1bob3by in H which belongs
to the boundary of a (unique) face J in H;

(ii) each shortest path in H connecting two vertices in bd(J)—{by, ba, b3} lies in bd(J);

(iii) suppose that there is I € Fry — {J} such that some shortest I-path in H contains
by and some shortest I-path contains by; then:

(a) no shortest I-path contains both by and by;

(b) ifb € {by,bs} is not in bd(I) and L is a shortest I-path containing b then L
separates J from K and O, where Fy ={I,J, K,0};

(¢) no shortest I-path contains an edge common for bd(K) and bd(O).

(We say that an I’-path L separates J' and K’ if they lie in different components
of the space R* — (I’ U L).)

Proof. (i) has been already proved (see (3.21),(3.18) and arguments in the proof of
Lemma 3.2 showing that H is homeomorpic to neither Hy nor Hs). (a) in (iii) can be
checked using (3.8)(3.21),(3.23)- (3.25), Statement 3.9 and the fact that L. is shortest
(a check-up is easy and we leave it to the reader). Let us prove (ii). By (3.21), there
are no distinct ¢, j, p, ¢ such that the paths P;; - P;, and F;; - P;, are shortest. We use
notations as in Fig. 3.2d and assume that the case as in one of (3.23)-(3.25) takes place.

Suppose that L is a shortest s — ¢ path in H such that s,t € bd(J) — {b1, b2, b3}

and that L has a vertex not in bd(J). Then L passes through z3. Three cases are
possible.

Case 1. L contains Py3- P31 - Ly (here Ly C P is the first segment in L.). Then no
shortest path can pass through x, x2,b; or through x1,xg, z2 (in these orders). Hence,
cases (3.24) and (3.25) are impossible. In case (3.23), |Po1| = 2 implies |Pps| = |Ps1| =
1. Since Pa3 - P31 cannot be shortest (by (3.21)), we have |Pa3| = |Pa1| + 1, hence the
paths Pog, Poy - P13 and Psg - Pys are shortest. Then the edges in Py, Pos, P13 together
with the first edges in Pyg, P21, P23 and the last edge in Ps3 form a proper symmetric
subset in FH; a contradiction.
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Case 2. L contains Pa3 - P31 - Lo (Lo is the second segment in L.). By arguments
as in the previous case, d = 3. Then xy = b3, whence L connects vertices in Pyo — {xo}.
So P2 is not shortest; a contradiction with (3.8).

Case 3. L contains Py3 - P33. Then d = 2 (otherwise L would connect vertices in
Pos — {xo}). If P- Pyy and P’ - Py are shortest (see (3.25)), then from |P|+ |Ppa| <
|Pio| + 1 and |P’| + | Py| < |Pio| 4+ 1 it follows that |Pye| < 2. Hence, without loss of
generality it suffices to consider two cases: (i) |Pio| = |Pi2| =: k and |Py2| = 2; and (ii)
Pjg - Py is shortest.

In case (i), the fact that Pys - P52 is shortest implies that |Pys| = |Ps2| = 1. Then
|P13| = k + 1 (otherwise Py - P3; and Pa3 - P31 would be shortest, contrary to (3.21)).
By arguments as in Case 1, there is a proper symmetric subset in £ H; a contradiction.

In case (ii), considering L and Pjo - Pyo we get that the path Pyg - Pps - Psg is
shortest. Hence, we have two shortest paths Pig - Pps and Pig - Pp2; a contradiction
with (3.21).

Thus, (ii) is true. Now we prove (iii)(b). Let L and b be as in (iii)(b). First of
all we observe that L does not contain Py; - Pjo (otherwise none of the paishs poigted
out in (3.23)-(3.25) could be shortest). Suppose that L does not separate J from K or

from O. We first eliminate some cases for L.

Case J. L contains Pjs - Po3. Then Py - Pog is not shortest (by (3.21)). If Pig - Py
is shortest, we get a contradiction as in Case 3(ii). Thus, two cases are possible.

(i) The case as in (3.23). If I = F(0) then L must contain Py;; a contradiction
as in Case 3(ii). If I = F(2) then the path passing through by € Pyy contains either
Pys - Pay or Py - Pa3; a contradiction with (3.21).

(ii) d = 2, the paths P - Pys and P’ - Py are shortest and |Pyg| = |Pi2| =: k (see
(3.25)). Then |Pyz| = 2. Put r := |Pas|; then | P3| = k 4 r. Considering Py3, P2 and
Ps3 we observe that ||Pys| — 7| is an even < 2 (by (3.8)), and considering Py, Po1, P13
we see that |Pys| > r (by (3.8) for Pi3). If |Pys| = r 4+ 2 then Pys - Pa3 is shortest; a
contradiction with (3.21). If | Py3| = r then the edges in Pys together with the first edges
in Pig, P12, P3g, P32 and the first first and last edges in P;3 form a proper symmetric
set; a contradiction.

Case 5. L contain:iPw - Py3. If d = 2, the proof as in Case 4. Let d = 3. Since L
passes through b ¢ bd(I), it must contain Pjo; a contradiction as in Case 3(ii).

Case 6. L contains Psg - 603. This case arises only when L passes through by (since
if L passes through by ¢ bd(I) then L contains Pjs; a contradiction as in Case 3(ii)).
From (3.23)- (3.25) it follows that |Pp1| < 2. In addition, Pig - Py is not shortest (by
(3.21)).

(i) The case as in (3.23). Then our case is similar to Case 4(i).
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(ii) The case as in (3.25). From the facts that |Pp1| = 2 (since by = z) and that
L. is shortest it follows that the only possible case is when Pjq - P is shortest (in view
of (3.25)). A contradiction with (3.21).

Case 7. L contains Pyo - Po3. Clearly only I=F (2) is possible. Tllen there is a

shortest path L’ containing Pys - Pag or Py - Pag (as by is neither in bd(I) nor in L); a
contradiction with (3.21).

Thus, L contains either Py - Ps; (and then I = F(2)) or Pig - Pys (and then
I = F(3)). This proves (b) in (iii). Finally, if Py - Py; C L then, by (3.21), neither
Py - Po3 nor Pyy - Pyg are shortest. Hence, no shortest F'(2)-path contains an edge in
bd(F'(3)) Nbd(F(0)). Similarly, if Pig- Py2 C L then no shortest F'(3)-path has an edge
in bd(F(2)) N bd(F(0)).

The proof of Theorem 3.11 is complete. °

Theorems 3,4 and 3.11 give the following consequence.

Corollary 3.12. Let |[H|=4,c: EG — Ry, d: U — Ry, and let the problem (c,d)
have no solution. Suppose that ¢(m’) > d(m’) holds for all cut- and 2,3-metrics m' on
VG. Then there exists a 4f-metric m on VG induced by (H, o) such that ¢(m) < d(m)
holds and m(e) < 4 for all e € EG. Moreover, m can be chosen so that if for some
e € EG one holds m(e) = 4 then m satisfies the properties (i)-(iii) in Theorem 3.11.

Fig. 3.7

Remark. A primitive triple (G, H,[) with |H| = 4 and l(e) = 4 for some e € EG
does exists, as shown in Fig. 3.7. Here H = {I, J, K, O} and the numbers on the edges
indicate the values of [ on them.

4. PROOF OF THEOREM 1. EXCLUSION OF |B| =2

We use some ideas of the proof of Theorem 2 in [Ka2]. Without loss of generality
one may assume that: G is connected; all s1,...,s,,t1,...,t,. are distinct and of valency
1 (since for each i one can add new vertices s}, t; and edges {s}, s;},{t},t;} to G and

consider the pairs {s},t;} instead of {s;,t;}). Let T := {s1,..., Sy, t1,...,t,}. Also one
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may assume that each inner vertex x (i.e. z € VG —T) is of valency 2 or 4 (otherwise
one can repeatedly transform G at x as shown in Fig. 4.1; obviously, this does not
change, in essense, our problem).

Fig. 4.1

Supposing that Theorem 1 is not true, we consider a counterexample with |EG]|
as small as possible. Then G has neither loops nor inner vertices of valency 2.

For z € VG let E(x) denote the set of edges of G incident to x and ordered
clockwise in the plane. Consider z € VG — T and two consecutive edges e, e’ € E(x).
The triple 7 = (e, x,€’) is called a fork. Denote by G, the graph obtained from G by
adding a new edge (or a loop) e, connecting the ends of the edges e and ¢’ different
from x. Define the function w, on EG, by

wr(u):=1 for u=e,é€,
=—-1 for u=e,,

=0 otherwise.

For 0 < e <1, let ¢, denote the function on EG, taking the value 1 — ¢ on e and €/,
e on e,, and 1 on the edges in EG — {e,e’}. We say that ¢ is feasible if the problem
(¢r.e,d) has a solution. In particular, e = 0 is feasible. The maximum feasible ¢ <1 is
denoted by «(7).

Suppose that there is a fork 7 = (e, x,€e’) with a(r) = 1. Then one can split off
e, e at x preserving solvability of the problem. More precisely, let G’ arise from G by
deleting e,e’ and adding e,. Since |EG’| = |[EG| — 1 and (G',U)* is solvable, it has
a half-integral solution; this easily implies that (G,U)* has a half-integral solution as
well.

Thus, a(7) < 1 for all forks 7 in G. Consider a fork 7 = (e, z,€’); let y (z) be the
end of e (¢') different from x. For a(7) < e <1 the problem (¢, ., d) has no solution,
therefore, there is a metric m on VG for which

(4.1) ¢re(m) —d(m) < 0.

Moreover, by Theorem 3 one can choose m which is either a cut metric or a 2,3-metric
or a 4f-metric on VG, = VG. Define w,(m) := m(e) + m(e’) — m(e;); then w(m) >0
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(since m is a metric). Clearly ¢, .(m) = ¢(m) —w,(m), and now c(m) > d(m) (as (c,d)
is solvable) implies that w,(m) > 0. Thus, the following is true.

Statement 4.1. «(7) can be determined as
(12) a(r) = min{(c(m) — d(m)) fuwr ()},

where the minimum is taken over all cut-, 2,3-, and 4f-metrics m for which w(m) > 0.

A metric m that achives the minimum in (4.2) is called critical for 7.

Statement 4.2. For any cut-, 2,3- or 4f-metric m the values c¢(m) — d(m) and w.(m)
are even.

Proof.  Since such a metric is induced by a bipartite graph, and w,(m) = > (m(u) :
u € C) (mod2), where C' is the circuit formed by the edges e, €', e, the value w,(m) is
even. Next, the graph (VG, EGUU) is eulerian, therefore it is represented as the union
of pairwise edge-disjoint circuits Cq,...,Ck. For each i the value > (m(u) : u € C;)
is even, and ¢(m) — d(m) = Zle d(m(u) : u € C;) (mod2). Hence, ¢(m) — d(m) is

even. °

Notice that for any v € EG one has: m(u) < 1 if m is a cut metric; m(u) <2 if m
is a 2,3-metric; and, by Theorem 4, m(u) < 4 if m is a 4f-metric. Hence,
(4.3) wr(m) € {0,2} if m is a cut metric;
€ {0,2,4} if m is a 2,3-metric;
€ {0,2,4,6,8} if m is a 4f-metric.

Summing up (4.3) and Statements 4.1 and 4.2, we get the following.

Statement 4.3. Let 0 < a(7) < 1, and let m be a metric critical for 7. Then:
(i) m is not a cut metric;
(ii) if m is a 2,3-metric then (1) = 1/2 (cf. [Ka2]);

(iii) if m is a 4f-metric then o(7) € {1,1,3,%,3}, and in case () = 3/4 the

equalities m(e) = m(e’) = 4 and m(y, z) = 0 hold. o

The case a(7) = 3/4 will be of most interest for us in what follows.

Now we continue considerations begun in Section 2. Let us fix f and B as in
(2.5), and let hp, F' € B, be functions satisfying the properties as in Lemma 2.2 and
Statement 2.3. In view of Statements 2.1 and 2.4, one may assume that

(4.4) for any F' € B the circuit C'r has at least one edge common with C'rs for some
F' € B—{F}, and hp is not equal identically to 1/2 on Cp.
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Following [Ka2], introduce the value 3(7) which, as we shall see later, gives a lower
bound for a(r):

1 & 1 e' 1 e, u eu' e'u e'u'
SIO— 50 (El=gU o 1+ 1),

Br) =14 fo
where E(x) = (e, €/, u,u'), and for a pair e”,u” of edges, f¢ " denotes S(f(L) : L e
L, v € L). By symmetry,

(4.5) Ble,z,e') = Bu,z,u).

Statement 4.4 [Ka2]. (1) < (7).

Proof. Let for definiteness f¢ > f¢. Define the capacity function ¢ on EG, as:
d(e) = fe— fo d(e) = f¢ — fo; ¢(ey) =1+ fo¢ — f¢ and ¢ (w) := ¢(w) for
the other edges w. It is easy to see that (¢’,d) has a solution. Now put ¢’ := c; ()
and ¢ := (f¢ — f¢)/2. A straightforward check-up shows that ¢’(w) — ¢ (w) is equal
to € for w = €’,e,; —e for w = ¢e; and 0 for the other w € EG,. Since € > 0, the
solvability for (¢, d) implies that for (¢, d). Hence a(1) > ((7). .

Remark 4.5. Statements 4.3 and 4.4 imply that if 3(7) = 3/4 holds for a fork 7
then a(7) = (7). Moreover, from the proof of Statement 4.4 one can see that in this
case f can be easily transformed locally, “within the edges e, e’,e;”, to give a solution
[ for (c; 3/4,d). More precisely, let f¢ > f€ and Pe L. Ifed P, put f/(P):= f(P).
If e,/ € P then P is transformed into P’ with f'(P’) := f(P) by replacing e, e’ by
the edge e,. If e € P # € then put f/(P) := f(P)(3f°+ %fe/ — fe’el)/(fe — foc)
and form a new path P’ from P by replacing e by the edges €', e,, for which one puts
FI(P) = f(P)(3fe—LF)/(f— fo¢"). One can check that f’ is (c, /4, d)-admissible
and gives a solution for (c;3/4,d). Note also that if m is critical for 7 then m is a
4f-metric, by Statement 4.3. Moreover, c;3/4(m) = d(m) and the fact that f’ is a
solution for (c; 3/4,d) imply that

(4.6) each edge w € EG, with m(w) > 0 is saturated by f' (i.e. (f')" = ¢;3/4(w)) and
every path P € L(f’) is shortest for m.

Return to consideration of the bunch B as above.

Statement 4.6.

(i) If e is a common edge for Cr and Cg: (F,F' € B) and hp(e) = hg:/(e) = 0
then (G,U)* has a half-integral solution.

(ii) If e, e’ are two edges incident to a vertex x, and if e € Cp and € € Cp/ for
distinct F, F' € B and hp(e) = hp/(e) =0, then (G,U)* has a half-integral solution.-
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Proof. (i) By (2.2), e is a common edge in the boundaries of F' and F’. Delete e from
G, forming G’; as a result, the holes F' and F’ merge into one face. Clearly f gives a
solution for (G’,U)*. Since the number of holes for G’, U is three then, by Theorem 2,
(G',U)* has a half-integral solution (not necessarily an integral one because the graph
(VG', EG' UU) is not eulerian). This implies (i).

(ii) By (2.2), e € bd(F) and € € bd(F’). Obviously, G can be splitted at z in
such a way that the holes F' and F’ merge into one face of the resulting graph G’, and
f gives a solution for (G',U)*. Now we apply arguments as in the proof of (i). .

Thus, the situation as in the hypotheses of Statement 4.4 cannot occur. The
following statement of topologic character will play important role as being a tool that
will be often used in what follows. Its proof appeals to (3.6),(4.6) and simple topological
observations, and we leave it to the reader.

Statement 4.7. Let [’ be a solution for some G’,c’,d’, and let B be a bunch for f’
(assuming that f’ is non-crossing). Let m’ be a 4f-metric on VG’ induced by o : VG’ —
V H such that ¢'(m') = d'(m’). Next, let Crp = (vg,e1,v1,...,€k, V) be a circuit in
C(B), and let C be its image (in the sense of (3.5)) in H. Then C' is a simple circuit,
and C separates holes F', F" € H if and only if C' separates the corresponding faces
o(F"),oc(F") in H. o

Lemmas 4.8 and 4.9 bellow will be key in this section. Obviously, one may assume
that

1 —e
(4.7) hr(e) = 5(2fﬂ forany ec Cp,F € B

(f was defined before Lemma 2.2). For a vertex z in Cp (F € B) let Ep(z) denote
the set of edges incident to x and contained in ¥p — Cg (then |Er(x)| < 2).

Lemma 4.8. Let L be a maximal path in Cr N Cg: (F,F' € B). Then either
hp(e) = hpi(e) = 1/2 for all e € L, or hp(e) = 0 and hp:/(e) > 0 for all e € L, or
hp(e) =0 and hp(e) > 0 for all e € L.

Proof. Let each of hrp and hp/ be not equal to zero identically on L. One must prove
that hp(e) = hp/(e) = 1/2 for all e € L. Suppose this is not so. Then for some
F" € {F,F'} there is a pair e, e’ of consecutive edges in L such that hp~(e) # 0 =
hpi(€'); let for definiteness F” = F. By Statement 4.6, hps(e) # 0 # hp/(e’), hence
hp(e) = hp(e) = 1/2 and hp/(e') € {5,1}. Let = be a vertex incident to e and €.
Since hp(e) # hr(e'), Ep(x) # 0 (in view of (4.7)). Consider two possible cases.

Case 1. |Ep(x)| = 1. Let for definiteness F' = I, F' = J, E(x) = (e,u,€e’,u’)
and E;(z) = {u}; see Fig. 4.2. Clearly f“¢ = fuv’ = 0. Also f&¢ + fou < 1/2
(as any path in £(f) passing through e and some of €/, u’ concerns the flow £, and

the total amount of flow over these paths is at most hy(e) = 1/2). Hence, for the fork
T = (e,x,u) one has a(r) = B(7) = 3/4.

29



Consider the solution f’ for G+, c, 3,4, U obtained from f as in Remark 4.5 (for
T = (e,x,u)), and a 4f-metric m critical for 7. By Statement 4.3(iii), m(e) = m(u) = 4
and m(y,z) = 0, where y (z) is the end of e (u) different of x. One may assume
that m is induced by a mapping o : VG, — VH as in Theorem 3.11, and o(x) = by,
o(y) = o(z) = by. We observe that there is a path in £;(f’) passing through = and
y. Hence, by (4.6) and (i),(iii)(a) in Theorem 3.11, ¢(J) = J. On the other hand,
¢ € bd(I) (as f§ < hi(e’) = 0), whence u = zz € bd(I) (as u lies in ¥; and u, e’
are consecutive in F(x)). This implies that by = o(z) and by = o(x) belong to the
boundary of o(I) in H. Hence, by, by belong to a shortest o(I)-path; a contradiction
with (iii)(a) in Theorem 3.11.

Fig. 4.2

Case 2. |Ep(x)| = 2. Let for definiteness F' = J, F/ = I, E(x) = (e,u,u’,€’); then
Ej(x) = {u,u'}; see Fig. 4.3a. Since Fj(x) is empty, hy(e) = hr(e’) = 1/2 (in view
of (4.7)). We observe that 3(r) = 3/4 for 7 = (e, x,¢’) (since f¢* = f¢v =0 and
feru 4 e < hyle) =1/2).

Fig. 4.3

Consider the solution f’ for Gr,c;3/4,U as in Remark 4.5, and a 4f-metric m
critical for 7. By Statement 4.3(iii), m(e) = m(e’) = 4 and m(y,z) = 0, where y
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(z) is the end of e (¢’) different of . One may assume that m is induced by o :
VG, — VH as in Theorem 3.11, and that o(x) = by, o(y) = o(z) = bg. One can
see that (f')S = (f’)f}/ > 0 (taking into account that h;(e) = 1/2, hy(e’) = 0 and
cr3/a(e) = cr3/4(e") = 1/4), whence o(.J) coincides with J as in Theorem 3.11. Next,
since (f')5" > 0 (as hy(e) = hr(e) = 1/2), by belongs to a shortest o(I)-path in H.
However, in contrast to the previous case, we cannot assert that both by, bs belong
to a shortest o(I)-path. To this reason, we need additional arguments that rely on

Statement 4.7.

One may assume that m(w) < 1 for each w € EG,—{e, €'} (for if m(w) =k > 1 for
some w then one can subdivide w into k£ edges in series, each of m-length 1, accordingly
defining f’ and o for the resulting graph).

Form the circuit C’ in G, corresponding to C; in G; clearly C”; is obtained from
Cj be replacing e, e’ by e,. Put X := 01(by) and Y := 0~ 1(bg). Apply Statement 4.7
to Gr,cr3/4,d, f and C';. Tt follows from (ii) in Theorem 3.11 that the image C' in H
of C’; is the circuit forming the boundary of J. Therefore, by Statement 4.7, the closed
region ¥, bounded by C’; and containing J does not contain any other hole. Let G be
the subgraph of G, lying in ¥/,.

By the property (3.4) of a 4f-metric, one can span X by a tree Tx whose edges are
embedded (with preserving planarity) in intermediate faces of G.. As Tx connects J
with another hole, X meets C’; in some vertex 2. Moreover, some vertex v € bd(J)NX
is connected with x by a path L and connected with x’ by a path L’ such that L, L’ lie
in Ty NG.

Consider the region @ C ¥/, that contains no hole and is bounded by L, L’ and
the part D of Cj from x to 2’; see Fig 4.3b. Next, consider two consecutive vertices
p,q in D — {z} such that p € Y # ¢q. Then m(p,q) = 1; let b := o(q). We observe that
be {by,...,bs}. Indeed, the set Q := c~!(b) N VG can be spanned by a tree T’ of new
edges lying in ¥/, and intersecting neither edges of G, nor vertices in X UY. Hence,
TcQ—{L,L'}. But b ¢ {b,...,bs} would imply that ) contains a vertex in bd(J);
a contradiction.

Thus, b = by (since o(p) = by and m(p,q) = 1). Obviously, the edge w = pg cannot
belong to bd(J), whence (f")} > 0. Choose a J-path P = 2g...2, in G, such that
f'(P) >0, z; =q, zit1 = p, and let P’ be its part from ¢ to z,. Since by, by, by cannot
occur (in this order) in any shortest path in H, P’ must pass through the edge e,.
On the other hand, from the construction of f’ (see Remark (4.5)) and the facts that
hj(e) =1/2 and h; (e’) = 0 it follows that any path in £;(f’) containing e, traverses
e or €. This again implies that P is not shortest for m; a contradiction. °

Lemma 4.9. Let F,F’ € B, and let P = (vg,e1,v1,...,e,,vx) and P = (v{, e}, v},

., €y, Vy) be paths (possibly circuits) in Cr and Crr, respectively, such that vy = vy,
e1 = e, ez # ey and v, = v,. Let hr(e1) = hp/(e1) = 1/2. Let the region bounded
by P and P’ (outside ¥ and V) contain no hole. Then (G,U)* has a half-integral
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solution.

Proof. Put e := ey, x := vy, € 1= ey, u/ := €}. Since e, e’,u’ are distinct, |Ep(x)| +

|Ep (x)] < 1. Therefore, one may assume that Ep(z) = (). Let for definiteness F' = I
and F' = J. We observe that hy(e’) = hy(e) = 1/2, that f¢-* + f¢»" = 0 (taking into

account that fe/ = ?; and f“/ = 71} since there is no hole between P and P’), and
that fo%+ feu" < hy(e) = 1/2, where {u} := E(x) — {e,e’,u'}. Hence, 3(1) = 3/4 for
7 = (e,z,€’). Let f’ be the solution for Gr,c;3/4,U as in Remark 4.5, and let m be
a 4f-metric critical for 7 and induced by o : VG, — V H as in Theorem 3.11. Let for
definiteness o(z) = by and o(y) = o(z) = by, where y (z) is the end of e (¢’) different
of x, see Fig. 4.4.

Fig. 4.4

One can see that (f')9,(f')5 > 0 and that the corresponding circuit C} for f’ is
formed from C; by replacing e, e’ by e,, while C’; is formed from C; by replacing e by
e¢’,e,;. Hence, by (i),(iii)(a) in Theorem 3.11, o(J) = J. By (ii) in Theorem 3.11, the

image C' of C:L is the circuit in H forming the boundary of J. In addition, by belongs
to a shortest I-path, where I := o(I) (since y € C7).

Hence, by belongs to a shortest I-path. By (iii)(a) in Theorem 3.11, some b €
{bo, by} is not in bd(I). Let w € {2/, y} be the vertex such that o(w) = b. Since o—(b)
does not meet bd([), and w is in C7, there is an I-path @ in G, passing through w and
such that f/(Q) > 0. Hence, the image L of @) is a shortest I-path in H. Moreover, L
separates J from K and O (by (iii)(b) in Theorem 3.11), whence Fy = {I,.J, K,O}.
In view of Statement 4.7, this means that C} (and hence Cy too) separates J from K
and O, whence we conclude that |B| = 2, |H;| = 3 and |H ;| = 1. On the other hand,
(iii)(c) in Theorem 3.11 implies that Crx does not separate K and O. Hence, there is
a bunch B’ for f such that either |B’| =3, or |B’| =2 and {|HFp| : F € B'} = {2,2}.
A contradiction with the choice of B in (2.5).

Statement 4.10. Let F' € B and let {P,,..., Py} be the set of all maximal nontrivial
paths in Cr such that for i =1,...,k, P; is a part of Cp; for some F(i) € B — {F}.
Let either hp(e) = 0 for all e € P; or hp;y(e) =0 for alle € P, i = 1,...,k. Then
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(G,U)* has a half-integral solution.

Proof. Let N be the set of i € {1,...,k} for which hp(e) = 0 for all e € P;. Define
capacities ¢’ on EGF by

d(e):=0 if ee P, and i€ N,

;=1  otherwise,

and define capacities ¢’ on EG — (EGp — Cp) by

d'(e):=0 if eec P, and i € N,

=1 otherwise.

Then c(e) + ¢’(e) < 1 for each e € Cp. Since ¢ is integral, and |Hp| < 3, the
problem for ¢/ and Up has a half-integral solution, and similarly for ¢ and U — Up,
whence the result follows. °

Now Lemmas 4.8, 4.9 and Statement 4.10 enable us to exclude case |B| = 2, as
follows. Let for definiteness B = {I,J}, and let {Py,..., Py} be the set of maximal
nontrivial paths in C; N C';. The result follows immediately from Lemmas 4.8 and 4.9
if for some i one has cy(e) = cy(e) = 1/2 for e € P;. Otherwise, by Lemma 4.8, there
is N C{1,...,k} such that: if i € N then c;(e) =0 for all e € P; , and if i ¢ N then
cy(e) =0 for all e € P;. In this case the result follows from the Statement 4.10.

5. EXCLUSION OF |B| =4

We assume that |B| > 3. First of all we state several statements which will be
used for both cases |B| =4 and |B| = 3 (the latter is considered in the next section).

Lemma 5.1. Let F,F’, F" € B, and let e,u be two consecutive edge in Cr such that
e € Cpr and u € Cpr. Let x be a common vertex for e,u, and let ¢’ (u') be the edge
in Cpr (Cpr) incident to x and different of e (u). Then:

(i) hp(e) = hpi(e) = hp(u) = hpo(u) = 1/2;

(ii) if either |B| = 3, or |B| = 4 and z does not belong to C%, where {F} =
B —{F,F',F"}, then ¢ = (and therefore, hp:(e') = hpr(e') =1/2).
Proof. Suppose that (i) is false. Let for definiteness FF = I, F/ = J, F" = K.
By Statement 4.6, among hj(e),hr(u),hy(e),hj(€e'), hx(u), hx(u') there are no zero
numbers hq(q), hq/(¢') for @ # Q'. In particular, it is impossible that hr(e) = h(u) =
1 (as then hj(e) = hx(u) = 0), or hy(e) = 0 and hy(u) = 1 (as then hx(u) = 0).
Consider possible cases (we omit symmetric cases).

(a) hr(e) = hr(u) = 0. If € # ' then B(7) = 1 for 7 = (e, z,€’) (as, obviously,

fou = feu’ = pelu — geu’ — () Hence, ¢/ = u'. Let for definiteness E;(z) = 0.
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Since hy(e’) # 0 and hg(e') # 0, we have hj(e’) = hi(e’) = 1/2. This implies that
hj(e) =1/2 and B(7) = 3/4 for 7 = (e, x,€’). Let f’ be the solution for G+, ¢, 3,4,U as
in Remark 4.5, and let m be a 4f-metric critical for 7 and induced by ¢ : VG, — V H as
in Theorem 3.11. Then {o(z),0(y) = o(2)} = {bo, bs}, where y (z) be the end of e (¢’)
different of z. Since x,y € bd(I), o(I) = J (by (i),(iii)(a) in Theorem 3.11). On the
other hand, from construction of f’ and the facts that 1 = fe/ > f¢=1/2 and ff}/ >0
it follows that there exists a K-path P in G, containing e and such that f'(P) > 0.
Hence, the image of P is a shortest o(K)-path in H containing by, by; a contradiction
with (iii)(a) in Theorem 3.11.

(b) hy(e) = 1/2 and hy(u) = 0. Then |E;(z)| = 1; let Er(x) = {e"}. It is easy
to see that 3(r) = 3/4 for 7 = (e, x,€e”). A contradiction is shown similarly to as it is
done in Case 1 in the proof of Lemma 4.8.

(c) hy(e) =1 and hy(u) = 1/2. Then |E;(x)| = 1, whence ¢/ = /. Moreover, from
the facts that hr(e) =1 and E;(x) = 0 it follows that h;(e) = hs(e’) = 0. Hence, this
case is similar to (a).

(d) hr(e) = hr(u) =1/2 and hy(e) = 0. If Er(z) # 0 then E;(x) =0, ¢/ =’ and
hj(e') = 0; so this case is similar to (a). Let Er(z) = (). From h;(e) = 0 it follows that
B(1) = 3/4 for 7 = (e, x,u); further arguments are similar to those applied in case (a)
(for I instead of .J).

To prove (ii), suppose, for converse, that € # «’, and consider the fork 7 = (e, z, €’).
From (i) and the hypothesis in (ii) it easily follows that 5(7) = 3/4. Now a contradiction
is shown similarly to as it is done in Case 1 in the proof of Lemma 4.8. °

The following statement strengthens Statement 2.3 in case |Hp| = 1.

Statement 5.2. Let F € B and |Hp| = 1. Then each edge e € Cr belongs to a tight
cut for C;F7 hF, dF

Proof. In view of Statement 2.3, it suffices to consider e € Cr with hp(e) = 0. Then
e € bd(F'). Suppose that the statement for e is wrong. Then

(5.1) hp(X)—dp(X) > for any X CVGp

N | =

(W (X) and d'(X) are defined as in the proof of Lemma 2.2)). Let x and y be the
ends of e. Add to U one more demand pair w = {x,y} for which we put demand
dp(w) = 1/2. In view of (5.1), from Okamura’s theorem it follows that the problem
(hp,d") (where d’' denotes the demand function on Ur U {w}) has a solution f’. Let L
be a path with f/(L) > 0 connecting x and y. Taking into account that e € bd(F)NCp,
one can see that every cut 6X which meets both bd(F') and C'r must have a common
edge with L, therefore hp(X) > dp(X). This implies that no edge in Cr belongs to a
tight cut for hp and dp, whence, by Statement 2.3, hp(e’) = 0 for all ¢’ € Cp. Then,
obviously, (G,U)* has a half-integral solution. .
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We call a 1/2-segment for F' € B a maximal non-trivial path P in C'r with hp(e) =
1/2 for all e € P; let wp denote the number of 1/2-segments in Cr. A cut §X in Gp
is called simple if the subgraphs of G induced by X and VGg — X are connected. If
dX is simple then, obviously, [6X Nbd(F")| € {0,2} for every face F’ in Gp. Clearly if
0X' is tight (for Gp,hp,Up) then X' = §X; U...UdX}y, where each 6X; is a simple
tight cut. In what follows by a cut we shall always mean a simple cut.

Consider some F' with |[Hg| = 1. The following lemma plays important role in the
proof.

Lemma 5.3.

(i) For Gg,hp,Up each tight cut meets each 1/2-segment in Cr at most in one
edge.

(il) wp is even.

(iii) If Sp, S1,...,S2k—1 are the 1/2-segments occurring in this order in Cr then
every tight cut meeting some S; meets S;, (indices are taken modulo 2k).

Proof. Let for definiteness F' = I. Consider a tight cut 6X with |0X N Cy| = 2; let
{e,e’} = 6X N Cy. This cut can be naturally associated with the dual curcuit (or the
circuit of the dual graph) Dx = (Fy, e, FY,. .., e, Fy) for which Fy = F), = ﬁ, e1=e€
and e, = €/, where F is the face in Gr bounded by Cg. Let F; = I. We define a
partition Dy into two dual paths:

Dx(e) := (Fo,e1,...,F;) and  Dx(e'):= (F,eiq1,..., Fr).
Since d;(X) is an integer and hy(e;) is an integer for j = 2,...,k — 1, we have
(5.2) either hr(e),hr(e') € 5 or hy(e), hi(e’) € {0,1}.
First of all we prove two claims.

Claim 1. Let 6X,dY be two tight cuts such that X NCy = {u,u'}, Y NC = {z,2'},
hi(u),hi(W') € 3 and hy(z), hi(z') € {0,1}. Then Dx and Dy have no common faces

except I and F.

Proof. Consider the dual paths Dx(u), Dx(u') in Dx = (Fp,e1, Fi,..., ek, F) and
the dual paths Dy (z), Dy (') in Dy = (Fy, ey, Fi,... €., F],). Suppose, e.g., that
Dx(u) = (Fo,e1,...,e5,F;) and D(z) = (Fy,ei, ..., e F},) have a common face F; =
F!, different from I and F. Put By :={eq,. .. 1€y €51y e ey €p }and By = {ef,... e},
€j4+1,-- -, €k} It is not difficult to show that there are tight cuts 0.X’ C Ey and 6Y’ C Ej
such that 60X’ contains e; = w and e}, = 2/, while 6Y’ contains €] = z and e = u’.
Since hj(u) = 1/2 and h;(z’) € {0,1}, we get a contradiction with (5.2) (for 6.X’,
e:=u, e =2"). o

Claim 2. Let §X,0Y,u,u,z,2" be as in the hypotheses in Claim 1. Then the pairs
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{u,u'} and {z, 2’} are crossing in C (that is, up to permutation of u,u’ and permutation
of z, 7z, these edges occur in Cy in order u, z,u’,z’).

Proof. Suppose, e.g., that these edges occur in C; in order u,u’,z,z (clockwise
from a point a in F). Let w,@,%,% be the edges in Dx(u), Dx(«), Dy (z), Dy (z'),
respectively, that belong to bd([). From Claim 1 it follows that the latter edges
occur in bd(I) in order w,u’,Zz,z" (clockwise from a). Let 60X’ (6Y’) be the cut
formed by the edges in Dx(u) U Dy (z) (resp., Dx(u') U Dy (2')). One can see that
di(X")+d;(Y') > d(X) +d;(Y), whence we conclude that 6 X’ and 0Y" are tight. A
contradiction with (5.2). 3

Now suppose that there are a tight cut X and a 1/2-segment S having two
common edges u,u’. Since S # C; (by Statement 2.4), there is an edge z € C; with
hi(z) € {0,1}. By Statement 5.2, z belongs to a tight cut 6Y; let Y NCr = {z,2'}.
By (5.2), hy(2’) is an integer, so 2’ € S. This contradicts to Claim 2 and proves (i).

Let us prove (ii)-(iii). From (i) and (5.2) it follows that w; > 2 and that (iii) is
true for wy =2. Let C;r =Sy -Lo-S1-Ly-... Sk - Ly (k' =wy —1 > 2), where each
S; is a 1/2-segment. It is easy to see from (i) that if (ii) or (iii) is not true then there
are indices (up to a cyclical shift) 0 < i < i < j' < j < k' and tight cuts §X,0X’ so
that §X meets S; and S; while X’ meets S;; and S;,. Choose an edge z € Lj» and a
tight cut JY containing z. Clearly at least one of the pairs {0.X,dY} and {§ X', Y}
contradicts to Claim 2. oo

An edge e € CF is called a 1-edge if e ¢ Cps for any F' € B — {F'}, and a 2-edge
otherwise. A maximal non-trivial path in Cp all edges of which are 1-edges (resp.,
2-edges common for Cr and Cps for some (fixed) F' € B — {F}) is called a 1-path
(resp., a 2-path). A 2-path P is called strong if for some (or, in view of Lemma 4.8, for
any) edge e € P one has hp(e) = hp/(e) = 1/2, where F' # F and e € Cp/; and P is
called weak otherwise. Note that each strong path P is contained in some 1/2-segment
S (but, in general, P and S may not coincide).

We say that a strong path in Sg is reducible if it belongs to a 1/2-segment S such
that the 1/2-segment S’ opposite (in the sense of Lemma 5.3) to S consists only of
1-edges. Define the function hp on EGp by

(5.3) hr(e): if e belongs to a reducible (strong) path in Cp,

if e belongs to a weak path and hp(e) =0,

if e belongs to a non-reducible (strong) path in Cp,

— ol o O

otherwise.

One can see that
(5.4) for each F' € B the problem (hp,dr) is solvable.
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This implies that

(5.5) if for some F' € B every strong path in Cp is reducible then (G,U)* has a half-
integral solution.

Thus, each Cr contains a non-reducible (strong) path. Moreover,
(5.6) there are at least two different 1/2-segments in C'r containing non-reducible paths.

In order to exclude |B| =4 (and also |B| = 3 later) we need one more statement.
We say that two elements xz,y € VG U EG are dually connected if they belong to the
boundary of the same intermediate face in G.

Lemma 5.4. Let P=uxy...25, P =vy1...y,, P = 21 ...2, be 1-paths in Cp,CF,
Cpr for distinct F, F',F" € B so that v1 = y,, y1 = zq, 21 = x. Let Cr and Cp/
have a common edge e with an end at x1 for which hg(e) = hp:/(e) = 1/2. Then there
exists 1 < i < g such that for the edge u = z;_1z; one holds:

(j) hF//(u) = 1,‘

(ii) u is dually connected with x1.

Proof. Let F =1 and F’ = J. One may assume that ¢ and ¢’ = zx5 are consecutive
edges in E(x), where x := z1. Then h;(e’) = 1/2 and f(7) = 3/4 for 7 = (e, z,¢’).
Let f’ be a solution as in Remark 4.5 for G-, ¢, 3/4. Let C’ be the circuit for G, f’
corresponding to C; then C is formed from C; by replacing e by €, e,, see Fig. 5.1.

Fig. 5.1

Next, let m be a critical 4f-metric for 7 induced by o : VG, — V H as in Theorem
3.11. Then fjl > 0, whence, by (i),(iii)(a) in Theorem 3.1, o(J) = J. Furthermore,
the region Q ¢ R? bounded by P, P’, P” contains no hole, therefore, as it follows from
Statement 4.7, the closed path that is the image of the circuit P-P”-P’ does not separate
any two face of H. This implies that there is a vertex ' € {xs,..., 2%, 22,...,2¢-1}
such that o(z") = o(z). Notice that 2’ = x; (for some j) is impossible; otherwise we
get a contradiction using arguments as in the proof of Lemma 4.9.

Hence, 2’ = z; for some 1 < ¢ < ¢. Let ¢ be chosen minimum subject to o(z;) = by
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(letting for definiteness that o(x) = by). Then o(z;—1) € {b1,b3} (assuming, without
loss of generality, that m(w) <1 for all w € EG, —{e,e’'}. Now the result follows from
the facts that each edge w € EG, with m(w) > 0 must be saturated by f’, that for any
edge w’ in the interion of  we have (f/)*" = 0, and that the image of each of pP,p, P
is a simple path in H, where P is the part of P from x5 to zj (the latter follows from
Statement 4.7). o

Now we begin to consider the case |B| = 4. Denote by @ the graph that is the
union the circuits Cr, F' € B, and denote by @’ the graph that is obtained from @
by shrinking each 1-edge; let u be the natural mapping of Q to Q’. For F € B let
R(F') denote the set of all maximal paths P = wvgv; ... v in Cr such that: (i) vovy
and vk_1vy, are 2-edges, (ii) there is I € B — {F'} such that each 2- edge in P belongs
to Cpr, (iii) for each 1-edge e € P (if any) there is a simple circuit C' in P U Cps such
that C contains e and one component in IR* — C' contains no hole. It is easy to see that
|R(F)| is equal to the number of essential (i.e. of degree > 3) vertices in u(Cr).

First of all we observe that:

(5.7) for each P € R(F) either P is a strong 2-path or every 2-path in P is weak (in
view of Lemma 4.9);

(5.8) R(F') contains at least two non-reducible (strong) 2- paths so that the 1/2-segments
in C'r containing these paths are distinct, and if there are exactly two non-reducible
paths then their 1/2-segments are opposite (in view of (5.6)).

In particular, |R(F)| > 2 for any F' € B, therefore, @)’ is of one of types Q}, @5, Q%,
@/, as drawn in Fig. 5.2.

Fig. 5.2

Let Z denote the set of essential vertices in @', and Z° denote the set of z € Z for
which =1 (z) consists of a unique vertex in Q. For F' € B we keep notation F' for the
corresponding faces in ) and Q’.

In the sequal of the proof we use one sort of transformations of functions hp, as
follows. Let m = (Py,..., P;) be a sequence of some paths in Cr and p = (kq,..., %)
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be a sequence of signs + or —. We say that a function b’ on EGp is formed from hp
by use of m and p if

(5.9) h'(e) if e € P; and *; = +,
ifee P, and *; = —,

1
0
hr(e)  otherwise,

where hy is defined as in (5.3).

Statement 5.5. Suppose that for each F' € B there are no two non-reducible (strong)
paths which belong to the same 1/2-segment in Cr. Then (G,U)* has a half-integral
solution.

Proof. Consider a sequence £ = (Lo, F1,L1,...,F., L), r > 1, such that £ is maximal
unless Lo = Ly, and fori = 1,...,7: (i) F; € B, and (ii) L;—; and L; are non-reducible
paths for F; which are contained in opposite 1/2-segments in C'rp_;. Let E be the set of
all such sequences £ considered up to reversing and/or cyclical shifting (when Lo = Ly).
Then each non-reducible path (for some F' € B) belongs to a unique sequence £ € =.

For F' € B let mp = (P1,..., Pyr)) be a sequence of all non- reducible paths in
Cr. Define pp = (*1,. .., %)) as follows:

(5.10) for ¢ = 1,...,k(F), if £ = (Lo, 1, L1,...,F,,L,) is the sequence in = such that
P; = L; for some j then put *; := + if F' = Fj; and put ; := — if ' = F}.

One can check that if for each F' € B, h’; is the function on EGp formed (as in
(5.9)) from hp by use of 7p and pp defined as in (5.10), then each problem (h'z,dr)
is solvable and the collection {h’. : F' € B} is admissible (i.e. hz(e) + h’z (e) <1 for
anyF,F’EBandeEC’FUCp/). °

From (5.8) and Statement 5.5 it follows immediately that

(5.11) there is F' € B such that |R(F)| > 3, and R(F) contains three strong paths
Py, Py, P53 so that Py and P; belong to the same 1/2-segment in C'r that is opposite
to the 1/2-segment containing Ps.

In particular, (5.11) shows that @’ as above cannot be of type Q}. Also if |R(F)| =
2 then each of two (essential) vertices in )’ belonging to bd(F) cannot be in Z°. Hence,
if Q' is of type Q5 or Q5 then Z% = (), and therefore Q is of type Q2 or Q3 as drawn in
Fig. 5.3. Now we consider the other possible types for @ (or Q'). We use notations as
in Fig. 5.3-5.5.

A. Q is of type Q2. Let for definiteness the paths Ly, Lo, P in R(F'(1)) are strong;
S1,82,S are the 1/2-segments in Cp(;) containing them, respectively; two of these
segments are the same and opposite to the third one. From Lemma 5.4 it follows that
S # 51,5 (as, e.g., the 1-path connecting the vertices y, z in Fig. 5.3a contains an
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edge u with hp(1)(u) = 1, by Lemma 5.4 applied to the 1-paths connecting z,y, z).
Hence, S; = S, (and similarly for F'(3) if two of paths Lo, Ls, P belong to the same
1/2-segment for Cp(3y). For i = 0,1,2,3 let h; be the function on EG ;) formed from
hp) by use of m;, p;, where

(5.12) o =

Fig. 5.3

Fig. 5.4

see Fig 5.4. One can check that each (hs, dp(;)) is solvable and the collection {h1, ho, hs,
hs} is admissible. Hence, (G,U)* has a half-integral solution.

B. Q is of type Q3. Without loss of generality one may assume that P; is a non-
reducible path for F'(1), and that P, and L; belong to the same 1/2-segment in Cp(y).
On the other hand, by Lemma 5.4 (applied to the 1-paths connecting the vertices
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x,y,z as in Fig. 5.3b) the 1-path connecting y and z must contain an edge u with
hpay(u) = 1. Hence, P; and L; belong to different 1/2-segments; a contradiction.

C. Q' isof type Q). Then |R(F)| =3forall F € B. Let B={F(i) : i =0,1,2,3},
and let P;; = Pj; denote the maximal path in @) common for bd(F'()) and bd(F(j)).
Consider two cases.

Case 1. Z° # (). Let for definiteness v € Z°, where v is the vertex indicated in
Fig. 5.2d. By Lemma 5.1, for j = 0,1,2 the paths P;_; ; and P; ;41 belong to the
same 1/2-segment for Cp(;) (indices are taken modulo 3); therefore, P;3 must belong
to the opposite segment in Cp(;). In particular, |Z°| = 1, and Q is of type as in Fig.
5.0a.

Fig. 5.5

Next, the path Py is strong, so by Lemma 5.4 (applied to the 1-paths connecting
the vertices x,y, z as in Fig. 5.5a) the 1-path connecting y and z contains an edge u
with hps)(u) = 1. Hence, P39 and P31 belong to different 1/2-segments in Cp3), and
similarly for Psg, P32 and for Psj, P3a. Then (by Lemma 5.3 and (5.8)) some of Ps ;,
say Psz, is reducible for I'(3). For i = 0,1,2,3 let h; be the function on EG p(;) formed
from hp ;) by use of m;, p;, where

(5.13) mo = (Po1, Po2, Pos) and pg = (+,+, —),
71 = (Pio, P12, P13) and p; = (—, —,+),
7o = (Pag, Po1, Pa3) and p2 = (—, —,+),
T3 = <P307P31,P32) and p3 = (_{_7 -, _)’
see Fig. 5.5a.

Case 2. Z° = (. Then Q is of type as in Fig. 5.5b. Let for definiteness Paq
and P»; belong to the same 1/2-segment in Cr(2)- Then Lemma 5.4 (for the 1-paths
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connecting x, y, z as in Fig. 5.5b) implies that Pp; is not a strong path. Hence, all paths
P, 5 =0,1,2, are strong. Next, applying Lemma 5.4, we observe that the paths P3
and Psp belong to different 1/2-segments in Cp(3), and similarly for P3; and Psp. For
i =0,1,2,3 let h; be the function on EG ;) formed from hp(;) by use of m;, p;, where

(5.13) o = (Poz2, Po3) and po = (+,—),
= (P12, P13) and p; = (+,-),
= (P20, P21, Po3) and py = (—, —,+),
= (Psg, P31, P32) and p3 = (+,+, —),

see Fig. 5.5b.

A straightforward check-up shows that in both cases each problem (h;,dp(;)) is
solvable and the collection {h;} is admissible, whence (G,U)* has a half-integral solu-
tion.

Thus, the case |B| = 4 is impossible.

6. EXCLUSION OF |B| =3

We show that in this case either (G,U)* has a half-integral solution, or there is
a reduction to case |B| = 2 or |B| = 4, whence Theorem 1 will follow. We need the
following lemma which strengthens, in a sense, Lemma 5.4.

Lemma 6.1. Let F(0),F(1),F(2) € B be distinct holes so that for i =0, 1,2:
(a) there is a I-path P; = a{x% ... %}, in Cp(), and 2 coincides with '772?114-1);
(b) Cr(;) and Cp(i41) have a common edge e; one end of which is r}, and hre)(es)
= hp(it1)(e:) = 1/2 (indices are taken modulo 3).
Fori=0,1,2 let r(i) and l() be the minimum and maximum indices so that for the
edges u; = :z:r( )T (i)1 and uj = a:l(l):cl( )1 one has hp@)(u;), hpe)(ui) € {0,1}. Then:

(1) all the edges u;,u; (i = 0,1,2) belong to the boundary of the same face of G in
the region Q C R? bounded by Py, P», Ps; and

(i) hpiy(ui) = hp(i)(u;) = 1.

Proof. Since each P; is a 1-path, €} contains no hole. Notice that there is no vertex
x € VG in the interior of Q (otherwise there would exist a fork 7 = (e, xz,e’) with
fe = f¢ =0, whence B(r) = 1). Hence, every edge lying in the interior of Q connects
vertices in P, U P, U Ps.

Suppose that (i) is not true for some w € {u;,u}} and w’ € {u;,ul, } for i #i’; let
for definiteness w = w;. Then one can yield from Lemma 5.4 that in the interior of €2

there is an edge e with ends # = z} and y = «j, for some 1 < j < (1) < j < k(1).
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Consider the edge €’ different from xle 41 and such that 7 = (e, z,€’) is a fork, see Fig.
6.1.

Fig. 6.1

We show that §(7) = 3/4. Clearly e’ does not lie in the interior of Q (otherwise
from f¢ = f¢ =0 it would follow that 3(7) = 1). Hence, only the following two cases
are possible.

(i) j > 1 and € = zz; ;. Then f¢ =1/2 (as j < (1)), whence 8() = 3/4 (in
view of f¢ =0).

(iil) j=1and ¢ = xxi@)_l. Obviously, Ep(2)(x) = 0. Therefore fre) = f;l(z) =
1/2, and we again obtain (1) = 3/4.

Let E(z) = {e,e/,u,u'} and 7/ = (u,z,u’), then v’ = zx},, and B(7') = 3/4 (by
(4.5)). Denote z =z, ;.

Consider a solution f’ for G,/,c. 3,4 obtained from f as in Remark 4.5, and
a 4f-metric m critical for 7/ and induced by ¢ : VG — VH as in Theorem 3.11.
Let C" = Cfy) be the circuit for f* corresponding to Cp(1). Since o(y) = o(z) (as

(f)¢ =0),y,z € C’ and {o(z),0(2)} = {bo, bs}, we have o(F(1)) = J (by (i),(iii)(a) in
Theorem 3.11). This shows that the case (ii) as above is impossible (otherwise we would
have (fj’?(Q))“l > 0, whence o(F(2)) = j) Hence, j > 1, which implies C" = Cp(;y and
u e .

Let for definiteness o(x) = bg. The vertices x, z, y occur in this order in C’, and we
have o(x) = o(y) = by and o(z) = by. Therefore, in view of Statement 4.7, o(z") = by
for all vertices 2’ in the part of C’ between x and y that does not contain z. But then
iTiyq .- by the edge e
is mapped by ¢ into the unique point by, which is impossible (since, e.g., C separates
some holes).

the whole circuit C formed from C’ by replacing the path x

From proved above it obviously follow that all the edges u;,u; (i = 0,1,2) belong
to the same face in 2.

Finally, suppose that for some u € {u;,uj}, hp@n)(u) = 0; let for definiteness
u = uy1. Consider the fork 7 = (u,x,e) belonging to the boundary of some face in €,
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where x 1= x}n(l). One can see that either (i) 71 > 1 and e = xi(i_l)x, or (ii) (1) =1

and e = mxi@)_l. Also one can see that in both cases, f¢ = 1/2, whence (1) = 3/4.

In case (i), we get a contradiction using arguments as above (with 7 instead of 77). In
/

case (ii), e belongs to both circuits Cp ) and Cp,y (for f7 defined as in Remark 4.5),
which leads to a contradiction with (i),(iii)(a) in Theorem 3.11. o

Fig. 6.2

Now we begin to consider the case |B| =3. Let B={I,J,K} and Hx = {K,O}.
The graph @’ (defined as in the previous section) can be only as drawn in Fig. 6.2a.

By (5.8) (for F' = 1,J), the paths P, P», P3 are strong, P;, P> are non-reducible
for I, while P, P3 are non-reducible for J. In particular, the graph @ is of form as in
Fig. 6.2b. Let e; be the first edge with hr(ey) € {0,1} contained in the 1-path L; from
x to y in C7, and ey be the first edge with hs(ey) € {0,1} contained in the 1-path Lo
from x to z in Cy. Let us be the last edge with hy(ur) € {0,1} contained in the 1-path
L} from 2’ to 3 in C;, and uy be the first edge with hy(uy) € {0,1} contained in the
1-path L) from 2’ to 2z’ in C}, see Fig. 6.2b. By Lemma 6.1,

(6.1) hi(er) = hr(ur) = hy(ey) = hy(uy) = 1; e; and ey are dually connected; u; and
uy are dually connected.

Statement 6.2. e; and u; belong to a tight cut X  for Gy, hr,U; (and similarly, e
and uy belong to a tight cut X for Gy, hy,Uy).

Proof. Let for definiteness L1 = z1...x; and L] = y1...y,, where 21 = x and
y1 = 2, and let e = x;x,41 and ur = y;yj4+1. In view of (5.2) and the fact that the
1/2-segments containing P; and P are opposite in C7, every tight cut §X containing
er meets L} in some edge w = y;ry; 41 with hr(w) € {0,1}. Similarly, every tight cut
dY containing u; meets Ly in some edge z = xyx 41 with hy(z) € {0,1}. Let §X (0Y)
be chosen so that j' is maximum (resp., ¢’ is minimum). Suppose that j' < j; then
i’ > i. Consider the dual paths

D = (f, el,Fl,...,ep_l,Fp_l,ep,ﬁ) and D' = (ﬁ,e'l,Fll,...,e;_l,Fq'_l,e;,ﬁ),
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where {e1,...,ep,} = 0X, {e],...,ep} =6Y, e1 =er, ey =w, €] = 2, e = uy, and F

is the face in Gt bounded by C;. Let e, e, €;,1,es41 lie in bd(I). Using arguments
similar to those in the proof of Lemma 5.3 and taking into account the choice of 7/, j’,
one can show that D and D’ have no common face different of I and F. This implies
that e, ey, e;, 1, es41 occur in this order in bd(f). Then the sets

L / / ra_ ! /
0X"={e1,. . €5, €41,---,¢,p and Y :={e},... e €501, ,6p)

are tight cuts. A contradiction with the maximality of 7’. °

From Statement 6.2 and Lemma 6.1 it follows that .X; U dX ; forms a strong cut
07 in Gy UGy (with all-unit capacities of the edges), that is,

62| = di(Z) + dy(2).

This means that for any solution f’ of (G,U)* the edges in §Z must be saturated by
the flow f; + f7, therefore,

(6.2) for any solution f’ of (G,U)*, I and J belong to some bunch B’.

Now we consider the graph Gx. Let R be the set of (simple) tight (for hg,Uk)
cuts in G that meet twice the edge-set in P, U P3. Suppose that some of P; and Ps,
say Pp, has the property that no cut 6X in R meets twice P;. Then define the function
h on EGk by

hiy(e):=0 if e€ Py,

;=1  otherwise,
and define h’, h/; on EG, EG j, respectively, by

hr(e):=0 if e € Py,
=1  otherwise;
f,(e) =0 if e e Ps,

=1 otherwise.

Then each (W, dr), F' € {I,J, K}, is solvable, and the collection {h/, h';, b/} is
admissible. Therefore, (G,U)* has a half-integral solution.

Thus, there is a cut X € R that meets twice P;, and similarly, there is a cut §.X’
that meets twice P5. Let L (L') be the 1- path in C from 2 to y (resp., from 2’ to y'),
and let F' be the face in Gx bounded by Ck, see Fig. 6.3a.

Next, denote by @ the set of edges w in L U L’ with hx(w) € {0,1}. Let a (b) be
the first edge in L (resp., in L’) belonging to ). By Lemma 6.1,
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(6.3) hx(a) = hx(b) = 1; a is dually connected with e; and ey; b is dually connected
with u; and u ;.

Fig. 6.3

Let A be the set of all tight cuts in G that meet ). From arguments as in the
proof of Lemma 5.3 it follows that

(6.4) for any dY € A and 0Z € R their corresponding dual paths Dy and Dz in Gk
have no common face different from F, K,O, and if they have a common face
F € {K,O} then they are crossing at this face.

Statement 6.3. There exists 6Z € A that meet both bd(K) and bd(O) and contains
the edges a and b.

Proof. Suppose that some of §.X,0X’, say X, meets only one of bd(K),bd(O), say
bd(K). From (6.4) it follows that each cut in A meets only O, which implies that § X’
meets bd(K), see Fig. 6.3a. But then for at least one L € {L, L’} the dual path Dy
for any cut 0Z € A which meets L must have a common face F + F with Dy or a
common face F # F,K,O with 6X’; a contradiction with (6.4).

Hence, each 6X,5X’ meets both bd(K) and bd(O). Applying (6.4), it is not
difficult to show that every cut in A meets L, L', bd(K),bd(O). Now the statement is
proved by use of arguments as in the proof of Statement 6.2. °

From (6.1),(6.3) and Statements 6.2 and 6.3 it follows that

(6.5) if f’ is an arbitrary solution of (G,U)* that all edges in the set 0.X are saturated
by the flow f;, all edges in X ; are saturated by f’, and all edges in 6Z are
saturated by fi + f5.

Now using (6.5) it is easy to show that

(6.6) for any solution f’ for (G,U)* the circuits Cy; and C 5 are neighbouring, C7; does
not separate J, K, O, and C;; does not separate I, K, O.
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Return to the flow f, and consider the bunch B’ = {K,O}. Apply the operation

of “balancing” to Ckxo and Cogi as in the proof of Lemma 2.2. From the proof of
Lemma 2.2 one can see that as a result we get a solution f’ for (G,U)* and a bunch B
satisfying the statement of this lemma and such that K, O € B. Two cases are possible.

(i) |B| = 2. Then (G,U)* has a half-integral solution according to proved in

Section 4.

(ii) |B| > 2. Then, in view of (6.6), B = {I,J,K,0}, whence (G,U)* has a

half-integral solution according to proved in Section 5.

[Iri]

[Kal]

[Ka2]

[OK]
(OS]

[KeO]

This completes the proof of Theorem 1. o o o
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