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Abstract. Let N = (G,T,c,a) be a network, where G is an undirected graph,
T is a distinguished subset of its vertices (called terminals), and each edge e of G has
nonnegative integer-valued capacity c(e) and cost a(e). The minimum cost maximum
multi(commodity)flow problem (x) studied in this paper is to find a c-admissible mul-
tiflow f in G such that: (i) f is allowed to contain partial flows connecting any pairs
of terminals, (ii) the total value of f is as large as possible, and (iii) the total cost of
f is as small as possible, subject to (ii). This generalizes, on one hand, the undirected
version of the classical minimum cost maximum flow problem (when |T'| = 2), and, on
the other hand, the problem of finding a maximum fractional packing of T-paths (when
a = 0). Lovasz and Cherkassky independently proved that the latter has a half-integral
optimal solution.

In [1] a pseudo-polynomial algorithm for solving (x) was developed and, as its
consequence, the theorem on the existence of a half-integral optimal solution for (x)
was obtained. In the present paper we give a direct, shorter, proof of this theorem.
Then we prove the existence of a half-integral optimal solution for the dual problem.
Finally, we show that half-integral optimal primal and dual solutions can be designed
by a combinatorial strongly polynomial algorithm, provided that some optimal dual
solution is known (the latter can be found, in strongly polynomial time, by use of a
version of the ellipsoid method).

Key words: Network, Multicommodity Flow, Minimum Cost Flow, Edge-disjoint
Paths

1. Introduction

Throughout, by a graph (digraph) we mean a finite undirected (directed) graph
without loops and multiple edges. VG is the vertez-set and EG is the edge-set (arc-set)
of a graph (digraph) G. An edge of a graph with end vertices z and y is denoted by zy.
A path, or an xo—xy path, in a graph (digraph) G is a sequence P = (xq, €1, T1, ..., €k, Tk)
with x; € VG and e; = x;_12; € EG (respectively, e; = (z;-1, ;) € EG).

We deal with an undirected network N = (G, T, ¢,a), where G is a graph; T is a
subset of its vertices, called terminals in N; and each edge e € EG is provided with a
capacity c(e) € Z4 and a cost a(e) € Z..

T This work was supported in part by a grant from Mairie de Grenoble, France.
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Let P := P(G,T) denote the set of simple s—t paths in G for distinct s,t € T. A (c-
admissible) multicommodity flow, or, briefly, a multiflow, in N is a mapping f : P — Q.
satisfying the capacity constraint

(1) ¢f(e):=) (f(P):e€PeP)<cle) forallec EG

(here, writing e € P, we consider a path as an edge-set). Sometimes it will be convenient
to think of f as consisting of flows fs (s,t € T, s # t), where fq is the restriction of
f to the set of s — ¢ paths. The total value vy of fis > (f(P) : P € P), and the total
cost ay is Y (f(P)a(P) : P € P), or > (a(e)(/(e) : e € EG). [For g : S — Q and
S"C S, g(5") denotes > (g(e) : e € S").] We say that f is a mazimum multiflow if its
total value vy is as large as possible.

The following problem will be the focus of the present paper:

(2) given N = (G,T,c,a), find a mazimum multiflow f in N whose total cost ay is

This problem has two well-known special cases.

(i) When T consists of two terminals, s and ¢ say, (2) turns into the (undirected)
minimum-cost maximum-flow problem: find a maximum flow from s to ¢t whose total
cost is minimum. A classical result in network flow theory is that this problem has an
integral optimal solution [2]. Moreover, such a solution can be found in strongly poly-
nomial time [3] (see also [4] for a purely combinatorial strongly polynomial algorithm,
and [5] for a survey).

(ii) When a = 0, we get the maximum multiflow problem, which is, in fact, the
fractional relaxation of the problem on finding a maximum packing of T-paths (paths
connecting arbitrary pairs in T'). Lovész [6] and Cherkassky [7] independently proved
the existence of an optimal solution f that is half-integral (that is, 2f is integer-valued).
Moreover, in [7] a strongly polynomial algorithm was designed to find such a solution
(a faster, of complexity O(n, log|T|), algorithm was developed in [8], where 7, is the
time required to find a maximum flow in a network with n vertices).

Fig. 1
Figure 1 illustrates an instance of problem (2) with |T'| > 2 for which no integral
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optimal solution exists (here T := {s1,...,86}, and c(e) = a(e) = 1 for all edges e.)
Nevertheless, the following is true.

Theorem 1 [1]. Problem (2) has a half-integral optimal solution.
Instead of (2), it is convenient to consider a more general problem, namely:

(3) Given p € Q, find a multifiow f in N which maximizes the objective function
pvy —ar.

Theorem 2 [1]. For any p > 0 problem (3) has a half-integral optimal solution.

By standard linear programming arguments, (2) and (3) are equivalent whenever
p is large enough (moreover, the existence of a half-integral optimal solution for (3)
easily implies that taking p to be 2a(EG)c(EG) + 1 is sufficient). Thus, Theorem 1
immediately follows from Theorem 2.

In its turn, Theorem 2 was obtained in [1] as a consequence of an algorithm devel-
oped there, which constructs a sequence fi, fo, ..., fas of half-integral multiflows in N
together with a sequence 0 < p; < p2 < ... < pps of rationals so that fori =1,..., M,
fi is an optimal solution of (3) for any p such that p; < p < p;y1, assuming pps4+1 to
be co. This algorithm is pseudo-polynomial, the number of elementary operations in it
(over numbers of O(Q log(c+a)) digits in binary notation) is bounded by the minimum
of ¢P;, aPy and 2%, where ¢ := ¢(EG) + 1, @ := a(EG) + 1, and Q, Py, P, P3 are
polynomials in |V G]|.

The goals of the present paper are:

(i) to give a direct, shorter, proof of Theorem 2 (Section 2);

(ii) to show that the problem dual to (3) has a half-integral optimal solution, pro-
vided that p is an integer, and to design a combinatorial strongly polynomial algorithm
for finding half-integral optimal primal and dual solutions for (3), provided that some
optimal dual solution is given (Section 3).

[Note that an optimal dual solution for (3) can be found in strongly polymonial
time by use a general approach due to Tardos [9] based on the ellipsoid method [10];
see Section 4 for more explanations.] Assign to an edge e € EG a variable l(e) € Q.
Then the linear program dual to (3) is:

(4) minimize cl =) (c(e)l(e) : e € EG), provided that
(i) 1 >0, and
(ii) I(P) > p —a(P) for any P € P.

In conclusion of the Introduction let us consider a more general concept of the
minimum cost maximum multiflow problem. More precisely, let H = (T,U) be a
graph, called the commodity graph, whose edges are to indicate the pairs of terminals
which are allowed to connect by flows; in particular, the above definition of a multiflow



was concerned with H to be the complete graph on T. Now we define a multiflow as
a corresponding function on the set of simple s — ¢ paths in G such that {s,t} is an
edge of H. According to this, we speak of a maximum multiflow and pose problem
(2) with respect to H. E.g., if |U| = 2, we obtain the minimum cost maximum two-
commodity-flow problem. A natural question arises: given H, what is the minimum
integer k := k(H) such that, for any G with VG 2 T, ¢ (integral) and a, problem (2)
for G, H, ¢, a has an optimal solution f with kf integer-valued?

In particular, k(H) = 1 if |U| = 1, and k(H) = 2 if H is the complete graph K,
with m > 3 vertices (by Theorem 1). Theorem 1 can be easily generalized as follows (cf.
[11]): if H is a complete m-partite graph with m > 3 then k(H) = 2 (while k(H) =1
if m = 2). [H is called m-partite if there is a partition {73,...,T,,} of T" such that
st € U if and only if s € T; and t € T} for i # j.] On the other hand, it was shown
in [11] that k(H) = oo unless H is a complete m-partite graph (e.g., k(H) = oo if U
consists of two non-adjacent edges).

2. Proof of Theorem 2.

For A\ € QEG and z,y € VG, let disty(z,y) denote the \-distance between vertices
x and y, that is, the minimum A-length A\(P) of an = — y path P in G. Obviously, the
system (ii) in (4) can be rewritten in a more compact form, namely,

(5) distqy(s,t) > p for any s, t € T, s # t.

The linear programming duality theorem applied to (3)-(4) implies that a (c-
admissible) multiflow f and a vector | € QEG satisfying (5) are optimal solutions
of (3) and (4), respectively, if the following (complementary slackness) conditions hold:

(6) if P € P and f(P) > 0 then a(P)+1(P) = p; in particular, P is an (a+1)-shortest
path in G (that is, a shortest path with respect to the length a + [);

(7) if e € EG and I(e) > 0 then e is saturated by f, that is, ¢f(e) = c(e).

We at first prove Theorem 2 for the case when the cost function a is positive, that
is, a(e) > 0 for all e € EG. The proof will follow from a series of auxiliary statements
(Claims 1-5), some of them, as well as the idea to design the “doubly covering” digraph
I defined below, occurred in [1]. We need some terminology and notation.

For brevity, a path P = (zg,e1,x1,..., €k, ) in G may be denoted by xgzx; ...z
(it is not confusing because G has no multiple edges). For 0 <i < j <k, P(x;,x;) is
the part ;2,41 ...x; of P from z; to ;. The reverse path xyxr_1...2¢ is denoted by
Pt

Let us be given a positive function A on FG. Put
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(8) p = py = min{dist(s,t) : s,t € T, s # t}.

A path P connecting two distinct terminals and having A-length exactly p’ is called
a geodesic for \, or a A\-geodesic; in particular, P is A-shortest. Let G\ be the subgraph
of G whose edges belong to A-geodesics and vertices belong to A-geodesics or T

Consider a vertex v € VGy. Define the potential w(v) := m)(v) of v to be the
A-distance from v to T'. In particular, m(v) =0if v € T.

Claim 1. Let v belong to a geodesic P from s to t. Then w(v) is the minimum of two
lengths q := A(P(s,v)) and r := A(P(v,t)).

Proof. Assume for definiteness that ¢ < r. Then 7(v) < ¢ < p’/2 (since g+1r = A\(P)

p’). Suppose that 7(v) < ¢, and let s’ be a terminal such that 7(v) = disty(s', v
Choose s” € {s,t} such that s # s’. Now, disty(s,s”) < dista(s’,v) + distx (v, s”)

w(v) +r < g+ r =p'; a contradiction.

~—

LINVAN

From Claim 1 it follows immediately that w(v) < p’/2. For s € T define V* := V?
tobe {v € VG, : disty(s,v) < p'/2}; and define C := C) :={v € VG : w(v) =p'/2};
a vertex in C' is called central. Then the sets V* (s € T') and C are pairwise disjoint
and give a partition of VG . Also Claim 1 shows that if P = vgvy ... v, is a geodesic
from s = vy to t = vg, then there are i and j such that vo,...,v; € VS, vj,... v € VT,
and either j =i+ 1, or j =i+ 2 and v;y; € C. Let E® (respectively, E{st} where
t € T — {s}) denote the set of edges in G\ with one end in V* and the other in VU C
(respectively, in V?).

Claim 2. Let e = uwv € EG)y. Then either e € E® for some s € T, and |r(v) — w(u)| =
Me); or e € E8t} for some s,t € T, and 7(u) + A(e) +7(v) = p’. In particular, the sets
E® (s € T) and EX*t (s t € T) give a partition of EG), and no edge of G connects
two central vertices.

Proof. By definition of G, there is a geodesic P from s to ¢ passing u,e,v (in
this order). Then A(P(s,u)) + A(e) + A(P(v,t)) = p’. One may assume that ¢ :=
A(P(s,u)) < AMP(v,t)) =: r. We know that A(e) > 0 (as A is positive), whence
g < p'/2. This implies ¢ = w(u) (by Claim 1) and u € V*. Suppose that r > p'/2.
Then ¢’ := A(P(s,v)) < p'/2, whence ¢ = 7w(v), by Claim 1. This implies that
veViUuCl, ec E° and m(v) — m(u) = A(e). Now suppose that r < p’/2. Then
7(v) = r, and we obtain v € V¢, e € E{>t} and 7(u) + Ae) + n(v) = p'. .

The following claim describes geodesics in terms of potentials.

Claim 3. Let P = vgvy...v; be an s — t path in G with s,t € T and s # t. The
following are equivalent:

(i) P is a geodesic;



(ii) there is q, 0 < q < k, such that 7(v;) — w(vi—1) = M v;—1v;) for i =1,...,q
and w(v;) — m(vit1) = A(vvi41) fori=q+1,...,k—1.

Proof. (i)—(ii) follows from Claim 2. To show (ii)—(i), put u := vg, v := fuq+1 and
e := uv. Observe that m(u) = M(P(s,u)) and 7(v) = A(P(v,t)). Consider an s" — ¢
geodesic @ passing u, e, v (in this order). Then \(Q ) AMQ(s",u)) + A(e) + AMQ(v, 1)),
AMQ(s',u)) > 7(u) and MQ(v,t")) > 7(v), whence p’ = A(Q) > A(P), and therefore, P
is a geodesic. °

Now, based on Claims 2 and 3, we design the so-called doubly covering digraph
I' =Ty for G. Each non-central vertex v of G generates two vertices v! and v? in T.
If v € VG, is central, it generates 2|T(v)| vertices v (s € T'(v), i = 1,2) in T, where
T(v):={s €T : disty(s,v) = p'/2}. The arcs of I" are defined as follows:

(9) (i) an edge uv € E* (s € T') with 77( ) — m(u) = Muw) induces two arcs (ul,vl)
and (v?,u?) (or (u!,vl) and (v2,u?) when v is central) in T, each of capacity
c(uv);

(ii) an edge uv € Et>t (s,t € T) induces two arcs (u',v?) and (v',u?) in T, each
of capacity c(uv);

(iii) a central vertex v € C induces |T'(v)|(|T(v)] — 1) arcs (vl,v?) in T for all
distinct s,t € T'(v), each of capacity oo;

[See Fig. 2 for illustration; here T' = {s,t,q} and the number on the edges e indicate
A(e).] The positivity of A makes I" well-defined; furthermore, one can see that I" is
acyclic.

Fig. 2
It is convenient to keep the same notation ¢ for the capacities of arcs in I'. The
arcs of a subgraph in I' arising from a central vertex v € C are called central. We
think of S := {s! : s € T} (respectively, S’ := {s* : s € T}) as the set of sources
(respectively, sinks) of I'. Let P = xgxs...x) be a path in I' (that is, (x;—1,2;) € ET
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fori=1,...,k). We say that P is an S — S’ path if 2o € S and x}, € 5.

The construction of I' determines a natural mapping 7 of VITTUFET onto VG\UEG),
which brings v* € VT (or v¢ € VT) to the vertex v, brings a non-central arc (z,y) € ET

to the edge 7(z)7(y), and brings a central arc (v}, v?) to the vertex v.

The mapping 7 is naturally extended to paths in I and G). Namely, for a path P =
xox1 ...z in I, let 7(P) be the path in G induced by the sequence 7(xg), 7(x1),. ..,
7(xy) of vertices (in which repeated vertices going in succession are deleted).

We also define the mapping ¢ : (VI'U ET") — (VI' U ET) such that a vertex v;
(or v?) is mapped to v>~% (or v37%), and an arc (x,y) to (¥(y),9(z)). This gives a
(skew) symmetry of I'. For an s — ¢ path P = xzoz1...2, in I, J(P) is the symmetric
J(t) — ¥(s) path ¥(xg)IzK—_1)...9(x0); obviously, the path 7(P) in G is opposite to
T(9(P)).

Claim 4. 7 determines a one-to-one correspondence between the set of S — S’ paths
in I and the set of A\-geodesics in G.

Proof. Claim 3 and definition (9) show that for a geodesic P one can form (uniquely)
the S — S’ path P’ in T" such that P = 7(P’). Conversely, consider an S — S’ path P =
zoxy ...x in I'. From (9) one can see that P contains exactly one arc, e = (24, 2q+1)
say, such that either e is central, (v}, v?) say, or 7(e) € E1$} for some distinct s,t € T
let for definiteness 7(z,) € V*. Moreover, 7(z;) € VS for j =0,...,¢—1and 7(z;) € V*
for j =q+2,...,k, and either 7(x,) = 7(2441) € C, or 7(x,) € V® and 7(x441) € V*.
Now (9), Claim 3, and the fact that s # ¢ imply that 7(P) is a geodesic. .

The above correspondence of geodesics in G and S — S’ paths in ' naturally
generates a relationship between certain multiflows in N and S — S’ flows in " (whose
arcs e have the capacities c(e) defined in (9)). We say that a multiflow f in N goes
along A-geodesics if f(P) > 0 implies that P is a A-geodesic.

For a function g : ET' — Q4 and a vertex z € VI define

(10) divg(z):= > gl@y)— > gly2).

y:(z,y)EET y:(y,z)EET

We say that g is a (c-admissible) flow from S to S’, or S — S’ flow, if it satisfies the
conservation condition divy(z) = 0 for all x € VI' — (S U S’) as well as the capacity
constraint g(e) < c(e) for all e € ET'. The value v, of a flow g is ) (divy(x) : = € 5);
g is called maximum if v is as large as possible.

A routine fact is that a flow g as above can be represented as the sum of elementary
flows along paths (taking into account that I' is acyclic). More precisely, there are S— 5’
paths Pi, Ps, ..., P, (m < |ET|) and positive rationals aq, ag, ..., ay, such that:

(11) Z(O‘i :e€ P;)=g(e) for any e € ET.
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From (11) it follows that vy = > (a; : i =1,...,m). We say that D := {(P;, o) :
i=1,...,m)} is a decomposition of g. If g is integral then there exists a decomposition
with all «;’s integral; such a decomposition can be found by a trivial procedure of
complexity O(|VT||ET|) (cf. [2]). A decomposition D determines a multiflow f := fp
in N by setting f(7(P;)) := «o;/2 for i = 1,...,m, and f(P) := 0 for the remaining
paths P in P. Using (11) we observe that for any non-central e € ET",

(c(e) + c(9(e))) = c(7(e)),

N | =

¢ (r(e)) = 5 (9(e) + g(9(e))) <

that is, f is c-admissible. Moreover, f goes along geodesics, and 2vy = v,. Also a
converse (in a sense) property is true. More precisely, for a (c-admissible) multiflow f
in N going along geodesics, define the function g = g¢ on ET so that for e € ET', g(e)
is the sum of values f(7(P)) over all S — S’ paths P in I' containing e or ¥(e). Using
the definition of ¢ on ET (in particular, the fact that c(e) = oo if e is central), one can
check that gy is a (c-admissible) S — S” flow in I', and vy, = 2v;. These observations
are summarized as follows.

Claim 5. (i) If g isan S — S’ flow in I and D = (P;, «;) is a decomposition of g, then
f = fp is a multiflow in N going along geodesics, and vy = 2v¢. Moreover, if all o;’s
are integral, then f is half-integral.

(ii) If f is a multifiow in N going along geodesics, then g = gy is an S — S’ flow in
I', and vy = 2vy. °

Since c is integral, there exists an integral maximum S — S’ flow in I'. This gives
the following corollary of Claim 5, which is not used later on, but interesting in its own
right.

Claim 6. If c is integral then there exists a half-integral maximum multiflow in N
going along geodesics. °

Now we are able to prove Theorem 2 (under the assumption of positivity of a).
Given p > 0, suppose that f and [ are optimal solutions of (3) and (4), respectively.
Let A := a + [; then A is positive. We may assume that p = py (since p < py, by (5),
and if p < py then f =0, by (6)). By (6), f is a multiflow in N going along A-geodesics;
in particular, ¢/ (e) > 0 holds only if e is in G). Consider the S — S’ flow g := gs in
' :=T). We say that an arc e € ET is feasible if either e is central or I(7(e)) = 0;
let A denote the set of feasible arcs. By (7), for each e € ET' — A the edge 7(e) in
G is saturated by f (since [(7(e)) > 0), which implies that g(e) = c(e), and hence g
is integral on ET — A. Let v be the restriction of g to A. We say that a function
h:A— Q4 is compatible with ~y if h is c-admissible, that is, h(e) < ¢(e) for e € A, and

divgp(z) =diva(z) forallz e VI — (SUS’),
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where for a function b, div p is defined as in (10) with respect to A rather than ET.

The value divy 4 (2) = —divgr—a,¢(z) is an integer for each z € VI' — (S U 5).
Hence, there is an integral h which is compatible with «. Define ¢’ by ¢’(e) := h(e) for
e € Aand ¢'(e) ;== g(e) for e € ET — A. Then ¢ is an integral S — .S’ flow in I'. Now
the multiflow f’ := fp gives a half-integral multiflow in N, where D = {(P;,a;)} is a
decomposition of g with all a;’s integral. Since ¢’ can differ from g only on arcs in A,
[/ satisfies (7). Furthermore, (i) in Claim 5 implies (6) for f’. Hence, f’ is an optimal
solution of (3), and the theorem follows.

Now suppose that a is a nonnegative cost function on EG. Put Z := {e € EG :
a(e) = 0}. To prove the theorem for a, we apply obvious perturbation techniques,
replacing a by appropriate positive cost functions. More precisely, for a rational number
§ > 0, put a’(e) := a for e € EG — Z and a’(e) := 6 for e € Z, and consider an
infinite sequence 6; > do > ... of positive rationals approaching zero. By the above
proof, problem (3) for G, T, ¢, a’ has a half-integral optimal solution f;. Moreover, the
number of different half-integral c-addmissible multiflows for G, T is finite (as P(G,T)
is finite and ¢ is bounded), hence, we may assume that all the f;’s are the same, f say.
Now trivial arguments yield that f must be an optimal solution of (3) for G, T, ¢, a.

This completes the proof of Theorem 2. oo

Remark 2.1. Assuming, without loss of generality, that p is an integer (and that
a is integer-valued, as before), we observe that taking § as above to be (4c(Z) + 1)1
ensures that any half-integral optimal solution f for (3) with a° is an optimal solution for
(3) with a. Indeed, suppose for a contradiction that there is a (c-admissible) multiflow
f such that d := &(f',a) — &(f,a) > 0, where ¢(f”,a") denotes pvyr — a,. The
integrality of @ and p together with the half-integrality of f and f’ implies that d > %
On the other hand,

6(f.0) = ¢(f,a°)| =0 ¢ (e) <6c(2) <

eezZ

e choice of §), and similarly, |¢(f",a)—o(f', a )| 1. Then ¢(f’,a’) — ¢(f,a’) >

(by
d— i — i > 0, contrary to the optimality of f for a’.

3. Dual half-integrality and algorithm

Theorem 3. Let p be a nonnegative integer. Then (4) has a half-integral optimal
solution.

This theorem follows from Theorem 2 and the general fact that for a system of in-
equalities the “totally dual 1/k-integrality” implies the “totally primal 1/k-integrality”
(this is a natural generalization of the well-known result on TDI systems due to Ed-
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monds and Jiles [12]). More precisely, to our purposes, it suffices to utilize the following
simple fact (see, e.g., [13, Statement 1.1]).

Statement 3.1. Let A be a nonnegative m x n-matrix, let b be an integral m-vector,
and let k be a positive integer. Suppose that the program D(c) := max{yb : y €
Q7. yA < c} has a 1/k-integral optimal solution for every nonnegative integral n-
vector ¢ such that D(c) has an optimal solution. Then for every nonnegative integral
n-vector c, the program P(c) := min{cx : x € QY, Ax > b} has a 1/k-integral optimal
solution whenever it has an optimal solution. °

In our case, one should put k := 2 and take as A (b) the constraint matrix (re-
spectively, the right hand size vector) of the system (ii) in (4). Then b is integral, and
D(c) is just problem (3), whence the result follows. .

Thus, the polyhedron Q = {I € QF : [ satisfies (i),(ii) in (4)} is half-integral
(that is, every face of @) contains a half-integral point), by Theorem 3. In addition,
the separation problem for ) is obviously reduced to finding a + [-shortest paths in
G connecting pairs of terminals. Hence, a half-integral optimal solution of (4) (with
integral a and p) can be found in polynomial time by use of the ellipsoid method and
arguments as in [14].

Furthermore, since (ii) in (4) is equivalent to (5), to find some optimal solution I
of (4) is a linear program whose constraint matrix has entries only 0,1,-1 and consists
of O(|T||EG|) rows and O(|T||VG| + |EG]) columns. Thus, [ can be found in strongly
polynomial time by use of a method due to Tardos [9]. However, without a more
careful analysis, it is unclear whether any (or even some) optimal basis solution for
the latter program is half-integral; so we cannot argue that combining approaches
developed in [9] and [14] would enable us to find a half-integral optimal solution of (4)
in strongly polynomial time. Nevetherless, this task can be fulfilled by involving certain
combinatorial techniques.

More precisely, given c, a, p integral, let @ be the function a® with & := min{(4c(Z)+
)74 (2n%t + 1)~} (cf. Remark 2.1), where n := |VG| and t := |T|. We design a
strongly polynomial algorithm consisting of three parts:

(S1) find a (fractional) optimal solution [ of (4) for G, T, ¢, a, p;
(S2) using [, find a half-integral optimal solution f of (3) for G, T, ¢, a, p;
(S3) using [ and f, find a half-integral optimal solution !’ of (4) for G, T, ¢, a, p.

[Note that (S3) will provide an alternative, combinatorial, proof of Theorem 3.]
We use terminology and notation as in Section 2. Part (S1) has been explained above.
To solve (S2), we construct I' := T' for A := @ + [, and determine an integral S — S’
flow g in T' satisfying g(u) = c(u) for all u € ET' — A (where A is the set of central
arcs and arcs u such that [(7(u)) = 0). Such a g exists, as it was shown in Section 2.
Then f := fp is a half-integral optimal solution of (3) for @, where D is an integral
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decomposition of g. By Remark 2.1 and the choice of § in the definition of @, f is an
optimal solution of (3) for a, as required.

To solve (S3), consider the digraph I' = 'y for A := @ + [ and the S — S’ flow
g = gy in T'; note that |VI'| < 2t + 2t(n —t) < 2nt — 2. The vertex-set VI of I is
partitioned into sets W, W! (s € T). Here W is formed by the vertices v! generated
by v € V* and the vertices v} generated by the central vertices v € C' with s € T'(v);
and W/ := 9(Ws). For z € W (xr € W) define p(x) to be w(7(z)) (respectively,
p—m(7(z))), where 7 is the potential function on VG defined as in Section 2 for given
A. For uw € ET put a(u) := a(7(u)) and @a(u) := a(7(u)) if u is non-central, and put
a(u) := a(u) := 0 otherwise. Let Ut := {u € ET : ¢f(u) = c¢(u)}. We know that

(12) p(z)+p(z') =p for z € VT and 2’ =d(x); p(s)=0 for s € S;
plr) <p for x e Wy, s€T; p(x)=p/2 if 7(z) € C;

(13) p(y) — p(z) 2 a(u)  for u=(z,y) €UT,
a(u) for u=(x,y) € ET -U"

((13) follows from (7)). Expand I' by adding new arcs representing, in a sense, the part
of G outside G, as follows. Let x,y be distinct vertices in GG, connected by a path
P with all edges in EG — EG), and let a({x,y) (a(x,y)) be the minimum cost a(P)
(respectively, a(P)) among all such paths P.

(yhzh), (=2, 97), (v°, 2?);
y?) and (y', z%);
) = a(z,y)

(14) (i) Ifz € V¥ and y € VS UC, add to T the arcs (z!,y'),
(i) if x € V¥ and y € V*? (s # t), add to I the arcs (21,

(iii) for each arc w in (i),(ii), put a(u) := a(z,y) and a(u

(we need not add new arcs to I' when both z,y are central). The set of these new arcs
is denoted by U. Obviously, (6) implies:

(15) p(y) — p(x) < a(u)  for any u = (z,y) € U°.

Claim. There is a function p’ on VI' such that:

(16) p'(s)=0 for s€ S, andp'(s')=pfor s €T;

(17) p'(z) < p'(V(x)) for any z € W, s € T;

(18) py)—p(x) > a(u) if u=(z,y)eU",
=a(u) if u=(z,y) € ETL -UT,
<a(u) if u=(x,y) €U
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Proof. The existence of p’ is equivalent to the fact that the digraph H whose edges
are weighted by b has no negative circuits. Here H and b are designed as follows:

(i) VH = VT U{q,q'}; q is connected with each s € S by arcs (¢, s) and (s,q) of
weight 0; ¢’ is connected with each s’ € S" by arcs (¢, s’) and (s, ¢’) of weight 0; while
q and ¢’ are connected by an arc (q,q’) of weight p and an arc (¢/, q) of weight —p;

(i) each x € Wy (s € T') is connected with 2’ := J(x) by an arc (2/, ) of weight 0;

(iii) each arc v = (z,y) in UT (U%; ET — U™) induces in H an arc (y,z) of weight
—a(u) (respectively, an arc (z,y) of weight a(u); an arc (z,y) of weight a(u) and an
arc (y,x) of weight —a(u)).

Suppose that there is a simple circuit Q in H with b(Q) < 0. Let b be the weighting
on EH defined as above for @ rather than a. The existence of p satisfying (12)-(13)
implies that H has no negative circuit with respect to b, hence, b(Q)) > 0. Since a and p
are integral, b(Q) < —1, whence there is an arc v in Q such that b(u) — b(u) > (2nt)~!
(taking into account that @ is simple, and |V H| = |[VT'|+2 < 2nt). On the other hand,
we know that |a(e) — a(e)| is at most § for any e € ET and at most nd for any e € U°.
Hence, b(u) — b(u) < nd < (2nt)~!, by the definition of §; a contradiction. o

Since the system (16)-(18) is solvable, it has an integral solution p’; it can be found,
e.g., by applying a shortest path algorithm to H and b as above. Now for v € VG,
define 7/(z) := 3(p'(z) +p — p/(2’)), where 7(z) = 7(2’) = v, € W, and &’ € W (for
the corresponding s). Then 7’ is half-integral. (17) implies that 7'(v) < p/2 for each
veVs seT, and (17)-(18) imply that 7'(v) = p/2 for v € C (taking into account
that a(u) = 0 for any central arc u in I).

Finally, for e = zy € EG) define

I'(e) :=|n'(x) —7'(y)| —ale) if z,ye V UC,seT;
=p—7'(z) —7'(y) —ale) fzeViyeVis#t

and define I'(e) := 0 for e € EG — EGy. Then !’ is half-integral. Using (14)-(18),
a routine examination shows that f and !’ satisfy (6)-(7) (we leave it to the reader).
Thus, I is as required in (S3).

Note from March 1993. Recently A.V. Goldberg and the author found two purely
combinatorial algorithms for finding a half-integral optimal solution to (3) (in: “Transi-
tive fork environments and minimum cost multiflows”, Report No. STAN-CS-93-1476,
Stanford University, Stanford, 1993). Both algorithms are polynomial (but not, in gen-
eral, strongly polynomial); the first applies scaling on capacities, and the second applies

scaling on costs.
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