

Paths and Metrics in a Planar Graph with Three or More Holes. I. Metrics*

A. V. KARZANOV

*Institute for System Analysis of Russian Academy of Science,
9, Prospect 60 Let Oktyabrya, 117312 Moscow, Russia*

Received August 19, 1989

Let $G = (VG, EG)$ be a bipartite planar graph embedded in the Euclidean plane and \mathcal{H} be a subset of its faces (holes). A. Schrijver proved that if $|\mathcal{H}| = 2$ then there exists a collection $\mathcal{C} = \{m_1, \dots, m_k\}$ of cut metrics on VG such that: (i) $m_1(e) + \dots + m_k(e) \leq 1$ for any $e \in EG$; and (ii) for any vertices s and t in the boundary of a hole, the value $m_1(s, t) + \dots + m_k(s, t)$ is equal to the distance between s and t . This is, in general, not true for $|\mathcal{H}| = 3$.

In the present paper one proves that: (*) for $|\mathcal{H}| = 3$, (i)-(ii) hold for some \mathcal{C} consisting of cut metrics and 2, 3-metrics (metrics induced by the graph $K_{2,3}$); and (**) for $|\mathcal{H}| = 4$, (i)-(ii) hold for some \mathcal{C} consisting of metrics induced by planar graphs with at most four faces.

Using (*), in the sequel to the present paper (Part II) we give a criterion of the existence of edge-disjoint paths connecting certain vertices in a planar graph with three holes, provided that the so-called "parity condition" holds. This extends, in a sense, Okamura's theorem on edge-disjoint paths in planar graphs with two holes. © 1994 Academic Press, Inc.

1. INTRODUCTION

Throughout, we deal with a connected undirected graph G embedded in the Euclidean plane \mathbb{R}^2 . VG is the vertex set and EG is the edge set of G (multiple edges are admitted). The set of faces of G is denoted by $\mathcal{F} = \mathcal{F}_G$. A subset $\mathcal{H} \subseteq \mathcal{F}$ of faces in G is distinguished; a face $F \in \mathcal{H}$ is called a *hole*.

A. Schrijver proved the following theorem on packings of cuts.

SCHRIJVER'S THEOREM [12]. *Let G be bipartite, and let $|\mathcal{H}| \leq 2$. Then there exist disjoint cuts $\delta X_1, \dots, \delta X_k$ in G such that*

$$|\{i \mid \delta X_i \text{ separates } s \text{ and } t\}| = \text{dist}^G(s, t) \quad \text{for all } s, t \in V(I), \quad I \in \mathcal{H}. \quad (1)$$

* This work was partially supported by "Chaire municipale," Mairie de Grenoble, France.

[For $X \subseteq VG$, $\delta X = \delta^G X$ denotes the set of edges of G with one end in X and the other in $VG - X$; a nonempty set δX is called a *cut* in G ; δX separates vertices x and y if X contains exactly one of x and y ; $\text{dist}^G(x, y)$ denotes the distance in G between vertices x and y ; $V(F)$ is the set of vertices of G contained in the boundary $\text{bd}(F)$ of a face F .] In [4] another proof of this theorem was given which provides a strongly polynomial algorithm (supposing that G is edge-weighted).

Schrijver's theorem does not remain true for $|\mathcal{H}| = 3$; e.g., consider G to be the complete bipartite graph $K_{2,3}$, see Fig. 1. Nevertheless, Theorem 1 can be extended, in a sense, to $|\mathcal{H}| = 3$ if one adds to the cuts the set of so-called 2, 3-metrics.

Here and later on by a *metric* on a set V we mean a real-valued function m on $V \times V$ satisfying $m(x, x) = 0$, $m(x, y) = m(y, x)$, and $m(x, y) + m(y, z) \geq m(x, z)$ for all $x, y, z \in V$. We say that m is *induced* by (Γ, σ) , where Γ is a graph and σ is a mapping of V into $V\Gamma$, if $m(x, y)$ is equal to $\text{dist}^\Gamma(\sigma(x), \sigma(y))$ for all $x, y \in V$; when it leads to no confusion, we may say that m is induced by Γ or m is induced by σ . If $\sigma(V) = V\Gamma$ and Γ is K_2 ($K_{2,3}$, respectively) then m is said to be a *cut metric* (a 2, 3-metric, respectively). Clearly there is a natural one-to-one correspondence between the cuts in G and the cut metrics on VG . In its turn, a 2, 3-metric m on VG is determined uniquely by an ordered partition of VG into five nonempty subsets, say $(T_1, T_2, S_1, S_2, S_3)$, considered up to a permutation of T_1, T_2 and a permutation of S_1, S_2, S_3 .

It is easy to see that if m_1, \dots, m_k are metrics on VG such that

$$m_1(e) + \dots + m_k(e) \leq 1 \quad \text{for all } e \in EG, \quad (2)$$

then $m_1(x, y) + \dots + m_k(x, y) \leq \text{dist}^G(x, y)$ holds for any $x, y \in VG$ (for a metric m and an edge e with ends u and v , $m(e)$ stands for $m(u, v)$). In metrics terms, Schrijver's theorem asserts that if G is bipartite and $|\mathcal{H}| = 2$, then there exist cut metrics m_1, \dots, m_k on VG satisfying (2) and

$$\begin{aligned} m_1(s, t) + \dots + m_k(s, t) \\ = \text{dist}^G(s, t) \quad \text{for all } I \in \mathcal{H} \quad \text{and} \quad s, t \in V(I). \end{aligned} \quad (3)$$

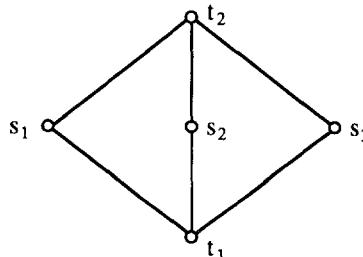


FIGURE 1

In the present paper we prove the following theorem.

THEOREM 1. *Let G be bipartite, and let $|\mathcal{H}| = 3$. Then there exist m_1, \dots, m_k satisfying (2) and (3), where each m_i is a cut metric or a 2, 3-metric on VG .*

Figure 2 illustrates two instances of bipartite graphs with four holes for which (2)–(3) cannot be satisfied by taking only cut metrics and 2, 3-metrics. The natural question arises: given n , is it true that there exists a finite set \mathcal{G} of graphs providing the property that, for any (G, \mathcal{H}) with G bipartite and $|\mathcal{H}| = n$, (2)–(3) hold with all m_i 's induced by only graphs from \mathcal{G} ? It turns out that even for $n = 4$ the answer is negative (moreover, it remains negative even for the fractional relaxation of the problem with $n = 4$); we show this in Section 4. Nevertheless, the following is true.

THEOREM 2. *Let G be bipartite, and let $|\mathcal{H}| = 4$. Then there exist metrics m_1, \dots, m_k on VG satisfying (2) and (3), where each m_i is a cut metric or a 2, 3-metric or a metric induced by a bipartite planar graph Γ with four faces.*

In contrast to this result, if $n = 5$ then (2)–(3) cannot be, in general, satisfied by using only planar graphs Γ with at most five faces, as shown in Section 4.

Theorems 1 and 2 will be proved in Section 2. In Section 3 Theorem 1 is extended by showing that 2, 3-metrics in this theorem can be chosen to correspond, in a sense, to the topological structure of the space $\mathbb{R} - \bigcup_{I \in \mathcal{H}}$ (Theorem (3.1)). Basing on this strengthening and using a relationship between packings of metrics and multicmodity flows, in the sequel to this paper (Part II) we obtain a criterion for the existence of edge-disjoint paths connecting certain pairs of vertices in a planar graph (Theorems 3 and 4 below).

To formulate these results, consider a family $U = \{\{s_1, t_1\}, \dots, \{s_r, t_r\}\}$ of pairs of vertices in G . Let k be an integer ≥ 1 .

PROBLEM. (G, U, k) : find paths $P_1^1, \dots, P_1^k, P_2^1, \dots, P_2^k, \dots, P_r^1, \dots, P_r^k$ in G such that each edge of G occurs at most k times in these paths, and P_i^j connects s_i and t_i .

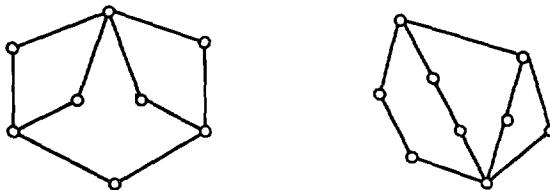


FIGURE 2

When $k = 1$, (G, U, k) turns into the problem of finding edge-disjoint paths P_1, \dots, P_r in G such that P_i connects s_i and t_i . An obvious necessary condition for the solvability of (G, U, k) (that is, for the existence of required paths) is the *cut condition*:

$$\text{each cut } \delta X \text{ of } G \text{ separates at most } |\delta X| \text{ pairs in } U. \quad (4)$$

We say that G and U satisfy the *parity condition* if:

$$\begin{aligned} |\delta X| + |\{i = 1, \dots, r \mid \delta X \text{ separates } s_i \text{ and } t_i\}| \\ \text{is even for each } X \subset VG. \end{aligned} \quad (5)$$

Let \mathcal{H} be a set of faces in G such that for each $i = 1, \dots, r$ there exists an $I \in \mathcal{H}$ such that $s_i, t_i \in V(I)$. Okamura proved the following theorem.

OKAMURA'S THEOREM [9]. *If $|\mathcal{H}| = 2$ and if (4) and (5) hold, then the problem $(G, U, 1)$ has a solution.*

[An analogous theorem for $|\mathcal{H}| = 1$ was proved by Okamura and Seymour [10].] In particular, from Okamura's theorem it follows that: if $|\mathcal{H}| = 2$, (5) holds and (G, U, k) is solvable for some k , then $(G, U, 1)$ is solvable as well. An unexpected fact is that the same remains true for $|\mathcal{H}| = 3$.

THEOREM 3. *If $|\mathcal{H}| = 3$, (5) holds and (G, U, k) has a solution for some k , then $(G, U, 1)$ has a solution as well.*

Note that in case $|\mathcal{H}| = 3$ the cut condition (4) is, in general, not sufficient for the solvability of (G, U, k) with any fixed k (e.g., consider $G := K_{2,3}$ and $U := \{\{s_1, s_2\}, \{s_2, s_3\}, \{s_3, s_1\}, \{t_1, t_2\}\}$, see Fig. 1). A solvability criterion for it involves an additional condition on 2, 3-metrics, as follows.

THEOREM 4. *Let $|\mathcal{H}| = 3$. The problem (G, U, k) has a solution for some k if and only if (4) and*

$$\sum_{e \in EG} m(e) \geq \sum_{i=1}^r m(s_i, t_i) \quad \text{for all 2, 3-metrics } m \text{ on } VG \quad (6)$$

hold.

In conclusion of this section let us mention analogues of Theorems 1, 3, and 4 for arbitrary graphs G . Let $T(U)$ be the set of distinct vertices among s_i 's and t_j 's.

(i) If $|T(U)| \leq 5$, (5) holds and (G, U, k) has a solution for some k , then $(G, U, 1)$ has a solution as well; this fact was proved for $|T(U)| \leq 4$ in [6, 13] (see also [8]) and for $|T(U)| = 5$ in [3].

(ii) If $|T(U)| \leq 4$, then (G, U, k) has a solution for some k if and only if (4) holds [11]; if $|T(U)| = 5$, then (G, U, k) has a solution for some k if and only if (4) and (6) hold [3].

(iii) Let G be a connected bipartite graph, and let $T \subseteq VG$. If $|T| \leq 4$, then there exist disjoint cuts $\delta X_1, \dots, \delta X_N$ in G such that the equality in (1) holds for all $s, t \in T$ [2]. If $|T| = 5$, then there exist metrics m_1, \dots, m_k on VG , where each m_i is a cut metric or a 2, 3-metric, satisfying (2) and such that the equality in (3) holds for all $s, t \in T$ [5].

It is known that the statements in (i)–(iii) do not remain true for $|T(U)| = 6$ and for $|T| = 6$.

2. PROOFS OF THEOREMS 1 AND 2

Below we do not differ a graph G (a vertex, an edge of G) and its image in the plane. A face is considered as an open region in \mathbb{R}^2 , that is, it is identified with its interior. A face in $\mathcal{F} - \mathcal{H}$ is called *intermediate*. Denote by $W = W(\mathcal{H})$ the set of pairs $\{s, t\}$ of vertices in G such that $s, t \in V(I)$, $I \in \mathcal{H}$. An $s - t$ path with $\{s, t\} \in W$ is called a *W-path*. The distance function dist^G is denoted by d .

An $x - y$ path in G is meant to be a sequence $P = (x = x_0, e_1, x_1, \dots, e_k, x_k = y)$, where e_i is an edge of G with end vertices x_{i-1} and x_i ; if $x = y$, P is a *circuit*. The *length* k of P is denoted by $|P|$. When it does not lead to confusion we identify a path (circuit) with its image in the plane. The boundary $\text{bd}(F)$ of a face F will be often considered as a (possibly not simple) circuit oriented clockwise from a point in F .

We use some ideas and techniques developed in [12] for case $|\mathcal{H}| = 2$. We proceed by induction on

$$\omega(G) := \sum (2^{|\text{bd}(F)|} | F \in \mathcal{F}_G), \quad (7)$$

considering the set of pairs (G, \mathcal{H}) with G bipartite and $|\mathcal{H}| \leq 4$. First we eliminate some cases for which one can fulfil a simple reduction of G to a bipartite graph G' with $\omega(G') < \omega(G)$.

(i) Suppose that $\text{bd}(F) = (x_0, e_1, x_1, \dots, e_{2k}, x_{2k} = x_0)$ and $k \geq 3$ for some intermediate face F . Then we subdivide F into quadrangles as done in [12]. Add into F new vertices y_1, \dots, y_{k-2} and edges $\{x_0, y_1\}, \{y_1, y_2\}, \{y_2, y_3\}, \dots, \{y_{k-3}, y_{k-2}\}$ and $\{y_{k-2}, x_{k-1}\}, \{y_{k-2}, x_{k+1}\}$. Such a transformation preserves the distances for all the old vertices of G .

Furthermore, the value in (7) becomes smaller, whence the result follows by induction.

(ii) Suppose that δX is a *reducible* cut in G . This means that

$$\begin{aligned} d(s, t) &= \text{dist}^{G'}(s', t') + 1 \\ &\quad \text{if } \{s, t\} \in W \quad \text{and} \quad \delta X \text{ separates } s \text{ and } t, \\ d(s, t) &= \text{dist}^{G'}(s', t') \\ &\quad \text{for the other } \{s, t\} \text{ in } W, \end{aligned} \tag{8}$$

where G' arises from G by contracting each edge e in δX (that is, by identifying the ends of e and deleting the loop), and x' denotes the image of $x \in VG$ in G' . Clearly G' is bipartite and $\omega(G') < \omega(G)$. So, by induction, there are m'_1, \dots, m'_k on VG' (where each m'_i is a cut metric or a 2, 3-metric) satisfying (2)–(3) for G' with the set \mathcal{H}' of holes corresponding to \mathcal{H} . Put $m_i(x, y) := m'_i(x', y')$ for $x, y \in VG$, $i = 1, \dots, k$. Let m_{k+1} be the cut metric determined by δX . From (8) it follows that m_1, \dots, m_{k+1} give a solution for G and \mathcal{H} .

(iii) Let x and y be vertices in the boundary of an intermediate face F , and let $d(x, y)$ be even. Denote by G' the graph obtained from G by identifying x and y . Suppose that $d(s, t) = \text{dist}^{G'}(s', t')$ for all $\{s, t\} \in W$. Then the result for G, \mathcal{H} obviously follows by induction.

(iv) Suppose that G is not 2-connected. Then it can be split at some vertex v , forming two nontrivial graphs G_i , $i = 1, 2$. Choose properly holes in each G_i . The result easily follows by induction, taking into account that for $u \in VG_1$ and $w \in VG_2$, $d(u, w) = \text{dist}^{G_1}(u, v) + \text{dist}^{G_2}(v, w)$.

(v) Suppose that e and e' are parallel edges in G . Delete e and choose properly holes in the obtained graph. This operation does not change any distances in the graph, and the result follows by induction.

In view of (i)–(v), one may assume that:

- (9) G has no multiple edges;
- (10) each intermediate face F is a quadrangle, that is, $|\text{bd}(F)| = 4$;
- (11) the circuit $\text{bd}(F)$ is simple for each face F ;
- (12) G has no reducible cuts;
- (13) for each intermediate face F with $\text{bd}(F) = x_0x_1x_2x_3x_0$, there is a shortest W -path containing the vertices x_0 and x_2 (therefore, there is a shortest W -path containing the edges x_0x_1 and x_1x_2).

[An edge of G with ends x and y is denoted by xy ; a path $(x_0, e_1, x_1, \dots, e_k, x_k)$ is denoted by $x_0x_1 \dots x_k$.] The following lemma is the core of the proof.

(2.1) **LEMMA.** *G has no intermediate faces, that is, $\mathcal{F} = \mathcal{H}$.*

Proof. Suppose that this is false. Following [12], by a *dual path* we mean a minimal sequence

$$D = (F_0, e_1, F_1, e_2, \dots, F_{k-1}, e_k, F_k)$$

such that: (a) F_{i-1} and F_i are distinct faces in G , and e_i is a common edge in $\text{bd}(F_{i-1})$ and $\text{bd}(F_i)$; (b) for $i = 1, \dots, k-1$, the face F_i is intermediate, and e_i and e_{i+1} are opposite edges in $\text{bd}(F_i)$; (c) either $F_0, F_k \in \mathcal{H}$, or $F_0 = F_k \in \mathcal{F} - \mathcal{H}$ and e_1, e_k are opposite edges in $\text{bd}(F_0)$. For $i = 1, \dots, k$, let $\text{bd}(F_i) = x_i y_i y_{i+1} x_{i+1} x_i$ and $e_i = x_i y_i$. The path $R(D) := x_1 x_2 \dots x_k$ (respectively, $L(D) := y_1 y_2 \dots y_k$) is called the *right* (respectively, *left*) *boundary* of D . It was proved in [12] that

$$d(x_i, x_j) = d(y_i, y_j) \quad \text{for all } 1 \leq i \leq j \leq k \quad (14)$$

(note that the proof of (14) essentially uses (13) and it, in fact, does not depend on the number of holes); moreover, (12) and (14) easily imply the following properties:

(15) D is not self-intersecting, that is, $F_i \neq F_j$ for $i \neq j$; in particular, the case $F_0 = F_k$ is impossible;

(16) each shortest W -path has at most one common edge with D .

For a path $P = v_0 v_1 \dots v_k$ and $0 \leq i \leq j \leq k$ let $P(v_i, v_j)$ denote the part $v_i \dots v_j$ of P from v_i to v_j . For a path $Q = u_0 u_1 \dots u_k$ with $u_0 = v_k$, $P \cdot Q$ stands for the concatenated path $v_0 v_1 \dots v_k u_1 \dots u_k$. For a simple path P with both ends in the boundary of a hole I , denote by $\mathcal{R}(P) = \mathcal{R}(P, I)$ the pair $\{\Omega_1, \Omega_2\}$ of closed regions whose union is $\mathbb{R}^2 - I$ and whose intersection is P .

CLAIM 1. *Let $I \in \mathcal{H}$, $F \in \mathcal{F} - \mathcal{H}$, $\text{bd}(F) = xyx'y'x$, and let the edge xy lie in $\text{bd}(I)$. Then the edge yx' is not in $\text{bd}(I)$.*

Proof. Suppose that this is not so. Let P be a shortest W -path containing y, x', y' , say $P = p \dots yx'y' \dots q$ (P exists by (13)). Since P is shortest and $xy, yx' \in \text{bd}(I)$, one must be $p = y$, whence $p, q \in V(I)$. For $\mathcal{R}(P) = \{\Omega_1, \Omega_2\}$, let \mathcal{H}_i be the set of holes of G contained in Ω_i . Since $|\mathcal{H}| \leq 4$, one may assume that $|\mathcal{H}_1| \leq 1$. Next, one may assume that F lies in Ω_1 (otherwise we could take the shortest path $pxy' \dots q$ instead of P). For $P' := P(x', q)$, let G_1 be the subgraph of G lying in Ω_1 , and let G_2 be the subgraph of G such that $G_1 \cup G_2 = G$ and $G \cap G_2 = P'$. Let I' be the face of G_1 involving I ; then P is a part of $\text{bd}(I')$. By Schrijver's theorem, there exist disjoint cuts $\delta X_1, \dots, \delta X_k$ in G_1 satisfying (1) for G_1 and $\mathcal{H}' :=$

$\mathcal{H}_1 \cup \{I'\}$. Obviously, one of these, say δX_1 , contains the edge yx' ; let $y \in X_1$. We know that δX_1 is reducible for G_1 and \mathcal{H}' , P is shortest and $p, q \in V(I')$, hence (by (16)), P' has no common edge with δX_1 . So δX_1 is a cut in G , and $X_1 \cap VG_2 = \emptyset$.

We assert that δX_1 is reducible for G and \mathcal{H} . To see this, consider $\{s, t\} \in W$ and an $s-t$ path L . We have to show that

$$|L - \delta X_1| \geq d(s, t) - \alpha(L), \quad (17)$$

where $\alpha(L) := 1$ if δX_1 separates s and t , and 0 otherwise. Let us split L as $L_1 \cdot L_2 \cdot \dots \cdot L_r$ so that $r = r(L)$ is minimum, provided L_i is a $u_i - u_{i+1}$ path contained in some G_j (then u_2, \dots, u_r are vertices in P'). We use induction on $r(L)$. Inequality (17) is obvious if L is a path in G_2 (since $L \cap \delta X_1 = \emptyset$) or L is a path in G_1 (since δX_1 is reducible for G_1 and \mathcal{H}'). Let $r = 2$. One may assume that L_1 is in G_1 . Then $L_2 \cap \delta X_1 = \emptyset$, whence

$$|L - \delta X_1| = |L_1 - \delta X_1| + |L_2| \geq d(u_1, u_2) - \alpha(L_1) + d(u_2, u_3) \geq d(s, t) - \alpha(L)$$

(taking into account that δX_1 is reducible for G_1 and \mathcal{H}'). Finally, for $r \geq 3$, one can replace L_2 by the $u_2 - u_3$ path Q that is a part of P' (or of the reverse path P'^{-1}). Observe that $|Q| \leq |L_2 - \delta X_1|$ (taking into account that $u_2, u_3 \in V(I')$ and Q is shortest). Now for the path $L' := L_1 \cdot Q \cdot L_3 \cdot \dots \cdot L_r$ we have $|L' - \delta X_1| \leq |L - \delta X_1|$, $\alpha(L') = \alpha(L)$ and $r(L') < r(L)$, whence (17) follows by induction. So δX_1 is reducible for G and \mathcal{H} , contradicting (12). ■

CLAIM 2. *Let P be a shortest $s-t$ path with $s, t \in V(I)$, $I \in \mathcal{H}$, let $\mathcal{R}(P, I) = \{\Omega_1, \Omega_2\}$, and let Ω_1 contain no hole. Then P is contained in the boundary of I .*

Proof. Suppose that this is not so. Let Q be the $s-t$ path in the boundary of I such that P and Q form the boundary of Ω_1 . Denote by $n(P)$ the number of faces of G that are in Ω_1 . Since $P \neq Q$, $n(P) > 0$. One may assume that P is chosen so that $n(P)$ is minimum (subject to $n(P) > 0$) and P has no inner vertex belonging to Q .

Take an edge $e = uv$ in Q . Since Ω_1 contains no hole, e belongs to the boundary of an intermediate face F . Furthermore, F lies in Ω_1 . Let $\text{bd}(F) = uvxyu$. Consider the dual path $D = (F_0, e_1, F_1, \dots, e_k, F_k)$ traversing the edges vx and uy . We know that $F_0 \neq F_k$ (by (15)), Ω_1 has no hole, and D can meet P at most in one edge (by (16)). Hence, one of the end faces of D , say F_0 , is I , and all faces of D between I and F are in Ω_1 . Let for definiteness D traverses vx earlier than uy . One can see that v belongs to the right boundary $R(D) =: y_1 y_2 \dots y_k$, while x belongs to the left boundary $L(D) =: x_1 x_2 \dots x_k$ of D , and that y_1 and v are inner vertices in

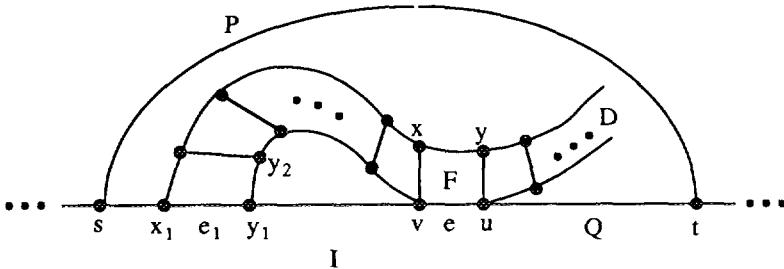


FIGURE 3

$Q(x_1, u)$, see Fig. 3. This implies that the part R' of $R(D)$ from y_1 to v does not meet P . Now choose a shortest W -path passing x_1, y_1, y_2 , say $\tilde{P} = p \cdots x_1 y_1 y_2 \cdots q$. Since \tilde{P} and D have no common edge except $x_1 y_1$ (by (16)), the path $P' := \tilde{P}(y_1, q)$ lies in the region $\Omega' \subset \Omega_1$ bounded by $Q(y_1, v)$ and R' . Therefore, $q \in V(I)$, and $\Omega'' \subseteq \Omega' \subset \Omega_1$ for some $\Omega'' \in \mathcal{R}(P', I)$ (so Ω'' contains no hole). In view of the minimality of P , the path P' must coincide with the part of Q from y_1 to q . Thus, both edges $x_1 y_1$ and $y_1 y_2$ are in $\text{bd}(I)$ —a contradiction with Claim 1 (for I and F_1). ■

Consider an intermediate face F ; let $\text{bd}(F) = uvxyu$. Choose a shortest W -path passing u, v, x , say $P = s \cdots uvx \cdots t$, and a shortest W -path passing v, u, y , say $Q = p \cdots vuy \cdots q$. Let $s, t \in V(I)$ and $p, q \in V(I')$, where $I, I' \in \mathcal{H}$. Denote $P_1 := P(s, u)$, $P_2 := P(x, t)$, $Q_1 := Q(p, v)$, $Q_2 := Q(y, q)$.

CLAIM 3. (i) *The paths P_1, P_2, Q_1, Q_2 are disjoint.* (ii) *$I = I'$.*

Proof. Clearly $P_1 \cap P_2 = Q_1 \cap Q_2 = \emptyset$. Suppose that for some $i, j \in \{1, 2\}$, P_i and Q_j have a common vertex z ; let for definiteness $i = j = 1$ (if, e.g., $i = 1, j = 2$, one should consider the path $P_1 \cdot uyx \cdot P_2$ instead of P). Then there is a shortest path of form $z \cdots uv$ (a part of P) and a shortest path of form $z \cdots vu$ (a part of Q). This implies $d(u, v) = 0$, which is impossible. Part (ii) easily follows from (i). ■

One may assume that I as above is the outer face of G . The paths P_1, P_2, Q_1, Q_2 partition the space $\mathbb{R}^2 - (I \cup F)$ into four closed regions Ω_i , $i = 1, 2, 3, 4$, such that $\Omega_i \cap \Omega_j = \emptyset$ for $|i - j| = 2$, and

$$\Omega_1 \cap \Omega_2 = Q_1, \quad \Omega_2 \cap \Omega_3 = P_2, \quad \Omega_3 \cap \Omega_4 = Q_2, \quad \Omega_4 \cap \Omega_1 = P_1;$$

see Fig. 4. Let \mathcal{H}_i be the set of holes in Ω_i , and let $n_i := |\mathcal{H}_i|$. We may assume that $n_1 + n_3 \leq n_2 + n_4$ and $n_1 \leq n_3$. Since $n_1 + n_2 + n_3 + n_4 = |\mathcal{H}| - 1 \leq 3$, $n_1 = 0$ and $n_3 \leq 1$.

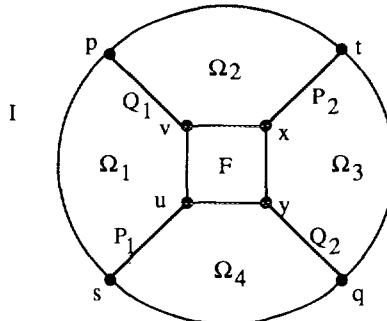


FIGURE 4

Consider the dual path $D = (K, e_1, F_1, \dots, F_{k-1}, e_k, J)$ with $e_i = uv$ and $e_{i+1} = xy$. Since $|D \cap P| \leq 1$ and $|D \cap Q| \leq 1$, all the edges e_1, \dots, e_i lie in $\Omega_1 - (P_1 \cup Q_1)$ and all the edges e_{i+1}, \dots, e_k lie in $\Omega_3 - (P_2 \cup Q_2)$. Therefore, $K = I$, $n_3 = 1$ and J is just the hole in Ω_3 . Next, each of Ω_2 and Ω_4 must contain at least one hole. For if $n_2 = 0$, say, then one of the regions in $\mathcal{H}(P)$ has no hole. But P cannot lie entirely in $\text{bd}(I)$ since $\text{bd}(I)$ does not contain simultaneously uv and vx , by Claim 1; a contradiction with Claim 2. In particular, this proves the lemma for $|\mathcal{H}| = 3$.

Now suppose that $|\mathcal{H}| = 4$. Let $x_1 x_2 \dots x_k$ be the right boundary and $y_1 y_2 \dots y_k$ be the left boundary of D ; then $x_i = u$ and $y_i = v$. Choose a shortest W -path passing x_1, y_1, y_2 , say $\tilde{P} = \tilde{s} \dots x_1 y_1 y_2 \dots \tilde{t}$, and a shortest W -path passing y_1, x_1, x_2 , say $\tilde{Q} = \tilde{p} \dots y_1 x_1 x_2 \dots \tilde{q}$. We assert that $\tilde{s}, \tilde{t} \in V(I)$. Indeed, if $\tilde{s}, \tilde{t} \in V(I')$ for some $I' \in \mathcal{H} - \{I\}$ then at least one of P, Q , say P , meets both paths $\tilde{P}(\tilde{s}, x_1)$ and $\tilde{P}(y_2, \tilde{t})$. Hence, there is a shortest $s - t$ path passing x_1, y_1, y_2 . Then $\tilde{p}, \tilde{q} \in V(I)$ (by Claim 3(ii) for F_1), whence $\tilde{s}, \tilde{t} \in V(I)$ (by the same claim); a contradiction.

So one may assume that F as above is chosen to be F_1 , and that $P = \tilde{P}$, $Q = \tilde{Q}$, $s = x_1$, $p = y_1$. Then the edges e_1, \dots, e_k of D lie in $\Omega := \mathbb{R}^2 - (I \cup \Omega_2 \cup \Omega_4)$.

Let x_{k+1} (y_{k+1}) be the vertex in $\text{bd}(J)$ opposite to y_k (respectively, x_k). Consider the dual path $D' = (J, e_{k+1}, \dots, e_m, I')$ with $e_{k+1} = x_{k+1} y_{k+1}$, and let $x_{k+1} \dots x_m$ (respectively, $y_{k+1} \dots y_m$) be the right (respectively, left) boundary of D ; see Fig. 5.

CLAIM 4. $d(x_i, x_j) = d(y_i, y_j)$, for all $1 \leq i, j \leq m$.

Proof. Suppose to the contrary that $d(x_i, x_j) \neq d(y_i, y_j)$ for some $1 \leq i < j \leq m$. In addition, let i, j be chosen so that $kj - i$ is as small as possible. From (14) (for D and for D') it follows that $i \leq k$ and $j \geq k+1$.

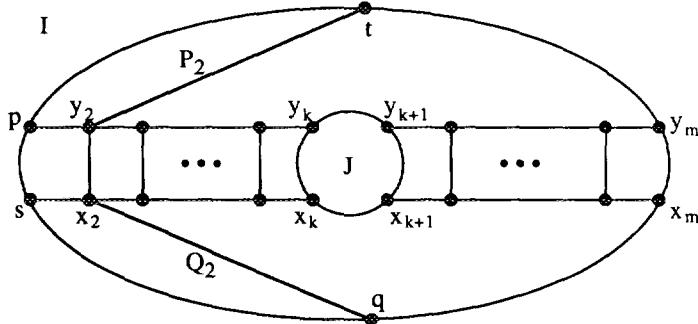


FIGURE 5

First we observe that the edges e_2, \dots, e_{j-1} lie in Ω . For suppose that j' is the minimum index such that $1 < j' < j$ and $e_{j'}$ is not in Ω . Then $e_{j'}$ belongs to some of the paths P and Q , say Q . From the minimality of j' it follows that Q passes $x_{j'}$ earlier than $y_{j'}$. Then $d(x_1, x_{j'}) < d(y_1, y_{j'})$ and $kj' - 1 < kj - i$, contrary to the choice of i, j .

By symmetry one may assume that $d(x_i, x_j) < d(y_i, y_j)$. Choose a shortest $x_i - x_j$ path L' , and form the path $L := y_i x_i \cdot L' \cdot y_j y_j$. Since $d(y_i, y_j) \leq |L| = |L'| + 2 = d(x_i, x_j) + 2$ and $d(y_i, y_j) \geq d(x_i, x_j) + 2$ (as G is bipartite), L is shortest. We may assume that L lies entirely in $\Omega \cup P \cup Q$ (taking into account that e_i, e_j are in Ω and that P and Q are shortest).

Suppose that $i = k$ and $j = k + 1$. By Claim 2 applied to L and J , it follows that L lies in the boundary of J . Then $|L| = \frac{1}{2} |\text{bd}(J)| + 1$ (since y_k and x_{k+1} are opposite on $\text{bd}(J)$), whence L is not shortest; a contradiction.

Now suppose that $i < k$ (the case $j > k + 1$ is symmetric). Take a shortest $r - w$ path $R = z_0 z_1 \dots z_h$ with $\{r, w\} \in W$ passing y_i, y_{i+1}, x_{i+1} (in this order); let $z_f = y_i$. If $r, w \in V(J)$, then there exists a shortest $r - w$ path R' which passes y_i, y_{i+1}, x_{i+1} and lies in $\Omega \cup P \cup Q$. By Claim 2 (for R' and J), R' is contained in the boundary of J ; a contradiction with Claim 1 (for F_i and J). Thus $r, w \in V(K)$ for some hole $K \neq J$. This means that at least one of the following is true: (a) $\tilde{R} := R(z_{f+2}, z_h)$ meets L' at some vertex z_g ; or (b) \tilde{R} passes an edge $e_{j'}$ for some $i+1 < j' < j$. In the first case, the path $R(y_i, z_g) \cdot L(z_g, y_j)$ is also shortest, whence $d(x_{i+1}, x_j) < d(y_{i+1}, y_j)$, contrary to the choice of i, j . In the second case we also obtain a contradiction with the choice of i, j . ■

From Claim 4 it follows easily that:

- (18) all vertices $x_1, \dots, x_m, y_1, \dots, y_m$ are distinct;
- (19) the end face I' of D' is I .

By (18)–(19), the edges e_1, \dots, e_m form a cut δX in G . We assert that δX is reducible; this contradiction will prove the lemma. To see this, consider a W -path $L = \bar{s} \cdots \bar{t}$. We have to prove that

$$|L - \delta X| \geq d(\bar{s}, \bar{t}) - \alpha(L), \quad (20)$$

where $\alpha(L) := 1$ if δX separates \bar{s} and \bar{t} , and 0 otherwise. We proceed by induction on $|L|$. Inequality (20) is obvious when $|L \cap \delta X| \leq 1$. If $|L \cap \delta X| \geq 2$ then L can be split as $L_1 \cdot B \cdot L_2$, where B is a path $v_1 v_2 \cdots v_h$ such that $|B \cap \delta X| = 2$, $v_1 v_2 = e_i$, and $v_{h-1} v_h = e_j$ for some $1 \leq i, j \leq m$. Let for definiteness $v_1 = x_i$; then $v_h = x_j$. Choose a shortest $v_1 - v_h$ path B' , and put $L' := L_1 \cdot B' \cdot L_2$. By Claim 4, $|B'| \leq |B| - 2$. Therefore, $|L'| < |L|$ and

$$|L - \delta X| - |L' - \delta X| = |B - \delta X| - |B' - \delta X| = |B| - 2 - |B' - \delta X| \geq 0,$$

whence (20) follows by induction.

The proof of Lemma (2.1) is completed. ■

Now we finish the proof of Theorem 1 (Theorem 2 follows from Lemma (2.1) and Theorem 1). A simple $s - t$ path (or circuit) P in G is called *elementary* if all inner vertices of P are of valency 2 in G . If P is elementary then P is a part of the boundary of some hole. Since G has no reducible cuts,

(21) any elementary path P is shortest.

Indeed, let $P = x_0 x_1 \cdots x_k$ and $|P| > d(x_0, x_k)$. One can see that for $i := (d(x_0, x_k) + k)/2$, the cut formed by the edges $x_0 x_1$ and $x_i x_{i+1}$ is reducible.

From (21) it follows for the case $|\mathcal{H}| = 3$ that G is a “theta-graph,” that is, it is homeomorphic to $K_{2,3}$. Moreover, by (21), G is formed by three elementary $s - t$ paths $P_i = v_i^0 v_i^1 \cdots v_i^r$, $i = 1, 2, 3$, of the same length r . If r is an odd, say $r = 2r' + 1$, then the edges $v_i^r v_i^{r+1}$, $i = 1, 2, 3$, form a reducible cut. Thus, r is an even, say $r = 2k$. Now it is a routine to check that the metric on VG induced by G itself is the sum of k 2, 3-metrics.

This completes the proofs of Theorems 1 and 2. ■

Remark. Strictly speaking, in the above proof we admitted 2, 3-metrics m to be induced by σ such that $\sigma(VG) \neq VK_{2,3}$. In fact, such an m can be replaced by (at most three) cut metrics. More precisely, let the vertices of $K_{2,3}$ be labelled by t_1, t_2, s_1, s_2, s_3 as shown in Fig. 1. For a mapping $\sigma: VG \rightarrow VK_{2,3}$ denote by $\Pi(\sigma)$ the ordered partition $(T_1, T_2, S_1, S_2, S_3)$ of VG defined by

$$T_i := \sigma^{-1}(t_i), \quad i = 1, 2 \quad \text{and} \quad S_j := \sigma^{-1}(s_j), \quad j = 1, 2, 3. \quad (22)$$

For $X \subseteq VG$, let ρX denote the cut (or zero) metric on VG defined by $\rho X(x, y) := 1$ if $|\{x, y\} \cap X| = 1$, and 0 otherwise. It is easy to check that

if $T_j = \emptyset$ for some j then the metric m induced by σ coincides with $\rho S_1 + \rho S_2 + \rho S_3$. Similarly, if $S_j = \emptyset$ for some j , say $S_1 = \emptyset$, then $m = \rho X + \rho Y$ for $X := T_1 \cup S_2$ and $Y := T_1 \cup S_3$. Thus, if for m_1, \dots, m_k satisfying (2)–(3) some m_i is induced by $\sigma: VG \rightarrow VK_{2,3}$ such that $\sigma(VG) \neq VK_{2,3}$ then m_i can be replaced by cut metrics, preserving validity of (2)–(3).

In conclusion note that the proof of Theorem 1 provides a polynomial algorithm for finding a required packing of cuts and 2, 3-metrics. It should be noted only that there are simple approaches to subdivide an intermediate face F of the original graph into quadrangles, preserving the distances for the original vertices, in such a way that the number of new elements is bounded by a polynomial in $\text{bd}(F)$ (the method used in the proof gave exponential growth for this amount).

3. A STRENGTHENING OF THEOREM 1

In this section we derive a stronger form of Theorem 1 that establishes the existence of a family $\{m_1, \dots, m_k\}$ satisfying (2)–(3) in which each 2, 3-metric corresponds, in a sense, to the topological structure of the space $\mathbb{R}^2 - \bigcup (I \in \mathcal{H})$. For the purposes of Part II we shall deal with edge-weighted graphs G . Let us start with terminology and notation used here.

(i) Let l be a nonnegative integer-valued function on EG ; $l(e)$ is interpreted as a *length* of an edge e . The *l-length* $l(P)$ of a path $P = (x_0, e_1, x_1, \dots, e_k, x_k)$ is $\sum_{i=1}^k l(e_i)$, and the *l-distance* $\text{dist}_l(x, y)$ for $x, y \in VG$ is the minimum of $l(P)$'s among all $x - y$ paths P in G . We say that l is *bipartite* if the *l-length* of each circuit in G is even.

(ii) For $X \subseteq VG$, $\langle X \rangle = \langle X \rangle_G$ denotes the subgraph of G induced by X , while $\Phi(X)$ denotes the closed region in the plane that is the union of the graph $\langle X \rangle$ and the faces of G whose boundaries are entirely contained in $\langle X \rangle$.

(iii) Let m be a 2, 3-metric induced by σ , and let $\Pi(\sigma) = (T_1, T_2, S_1, S_2, S_3)$ be defined as in (22). We say that m is *proper* if the holes in G can be labelled by I_1, I_2, I_3 so that the following hold:

(23) for $i = 1, 2, 3$, the graph $\langle S_i \rangle$ is connected, and it meets the boundaries of I_{i-1} and I_{i+1} but not the boundary of I_i (taking indices modulo 3);

(24) the space $\mathbb{R}^2 - (I_1 \cup I_2 \cup I_3 \cup \Phi(S_1) \cup \Phi(S_2) \cup \Phi(S_3))$ consists of two disjoint (connected) regions one containing T_1 and the other containing T_2 ;

see Fig. 6. These properties imply that G has no edge with one end in T_1 and the other in T_2 .

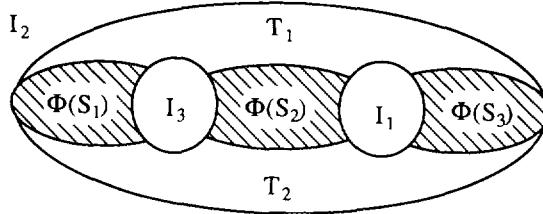


FIGURE 6

(3.1) **THEOREM.** *Let $|\mathcal{H}| = 3$, and let l be bipartite. Then there exist m_1, \dots, m_k satisfying*

$$m_1(e) + \dots + m_k(e) \leq l(e) \quad \text{for all } e \in EG; \quad (25)$$

$$m_1(s, t) + \dots + m_k(s, t) = \text{dist}_l(s, t) \quad \text{for all } s, t \in V(I), \quad I \in \mathcal{H}, \quad (26)$$

where each m_i is a cut metric or a proper 2, 3-metric.

Proof. Let G' be the graph arising from G by subdivision of each edge $e \in EG$ into $l(e)$ edges in series; if $l(e) = 0$ this means contraction of e . Then G' is bipartite. Let \mathcal{H}' be the set of holes in G' corresponding to \mathcal{H} . By Theorem 1 there exist m'_1, \dots, m'_k satisfying (2)–(3) for G' and \mathcal{H}' , where each m'_i is a cut metric or a 2, 3-metric on VG' . Each m'_i generates in a natural way a metric m_i on VG such that m_i is induced by (Γ_i, σ_i) for $\Gamma_i \in \{K_2, K_{2,3}\}$, and (25)–(26) hold for m_1, \dots, m_k . By the arguments given in the Remark in Section 2, one may assume that $\sigma_i(VG) = V\Gamma_i$, that is, m_i is a cut metric or a 2, 3-metric.

Next, we say that a triple $\tau = (G, \mathcal{H}, l)$ with $|\mathcal{H}| \leq 3$ and a bipartite $l \neq 0$ is *elementary* if there is no bipartite function $l' \neq 0, l$ on EG such that $l' \leq l$ and:

$$\text{dist}_{l'}(s, t) + \text{dist}_{l'}(s, t) = \text{dist}_l(s, t) \quad \text{for any } \{s, t\} \in W(\mathcal{H}), \quad (27)$$

where $l'' := l - l'$ and $W(\mathcal{H})$ is defined as in Section 2. Clearly if τ is elementary and m_1, \dots, m_k (m_i is a cut metric or a 2, 3-metric) satisfy (25)–(26) for this τ , then $k = 1$ and, moreover, $m_1(e) = l(e)$ for all $e \in EG$ (taking into account that the restriction of a cut metric or a 2, 3-metric to EG is a bipartite function). We say that m_1 is *associated with* τ .

It suffices to show that if τ is elementary and m^* is associated with τ then m^* is either a cut metric or a proper 2, 3-metric. Supposing that this is false, consider a counterexample $\tau = (G, \mathcal{H}, l)$ for which the value

$$\omega := \omega(l) := \sum_{e \in EG} l(e) + |\{e \in EG \mid l(e) = 0\}|$$

is as small as possible. Observe that:

- (i) $l(e) = 1$ or 2 for any $e \in EG$ (since a $2, 3$ -metric takes values only $0, 1$ or 2 , and since contraction of e with $l(e) = 0$ obviously yields a counterexample with smaller ω);
- (ii) $|\mathcal{H}| = 3$ (for if $|\mathcal{H}| \leq 2$, (25)–(26) hold with all m_i 's that are cut metrics, by Schrijver's theorem);
- (iii) G is 2-connected (otherwise τ would be not elementary subject to (i)).

Let $\tau' = (G', \mathcal{H}', l')$ be obtained from τ by replacing each edge $e \in EG$ with $l(e) = 2$ by two edges in series, each of length 1. It is easy to see that τ' is elementary as well, and a metric m' on VG' associated with τ' is a $2, 3$ -metric. Let m' be induced by σ' , and $\Pi(\sigma') = (T'_1, T'_2, S'_1, S'_2, S'_3)$. Since $m'(e) = l'(e) = 1$ for all $e \in EG'$, each component of $\langle T'_i \rangle$ or $\langle S'_i \rangle$ consists of a unique vertex. Consider a hole $I' \in \mathcal{H}'$. Its boundary intersects each set of $\Pi(\sigma')$ in at most one vertex (for if s and t are two common vertices for $\text{bd}(I')$ and $B' \in \Pi(\sigma')$ then $m'(s, t) = 0$ while $\text{dist}_{I'}(s, t) \neq 0$). Clearly each edge in G' connects a vertex in T_i and a vertex in S_j . Thus $|\text{bd}(I')| = 2$ or 4 (since otherwise T_1 or T_2 would have more than two vertices in common with $\text{bd}(I')$).

Consider the restriction m of m' to VG . Then m is a $2, 3$ -metric associated with τ ; let m be induced by σ , and $\Pi(\sigma) = (T_1, T_2, S_1, S_2, S_3)$. The above properties for m' imply: for $I \in \mathcal{H}$,

(28) $|\text{bd}(I)| \leq 4$; $|\text{bd}(I) \cap B| \leq 1$ for each $B \in \Pi(\sigma)$; $|\text{bd}(I) \cap (S_1 \cup S_2 \cup S_3)| \leq 2$; and if $|\text{bd}(I)| = 4$ then, up to cyclically shifting $\text{bd}(I) = v_0v_1 \dots v_3v_0$, one has: $v_0 \in T_1$, $v_1 \in S_i$, $v_2 \in T_2$, $v_3 \in S_{i'}$ for some $i \neq i'$.

Next, for $X, Y \subset VG$ let $[X, Y]$ denote the set of pairs $\{u, v\}$ with one element in X and the other in Y . Suppose that there are two sets among S_1, S_2, S_3 , say S_2, S_3 , such that the boundary of none of $I \in \mathcal{H}$ meets both S_2 and S_3 ; in other words, $[S_2, S_3] \cap W = \emptyset$. Form the sets $X := S_1 \cup T_1$ and $Y := S_1 \cup T_2$, see Fig. 7(a). A straightforward check-up shows that

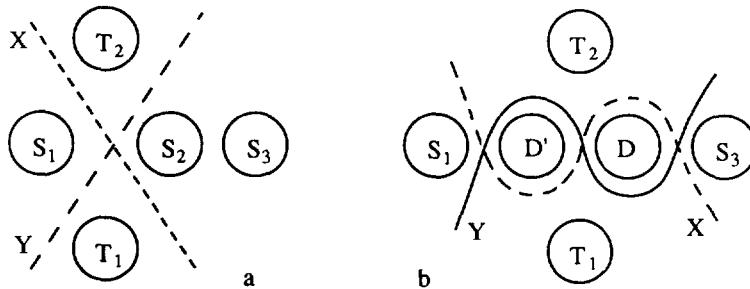


FIGURE 7

$m(x, y) \geq \rho X(x, y) + \rho Y(x, y)$ holds for any $x, y \in VG$, and it turns into equality unless $\{x, y\} \in [S_2, S_3]$. This immediately implies that τ is not elementary.

Thus, in view of (28), each S_i meets the boundaries of exactly two holes, and there is a labelling I_1, I_2, I_3 of the holes of G so that S_i meets $\text{bd}(I_j)$ for exactly those i, j as described in (23). Let s_i^j denote the vertex in $S_i \cap \text{bd}(I_j) \neq \emptyset$.

Suppose that for some S_i , say S_2 , none of the components of $\langle S_2 \rangle$ connects the boundaries of I_1 and I_3 , that is, $s_2^1 \neq s_2^3$. Form $X := S_1 \cup T_1 \cup D$ and $Y := S_3 \cup T_1 \cup D'$, where $D := \{s_2^3\}$ and $D' := S_2 - D$, see Fig. 7(b). One can check that

$$\begin{aligned} \rho X(x, y) + \rho Y(x, y) &= m(x, y) + 2 && \text{if } \{x, y\} \in [D, D'], \\ &= m(x, y) - 2 && \text{if } \{x, y\} \in [D, S_1] \cup [D', S_3], \\ &= m(x, y) && \text{otherwise.} \end{aligned}$$

Now the fact that each of the sets $[D, D'] \cap EG$, $[S_1, D] \cap W$ and $[S_3, D'] \cap W$ is empty implies that m can be replaced by $\rho X, \rho Y$, whence τ is not elementary.

Thus, $s_i^{i-1} = s_i^{i+1} =: s_i$ for $i = 1, 2, 3$. Obviously the space $\mathbb{R} - (I_1 \cup I_2 \cup I_3 \cup \{s_1, s_2, s_3\})$ consists of two regions Φ^1 and Φ^2 . Let T^i be the set of vertices of G contained in Φ^i . Then the 2, 3-metric m^* corresponding to the partition $(T^1, T^2, \{s_1\}, \{s_2\}, \{s_3\})$ is proper. A routine check-up using (28) shows that $m^*(s, t) = \text{dist}_G(s, t)$ for all $\{s, t\} \in W$. ■

4. CASE OF FOUR OR MORE HOLES

We say that a set \mathcal{G} of connected graphs is *n-complete* if, for any (G, \mathcal{H}) with G bipartite and $|\mathcal{H}| \leq n$, there exist m_1, \dots, m_k satisfying (2)–(3) such that each m_i is a metric induced by some $\Gamma \in \mathcal{G}$ with $|E\Gamma| \leq |EG|$. For example, $\{K_2, K_{2,3}\}$ is 3-complete, by Theorem 1. We prove the following statement.

(4.1) (i) *Each 4-complete set contains infinitely many bipartite planar graphs Γ with $|\mathcal{F}_\Gamma| = 4$.*

(ii) *Each 5-complete set contains a bipartite planar graphs Γ with $|\mathcal{F}_\Gamma| > 5$.*

Proof. Let us say that a pair (G, \mathcal{H}) is *principal* if G is a (connected) bipartite planar graph without multiple edges, $\mathcal{H} \subseteq \mathcal{F}_G$, and the following hold:

(29) for any distinct $x, y \in VG$, $x \neq y$, there exist $I \in \mathcal{H}$ and $s, t \in V(I)$ such that $\text{dist}^{G'}(s', t') < \text{dist}^G(s, t)$, where G' is obtained from G by identifying x and y , and s', t' are the images of s, t in G' ;

(30) for any $l: EG \rightarrow \mathbb{R}_+$ such that $l(e) \leq 1$ for each $e \in EG$ the equalities

$$\text{dist}_l(s, t) + \text{dist}_{1-l}(s, t) = \text{dist}^G(s, t) \quad \text{for all } s, t \in V(I), \quad I \in \mathcal{H},$$

imply that l is constant.

Observe that if (G, \mathcal{H}) is principal then G is contained in any $|\mathcal{H}|$ -complete set \mathcal{G} . Indeed, let m_1, \dots, m_k satisfy (2)–(3) for given G, \mathcal{H} , where each m_i is induced by $\sigma_i: VG \rightarrow V\Gamma_i$ for $\Gamma_i \in \mathcal{G}$ with $|E\Gamma_i| \leq |EG|$. Then $k = 1$ (by (30)) and $\sigma_1(x) \neq \sigma_1(y)$ for distinct $x, y \in VG$ (by (29)). Moreover, for each $xy \in EG$, the vertices $x' := \sigma_1(x)$ and $y' := \sigma_1(y)$ are connected in Γ_1 by an edge (as $0 < \text{dist}^{\Gamma_1}(x', y') \leq m_1(x, y) \leq 1$, in view of $x' \neq y'$). Thus, G is a subgraph of Γ_1 , whence $G = \Gamma_1$.

To prove (i), consider the graph Q and the weighting $w_{p,q}$ (depending on natural p, q) on its edges as drawn in Fig. 8(a). Denote by $G_{p,q}$ the graph obtained from Q by partitioning each $e \in EQ$ into $w_{p,q}(e)$ edges in series. We assert that if the g.c.d. of p, q is 1 then the pair (G, \mathcal{H}) is principal, where $G := G_{p,q}$ and $\mathcal{H} = \mathcal{F}_G$. Check-up of (29) (for arbitrary p, q) is easy.

To see (30), we use a method similar to that developed in [7, 1] for proving the primitivity of the metrics of certain graphs. Let l satisfy the equalities in (30); then any shortest path in G which connects some $s, t \in V(I)$, $I \in \mathcal{H}$, must be shortest with respect to l . One can see that for each face F with $\text{bd}(F) = x_0x_1 \cdots x_{2k-1}x_0$ ($k := p+q$), and for $i = 0, 1, \dots, 2k-1$, the path $P_i := x_i x_{i+1} \cdots x_{k+i}$ is shortest in G (taking indices modulo $2k$). Considering four shortest paths $P_i, P_{i+1}, P_{i+k}, P_{i+k+1}$ we conclude that $l(x_i x_{i+1}) = l(x_{i+k} x_{i+k+1})$. So $l(e) = l(e')$ holds for any two opposite edges e, e' in $\text{bd}(I)$. Now using the fact that the g.c.d. of p, q is 1 one can show that, for any $e, e' \in EG$, there is a sequence $e_1, e_2, \dots, e_r \in EG$ such that $e = e_1, e' = e_r$, and each two e_j, e_{j+1} are opposite on the boundary of some face. Therefore, l is constant.

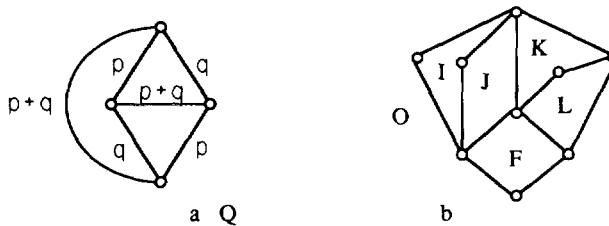


FIGURE 8

Validity of (ii) is provided by the graph G with $|\mathcal{F}_G| = 6$ and $\mathcal{H} := \{O, I, J, K, L\}$, as illustrated in Fig. 8(b). Verification of (29) is straightforward. The proof of (30) uses arguments as above and it is left to the reader. (Instructions: observe that for any $F' \in \mathcal{F}_G$ with $\text{bd}(F') = x_0x_1 \cdots x_{2k-1}x_0$, each path $x_i \cdots x_{i+k}$ is a part of a shortest path in G connecting some $s, t \in I'$, $I' \in \mathcal{H}$.) ■

ACKNOWLEDGMENT

I am thankful to the referee for some corrections and stylistic improvements.

REFERENCES

1. D. AVIS, On the extreme rays of the metric cone, *Canad. J. Math.* **32** (1980), 126–144.
2. A. V. KARZANOV, Metrics and undirected cuts, *Math. Programming* **32** (1985), 183–198.
3. A. V. KARZANOV, Half-integral five-terminus flows, *Discrete Appl. Math.* **18**, No. 3 (1987), 263–278.
4. A. V. KARZANOV, Packings of cuts realizing distances between certain vertices in a planar graph, *Discrete Math.* **85** (1990), 73–87.
5. A. V. KARZANOV, Sums of cuts and bipartite metrics, *European J. Combin.* **11** (1990), 473–484.
6. M. V. LOMONOSOV, Solutions of two problems on flows in networks, Unpublished manuscript, 1976.
7. M. V. LOMONOSOV, On a system of flows in a network, *Problemy Peredachi Informatsii* **14** (1978), 60–73. [Russian]
8. M. V. LOMONOSOV, Combinatorial approaches to multiflow problems, *Discrete Appl. Math.* **11**, No. 1 (1985), 1–94.
9. H. OKAMURA, Multicommodity flows in graphs, *Discrete Appl. Math.* **6** (1983), 55–62.
10. H. OKAMURA AND P. D. SEYMOUR, Multicommodity flows in planar graphs, *J. Combin. Theory Ser. B* **31** (1981), 75–81.
11. B. A. PAPERNOV, On existence of multicommodity flows, in “Studies in Discrete Optimizations” (A. A. Fridman, Ed.), pp. 230–261, Nauka, Moscow, 1976. [Russian]
12. A. SCHRIJVER, Distances and cuts in planar graphs, *J. Combin. Theory Ser. B* **46** (1989), 46–57.
13. P. D. SEYMOUR, Four-terminus flows, *Networks* **10** (1980), 79–86.