JOURNAL OF COMBINATORIAL THEORY, Series B 60, 1-18 (1994)

Paths and Metrics in a Planar Graph
with Three or More Holes. |. Metrics*

A. V. KARZANOV

Institute for System Analysis of Russian Academy of Science,
9, Prospect 60 Let Oktyabrya, 117312 Moscow, Russia

Received August 19, 1989

Let G=(VG, EG) be a bipartite planar graph embedded in the euclidean
plane and # be a subset of its faces (holes). A. Schrijver proved that if || =2
then there exists a collection = {m,, .., m;} of cut metrics on VG such that:
(i) my(e)+ --- + myle) <1 for any ee EG; and (ii) for any vertices s and ¢ in the
boundary of a hole, the value m (s, )+ --- + m(s, t) is equal to the distance
between s and . This is, in general, not true for [)#|=3.

In the present paper one proves that: (*) for || =3, (i)-(ii) hold for some €
consisting of cut metrics and 2, 3-metrics (metrics induced by the graph X, ;); and
(**) for || =4, (i)-(ii) hold for some ¥ consisting of metrics induced by planar
graphs with at most four faces.

Using (*), in the sequel to the present paper (Part I1) we give a criterion of the
existence of edge-disjoint paths connecting certain vertices in a planar graph with
three holes, provided that the so-called “parity condition” holds. This extends, in a
sense, Okamura’s theorem on edge-disjoint paths in planar graphs with two
holes. (€ 1994 Academic Press, Inc.

1. INTRODUCTION

Throughout, we deal with a connected undirected graph G embedded in
the euclidean plane R2 VG is the vertex set and EG is the edge set of G
{multiple edges are admitted). The set of faces of G is denoted by F# = %;.
A subset & = % of faces in G is distinguished; a face Fe 5 1s called a hole.

A. Schrijver proved the following theorem on packings of cuts.

SCHRUVER’S THEOREM [12]. Let G be bipartite, and let |#| <2. Then
there exist disjoint cuts 60X, ..., 0X, in G such that

[{i|8X,; separates s and t}| = dist(s, 1) forall s teV({I), IeH. (1)
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2 A. V. KARZANOV

[For X< VG, 8X = 6°X denotes the set of edges of G with one end in X and
the other in VG — X'; a nonempty set 60X is called a cut in G; X separates
vertices x and y if X contains exactly one of x and y; dist(x, y) denotes
the distance in G between vertices x and y; V(F) is the set of vertices of
G contained in the boundary bd(F) of a face F.] In [4] another proof of
this theorem was given which provides a strongly polynomial algorithm
(supposing that G is edge-weighted).

Schrijver’s theorem does not remain true for || = 3; e.g., consider G to
be the complete bipartite graph K, ;, see Fig. 1. Nevertheless, Theorem 1
can be extended, in a sense, to |.#| =3 if one adds to the cuts the set of
so-called 2, 3-metrics.

Here and later on by a metric on a set V' we mean a real-valued function
m on VxV satisfying m(x, x)=0, m(x, y)=m(y, x), and m(x, y)+
mly, z)=zm(x, z) for all x, y,ze V. We say that m is induced by (I, 0),
where [ is a graph and ¢ is a mapping of V into VI, if m(x, y) is equal
to dist"(a(x), a(y)) for all x, y€ V'; when it leads to no confusion, we may
say that m is induced by I or m is induced by o. If g(V)}= VI and I'is K,
(K, 5, respectively) then m is said to be a cut metric (a 2, 3-metric, respec-
tively). Clearly there is a natural one-to-one correspondence between the
cuts in G and the cut metrics on VG. In its turn, a 2, 3-metric m on VG is
determined uniquely by an ordered partition of VG into five nonempty
subsets, say (T, T,, S|, S,, S3), considered up to a permutation of 7, T,
and a permutation of S,, S,, S;.

It is easy to see that if m, ..., m, are metrics on VG such that

mi(e)+ - +m(e)< 1 forall eeEG, (2)
then m,(x, y)+ --- + m(x, y)<dist(x, y) holds for any x, ye VG (for a
metric m and an edge ¢ with ends v and v, m(e) stands for m(u, v}). In

metrics terms, Schrijver’s theorem asserts that if ¢ is bipartite and | #| =2,
then there exist cut metrics m,, ..., m, on VG satisfying (2) and

ml(ss t)+ e +mk(sy l)
=dist%(s, 1) forall Ie# and s, re V(I). (3)

ty
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In the present paper we prove the following theorem.

THEOREM 1. Let G be bipartite, and let |#|=3. Then there exist
my, .., my satisfying (2) and (3), where each m; is a cut metric or a 2, 3-
metric on VG.

Figure 2 illustrates two instances of bipartite graphs with four holes for
which (2)-(3) cannot be satisfied by taking only cut metrics and 2, 3-
metrics. The natural question arises: given n, is it true that there exists a
[inite set 4 of graphs providing the property that, for any (G, #) with G
bipartite and (3| =n, (2)-(3) hold with all m,’s induced by only graphs
from 4?7 It turns out that even for n =4 the answer is negative (moreover,
it remains negative even for the fractional relaxation of the problem with
n=4); we show this in Section 4. Nevertheless, the following is true.

THEOREM 2. Let G be bipartite, and let | #°| = 4. Then there exist metrics
my, .., myg on VG satisfying (2) and (3), where each m; is a cut metric or a
2, 3-metric or a metric induced by a bipartite planar graph I with four faces.

In contrast to this result, if =15 then (2)}-(3) cannot be, in general,
satisfied by using only planar graphs I” with at most five faces, as shown
in Section 4.

Theorems 1 and 2 will be proved in Section 2. In Section 3 Theorem 1 is
extended by showing that 2, 3-metrics in this theorem can be chosen to
correspond, in a sense, to the topological structure of the space
R - ({e o) (Theorem (3.1)). Basing on this strengthening and using a
relationship between packings of metrics and multicommodity flows, in the
sequel to this paper (Part II} we obtain a criterion for the existence of
edge-disjoint paths connecting certain pairs of vertices in a planar graph
{Theorems 3 and 4 below).

To formulate these results, consider a family U= {{s,, t,}, .., {s,, ¢,}} of
pairs of vertices in G. Let k be an integer > 1.

PROBLEM. (G, U, k): find paths P}, .., P% P}, ., P4 . P, . P"inG
such that each edge of G occurs at most k times in these paths, and P/
connects s, and ¢,.

FIGURE 2
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When k=1, (G, U, k) turns into the problem of finding edge-disjoint
paths P,, .., P, in G such that P, connects s; and 7,. An obvious necessary
condition for the solvability of (G, U, k) (that is, for the existence of
required paths) is the cut condition:

each cut 6.X of G separates at most [4.X| pairs in U. (4)

We say that G and U satisfy the parity condition if:

0X| +|{i=1, .. r|dX separates s; and 1,}|
iseven foreach X< VG. (5)

Let s be a set of faces in G such that for each i=1, ..., r there exists an
I e # such that s,, t,€ V(I). Okamura proved the following theorem.

OKAMURA’s THEOREM [9]. If || =2 and if (4) and (5) hold, then the
problem (G, U, 1) has a solution.

[An analogous theorem for [ #|=1 was proved by Okamura and
Seymour [107].] In particular, from Okamura’s theorem it follows that: if
|| =2, (5) holds and (G, U, k) is solvable for some k, then (G, U, 1) is
solvable as well. An unexpected fact is that the same remains true for
[#] = 3.

THEOREM 3. If || =23, (S) holds and (G, U, k) has a solution for some
k, then (G, U, 1) has a solution as well.

Note that in case |#| =3 the cut condition (4) is, in general, not
sufficient for the solvability of (G, U, k) with any fixed k (e.g., consider
G:=K,; and U:={{s,,5,}, {52,835}, {s3,8.}, {t,, t2}}, see Fig.1). A
solvability criterion for it involves an additional condition on 2, 3-metrics,
as follows.

THEOREM 4. Let |\#| = 3. The problem (G, U, k) has a sclution for some
k if and only if (4) and

Y mie)z Y mis,t)  forall 2,3-metricsmon VG (6)

ee £EG i=1

hold.

In conclusion of this section let us mention analogues of Theorems 1, 3,
and 4 for arbitrary graphs G. Let T(U) be the set of distinct vertices among
s;’s and 1;’s.
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(i) If |T(U)| <5, (5) holds and (G, U, k) has a solution for some k,
then (G, U, 1) has a solution as well; this fact was proved for |T(U)| <4 in
[6, 137 (see also [8]) and for |T(U)| =5 in [3].

(n) H [T(U)| <4, then (G, U, k) has a solution for some k if and
only if (4) holds [11];if |T(U)| =5, then (G, U, k) has a solution for some
k if and only if (4) and (6) hold [3].

(iii) Let G be a connected bipartite graph, and let T< VG. If |T] <4,
then there exist disjoint cuts X, ..., 8X in G such that the equality in (1)
holds for all s, te T [2]. If |7| =35, then there exist metrics m,, ..., m; on
VG, where each m, is a cut metric or a 2, 3-metric, satisfying (2) and such
that the equality in (3) holds for all s, re T [5].

It is known that the statements in (i)-(iii) do not remain true for
|T(U)| =6 and for |T| =6.

2. PrROOFS OF THEOREMS 1 AND 2

Below we do not differ a graph G (a vertex, an edge of G) and its image
in the plane. A face is considered as an open region in R? that is, it is
identified with its interior. A face in # — 5 is called intermediate. Denote
by W= W(X) the set of pairs {s, 1} of vertices in G such that s, te V(I),
Ie #. An s—1 path with {s, 1} € W is called a W-path. The distance
function dist¢ is denoted by d.

An x—y path in G is meant to be a sequence P=(x=xg,e,, X, ...
€., X, =y), where e, is an edge of G with end vertices x;_, and x,; if x =y,
P is a circuit. The length k of P is denoted by |P|. When it does not lead
to confusion we identify a path (circuit) with its image in the plane. The
boundary bd(F) of a face F will be often considered as a (possibly not
simple) circuit oriented clockwise from a point in F.

We use some ideas and techniques developed in [12] for case || = 2.
We proceed by induction on

w(G) =) (2P| Fe %), (7)

considering the set of pairs (G, 5#) with G bipartite and || <4. First we
eliminate some cases for which one can fulfil a simple reduction of G to a
bipartite graph G’ with ©(G’) < w(G).

(l) SuppOSC that bd(F) = (xO, €1y X5 ey gy X = xO) and k 2 3 for
some intermediate face F. Then we subdivide F into quadrangles as done
in [12]. Add into F new vertices y,,.., yx_, and edges {x,, y,},

(i vads {Vas ¥ o {Vk=3s Y2} and {yi_oy Xy by {Ve—20 Xes1 }-
Such a transformation preserves the distances for all the old vertices of G.
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Furthermore, the value in (7) becomes smaller, whence the result follows
by induction.

(i) Suppose that X is a reducible cut in G. This means that
d(s, 1) =dist® (s, t') + 1
if {s,t}eW and  JX separatessand1/,
d(s, t)=dist9(s', t')
for the other {s, 7} in W,

(8)

where G’ arises from G by contracting each edge e in 6.X (that is, by iden-
tifying the ends of e and deleting the loop), and x’ denotes the image of
x€ VG in G'. Clearly G’ is bipartite and o(G’) < w(G). So, by induction,
there are m}, ..., m, on VG’ (where each m/ is a cut metric or a 2, 3-metric)
satisfying (2)-(3) for G' with the set "’ of holes corresponding to . Put
m;(x, y):=m(x', y') for x, ye VG, i=1, .., k. Let m, | be the cut metric
determined by 0X. From (8) it follows that m, ..., m, , | give a solution for
G and #.

(iii) Let x and y be vertices in the boundary of an intermediate face
F, and let d(x, y) be even. Denote by G’ the graph obtained from G by
identifying x and y. Suppose that d(s, 1)=dist“(s’, ¢') for all {s,t}e W.
Then the result for G, # obviously follows by induction.

(iv) Suppose that G is not 2-connected. Then it can be split at some
vertex v, forming two nontrivial graphs G,, i=1, 2. Choose properly holes
in each G,. The result easily follows by induction, taking into account that
for ue VG, and we VG,, d(u, w) = dist®(u, v) + dist®(v, w).

(v) Suppose that e and ¢’ are parallel edges in G. Delete e and
choose properly holes in the obtained graph. This operation does not
change any distances in the graph, and the result follows by induction.

In view of (i)-(v), one may assume that:

(9) G has no multiple edges;
(10) each intermediate face F is a quadrangle, that is, |bd(F)| = 4;
(11) the circuit bd(F) is simple for each face F;
(12) G has no reducible cuts;

(13) for each intermediate face F with bd(F)= xqx,;x,x;5x,, there is
a shortest W-path containing the vertices x, and x, (therefore, there is a
shortest W-path containing the edges xqx; and x, x,).

[An edge of G with ends x and y is denoted by xy; a path (x4, e,, x;, ...,
€4, X;) is denoted by x,x, ---x,.] The following lemma is the core of the
proof.
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(2.1) LEMMA. G has no intermediate faces, that is, F = K.

Proof. Suppose that this is false. Following [12], by a dual path we
mean a minimal sequence

D'_‘(Fanl’F]an,---’ Fk*l’ek’Fk)

such that: (a) F,_, and F, are distinct faces in G, and ¢, is a common edge
in bd(F,_,) and bd(F,); (b) for i=1, .., k—1, the face F,; is intermediate,
and e; and e, | are opposite edges in bd(F,); (c) either F,, F e #, or Fy=
F,e F —# and e,, e, are opposite edges in bd(F,). For i=1,.,k, let
bd(F)=x,y;¥;,1%i41Xx; and e;=x;y,. The path R(D):=x;x;---x;
(respectively, L(D):=y,y,---y,) is called the right (respectively, left)
boundary of D. It was proved in [12] that

d(x;, x;)=d(y; y;) forall 1<igj<k (14)

(note that the proof of (14) essentially uses (13) and it, in fact, does not
depend on the number of holes); moreover, (12) and (14) easily imply the
following properties:

(15) D is not self-intersecting, that is, F;# F; for i # j; in particular,
the case Fy= F, is impossibie;

(16) each shortest W-path has at most one common edge with D.

For a path P=v4v,---v, and 0<i< j<k let P(v;, v;) denote the part
v;---v; of P from v; to v;. For a path Q =uyu, ---u, with up=v,, P-Q
stands for the concatenated path vyv,---v,u; --u,.. For a simple path
P with both ends in the boundary of a hole I, denote by #(P)=#(P, I)
the pair {9,, 2,} of closed regions whose union is R> — / and whose inter-
section is P.

CiamM 1. Let Ie #, Fe F — #, bd(F)=xyx'y'x, and let the edge xy
lie in bd(I). Then the edge yx' is not in bd([).

Proof. Suppose that this is not so. Let P be a shortest W-path
containing y, x’, y, say P=p---yx'y'---q (P exists by (13)). Since P is
shortest and xy, yx'ebd(f), one must be p=y, whence p, ge V(I). For
R(P)={Q2,, 2,}, let # be the set of holes of G contained in ,. Since
|| <4, one may assume that || < 1. Next, one may assume that F lies
in Q, (otherwise we could take the shortest path pxy’-.-gq instead of P).
For P':= P(x’, q), let G, be the subgraph of G lying in £,, and let G, be
the subgraph of G such that G, uG,=G and GNG,=P". Let I’ be the
face of G, involving 7; then P is a part of bd(/’). By Schrijver’s theorem,
there exist disjoint cuts X, ..., X, in G, satisfying (1) for G, and #' =
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H#, v {I'}. Obviously, one of these, say 6X,, contains the edge yx'; let
ve X,. We know that 84X, is reducible for G, and »#”’, P is shortest and
p, qe V(I'), hence (by (16)), P’ has no common edge with 6X,. So X, is
acutin G, and X,nVG,=.

We assert that 06X, is reducible for G and 5. To see this, consider
{s,1} e W and an s— path L. We have to show that

|[L—6X,| =2d(s, t)—a(L), (17)

where a(L) := 1 if §X, separates s and ¢, and O otherwise. Let us split L as
L,-L,-----L,sothat r=r(L)is minimum, provided L, is a u;,— v, , path
contained in some G, (then u,, .., u, are vertices in P’). We use induction
on r(L). Inequality {17) is obvious if L is a path in G, (since L n8X, = &¥)
or L is a path in G, (since §X, is reducible for G, and s#'). Let r =2. One
may assume that L, is in G,. Then L, X, = J, whence

|L—0X\| =L, —0X |+ |Ly| 2 d(u,, uy) — (L) + d(uy, us) 2 d(s, t) — (L)

(taking into account that oX, is reducible for G, and »#’). Finally, for
r =2 3, one can replace L, by the u, —u; path Q that is a part of P’ (or
of the reverse path P’ '). Observe that |Q|<|L,—6X,| (taking into
account that wu,,u,eV(I') and @ is shortest). Now for the path
L =L, .Q-Ly ----L, we have |L'—0X,|<|L-98X,|, (L' )y=a(L) and
r(L'y<r(L), whence (17) follows by induction. So 3X, is reducible for G
and s, contradicting (12). |

CLAaM 2. Let P be a shortest s—1t path with s,te V{I), Ie #, let
R(P, I)={Q,, 2.}, and let Q, contain no hole. Then P is contained in the
boundary of L

Proof. Suppose that this is not so. Let Q be the s—1¢ path in the
boundary of I such that P and Q form the boundary of Q,. Denote by n(P)
the number of faces of G that are in Q. Since P# Q, n(P)>0. One may
assume that P is chosen so that #(P) is minimum (subject to #(P})>0) and
P has no inner vertex belonging to (.

Take an edge e=uv in Q. Since 2, contains no hole, ¢ belongs to the
boundary of an intermediate face F. Furthermore, F lies in ,. Let
bd(F) = uvxyu. Consider the dual path D= (F,, e, F, ..., e,, F,) traversing
the edges vx and uy. We know that F, # F, (by (15)), 2, has no hole, and
D can meet P at most in one edge (by (16)). Hence, one of the end faces
of D, say F,, is I, and all faces of D between I and F are in £2,. Let for
definiteness D traverses vx earlier than uy. One can see that v belongs
to the right boundary R(D)=:y,y,--- y,, while x belongs to the left
boundary L(D)=:x,x,---x, of D, and that y, and v are inner vertices in
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FIGURE 3

Q(x,, u), see Fig. 3. This implies that the part R’ of R(D) from y, to v does
not meet P. Now choose a shortest W-path passing x,, y,, y,, say P=
p---X, ¥y y2---q. Since P and D have no common edge except x, y, (by
(16)), the path P’ :=P(y,,q) lies in the region ' =&, bounded by
Q(y,,v) and R'. Therefore, geV(l), and Q"<Q' <=Q, for some
Q"e R(P', I) (so " contains no hole). In view of the minimality of P, the
path P’ must coincide with the part of Q from y, to ¢g. Thus, both edges
x,y, and y,y, are in bd(/}—a contradiction with Claim ! (for / and
F). 1

Consider an intermediate face F; let bd(F) = uvxyu. Choose a shortest
W-path passing u,v,x, say P=s---uvx---t, and a shortest W-path
passing v, u, y, say Q=p---vuy---q. Let s, te V(I) and p, g€ V(I'), where
I I'e . Denote P, := P(s,u), P,:=P(x, 1), Q,:=0(p,v), Q,:=0(y, q).

CLamM 3. (i) The paths P,, P,, Q,, Q, are disjoint. (i) I=1".

Proof. Clearly P,nP,=Q,nQ,=¢. Suppose that for some
i, je {1,2}, P,and Q, have a common vertex z; let for definiteness i= j=1
(if, e.g., i=1, j=2, one should consider the path P, -uyx - P, instead of P).
Then there is a shortest path of form z---uv (a part of P) and a shortest
path of form z---wvu (a part of Q). This implies d(u, v)=0, which is
impossible. Part (ii) easily follows from (i). |

One may assume that / as above is the outer face of G. The paths
P, P,, Q,, Q, partition the space R*>— (/U F) into four closed regions ,,
i=1,2,3,4, such that 2, " Q,=F for |i— j| =2, and

,nQ2,=0,, Q,nQ,=P,, 2;nQ2,=0,, Q,nQ2,=P;;

see Fig. 4. Let 5 be the set of holes in £2,, and let n,:=[s}. We may
assume that n,+n,<n,+n, and n,<n;. Since n,+n,+n,+n,=
|#|—1<3, n,=0and n, < 1.
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Consider the dual path D=(KX, e, F,, .., F, _,,e;,J) with ¢,=uv and
e,. =xy. Since |IDNnP|<1 and [Dn Q| <1, all the edges ¢,, .., ¢, lic in
,—(P,u Q) and all the edges e, (, .., e, lie in 2;— (P, Q,). There-
fore, K=1, n,=1 and J is just the hole in £,. Next, each of Q, and Q,
must contain at least one hole. For if n, =0, say, then one of the regions
in Z( P) has no hole. But P cannot lie entirely in bd(7) since bd{/) does not
contain simultaneously uv and vx, by Claim1; a contradiction with
Claim 2. In particular, this proves the lemma for [#| = 3.

Now suppose that |#|=4. Let x,x,---x, be the right boundary and
¥ ¥a--- ¥, be the left boundary of D; then x;,=u and y,=v. Choose a
shortest W-path passing x,, y,, y,, say P=3§---x,y,y,---7, and a
shortest W-path passing y,, x,, X, say O=p---y,x,X,---§. We assert
that 5, 7€ V(). Indeed, if 3, 7€ V(I') for some I’ € # — {I} then at least one
of P, Q, say P, meets both paths B(3, x,) and P(y,, 7). Hence, there is a
shortest s— path passing x,, y,, v,. Then p, ge V({I) (by Claim 3(ii)
for F,), whence §, fe V(1) (by the same claim}); a contradiction.

So one may assume that F as above is chosen to be F,, and that P= P,
Q0=0, s=x,, p=y,. Then the edges e,,..,e, of D lic in Q:=R>—
(TuQ2,00,).

Let x; . ()i4 ) be the vertex in bd(J) opposite to y, (respectively, x,).
Consider the dual path D'=(J, e, , €, 1) With e, =X, Vii1»
and let x, ., --- x,, (respectively, v, ,--- y,,) be the right (respectively, left)
boundary of D; see Fig. 5.

CLamm 4. d(x,, x;)=d(y;, y;), for all 1 <i, j<m.

Proof. Suppose to the contrary that d(x,, x;)#d(y;, ;) for some
1 <i< j<m. In addition, let i, j be chosen so that kj—i is as small as
possible. From (14) (for D and for D') it follows that i<k and j >k + 1.
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FIGURE $§

First we observe that the edges e, .., e; , lie in Q. For suppose that j’
is the minimum index such that 1 < j" < j and e, is not in . Then e,
belongs to some of the paths P and Q, say Q. From the minimality of ;'
it follows that Q passes x,. earlier than y;.. Then d(x, x; ) <d(y, y;) and
kj'—1 < kj—i, contrary to the choice of i, j.

By symmetry one may assume that d(x,, x;})<d(y, y,). Choose a
shortest x,—x; path L', and form the path L:=y,x,-L"-y,y; Since
dly, y)<|Ll =L +2=d(x;, x)+2 and d(y;, y,) 2 d(x;, x;)+2 (as G is
bipartite), L is shortest. We may assume that L lies entirely in QU Pu Q
(taking into account that e,, e, are in £ and that P and Q are shortest).

Suppose that i=k and j=k+ 1. By Claim 2 applied to L and J, it
follows that L lies in the boundary of J. Then |L| =1 |bd(J)| + 1 (since y,
and x, ., are opposite on bd(J)), whence L is not shortest; a contradiction.

Now suppose that { < k£ (the case j >k + 1 is symmetric). Take a shortest
r—w path R=z4z,-.-z, with {r,w}e W passing y,, y,,, X;,, (in this
order); let z, = y,. If r, we V(J), then there exists a shortest r —w path R’
which passes y;, y;,., X;,, and lies in QU Pu Q. By Claim 2 (for R’ and
J), R’ is contained in the boundary of J; a contradiction with Claim 1 (for
F, and J). Thus r, we V(K) for some hole K+ J. This means that at least
one of the following is true: (a) R ‘=R(z,,,, z,) meets L' at some vertex
Zg; or (b) R passes an edge e, for some i+ 1 < j' < j. In the first case, the
path R(y,, z,)- L(z,, y,) is also shortest, whence d(x,;,,, x;)<d(y;,,. ¥,),
contrary to the choice of /, j. In the second case we also obtain a contra-
diction with the choice of i, j. ||

From Claim 4 it follows easily that:

(18) all vertices x,, ..., X,,, ¥;, -, V., are distinct;
(19) the end face I' of D' is L



12 A. V. KARZANOV

By (18)}-(19), the edges ¢, .., e,, form a cut 6X in G. We assert that 6X
is reducible; this contradiction will prove the lemma. To see this, consider
a W-path L=5---f. We have to prove that

|L—6X|>d(5 f)—a(L), (20)

where a(L):=1 if X separates § and 7, and O otherwise. We proceed
by induction on |L|. Inequality (20) is obvious when |LndXi<1. If
[LNJX| =2 then L can be split as L, -B-L,, where B is a path v,v,---v,
such that [BndoX|=2, vjv,=¢;, and v, ,v,=e¢, for some |1 <i, j<m. Let
for definiteness v, = x,; then v, = x,. Choose a shortest v, — v, path 8, and
put L':=L,-B'-L,. By Claim 4, |B’| < |B| — 2. Therefore, |L'| <|L| and

|L~8X|—|L' —8X|=|B—3X|~|B —3X|=|B|—2—|B —8X| >0,

whence (20) follows by induction.
The proof of Lemma (2.1) is completed. |}

Now we finish the proof of Theorem ! (Theorem 2 follows from
Lemma (2.1) and Theorem 1). A simple s —¢ path (or circuit) P in G is
called elementary if all inner vertices of P are of valency 2 in G. If P is
elementary then P is a part of the boundary of some hole. Since G has no
reducible cuts,

(21) any clementary path P is shortest.

Indeed, let P=xqx,---x, and |P|>d(x,, x;). One can see that for i:=
(d(xq, X )+ k)/2, the cut formed by the edges x,x, and x;x,, , is reducible.
From (21) it follows for the case || =3 that G is a “theta-graph,” that
is, it is homeomorphic to K, ;. Moreover, by (21), G is formed by three
elementary s —¢ paths P,=0v’0!---v7, i=1,2,3, of the same length r. If r
is an odd, say r=2r'+1, then the edges v/v]*', i=1,2,3, form a
reducible cut. Thus, r is an even, say r=2k. Now it is a routine to check
that the metric on VG induced by G itself is the sum of & 2, 3-metrics.

This completes the proofs of Theorems 1 and 2. |}

Remark. Strictly speaking, in the above proof we admited 2, 3-metrics
m to be induced by o such that ¢(VG)# VK, ;. In fact, such an m can be
replaced by (at most three) cut metrics. More precisely, let the vertices of
K, ; be labelled by ¢, t,, 5,55, 5; as shown in Fig. 1. For a mapping
o: VG — VK, , denote by I1(o) the ordered partition (T, 75, S,, S,, S3) of
VG defined by

T.:=0'1,), i=1,2 and S :=0"(s,), j=1,2,3  (22)
4 J

For X< VG, let pX denote the cut (or zero} metric on VG defined by
pX(x, y):=11if |{x, y} nX| =1, and 0 otherwise. It is easy to check that
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if T,=¢J for some j then the metric m induced by o coincides with
pS,+ pS,+ pS;. Similarly, if S;= for some j, say S, =(J, then m=
pX+pY for X:=T,uS, and Y:=7,0S;. Thus, if for m,..,m,
satisfying (2)-(3) some m, is induced by o¢: VG- VK,; such that
o(VG) # VK, ; then m; can be replaced by cut metrics, preserving validity
of (2}-(3).

In conclusion note that the proof of Theorem 1 provides a polynomial
algorithm for finding a required packing of cuts and 2, 3-metrics. It should
be noted only that there are simple approaches to subdivide an
intermediate face F of the original graph into quadrangles, preserving the
distances for the original vertices, in such a way that the number of new
elements is bounded by a polynomial in bd(F) (the method used in the
proof gave exponential growth for this amount).

3. A STRENGTHENING OF THEOREM |

In this section we derive a stronger form of Theorem 1 that establishes
the existence of a family {m,, .., m,} satisfying (2)-(3) in which each 2, 3-
metric corresponds, in a sense, to the topological structure of the space
R2—|J (/e #). For the purposes of PartIl we shall deal with edge-
weighted graphs G. Let us start with terminology and notation used here.

(i) Let ! be a nonnegative integer-valued function on EG; /(e)
is interpreted as a length of an edge e. The [-length I(P) of a path
P =(Xq, €y, X1, . €, X)) is 3X_, l(e;), and the [-distance dist,(x, y) for
x, y€ VG is the minimum of /(P)’s among aill x — y paths P in G. We say
that / is bipartite if the /-length of each circuit in G is even.

(ii) For X< VG, (X)={X); denotes the subgraph of G induced
by X, while @(X) denotes the closed region in the plane that is the union
of the graph (X> and the faces of G whose boundaries are entirely
contained in {X).

(i) Let m be a 2, 3-metric induced by o, and let I(o)=(T,, T,,
S,. S,, S;) be defined as in (22). We say that m is proper if the holes in G
can be labelled by I,, I,, I, so that the following hoid:

(23) for i=1,2,3, the graph {S§,;) is connected, and it meets the
boundaries of 7;,_, and I,,, but not the boundary of /, (taking indices
modulo 3);

(24) the space R~ (I, ul,Ul, U D(S,)U P(S,) U D(S;)) consists
of two disjoint (connected) regions one containing 7, and the other
containing T, ;

see Fig. 6. These properties imply that G has no edge with one end in T,
and the other in T,.
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FIGURE 6

(3.1) THEOREM. Let |#| =3, and let | be bipartite. Then there exist
my, .., my satisfyving

mi(e)+ - +my(e)<l(e) forall eeEG, (25)
my(s, 1)+ - +m(s, 1)=dist,(s, 1) forall s teV(I), Ie#, (26)

where each m; is a cul metric or a proper 2, 3-metric.

Proof. Let G' be the graph arising from G by subdivision of each edge
e € FEG into /(e) edges in series; if /(e) =0 this means contraction of e. Then
G’ is bipartite. Let ¢’ be the set of holes in G’ corresponding to . By
Theorem 1 there exist m, ..., m, satisfying (2)-(3) for G’ and #’, where
each m; is a cut metric or a 2, 3-metric on VG'. Each m, generates in a
natural way a metric m; on VG such that m, is induced by (I, g,) for
I e {K,, K, 5}, and (25)-(26) hold for m,, .., m,. By the arguments given
in the Remark in Section 2, one may assume that o,(VG)= VI, that is, m,
is a cut metric or a 2, 3-metric.

Next, we say that a triple T = (G, #, /) with [5#| <3 and a bipartite [#0
is elementary if there is no bipartite function /' #0, ! on EG such that /' </
and:

dist,. (s, 1) + dist,(s, t} = dist, (s, 1) forany {s,1}e W(#), (27)

where /" :=1/—~1'" and W(#) is defined as in Section 2. Clearly if 1 is
elementary and m,, .., m, (m, is a cut metric or a 2, 3-metric) satisfy
(25)-(26) for this 7, then £ =1 and, moreover, m(¢)=Il(e) for all ee EG
(taking into account that the restriction of a cut metric or a 2, 3-metric to
EG is a bipartite function). We say that m, is associated with .

It suffices to show that if 1 is elementary and m* is associated with t then
m* is either a cut metric or a proper 2, 3-metric. Supposing that this is
false, consider a counterexample 7= (G, #, [) for which the value

w=w(l)=Y le)+|{ecEG|le)=0}]

is as small as possible. Observe that:
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(i) Ke)=1 or 2 for any e€ EG (since a 2, 3-metric takes values
only 0, 1 or 2, and since contraction of e with /(e) =0 obviously yields a
counterexample with smaller w);

(ii) | =3 (for if |5F| <2, (25)(26) hold with all m,’s that are cut
metrics, by Schrijver’s theorem);
(iii) G is 2-connected (otherwise t would be not elementary subject

to (1)).

Let t'=(G’, 5#',1’) be obtained from t by replacing each edge e€ EG
with /(e) =2 by two edges in series, each of length 1. It is easy to see that
17’ is elementary as well, and a metric m’ on VG’ associated with 7' is a 2, 3-
metric. Let m’ be induced by ¢’, and H(e¢')= (T}, T5, S{, S5, S4%). Since
m'(e)=1'(e) =1 for all ee EG’, each component of {T/> or {S;) consists
of a unique vertex. Consider a hole I’ € #'. Its boundary intersects each set
of I1(¢’) in at most one vertex (for if s and t are two common vertices for
bd(!’} and B'ell{c’) then m’'(s, t)=0 while dist, (s, ) #0). Clearly each
edge in G’ connects a vertex in T; and a vertex in §;. Thus |bd(/’)| =2 or
4 (since otherwise T, or 7T, would have more than two vertices in common
with bd(7")).

Consider the restriction m of m’ to VG. Then m is a 2, 3-metric
associated with t; let m be induced by o, and II(c)=(T,, T,, S;, S, S3)-
The above properties for m’ imply: for Ie 5,

(28) (bd(I)) < 4; |bd(J)n B} <1 for each Be Ill(s); |bd(I)n
($,u 8,0 8y)| <£2; and if |bd(/})} =4 then, up to cyclically shifting bd(/)=
Vol -+ U30g, ONE has: voe T, v,€S;, v,€T,, v;€ S, for some i#i'.

Next, for X, Y VG let [X, Y] denote the set of pairs {w, v} with one
element in X and the other in Y. Suppose that there are two sets among
S, S5, S5, say S5, S;, such that the boundary of none of /e # meets both
S, and S,; in other words, [S,, S;]n W= (. Form the sets X :=S,u T,
and Y:=S8,0uT,, see Fig. 7(a). A straightforward check-up shows that

\ /
N
v/
\
OrOIO
/ \
/ \\\
Y/ *
/ \

FiGURE 7

582b/60s1-2
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m(x, v) = pX(x, y)+ pX(x, y) holds for any x, ye VG, and it turns into
equality unless {x, v} e[S, S5;]}. This immediately implies that t is not
elementary.

Thus, in view of (28), each S, meets the boundaries of exactly two holes,
and there is a labelling 7,,7,,I; of the holes of G so that S, meets
bd(/,) for exactly those i, j as described in (23). Let s/ denote the vertex in
S;nbd(l) # <.

Suppose that for some S;, say S,, none of the components of (S,
connects the boundaries of 7, and I, that is, s)#s3. Form X:=
S;uT,uDand Y:=8,uT,uD’, where D:={s3} and D' := S, — D, see
Fig. 7(b). One can check that

oX(x, y)+oY(x, y)=m(x, y)+2 il {x,y}e[D, D],
=m(x, y)—2 if {x,y}elD,S,JulD,S,],

=m(x, y) otherwise.

Now the fact that each of the sets [D, D']n EG, [S,,D]n W and
[S;, D'}~ W is empty implies that m can be replaced by pX, pY, whence
T is not elementary.

Thus, si~ '=si*t=:5 for i=1,2, 3. Obviously the space R—(/,ul,u
I,u {s,, 55, 53}) consists of two regions @' and @7 Let T* be the set of
vertices of G contained in @'. Then the 2, 3-metric m* corresponding to the
partition (T, T2 {s,}, {5,}, {s3}) is proper. A routine check-up using (28)
shows that m*(s, r)=dist,(s, ¢) for all {s,t}eW. |

4. CASE OF FOUR OR MORE HOLES

We say that a set 4 of connected graphs is n-complete if, for any (G, #)
with G bipartite and || <n, there exist m, ..., m, satisfying (2)-(3) such
that each m,; is a metric induced by some I"'e % with |EI'| <|EG|. For
example, {K,, K, ;} is 3-complete, by Theorem 1. We prove the following
statement.

(4.1) (1) Each 4-complete set contains infinitely many bipartite
planar graphs I' with || =4.
(ii) FEach 5-complete set contains a bipartite planar graphs I with
|#r| > S.

Proof. Let us say that a pair (G, ) is principal if G is a (connected)
bipartite planar graph without multiple edges, # < %;, and the following
hold:
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(29) for any distinct x, y€ VG, x # y, there exist Te # and s, t € V(I)
such that dist®(s’, ') < dist“(s, 1), where G’ is obtained from G by iden-
tifying x and p, and s, ¢" are the images of 5, ¢ in G';

(30) for any /: EG— R, such that /(e)<! for each e€ EG the
equalities

dist,(s, t) +dist, _,(s, t)=dist(s, 1) forall s, 1eVv({), Ie ',

imply that / is constant.

Observe that if (G, #) is principal then G is contained in any ||
-complete set 4. Indeed, let m,, ..., m, satisfy (2)~(3) for given G, »#, where
each m; is induced by o,: VG — VI, for I' ;e 4 with |ET",| < |EG|. Thenk =1
{by (30)) and o,(x)# o,(y) for distinct x, y e VG (by (29)). Moreover, for
each xy e EG, the vertices x' :=0,(x) and )’ :=0,(y) are connected in I
by an edge (as 0 <dist’!(x', y')<m (x, v)<1, in view of x'# y’). Thus,
G is a subgraph of I'), whence G=1T",.

To prove (i), consider the graph Q and the weighting w, , (depending on
natural p, q) on its edges as drawn in Fig. 8(a). Denote by G, , the graph
obtained from Q by partitioning each ee EQ into w, (e) edges in series.
We assert that if the g.c.d. of p, ¢ is | then the pair (G, ) is principal,
where G :=G, , and # = %;. Check-up of (29) (for arbitrary p, q) is easy.

To see (30), we use a method similar to that developed in [7, 1] for
proving the primitivity of the metrics of certain graphs. Let / satisfy the
equalities in (30); then any shortest path in G which connects some
s, te V(I), Ie s, must be shortest with respect to /. One can see that for
each face F with bd(F)=x,x, - X5 _ X, (k:=p+g¢q), and for i=0,1, ..,
2k —1, the path P,:=x,x;,,---x,,,; is shortest in G (taking indices
modulo 2k). Considering four shortest paths P, P, , P 4, Pirns1 WE
conclude that H{x;x;, ;) =HX;. cX;x+1) SO l(e)=1I(e') holds for any two
opposite edges e, e’ in bd(/). Now using the fact that the g.cd. of p, g is 1
one can show that, for any e, ¢’ € EG, there is a sequence ¢,, e,, ..., ¢,€ EG
such that e=e,, ¢’ = ¢, and each two ¢;, ¢;, , are opposite on the boundary
of some face. Therefore, [ is constant.

FIGURE 8
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Validity of (ii} is provided by the graph G with [%#;|=6 and # :=
{0,1,J, K, L}, as illustrated in Fig. 8(b). Verification of (29) is straight-
forward. The proof of (30) uses arguments as above and it is left to the
reader. (Instructions: observe that for any F'e%; with bd(F')=
XgXy -+ X X, each path x;---x,,, is a part of a shortest path in G
connecting some s, tel’, I'e #.) |
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