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Abstract. Let N = (G,T, c, a) be a network, where G is an undirected graph,
T is a distinguished subset of its vertices (called terminals), and each edge e of G has
nonnegative integer-valued capacity c(e) and cost a(e). The minimum cost maximum
multi(commodity)flow problem (∗) studied in this paper is to find a c-admissible mul-
tiflow f in G such that: (i) f is allowed to contain partial flows connecting any pairs
of terminals, (ii) the total value of f is as large as possible, and (iii) the total cost of
f is as small as possible, subject to (ii). This generalizes, on one hand, the undirected
version of the classical minimum cost maximum flow problem (when |T | = 2), and, on
the other hand, the problem of finding a maximum fractional packing of T -paths (when
a ≡ 0). Lovász and Cherkassky independently proved that the latter has a half-integral
optimal solution.

In [1] a pseudo-polynomial algorithm for solving (∗) was developed and, as its
consequence, the theorem on the existence of a half-integral optimal solution for (∗)
was obtained. In the present paper we give a direct, shorter, proof of this theorem.
Then we prove the existence of a half-integral optimal solution for the dual problem.
Finally, we show that half-integral optimal primal and dual solutions can be designed
by a combinatorial strongly polynomial algorithm, provided that some optimal dual
solution is known (the latter can be found, in strongly polynomial time, by use of a
version of the ellipsoid method).

Key words: Network, Multicommodity Flow, Minimum Cost Flow, Edge-disjoint
Paths

1. Introduction

Throughout, by a graph (digraph) we mean a finite undirected (directed) graph
without loops and multiple edges. V G is the vertex-set and EG is the edge-set (arc-set)
of a graph (digraph) G. An edge of a graph with end vertices x and y is denoted by xy.
A path, or an x0−xk path, in a graph (digraph) G is a sequence P = (x0, e1, x1, ..., ek, xk)
with xi ∈ V G and ei = xi−1xi ∈ EG (respectively, ei = (xi−1, xi) ∈ EG).

We deal with an undirected network N = (G,T, c, a), where G is a graph; T is a
subset of its vertices, called terminals in N ; and each edge e ∈ EG is provided with a
capacity c(e) ∈ Z+ and a cost a(e) ∈ Z+.

† This work was supported in part by a grant from Mairie de Grenoble, France.
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Let P := P(G,T ) denote the set of simple s−t paths in G for distinct s, t ∈ T . A (c-
admissible) multicommodity flow, or, briefly, a multiflow, in N is a mapping f : P → Q+

satisfying the capacity constraint

(1) ζf (e) :=
∑

(f(P ) : e ∈ P ∈ P) ≤ c(e) for all e ∈ EG

(here, writing e ∈ P , we consider a path as an edge-set). Sometimes it will be convenient
to think of f as consisting of flows fst (s, t ∈ T , s 6= t), where fst is the restriction of
f to the set of s− t paths. The total value vf of f is

∑
(f(P ) : P ∈ P), and the total

cost af is
∑

(f(P )a(P ) : P ∈ P), or
∑

(a(e)ζf (e) : e ∈ EG). [For g : S → Q and
S′ ⊆ S, g(S′) denotes

∑
(g(e) : e ∈ S′).] We say that f is a maximum multiflow if its

total value vf is as large as possible.
The following problem will be the focus of the present paper:

(2) given N = (G, T, c, a), find a maximum multiflow f in N whose total cost af is
minimum.

This problem has two well-known special cases.
(i) When T consists of two terminals, s and t say, (2) turns into the (undirected)

minimum-cost maximum-flow problem: find a maximum flow from s to t whose total
cost is minimum. A classical result in network flow theory is that this problem has an
integral optimal solution [2]. Moreover, such a solution can be found in strongly poly-
nomial time [3] (see also [4] for a purely combinatorial strongly polynomial algorithm,
and [5] for a survey).

(ii) When a = 0, we get the maximum multiflow problem, which is, in fact, the
fractional relaxation of the problem on finding a maximum packing of T -paths (paths
connecting arbitrary pairs in T ). Lovász [6] and Cherkassky [7] independently proved
the existence of an optimal solution f that is half-integral (that is, 2f is integer-valued).
Moreover, in [7] a strongly polynomial algorithm was designed to find such a solution
(a faster, of complexity O(ηn log |T |), algorithm was developed in [8], where ηn is the
time required to find a maximum flow in a network with n vertices).

Fig. 1

Figure 1 illustrates an instance of problem (2) with |T | > 2 for which no integral
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optimal solution exists (here T := {s1, . . . , s6}, and c(e) = a(e) = 1 for all edges e.)
Nevertheless, the following is true.

Theorem 1 [1]. Problem (2) has a half-integral optimal solution.

Instead of (2), it is convenient to consider a more general problem, namely:

(3) Given p ∈ Q+, find a multiflow f in N which maximizes the objective function

pvf − af .

Theorem 2 [1]. For any p ≥ 0 problem (3) has a half-integral optimal solution.

By standard linear programming arguments, (2) and (3) are equivalent whenever
p is large enough (moreover, the existence of a half-integral optimal solution for (3)
easily implies that taking p to be 2a(EG)c(EG) + 1 is sufficient). Thus, Theorem 1
immediately follows from Theorem 2.

In its turn, Theorem 2 was obtained in [1] as a consequence of an algorithm devel-
oped there, which constructs a sequence f1, f2, . . . , fM of half-integral multiflows in N

together with a sequence 0 < p1 < p2 < . . . < pM of rationals so that for i = 1, . . . , M,

fi is an optimal solution of (3) for any p such that pi ≤ p < pi+1, assuming pM+1 to
be ∞. This algorithm is pseudo-polynomial, the number of elementary operations in it
(over numbers of O(Q log(ĉ+ â)) digits in binary notation) is bounded by the minimum
of ĉP1, âP2 and 2P3 , where ĉ := c(EG) + 1, â := a(EG) + 1, and Q,P1, P2, P3 are
polynomials in |V G|.

The goals of the present paper are:
(i) to give a direct, shorter, proof of Theorem 2 (Section 2);
(ii) to show that the problem dual to (3) has a half-integral optimal solution, pro-

vided that p is an integer, and to design a combinatorial strongly polynomial algorithm
for finding half-integral optimal primal and dual solutions for (3), provided that some
optimal dual solution is given (Section 3).

[Note that an optimal dual solution for (3) can be found in strongly polymonial
time by use a general approach due to Tardos [9] based on the ellipsoid method [10];
see Section 4 for more explanations.] Assign to an edge e ∈ EG a variable l(e) ∈ Q.
Then the linear program dual to (3) is:

(4) minimize cl :=
∑

(c(e)l(e) : e ∈ EG), provided that
(i) l ≥ 0, and
(ii) l(P ) ≥ p− a(P ) for any P ∈ P.

In conclusion of the Introduction let us consider a more general concept of the
minimum cost maximum multiflow problem. More precisely, let H = (T, U) be a
graph, called the commodity graph, whose edges are to indicate the pairs of terminals
which are allowed to connect by flows; in particular, the above definition of a multiflow
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was concerned with H to be the complete graph on T . Now we define a multiflow as
a corresponding function on the set of simple s − t paths in G such that {s, t} is an
edge of H. According to this, we speak of a maximum multiflow and pose problem
(2) with respect to H. E.g., if |U | = 2, we obtain the minimum cost maximum two-
commodity-flow problem. A natural question arises: given H, what is the minimum
integer k := k(H) such that, for any G with V G ⊇ T , c (integral) and a, problem (2)
for G, H, c, a has an optimal solution f with kf integer-valued?

In particular, k(H) = 1 if |U | = 1, and k(H) = 2 if H is the complete graph Km

with m ≥ 3 vertices (by Theorem 1). Theorem 1 can be easily generalized as follows (cf.
[11]): if H is a complete m-partite graph with m ≥ 3 then k(H) = 2 (while k(H) = 1
if m = 2). [H is called m-partite if there is a partition {T1, . . . , Tm} of T such that
st ∈ U if and only if s ∈ Ti and t ∈ Tj for i 6= j.] On the other hand, it was shown
in [11] that k(H) = ∞ unless H is a complete m-partite graph (e.g., k(H) = ∞ if U

consists of two non-adjacent edges).

2. Proof of Theorem 2.

For λ ∈ QEG
+ and x, y ∈ V G, let distλ(x, y) denote the λ-distance between vertices

x and y, that is, the minimum λ-length λ(P ) of an x− y path P in G. Obviously, the
system (ii) in (4) can be rewritten in a more compact form, namely,

(5) dista+l(s, t) ≥ p for any s, t ∈ T, s 6= t.

The linear programming duality theorem applied to (3)-(4) implies that a (c-
admissible) multiflow f and a vector l ∈ QEG

+ satisfying (5) are optimal solutions
of (3) and (4), respectively, if the following (complementary slackness) conditions hold:

(6) if P ∈ P and f(P ) > 0 then a(P )+ l(P ) = p; in particular, P is an (a+ l)-shortest
path in G (that is, a shortest path with respect to the length a + l);

(7) if e ∈ EG and l(e) > 0 then e is saturated by f , that is, ζf (e) = c(e).

We at first prove Theorem 2 for the case when the cost function a is positive, that
is, a(e) > 0 for all e ∈ EG. The proof will follow from a series of auxiliary statements
(Claims 1-5), some of them, as well as the idea to design the “doubly covering” digraph
Γ defined below, occurred in [1]. We need some terminology and notation.

For brevity, a path P = (x0, e1, x1, . . . , ek, xk) in G may be denoted by x0x1 . . . xk

(it is not confusing because G has no multiple edges). For 0 ≤ i ≤ j ≤ k, P (xi, xj) is
the part xixi+1 . . . xj of P from xi to xj . The reverse path xkxk−1 . . . x0 is denoted by
P−1.

Let us be given a positive function λ on EG. Put
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(8) p′ := pλ := min{distλ(s, t) : s, t ∈ T, s 6= t}.

A path P connecting two distinct terminals and having λ-length exactly p′ is called
a geodesic for λ, or a λ-geodesic; in particular, P is λ-shortest. Let Gλ be the subgraph
of G whose edges belong to λ-geodesics and vertices belong to λ-geodesics or T .

Consider a vertex v ∈ V Gλ. Define the potential π(v) := πλ(v) of v to be the
λ-distance from v to T . In particular, π(v) = 0 if v ∈ T .

Claim 1. Let v belong to a geodesic P from s to t. Then π(v) is the minimum of two

lengths q := λ(P (s, v)) and r := λ(P (v, t)).

Proof. Assume for definiteness that q ≤ r. Then π(v) ≤ q ≤ p′/2 (since q+r = λ(P ) =
p′). Suppose that π(v) < q, and let s′ be a terminal such that π(v) = distλ(s′, v).
Choose s′′ ∈ {s, t} such that s′′ 6= s′. Now, distλ(s′, s′′) ≤ distλ(s′, v) + distλ(v, s′′) ≤
π(v) + r < q + r = p′; a contradiction. •

From Claim 1 it follows immediately that π(v) ≤ p′/2. For s ∈ T define V s := V s
λ

to be {v ∈ V Gλ : distλ(s, v) < p′/2}; and define C := Cλ := {v ∈ V Gλ : π(v) = p′/2};
a vertex in C is called central. Then the sets V s (s ∈ T ) and C are pairwise disjoint
and give a partition of V Gλ. Also Claim 1 shows that if P = v0v1 . . . vk is a geodesic
from s = v0 to t = vk, then there are i and j such that v0, . . . , vi ∈ V s, vj , . . . , vk ∈ V t,
and either j = i + 1, or j = i + 2 and vi+1 ∈ C. Let Es (respectively, E{s,t}, where
t ∈ T −{s}) denote the set of edges in Gλ with one end in V s and the other in V s ∪C

(respectively, in V t).

Claim 2. Let e = uv ∈ EGλ. Then either e ∈ Es for some s ∈ T , and |π(v)− π(u)| =
λ(e); or e ∈ E{s,t} for some s, t ∈ T , and π(u)+λ(e)+π(v) = p′. In particular, the sets

Es (s ∈ T ) and E{s,t} (s, t ∈ T ) give a partition of EGλ, and no edge of Gλ connects

two central vertices.

Proof. By definition of Gλ, there is a geodesic P from s to t passing u, e, v (in
this order). Then λ(P (s, u)) + λ(e) + λ(P (v, t)) = p′. One may assume that q :=
λ(P (s, u)) ≤ λ(P (v, t)) =: r. We know that λ(e) > 0 (as λ is positive), whence
q < p′/2. This implies q = π(u) (by Claim 1) and u ∈ V s. Suppose that r ≥ p′/2.
Then q′ := λ(P (s, v)) ≤ p′/2, whence q′ = π(v), by Claim 1. This implies that
v ∈ V s ∪ C, e ∈ Es and π(v) − π(u) = λ(e). Now suppose that r < p′/2. Then
π(v) = r, and we obtain v ∈ V t, e ∈ E{s,t} and π(u) + λ(e) + π(v) = p′. •

The following claim describes geodesics in terms of potentials.

Claim 3. Let P = v0v1 . . . vk be an s − t path in Gλ with s, t ∈ T and s 6= t. The

following are equivalent:

(i) P is a geodesic;
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(ii) there is q, 0 ≤ q < k, such that π(vi) − π(vi−1) = λ(vi−1vi) for i = 1, . . . , q

and π(vi)− π(vi+1) = λ(vivi+1) for i = q + 1, . . . , k − 1.

Proof. (i)→(ii) follows from Claim 2. To show (ii)→(i), put u := vq, v := vq+1 and
e := uv. Observe that π(u) = λ(P (s, u)) and π(v) = λ(P (v, t)). Consider an s′ − t′

geodesic Q passing u, e, v (in this order). Then λ(Q) = λ(Q(s′, u)) + λ(e) + λ(Q(v, t′)),
λ(Q(s′, u)) ≥ π(u) and λ(Q(v, t′)) ≥ π(v), whence p′ = λ(Q) ≥ λ(P ), and therefore, P

is a geodesic. •

Now, based on Claims 2 and 3, we design the so-called doubly covering digraph
Γ = Γλ for Gλ. Each non-central vertex v of Gλ generates two vertices v1 and v2 in Γ.
If v ∈ V Gλ is central, it generates 2|T (v)| vertices vi

s (s ∈ T (v), i = 1, 2) in Γ, where
T (v) := {s ∈ T : distλ(s, v) = p′/2}. The arcs of Γ are defined as follows:

(9) (i) an edge uv ∈ Es (s ∈ T ) with π(v) − π(u) = λ(uv) induces two arcs (u1, v1)
and (v2, u2) (or (u1, v1

s) and (v2
s , u2) when v is central) in Γ, each of capacity

c(uv);
(ii) an edge uv ∈ E{s,t} (s, t ∈ T ) induces two arcs (u1, v2) and (v1, u2) in Γ, each

of capacity c(uv);
(iii) a central vertex v ∈ C induces |T (v)|(|T (v)| − 1) arcs (v1

s , v2
t ) in Γ for all

distinct s, t ∈ T (v), each of capacity ∞;

[See Fig. 2 for illustration; here T = {s, t, q} and the number on the edges e indicate
λ(e).] The positivity of λ makes Γ well-defined; furthermore, one can see that Γ is
acyclic.

Fig. 2
It is convenient to keep the same notation c for the capacities of arcs in Γ. The

arcs of a subgraph in Γ arising from a central vertex v ∈ C are called central. We
think of S := {s1 : s ∈ T} (respectively, S′ := {s2 : s ∈ T}) as the set of sources
(respectively, sinks) of Γ. Let P = x0x2 . . . xk be a path in Γ (that is, (xi−1, xi) ∈ EΓ
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for i = 1, . . . , k). We say that P is an S − S′ path if x0 ∈ S and xk ∈ S′.
The construction of Γ determines a natural mapping τ of V Γ∪EΓ onto V Gλ∪EGλ

which brings vi ∈ V Γ (or vi
s ∈ V Γ) to the vertex v, brings a non-central arc (x, y) ∈ EΓ

to the edge τ(x)τ(y), and brings a central arc (v1
s , v2

t ) to the vertex v.
The mapping τ is naturally extended to paths in Γ and Gλ. Namely, for a path P =

x0x1 . . . xk in Γ, let τ(P ) be the path in Gλ induced by the sequence τ(x0), τ(x1), . . . ,
τ(xk) of vertices (in which repeated vertices going in succession are deleted).

We also define the mapping ϑ : (V Γ ∪ EΓ) → (V Γ ∪ EΓ) such that a vertex vi

(or vi
s) is mapped to v3−i (or v3−i

s ), and an arc (x, y) to (ϑ(y), ϑ(x)). This gives a
(skew) symmetry of Γ. For an s− t path P = x0x1 . . . xk in Γ, ϑ(P ) is the symmetric
ϑ(t) − ϑ(s) path ϑ(xk)ϑ(xk−1) . . . ϑ(x0); obviously, the path τ(P ) in G is opposite to
τ(ϑ(P )).

Claim 4. τ determines a one-to-one correspondence between the set of S − S′ paths

in Γ and the set of λ-geodesics in G.

Proof. Claim 3 and definition (9) show that for a geodesic P one can form (uniquely)
the S−S′ path P ′ in Γ such that P = τ(P ′). Conversely, consider an S−S′ path P =
x0x1 . . . xk in Γ. From (9) one can see that P contains exactly one arc, e = (xq, xq+1)
say, such that either e is central, (v1

s , v2
t ) say, or τ(e) ∈ E{s,t} for some distinct s, t ∈ T ;

let for definiteness τ(xq) ∈ V s. Moreover, τ(xj) ∈ V s for j = 0, . . . , q−1 and τ(xj) ∈ V t

for j = q + 2, . . . , k, and either τ(xq) = τ(xq+1) ∈ C, or τ(xq) ∈ V s and τ(xq+1) ∈ V t.
Now (9), Claim 3, and the fact that s 6= t imply that τ(P ) is a geodesic. •

The above correspondence of geodesics in G and S − S′ paths in Γ naturally
generates a relationship between certain multiflows in N and S − S′ flows in Γ (whose
arcs e have the capacities c(e) defined in (9)). We say that a multiflow f in N goes
along λ-geodesics if f(P ) > 0 implies that P is a λ-geodesic.

For a function g : EΓ → Q+ and a vertex x ∈ V Γ define

(10) divg(x) :=
∑

y:(x,y)∈EΓ

g(x, y)−
∑

y:(y,x)∈EΓ

g(y, x).

We say that g is a (c-admissible) flow from S to S′, or S − S′ flow, if it satisfies the
conservation condition divg(x) = 0 for all x ∈ V Γ − (S ∪ S′) as well as the capacity
constraint g(e) ≤ c(e) for all e ∈ EΓ. The value vg of a flow g is

∑
(divg(x) : x ∈ S);

g is called maximum if vg is as large as possible.
A routine fact is that a flow g as above can be represented as the sum of elementary

flows along paths (taking into account that Γ is acyclic). More precisely, there are S−S′

paths P1, P2, . . . , Pm (m ≤ |EΓ|) and positive rationals α1, α2, . . . , αm such that:

(11)
∑

(αi : e ∈ Pi) = g(e) for any e ∈ EΓ.
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From (11) it follows that vg =
∑

(αi : i = 1, . . . , m). We say that D := {(Pi, αi) :
i = 1, . . . , m)} is a decomposition of g. If g is integral then there exists a decomposition
with all αi’s integral; such a decomposition can be found by a trivial procedure of
complexity O(|V Γ||EΓ|) (cf. [2]). A decomposition D determines a multiflow f := fD
in N by setting f(τ(Pi)) := αi/2 for i = 1, . . . , m, and f(P ) := 0 for the remaining
paths P in P. Using (11) we observe that for any non-central e ∈ EΓ,

ζf (τ(e)) =
1
2
(g(e) + g(ϑ(e))) ≤ 1

2
(c(e) + c(ϑ(e))) = c(τ(e)),

that is, f is c-admissible. Moreover, f goes along geodesics, and 2vf = vg. Also a
converse (in a sense) property is true. More precisely, for a (c-admissible) multiflow f

in N going along geodesics, define the function g = gf on EΓ so that for e ∈ EΓ, g(e)
is the sum of values f(τ(P )) over all S − S′ paths P in Γ containing e or ϑ(e). Using
the definition of c on EΓ (in particular, the fact that c(e) = ∞ if e is central), one can
check that gf is a (c-admissible) S − S′ flow in Γ, and vgf

= 2vf . These observations
are summarized as follows.

Claim 5. (i) If g is an S − S′ flow in Γ and D = (Pi, αi) is a decomposition of g, then

f = fD is a multiflow in N going along geodesics, and vg = 2vf . Moreover, if all αi’s

are integral, then f is half-integral.

(ii) If f is a multiflow in N going along geodesics, then g = gf is an S −S′ flow in

Γ, and vg = 2vf . •

Since c is integral, there exists an integral maximum S − S′ flow in Γ. This gives
the following corollary of Claim 5, which is not used later on, but interesting in its own
right.

Claim 6. If c is integral then there exists a half-integral maximum multiflow in N

going along geodesics. •

Now we are able to prove Theorem 2 (under the assumption of positivity of a).
Given p ≥ 0, suppose that f and l are optimal solutions of (3) and (4), respectively.
Let λ := a + l; then λ is positive. We may assume that p = pλ (since p ≤ pλ, by (5),
and if p < pλ then f = 0, by (6)). By (6), f is a multiflow in N going along λ-geodesics;
in particular, ζf (e) > 0 holds only if e is in Gλ. Consider the S − S′ flow g := gf in
Γ := Γλ. We say that an arc e ∈ EΓ is feasible if either e is central or l(τ(e)) = 0;
let A denote the set of feasible arcs. By (7), for each e ∈ EΓ − A the edge τ(e) in
G is saturated by f (since l(τ(e)) > 0), which implies that g(e) = c(e), and hence g

is integral on EΓ − A. Let γ be the restriction of g to A. We say that a function
h : A → Q+ is compatible with γ if h is c-admissible, that is, h(e) ≤ c(e) for e ∈ A, and

divA,h(x) = divA,γ(x) for all x ∈ V Γ− (S ∪ S′),
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where for a function b, divA,b is defined as in (10) with respect to A rather than EΓ.
The value divA,γ(x) = −divEΓ−A,g(x) is an integer for each x ∈ V Γ − (S ∪ S′).

Hence, there is an integral h which is compatible with γ. Define g′ by g′(e) := h(e) for
e ∈ A and g′(e) := g(e) for e ∈ EΓ− A. Then g′ is an integral S − S′ flow in Γ. Now
the multiflow f ′ := fD gives a half-integral multiflow in N , where D = {(Pi, αi)} is a
decomposition of g with all αi’s integral. Since g′ can differ from g only on arcs in A,
f ′ satisfies (7). Furthermore, (i) in Claim 5 implies (6) for f ′. Hence, f ′ is an optimal
solution of (3), and the theorem follows.

Now suppose that a is a nonnegative cost function on EG. Put Z := {e ∈ EG :
a(e) = 0}. To prove the theorem for a, we apply obvious perturbation techniques,
replacing a by appropriate positive cost functions. More precisely, for a rational number
δ > 0, put aδ(e) := a for e ∈ EG − Z and aδ(e) := δ for e ∈ Z, and consider an
infinite sequence δ1 > δ2 > . . . of positive rationals approaching zero. By the above
proof, problem (3) for G,T, c, aδi has a half-integral optimal solution fi. Moreover, the
number of different half-integral c-addmissible multiflows for G,T is finite (as P(G,T )
is finite and c is bounded), hence, we may assume that all the fi’s are the same, f say.
Now trivial arguments yield that f must be an optimal solution of (3) for G,T, c, a.

This completes the proof of Theorem 2. • •

Remark 2.1. Assuming, without loss of generality, that p is an integer (and that
a is integer-valued, as before), we observe that taking δ as above to be (4c(Z) + 1)−1

ensures that any half-integral optimal solution f for (3) with aδ is an optimal solution for
(3) with a. Indeed, suppose for a contradiction that there is a (c-admissible) multiflow
f ′ such that d := φ(f ′, a) − φ(f, a) > 0, where φ(f ′′, a′′) denotes pvf ′′ − a′′f ′′ . The
integrality of a and p together with the half-integrality of f and f ′ implies that d ≥ 1

2 .
On the other hand,

|φ(f, a)− φ(f, aδ)| = δ
∑

e∈Z

ζf (e) ≤ δc(Z) <
1
4
.

(by the choice of δ), and similarly, |φ(f ′, a)−φ(f ′, aδ)| < 1
4 . Then φ(f ′, aδ)−φ(f, aδ) >

d− 1
4 − 1

4 ≥ 0, contrary to the optimality of f for aδ.

3. Dual half-integrality and algorithm

Theorem 3. Let p be a nonnegative integer. Then (4) has a half-integral optimal

solution.

This theorem follows from Theorem 2 and the general fact that for a system of in-
equalities the “totally dual 1/k-integrality” implies the “totally primal 1/k-integrality”
(this is a natural generalization of the well-known result on TDI systems due to Ed-
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monds and Jiles [12]). More precisely, to our purposes, it suffices to utilize the following
simple fact (see, e.g., [13, Statement 1.1]).

Statement 3.1. Let A be a nonnegative m× n-matrix, let b be an integral m-vector,

and let k be a positive integer. Suppose that the program D(c) := max{yb : y ∈
Qm

+ , yA ≤ c} has a 1/k-integral optimal solution for every nonnegative integral n-

vector c such that D(c) has an optimal solution. Then for every nonnegative integral

n-vector c, the program P (c) := min{cx : x ∈ Qn
+, Ax ≥ b} has a 1/k-integral optimal

solution whenever it has an optimal solution. •

In our case, one should put k := 2 and take as A (b) the constraint matrix (re-
spectively, the right hand size vector) of the system (ii) in (4). Then b is integral, and
D(c) is just problem (3), whence the result follows. •

Thus, the polyhedron Q = {l ∈ QE : l satisfies (i),(ii) in (4)} is half-integral
(that is, every face of Q contains a half-integral point), by Theorem 3. In addition,
the separation problem for Q is obviously reduced to finding a + l-shortest paths in
G connecting pairs of terminals. Hence, a half-integral optimal solution of (4) (with
integral a and p) can be found in polynomial time by use of the ellipsoid method and
arguments as in [14].

Furthermore, since (ii) in (4) is equivalent to (5), to find some optimal solution l

of (4) is a linear program whose constraint matrix has entries only 0,1,-1 and consists
of O(|T ||EG|) rows and O(|T ||V G|+ |EG|) columns. Thus, l can be found in strongly
polynomial time by use of a method due to Tardos [9]. However, without a more
careful analysis, it is unclear whether any (or even some) optimal basis solution for
the latter program is half-integral; so we cannot argue that combining approaches
developed in [9] and [14] would enable us to find a half-integral optimal solution of (4)
in strongly polynomial time. Nevetherless, this task can be fulfilled by involving certain
combinatorial techniques.

More precisely, given c, a, p integral, let a be the function aδ with δ := min{(4c(Z)+
1)−1, (2n2t + 1)−1} (cf. Remark 2.1), where n := |V G| and t := |T |. We design a
strongly polynomial algorithm consisting of three parts:

(S1) find a (fractional) optimal solution l of (4) for G,T, c, a, p;
(S2) using l, find a half-integral optimal solution f of (3) for G,T, c, a, p;
(S3) using l and f , find a half-integral optimal solution l′ of (4) for G,T, c, a, p.

[Note that (S3) will provide an alternative, combinatorial, proof of Theorem 3.]
We use terminology and notation as in Section 2. Part (S1) has been explained above.
To solve (S2), we construct Γ := Γλ for λ := a + l, and determine an integral S − S′

flow g in Γ satisfying g(u) = c(u) for all u ∈ EΓ − A (where A is the set of central
arcs and arcs u such that l(τ(u)) = 0). Such a g exists, as it was shown in Section 2.
Then f := fD is a half-integral optimal solution of (3) for a, where D is an integral
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decomposition of g. By Remark 2.1 and the choice of δ in the definition of a, f is an
optimal solution of (3) for a, as required.

To solve (S3), consider the digraph Γ = Γλ for λ := a + l and the S − S′ flow
g = gf in Γ; note that |V Γ| ≤ 2t + 2t(n − t) ≤ 2nt − 2. The vertex-set V Γ of Γ is
partitioned into sets Ws,W

′
s (s ∈ T ). Here Ws is formed by the vertices v1 generated

by v ∈ V s and the vertices v1
s generated by the central vertices v ∈ C with s ∈ T (v);

and W ′
s := ϑ(Ws). For x ∈ Ws (x ∈ W ′

s) define ρ(x) to be π(τ(x)) (respectively,
p−π(τ(x))), where π is the potential function on V Gλ defined as in Section 2 for given
λ. For u ∈ EΓ put a(u) := a(τ(u)) and a(u) := a(τ(u)) if u is non-central, and put
a(u) := a(u) := 0 otherwise. Let U+ := {u ∈ EΓ : ζf (u) = c(u)}. We know that

(12) ρ(x) + ρ(x′) = p for x ∈ V Γ and x′ = ϑ(x); ρ(s) = 0 for s ∈ S;

ρ(x) ≤ p for x ∈ Ws, s ∈ T ; ρ(x) = p/2 if τ(x) ∈ C;

ρ(y)− ρ(x) ≥ a(u) for u = (x, y) ∈ U+,(13)

a(u) for u = (x, y) ∈ EΓ− U+

((13) follows from (7)). Expand Γ by adding new arcs representing, in a sense, the part
of G outside Gλ, as follows. Let x, y be distinct vertices in Gλ connected by a path
P with all edges in EG − EGλ, and let a〈x, y〉 (a〈x, y〉) be the minimum cost a(P )
(respectively, a(P )) among all such paths P .

(14) (i) If x ∈ V s and y ∈ V s ∪ C, add to Γ the arcs (x1, y1), (y1, x1), (x2, y2), (y2, x2);
(ii) if x ∈ V s and y ∈ V t (s 6= t), add to Γ the arcs (x1, y2) and (y1, x2);
(iii) for each arc u in (i),(ii), put a(u) := a〈x, y〉 and a(u) := a〈x, y〉

(we need not add new arcs to Γ when both x, y are central). The set of these new arcs
is denoted by U0. Obviously, (6) implies:

(15) ρ(y)− ρ(x) ≤ a(u) for any u = (x, y) ∈ U0.

Claim. There is a function ρ′ on V Γ such that:

(16) ρ′(s) = 0 for s ∈ S, and ρ′(s′) = p for s′ ∈ T ;

(17) ρ′(x) ≤ ρ′(ϑ(x)) for any x ∈ Ws, s ∈ T ;

ρ′(y)− ρ′(x) ≥ a(u) if u = (x, y) ∈ U+,(18)

= a(u) if u = (x, y) ∈ EΓ− U+,

≤ a(u) if u = (x, y) ∈ U0.
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Proof. The existence of ρ′ is equivalent to the fact that the digraph H whose edges
are weighted by b has no negative circuits. Here H and b are designed as follows:

(i) V H = V Γ ∪ {q, q′}; q is connected with each s ∈ S by arcs (q, s) and (s, q) of
weight 0; q′ is connected with each s′ ∈ S′ by arcs (q′, s′) and (s′, q′) of weight 0; while
q and q′ are connected by an arc (q, q′) of weight p and an arc (q′, q) of weight −p;

(ii) each x ∈ Ws (s ∈ T ) is connected with x′ := ϑ(x) by an arc (x′, x) of weight 0;
(iii) each arc u = (x, y) in U+ (U0; EΓ−U+) induces in H an arc (y, x) of weight

−a(u) (respectively, an arc (x, y) of weight a(u); an arc (x, y) of weight a(u) and an
arc (y, x) of weight −a(u)).

Suppose that there is a simple circuit Q in H with b(Q) < 0. Let b be the weighting
on EH defined as above for a rather than a. The existence of ρ satisfying (12)-(13)
implies that H has no negative circuit with respect to b, hence, b(Q) ≥ 0. Since a and p

are integral, b(Q) ≤ −1, whence there is an arc u in Q such that b(u)− b(u) ≥ (2nt)−1

(taking into account that Q is simple, and |V H| = |V Γ|+2 ≤ 2nt). On the other hand,
we know that |a(e)− a(e)| is at most δ for any e ∈ EΓ and at most nδ for any e ∈ U0.
Hence, b(u)− b(u) ≤ nδ < (2nt)−1, by the definition of δ; a contradiction. •

Since the system (16)-(18) is solvable, it has an integral solution ρ′; it can be found,
e.g., by applying a shortest path algorithm to H and b as above. Now for v ∈ V Gλ

define π′(x) := 1
2 (ρ′(x) + p− ρ′(x′)), where τ(x) = τ(x′) = v, x ∈ Ws and x′ ∈ W ′

s (for
the corresponding s). Then π′ is half-integral. (17) implies that π′(v) ≤ p/2 for each
v ∈ V s, s ∈ T , and (17)-(18) imply that π′(v) = p/2 for v ∈ C (taking into account
that a(u) = 0 for any central arc u in Γ).

Finally, for e = xy ∈ EGλ define

l′(e) := |π′(x)− π′(y)| − a(e) if x, y ∈ V s ∪ C, s ∈ T ;

:= p− π′(x)− π′(y)− a(e) if x ∈ V s, y ∈ V t, s 6= t;

and define l′(e) := 0 for e ∈ EG − EGλ. Then l′ is half-integral. Using (14)-(18),
a routine examination shows that f and l′ satisfy (6)-(7) (we leave it to the reader).
Thus, l′ is as required in (S3).

Note from March 1993. Recently A.V. Goldberg and the author found two purely
combinatorial algorithms for finding a half-integral optimal solution to (3) (in: “Transi-
tive fork environments and minimum cost multiflows”, Report No. STAN-CS-93-1476,
Stanford University, Stanford, 1993). Both algorithms are polynomial (but not, in gen-
eral, strongly polynomial); the first applies scaling on capacities, and the second applies
scaling on costs.
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