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Suppose that G = (VG, EG) is a planar graph embedded in the euclidean plane,
that 1, J, K are three of its faces (holes), that s, .., s,, {,, ..., 1, are vertices of G such
that each pair {s,, t;} belongs to the boundary of some of 7, J, X, and that the
graph (VG, EGuU {{s,,t,},.., {5,,1,}}) is eulerian. We prove that there exist
edge-disjoint paths P, .., P, in G such that each P, connects s; and ¢, if the obvious
necessary conditions with respect to the cuts and the so-called 2, 3-metrics are
satisfied. In particular, such paths exist if the corresponding (fractional) multi-
commodity flow problem has a solution. This extends Okamura’s theorem on paths
in a planar graph with two holes. The proof uses a theorem on a packing of cuts
and 2, 3-metrics obtained in Part1 of the present series of two papers. We also
exhibit an instance with four holes for which the multicommodity flow problem is
solvable but the required paths do not exist. € 1994 Academic Press, Inc.

1. INTRODUCTION

Throughout, we deal with an undirected planar graph G embedded in
the euclidean plane R2. VG is the vertex set, EG is the edge set of G (multiple
edges and loops are admitted), and F = F is the set of faces of G.
A subset # = F of faces of G, called its holes, is distinguished. Let U=
{{s, 11}, {5,, 8,}} be a family of pairs (possibly repeated) of vertices
of G such that each {s,, r,} is contained in the boundary bd(/) of some
hole 7e #.

Problem (G, U, k). Given an integer k> 1, find P}, .., P}, P}, ..,
P, .., P!, .., P* such that each P/ is a path in G connecting s, and ¢,, and
each edge of G occurs at most k times in these paths.

The problem (G, U, 1) is denoted by (G, U); it consists in finding edge-
disjoint paths Py, .., P, in G, where P; connects s, and ¢,.
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20 A. V. KARZANOV

For X< V, let X = 8°X denote the set of edges of G with one end in X
and the other in VG — X; a nonempty set X is called a cuf in G; we say
that X (or 8X) separates vertices x and y if exactly one of x, y is in X.

We prove the following theorem.

THEOREM 1. Let || =3, and let
(1) [8X|+[{il X separates s, and 1,}| be even for any X < VG.
Then (G, U) has a solution (that is, required paths exist) if and only if:

(2) each X < VG separates at most |0X | pairs in U;
(3) Y.cpcmle) =Y _, mls,t,) for all 2, 3-metrics m on VG.

(A 2, 3-metric on VG is a function m on VG x VG such that m(x, y) is
equal to dist*>*(a(x), 6(y)) for some mapping ¢ of VG onto the vertex-set
of the complete bipartite graph K, ;; here dist®(u, v) is the distance
between vertices » and v in a graph G'. We say that m is induced by o, and
denote m as m,.) Obviously, (2) is necessary for the solvability of (G, U, k)
with any k. (3) is necessary as well because if P/’s as above give a solution
of (G, U, k) then

r k r
S m(e)z1 Y Y Y (me)lee PY= Y m(s, t,),
ee £EG kl'=1j=l i=1
since m satisfies the triangle inequalities (here we write e € P/ considering
a path as an edge-set). Hence, Theorem 1| has the following corollary.

1.1, If |5 =3, (1) holds, and (G, U, k) has a solution for some k, then
(G, U) has a solution as well.

Okamura [2] showed that for || =2, (G, U) has a solution whenever
(1)-(2) hold (for |#°| =1 this was shown in [3]). For || =3, (1)-(2) are,
in general, not sufficient for the solvability of (G, U, k); e.g., consider
G=K,; and U:={{s',s?}, {555}, {s% s'}, {t',*}}, see Fig ta. The
essence of Theorem 1 is that for |3#| =3 adding (3) to (1)-(2) ensures the
solvability of (G, U, k) with any k.

\Q&Q\\ \Q\\ ,
(@ Ky t ®)

FiGURE 1
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The proof of the theorem relies on the following result on packings of
cuts and 2, 3-metrics obtained in Part1 [1]. Let dist,(x, y) denote the
distance between vertices x and y in G whose edges ee EG have lengths
He)eQ, (Q, is the set of nonnegative rationals). A mapping ¢: VG —
VK,  determines the ordered partition 7(¢)=(T,, T, S|, S,, S;) of VG,
where T,:=06"'(t'), S,:=0 '(s’), and the vertices of K, , are labelled by
1, 12,5, 5% s as shown in Fig. la. Let {X) = (XD, denote the subgraph
of G induced by X = VG, and let V(F) denote the set of vertices in bd(F),
Fe#. By a region we mean a connected set in the plane that is the union
of some vertices, edges, and faces of G; an edge (a face) of G is identified
with the corresponding curve without the endpoints (respectively, the
corresponding open two-dimensional set) in the plane.

One sort of 2, 3-metrics will be important in what follows. Let m be a
2, 3-metric induced by a mapping 6. We call o (as well as m and JI(c))
proper if for some labelling 1,, I,, I, of the holes of G, the partition 7I(s) =
(7,,7,,5,,S,, S,) satisfies:

(4) fori=1,2,3, {S,> is connected, and S, V(/,}=J if and only
ifp=i

(5) the space Q(o):=R*—([,ul,ul,LUP(S,)UP(S,)ud(S,))
consists of two disjoint regions, one containing 7, and the other containing
T,; here &(S);) is the union of {S;> and the faces F of G with bd(F) < {S,).

(See Fig. 1b.) In particular, (5) implies that no edge of G connects T,
and 7,.

THEOREM 2 [1]. Let G be connected, || =3, and I: EG - Q , . Then
there exist cuts 8X,, ..., X y in G, proper 2, 3-metrics m,, .., m,, on VG, and
numbers Ay, ., Ay, 1y, a € Q. such that

M
Y (Ali=1,., N, eesX)+ Y ume)

j=1

< l{e) for all e€ EG; {6)

M
S (A,li=1,.., N, X, separates s and t)+ Y p,m,(s, 1)

j=1

=dist,(s, ¢) forall s, teV(I), Iesf. (7)

In Section 2 from Theorem 2 we obtain a criterion of the solvability of
(G, U, k) for some k and then, in Section 3, using this criterion, we shali
prove Theorem 1.

Note that in Part I it was shown also that for the case |#| =4, (6)-(7)
can be satisfied by taking as m,’s 2, 3-metrics or metrics induced by
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mappings into planar graphs with four faces. Using arguments from
Section 2, for this case one can derive from that result a combinatorial
criterion of the solvability of (G, U, k) for some k. However, (1.1) does not
remain true for || =4, as we explain in Section 4.

2. MuLTicommoDpITY FLOwSs AND METRICS

Standard linear programming duality arguments enable us to obtain
from Theorem 2 a weaker, fractional, version of Theorem 1. Let G, #, U
be as in the hypotheses of Theorem 1.

Denote by 2 =2(G, s,, t;) the set of simple paths from s, to ¢, (or 5,— ¢,
paths) in G. Let Z2=2(G, U) =) (Z|i=1,..,r)

Problem (c, g). Given a function ¢: EG — Q, (of capacities of edges)
and numbers gy, ..., g, € Q , (demands), find a function f/: 2 —» Q , satisfying:

SO=Y (f(P)lee PeP)< cle) for all ee EG; (8)
Y (f(P)|PeP)=g, for i=1,.,r 9)

Such an fis called a (¢, g)-admissible muiticommodity flow. For ¢=1 and
g=1, (¢, g) with the additional requirement on f to be integer-valued turns
into the above problem (G, U).

By Farkas lemma, (8)-(9) is solvable if and only if

cli=3 cle)lle)> Z g.b (10)

eec £G i=1

holds for any /e @%° and b, ..., b, € Q satisfying
=Y ((e)lee P)=b, Pe®?, i=1,.,r (11)

Since (11) is equivalent to b, < dist,(s;, ;) (i=1,..,r), (c, g) is solvable
if and only if

r

ez Y g dists,, t,) (12)

holds for any /e @%“. For a fixed / choose X,’s, 4,s, m’s, p;’s as in
Theorem 2. Define

c(X;) =) (cle)|e€dX)); g(X) =Y (g:pX,(s,, t)i=1, ., r);

clm,):=3 (cle)ymfe) e EG);  glm,):=} (g.my(s;, t)li=1, .., r),



PATHS AND METRICS. il. PATHS 23

where for X € VG, pX(x, y) denotes the function on VG x VG taking the
value one if X separates x and y, and zero otherwise. Then (6) implies

cdZzlic(X))+ - +Ave(Xp)+ pyelm) + -+ ppe(my),
while (7) implies

r N M
z gidiStl(sis t))= Z ijg(Xj)+ Z )qu(mq)’

i=1 i=1 ¢=1
whence (by (12)) we decude the following statement:

2.1. (c, g) is solvable if and only if the following hold:

o(X) = g(X) Jor any Xc VG, (13)
c(m)zg(m)  for any proper 2, 3-metric m on VG. (14)

{The “only if” part follows from the facts that if c(X) < g(X) for some
X c VG then, obviously, (12) is violated for /:= pX|.;, and similarly, if
c(m) < g(m) for some 2, 3-metric m on VG then (12) is violated for
Li=m|gc.)

3. PrROOF OF THEOREM |

Let G, #, U be as the hypotheses of Theorem 1, and let (1)-(3) hold.
Put c(e):=1foree EGand g;:=1fori=1, ..., r. Then (2)-(3} is equivalent
to (13)—(14). Therefore (by (2.1)), the problem (¢, g) has a solution. One
must prove that (¢, g) has an integral solution (the “only if” part in
Theorem 1 was explained in the Introduction).

Without loss of generality one may assume that: G is connected; the
outer (unbounded) face of G is a hole; all 5,’s and ¢’s are distinct and have
valency 1 (since for i = 1, ..., r one can add new vertices s/, ¢t; and edges
{s{, s;}, {¢], t;} and consider the pair {s;, ¢/} instead of {s, 1,}). Let
T = {81, s Sy tyy o 1, )

Next, one may assume that each vertex in VG — T is of valuency 2 or 4.
For if xe VG — T has valency h > 4, one can transform G at x as shown in
Fig. 2 (it is easy to see that such a transformation yields an equivalent

problem).

:

FIGURE 2
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We proceed by induction on |EG|, assuming |#°| < 3. If G has a loop or
a vertex of valency 2 in VG — T, the result obviously follows by induction;
while if |2 <2 or T V(I)=J for some e s#, the result follows from
Okamura’s theorem.

The proof falls into two parts. We first prove the existence of a half-
integral solution for (¢, g); using it, we then show that it has an integral
solution as well.

Some conventions. By a circuit we mean an arbitrary x—x path. When it
leads to no confusion we identify a path (circuit) in G and its image in the
plane. The boundary bd(F) of a face F will be often considered as a
(possibly not simple) circuit oriented clockwise from a point in F. For
x€ VG, E(x) denotes the clockwise-ordered sequence (considered up to a
shifting cyclically) of the edges incident to x.

Consider a vertex xe VG — T and two consecutive edges e, e’ € E(x). The
triple 7= (e, x,¢’) is called a fork. Denote by G, the (planar) graph
obtained from G by adding a new edge (or a loop) e, connecting the ends
of the edges ¢ and e’ different from x. Define the function w, on EG, by

w(u):=1 for u=e, e,
= —1 for u=e,,
=0 otherwise.

For 0<e <, let ¢, denote the function on EG, taking the value 1 —¢ on
e and ¢, ¢ on ¢, and 1 on the edges in EG — {e, ¢’}. We say that ¢ is
Seasible if the problem (¢, ., g) has a solution, or, in other words, if
(13)-(14) hold for G, and ¢, ,. E.g., e =0 is feasible. The maximum feasible
e< 1 is denoted by a(1).

Our main aim is to prove the existence of a fork t such that «(r)=1.
Then the proof of Theorem 1 is completed as follows. Let G’ be the graph
arising from G by deleting e, ¢’ and adding e.. Then the solvability of
(c..1, g) means that (2)~(3) hold for G’ and U. Since |EG’| = |EG| —1, and
(G', U) satisfy (1), the result for (G, U) easily follows by induction.

Thus, one may assume that a(t) <1 for all forks 7 in G. Denote by .#
the set of all proper 2, 3-metrics on VG. For 0<e< 1 and X < VG (respec-
tively, me #), put 4, (X):=c,_ (X)— g(X) (respectively, 4, (m):=
¢,,.(m)— g(m)). Then

4. (X)=c(X)—g(X)—ew.(X) (15)
4. (m)=c(m)— g(m)—ew.(m), (16)

where w (X)) stands for pX(e)+ pX(e’)— pX(e.), and w (m) stands for
m(e) +m(e’) —m(e.). Observe that: (i) 4, o(X)>0 and 4, ((m)=0 (by
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(13)}(14)); (1) w.(X) =0 and w,(m) =0 (since pX and m are metrics); and
(iii) if ¢ is such that a(r)<eée' <1 then there is X< VG such that
4, AX)<0 or there is me .# such that 4, .(m) <0 (by the definition of
a(t})). This implies that x(z) satisfies

a(t) =min{min{(c(X)— g(X))/w (X)) X< VG, w (X)>0}
min{(c(m)— g(m))/w (m)|me #,w (m)>0}}.  (17)

We say that X < VG (or me .#) is crucial for 7 if it achieves the minimum
in (17).

3.1. If a(t)>0 then no ser X< VG is crucial for t.

Proof. Let X< VG and b := 0 (X)> 0. Since a(t) >0, a := c(X)—
g(X) > 0. Hence a = 2 (by (1)). On the other hand, b < 2. Thus,
albz1>a(t). |}

Remark. A simple fact (implied, e.g., by (3.5) below) is that if a(r)=0
holds for all forks t then (c, g) has a unique solution f and, moreover, [ is
integral. Thus (cf, e.g., {4]), (3.1) enables to derive Okamura’s theorem
directly from its fractional version: if |2#| <2 and (13) holds then (¢, g) has
a solution.

32. Let a(t)>0, and let me.# be crucial for 1. Then a(t)=1,
c(m)y— g(m)=2, and o (m)=4.

Proof. Put b:=w,(m) and a :=¢(m)— g(m). Then b >0 and «(t) = a/b.
From (1) it easily follows that a is even. Next, since m(y, z) <2 for any
¥, ze VG and every ciruit in K, 5 is even, b is even and b <4. In view of
0 <aft) <1, only one case is possible, namely, a=2 and b=4.

Thus, a(t)e {0, 3} for any fork 7. Let us fix a multicommodity flow
f:2(G, U)—~Q, thatis a solution of (c, g). It will be convenient to think
of f as consisting of three “flows” f,, f,, and f,, where # = {1, J, K}, and
fr is the restriction of f to the set of paths in #(G, U) with both ends in
V(F), Fe#. Denote by & = 2(f) the set of paths Pe #(G, U) with
S(P)>0 (the support of f). Similarly, %= %-(f) denotes the support of
Jr; 50 { &, ¥, ¥} is a partition of &£.

A path Pe % (Fe #) splits the space R?>—~F into the pair #(P) of
closed regions whose intersection is P and union is R?> — F. We say that f
is regular if any Pe %, and P' € ¥ for F# F' do not cross, that is, P’ is
contained entirely in some ,, where #(P)={Q2,,2,}. The following
property is shown by use of standard uncrossing techniques.
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33. If fis V/k-integral then (c, g) has a /k-integral solution f’ that is
regular.

In what follows we assume that f is regular. Consider a hole, say I
Denote by ¥, the region that is the union of Q,:=bd(/)u ) (Pe %) and
those components of R?— @, which contain no hole; call ¥, the region of
the flow f,. Each component Z of R?> — (/U ¥,) contains at least one hole
among J, K; moreover, the fact that every path path in %, is simple implies
that the boundary of Z is formed by a simple circuit C. If J= Z, say, we
denote C by C,(J). If C,(J)=C,(K) then C,(J) is denoted by C,. If
C,(J)# C,(K), we say that f; is separating. In view of the regularity of f,

(18) (i) at least two of f}, f,, fx are non-separating;
(i) for F, F'e # (F£F’), thesets ¥, — C.(F') and ¥p.— C.(F)
are disjoint.

(See Fig. 3.) For Fe # and e EG put f$.:=Y (f(P)|ec Pe ¥,). We shall
prove the following lemma.

3.4. LEMMA. Let f, be non-separating. Then for any edge e in the circuit
C,, at least one of the values [ and [+ [ is zero.

In the assumption that Lemma 3.4 is valid the existence of a half-integral
solution for (¢, g) is proved as follows. Let G, (G,) be the subgraph of G
contained in ¥, (respectively, in ¥, ¥,), and let U, (U,) be the set
of pairs {5, ¢} € U with s, r € V(I) (respectively, s, r e V(J) u V(X)). For
i=1, 2, define the capacity ¢;(e) of an edge e€ EG, to be two if ¢ >0, and
zero otherwise; here f¢:=f9% and f$:=f5+f% Put g.({s, t}):=2 for
{s,t} e U,. Since [+ % <jc,yle) for each ee EG,, the flows 2f, and 2f,
determine a solution for (c,, g,). Furthermore, the functions ¢, and g, take
even values and each pair {s5,7}e U, is contained in the boundary of
some of two faces of G,. Thus, by Okamura’s theorem (c,, g,) has an
integral solution ¢,. Similarly, (c¢,, g,) has an integral solution ¢,.

(a) f, f), fx are non-separating (a) fx isseparating

FIGURE 3
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We know that G, nG,< C, (by (18)(ii)), and c,(e) + ¢c,(e) €2 =2c(e) for
any edge e in C, (by (3.4)). Thus, ¢, and } 4, determine a half-integral
solution of (c, g).

In order to prove (3.4) we need the auxiliary statements (3.5)-(3.8); they
will be also used to show the existence of an integral solution for (e, g).

For e€ EG (e, e'€ EG), denote by Z(e) = Z,(e) (respectively, Z(e, ') =
Zr(e, e’)) the set of paths in & containing e (respectively, e and e’). Put
f=2 (f(PY €2(e)) (cf (8)) and f =% (f(P)|PeZ(e,€)). For a
fork t = (e, x, €') introduce the value f(t) which, as we shall see later, gives
a lower bound for a(1):

‘B(T):=1__%fe__%fe’+fe.e' (=1__%(fe.u+fe,u'+fe'.u+j‘e'.u')),

where E(x)= (e, €', u, u’). By symmetry,

Ble, x,e')y= Blu, x, u') for E(x)=(e,e',u,u'). (19)

35, B(r)<a(r).

Proof. Let for definiteness £ . Define the capacity function ¢’ on
EG, as: c'(e):=f —f=°; c'te'):i=f —f%; c'(e,)): =1+ [~ — f°; and
c(w) := e(w) for the other edges w. It is easy to see that (¢’, g) has a solu-
tion. Now put ¢” :=c¢, g, and & :=(f*— f°)/2. A straightforward checkup
shows that ¢”(w)—¢’(w) is equal to ¢ for w=¢’, e.; —e for w=¢; and zero
for the other we EG.. Since ¢ > 0, the solvability for (¢’, g) implies that for
(¢", g). Hence a(z) = B(z). 1

Thus, f(1) < 1 for all forks 7 in G. In particular, this implies that G has no
multiple edges. For suppose that two edges e, ¥’ have the same ends x, y.
Without loss of generality one may assume that G is embedded in the plane
so that ', e are consecutive in E(x), that each path in &(e) passes ¢, and
each path in 2(u’) passes u, where E(x)= (e, e’, u, u’). Then f¢* = f<*=
<% =0, whence 1228(e, x, ') =2— f<"* Hence, B¢/, x, u)= < *=1, a
contradiction.

Note also that f(e, x, €’) =0 would imply /=< = 0. Therefore, if f(t)=0
for all forks z in G then any two paths in & having a common edge must
coincide, whence [ is integer-valued.

In what follows an edge in G with ends x and y (a path P =
(x0> €1, Xy, - €,, X,)) may be denoted by xy (respectively, by xox, ---x,).

Let us fix a fork t={(e, x,€'); let E(x)=/{(e, e, u, u’). Statement (3.6)
exhibits a situation (which will take place often later on) when f(r)=13)
occurs, while (3.7) and (3.8) describe important properties of t with (1) = 1.

36. Let D(e,u)=. Then B(t)=14, [« =f", and the edges ¢’ and v’
are saturated by [.
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Proof. We have 2B(t) =2 — f«* — f« — f<% (since f*“=0) and
L=c(e)2f=f¢+f"%+ ¥ This implies 1 >28(t)> 1 + £ ¢ — fov
whence /¢ < f¢¥. Similarly, considering the fork (i, x, e) we obtain
fov < f*¢. Thus, equality should hold throughout, and the result follows
(f“ =1 is shown similarly to /< =1). |

Consider a metric m=m_ e .# crucial for 7. Let H(o)=(T,, T,,
S,,S5,,85;), and let e=xy and ¢’ = x:.

3.7. Let f(t)=1 Then

(i) x€S,and y,z€ S8, for some i #1i’,
(1) each path in ¥ — Z(e, e') is shortest with respect to m;
(ili) each he EG— {e,e'} with m(h)>0 is saturated by f, that is,
=1
Proof. By (3.2}, w,(m) = m(e) + m(e’) — m(y, z) = 4, whence m(e) =
m(e’)=2 and m(y, z)=0. This implies that either (a) xe T,, y,ze T;_, for
some je{l,2}, or (b) xeS,, y,zeS, for some is#i'. By (5), (a) is
impossible; thus (i) is true. Next, for an s —¢ path P put p(P):=
S hepm(h)—m(s, t). Since m is a metric, u(P)=0 for all Pe #. Further-
more, m(e}=m(e’)=2 and m(y, z) =0 imply that p(P)>=4 for all
PeZ(e,¢’). We have (by (3.2))

2=c(m)—g(my= ), m(h)—g(m)

= 3 mh)(1—f"+ Y mh)f"— g(m)
he EG he EG
2me)(1—f)+m(e)1=f)+ Y m(h)f"— g(m)
he EG
=42 2"+ . u(P)f(P)

>4-2f=2f"+4. Y f(P)

Pe e e)

=4 -2f -2 +4f* =4B(1)=2. (20)

Hence, all the inequalities in (20) hold with equality, whence (ii) and (iii)
follow. |

For II(6¢)=(T,, T, S\, S>, S;) as above, let &(T;) denote the compo-
nent of (o) containing T, i=1,2 (where Q(o) is defined in (5)). For a
path P=xox,---x, and 0<j<j < p, the part of P from x; to x; is
denoted by P(x;, x;.). For x'e€ VG let 2(x') denote the set of paths in &
passing x'.
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38. Let f(t)=14. Let i and i’ be as in (3.7). Suppose that I is the hole
such that S;n V(I)# & and S, n V(1) # . Then each path in #(x) belongs
to .

Proof. Consider a path in ¥ containing exactly one of the edges ¢, ¢,
say P=s-.-xy---t. Then P is shortest for m (by 3.7(ii)), m(x, y)=2 and
m(s, 1} < 2, whence all vertices of P(s, x) are in S, and those of P(y, t) are
in S;.. In particular, s, te T V(J) (by (4)), that is, Pe %,. Note also that
the facts that P(s, x) lies in @(S;) and P(y, ) lies in &(S;.) imply that one
region in %(P) contains no hole (#(P) was defined before (3.3)).

Suppose that Z(e, ') # &J. Since (f* — N+ —fo)=2-2B(1)=1
and /< >0, we havefe>f" “and f* > f<¢. So there are paths P, Pe?
such that ee P3¢’ and ¢'€ P'Fe; let P=s---xy---tand P'=5"---xz---1".
By the above arguments, (1) P(s, x), P'(s', x) he in D(S;); (i) P(y, 1),
P'(z, t') lie in @(S;); and (iii) there are Qe%(P) and Q' e #(P') which
contain no hole. By (iii), Q< ¥, and Q' < ¥,. Since ¢ ¢ P, cither ¢ is
outside of Q or ¢’ lies in 2 — P. In the latter case e’ lies in the interior of
the region ¥, I, whence each path in Z(e, e') belongs to %, (by (18)(ii)).
Now suppose that ¢ " Q2= and en Q' = . In view of (i)}-(i1) above
e=xy traverses a region ®(T;) and e =xz traverses a region ®(T,).
Moreover, from the supposition one can deduce that j # j; this means that
the edges e, ¢’ split @(S,) into two parts, one containing S, V(I) # & and
the other containing S;n V(F) # & for some Fe # — {I}. Then the graph
{S8,> is not connected (taking into account that e, ¢’ are consecutive in
E(x)); a contradiction.

Finally, applying similar arguments to 1’ = (u, x, #') we obtain
D(u, u') <= &,. (Note that B(z')=B(1)=13.) 1

Proof of Lemma 3.4. Let C:=C,. For he EG denote f* by f* and
denote f4+ f4% by f4. Let E, (E,) be the set of edges in EG — C lying in
¥, (respectively, outside ¥;). Then the paths in £, U %, use no edges in
E,, and the paths in .%, use no edges in E,.

Consider a vertex x in C, and let # and A’ be the edges in C incident to
x. We say that x is an i, j-vertex if |E(x}nFE,|=i and |E(x)n E;| =]
From the fact that 7, is non-separating it follows that the elements of E;
occuring in E(x) go in succession. Let E(x)=(e,, e,, €3, €4).

Ciamm 1. If x is a 1, l-vertex, then f*= " =1 for some i€ {1,2}.

Proof. Let h=e, and i’ =e,. Then one of e,, e, belongs to £, and the
other to E,, whence 2(e,, e,) = . By (3.6), f"= " =1 and B(e,, x, e,) = 5.
Then, by (3.8), all paths in 2(h) and Z(h’) belong to the same %.. |
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CLAM 2. Let x be a 2, 0-vertex. If f7 =0 for some ie {1,2} then f% =0.

Proof. Observe that f5=0 for ue E(x)— {h, h'} (since ue E,). There-
fore, f4=0 if and only if /4 =0. Now suppose that f#=0. Assuming that
h=¢, and h'=e,, we have [ =0 (as e;e E,). Then P(e,, e;) = &, whence
B(h, x, h'y= 1 (by (3.6)). By (3.8), all paths in #(x) belong to the same %;.
Since f“>0 (by (3.6)) and f5=0 (as e,e E,), only F=1I is possible.
Hence, f4=0. 1

CLaM 3. Let x be a 0, 2-vertex. If " =0 for some i€ {1,2} then f* =0.
Proof. Similar to that of Claim 2. |

Let C=x,x,---x,. Suppose that /{ =0 or f,=0 for some ie {1, .., p},
where f7 stands for f¥-'*. Applying Claims 1-3 to the vertex x; and the
edges A=x, ,x; and h'=x;x,,,, we obtain f/*'=0 or fi*'=0. This
implies that f{ =0 or =0 holds for each edge ¢ in C.

Now suppose that f{ >0 and f5>0 for all i=1,.. p. Then, by
Claim 1, € has no 1, 1-vertices. Note also that C contains at least one 2,
0-vertex and one 0, 2-vertex (otherwise G would be not connected). So
there are a 2, O-vertex x and a 0, 2-vertex y such that x and y are adjacent
in C. Let for definiteness E(x)=1(e,, €5, 5, €4), E(y)=(u, us, uj, uy),
e, =u,=xy, and e, u, e C, see Fig. 4. Put a,:= " and b; :=f**. For
1=(e4, x,¢,) and 1" = (u,, ¥, u,;) we have

2—ap—apy—ay—ayu=28(x)<, (21)

2=b—b;3—by—bu=2p(t")< L (22)

Note also that each path in Z(e,, e,) for i=1, 2 must pass through the
edge u, (since u,, u;€ E,). Hence,

s+ ayy+ by + by << (23)

Similarly, each path in 2(u,, u;,) for i=1,2 must pass through e,;
therefore,

ayytay+b,+b,<f<L (24)
2 u3
[ XN ] @ c4 X [ RN ]
C - €=y y U
e3/ ¢©
¥

FIGURE 4
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Summing up (21)}-(24) we obtain 4 <4, so all the inequalities there hold
with equality. Thus, B(t)=3. Then, by (3.8), all paths in #(x) belong to
the same &. This contradlctlon proves the lemma. |

Thus, one may assume that f is half-integral. Now we prove that (¢, g)
has an integral solution.
From the half-integrality of f it follows that, for a fork 1= (e, x, e'):

(25) (i) if f©“>0 then f**=p(r)=3 and f*=7"=1 (as 3>
Bt)y= <= f(P)e {0,4, 1} for any Ped(e e'));

(i) if f*=0then B(r)=tand [ =1 (as = P(1)=1-31f ~1/°).

For Fe # let G, denote the subgraph of G contained in ¥,. Consider
two holes, say 7 and J. By (18) we know that

¥,A¥,=C,(J)nC,(I)=G,nG,. (26)

For a proper partition I(g) = (T, T, S, S5, S;) of VG, the set S; such
that S,n" V(I)# & and S;n V(J)# & is denoted by S,,.

3.9. The circuits C := C,(J) and C' := C,(I) are disjoint (and similarly
Jor the other pairs of holes).

Proof. First of all observe that

(27) for each xe VG — T all paths in #(x) belong to the same set %,
Fe .

Indeed, let E(x)= (e, €,, €5, €3). If f+<+1>0 or if f“=0 for some  then
(27) follows from (25) and (3.8) (taking indices modulo 4). Otherwise,
there are P, P’ € (x) such that P contains ey, ¢, while P’ contains e, e;.
Then P, P’ belong to the same %, because of the regularity of f; and (27)
follows as well.

Next, we assert that

(28) f5=f%=0 for each e C (and similarly for C').

For suppose that this is false. From (27) it follows that there is
Fes# — {I} such that either (i) f%>0 for each eeC or (ii) /=0 and
S%>0 for some consecutive edges e=xy and u=x)’ in C. Note that in
both cases ¢ belongs to bd(I), by definition of ¥, and C,(J). In case (ii),
choose a fork 7= (e, x, €’); then B(1) = 1. In case (i), the facts that all edges
of C are in bd(/), G is connected, and T n V(1) # & imply that there is a
fork t = (e, x, €') such that e = xy € C while ¢’ is outside of ¥; then f* =0
(by (27)), whence f(t)= 3. For both cases, consider a metric m=m, e .#
crucial for t; let Il(6)=(T,, T, S,, S,,53), xe S, and y, z€ S5, where z is
the end of ¢’ different form x. Since x, y € V(I), the pair {S,, S,} coincides

582b/60:1-3
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with {S,,, S;x} (by (4)). Next, obviously, f*+ f¢ > f“¢ =0; so there is a
path Pe.# containing exactly one of ¢, ¢’. By (3.7), P is shortest for m,
whence P has one end in S,;; and the other in S,,. This means that Pe &;;
a contradiction with the fact that 2(x)< %,.. Thus, (28) is true.

Now suppose that C and C’' have a common vertex x. By (27),
P(x)c &, for some Fe J#; one may assume that /# F. Then for the edges
e, ¢' in C incident to x, one has /= f“ =0 (by (28)). Hence e, ¢’ arc
opposite edges in E(x), and there is a path in L containing the other pair
of opposite edges in E(x). This contradicts the regularity of . |}

In what follows we assume that f; and f, are non-separating. By (3.9),
the regions ¥, ¥, and ¥, are pairwise disjoint. Let o/ := R?—
(TOJUKOUY,0¥,0¥,). If fi is non-separating then .o is the open
region bounded by C,, C,, Cy; while if f, is separating then .o/ consists of
two open regions one of which, say ./, is bounded by C, and C(/), and
the other, .&/,, is bounded by C, and C(J) (see Fig. 3). Denote by ¥ the
set of distinct circuits among C (F’), F, F' € #. We say that C e € separates
holes F, F' if they are in different components of R* — C.

Let B be the set of edges of G contained in ./, that is, B=EG —
(EG,u EG,U EGg). Consider a fork 7= (e, x, ¢') with ee B. Then f“=0,
whence B(7) =1 and /" = 1. In particular, this implies that B is a matching.
Let m=m,e .# be crucial for z, and let II(c)=(T,, T, S|, S,, §;). From
(3.7) and the fact that Z(e, ¢’') = J it follows that

(29) (1) f“=1for any ue EG — {e} such that m(x)>0;
(i) each path in & is shortest for m.

Consider some S;. By (4), @(S;} meets the boundaries of exactly two
holes, say F and F’, and the part of bd(F) (respectively, bd(F’)) lying in
@(S,) is connected. In addition, from (29)(ii) we observe that: (i) each path
in % of % crosses the boundary of @(S,) at most once; and (ii) each path
in Pe %, (where # ={F, F', F"}) either does not meet @(S;), or it
crosses its boundary twice (in the latter case f. is separating, P connects
T, and T,, and it meets neither @(S,_ ;) nor &(S,,,)). Using these
arguments, one can show (e.g., by induction on | %]} that for any Ce %

(30) (i) if C does not separate F and F’ then C does not meet
D(Srr);
(i) if C meets &(S,,-) then the part of C contained in @(S,x ) is
connected.

Now we finish the proof of Theorem 1 as follows:

(i) Suppose that f, is separating. Then the circuit C:= Ci([) does
not separate J and K. Choose an edge e = xy with x in C and y in C,
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(e exists because G is connected). Consider a fork 7= (e, x, ¢'); then the
edge ¢ =xz is in C. Let m=m_ e # be crucial for 7, let I1(o) =
(T,,T,,5,,5,,8;), and let xe S, and y, z€ S,, see Fig. 5a. By (29), there
is a path Pe.# containing ¢’ and shortest for m. Then one end of P is in
S, and the other in S,. Since ¢’ is in ¥, P belongs to ¥. Therefore,
S.AV(K)# for i=1,2, whence {S,, S,} = {Sk, Six} (by (4)). Since C
meets both S, and S, (as x& S, and z€ S,), we conclude that C meets S .
But C does not separate J and K, a contradiction with (30)(1). Thus, all
11, f1, fx are non-separating.

(ii) Suppose that two edges u=xy and «'=x'y’ in B connect the
same pair of circuits in €, say C, and Cy. Let x, x" be in C,, and p, ' be
in Cg. The edges u and «' split o into two regions &/’ and «/”; the inner
boundary of one of them, say .o«/", is C,; see Fig. 5b. Let e = xz be the edge
in C, such that e belongs to the outer boundary of «/”. Consider
m=m_ e # crucial for 1= (u, x, e); let Il{o)=(T,, T,, S, S,, 83}, x€ S,
and y,zeS,. Since ¢ belongs to a path in &, {S,,S,}={S,, S}
Moreover, S, =S, because S, meets both C, (at z) and Cy (at y). Hence,
S, =38,,- Let X be the set of vertices of C, that are in §,. We know that:
S, does not meet Cg (by (30)(1)); S,nV(J)# J; the graph (S5, is
connected; z¢ S, 3x; and the elements of X go in C, in succession (by
(30)(i1)). These facts imply that X must contain x". Thus, x'€ S, and v' ¢ S,
whence m(u’) > 0. But f“ =0 (as ' € B), a contradiction with (29)(i).

It remains to consider the case when each two circuits among C,, C,, Cyx
are connected by at most one edge in G. Then each pair of these circuits
are connected by exactly one edge because G is connected and [§(VG[)| is
even for each hole F. For Fe s add to G the edges from B with both ends
in C., forming the graph G). We assert that problem (G}, U,) (and
similarly, (G, U,) and (G, Uy)) has a solution, where U, is the set of
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pairs {s,t} € U with s, t € V(F). Let e connect C, and C,, and ¢’ connect
C, and Cg.

Consider G':=G) and U':=U,u {{x, y}}, where x, y are the ends of
e, e’ in C,. It suffices to show that (G, U’) has a solution. Obviously, G’
and U’ satisfy (1). By Okamura’s theorem, (G’, U’} has a solution if

b(X):=189X|—|{{s, t} e U’'| X separates s and t}| >0 (31)

holds for any X < VG'. Inequality (31) follows from (2) if X does not
separate x and y. Let X < VG’ separate x and y. Then |69 X|=16°X]| — 1,
and X separates exactly one pair more in U’ than in U. Hence,

A4:=[6°X|—|{{s, 1} € U|X separates s and t}| =b(X)+ 2.

Suppose that b:=5(X)<0. Then b< —2 (as b is even), whence 4 =0 (as
4=0). This means that f, being a solution of (¢, g), saturates all edges
in 6°X (since c(X)= g(X)). But §°X contains e or ¢, and f = f* =0, a
contradiction. This completes the proof of Theorem 1.

4. THE Caste ofF Four HoOLEs

We give a counterexample (G, U) to the statement (1.1) for |#|=4.
Figure 6 illustrates a planar graph G’ (whose edges are drawn by the solid
lines) and a set U of pairs in VG’ (indicated by dotted lines); here
H =F; ={I,J, K, O}. The graph G is obtained from G’ by replacing each
edge of G’ by two parallel edges. Then G and U satisfy (1). Instead of
considering G, it is convenient to mean that G’ has the capacity c(e) =2 for
each its edge e.

Each {s', ¢’} € U belongs to the boundary of exactly one hole F of G’; let
2P(s', t') denote the pair of simple s’ — ¢ paths going along the boundary of

—

FIGURE 6
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F. The problem (c, g) (with g to be all-units on U) has a solution f, defined
by f(Py=f(P)=1ifor {P,P'}=2(s,1), {s,1'}eU.

In order to prove that (¢, g) has no integral solution consider the length
function / on EG’ such that /(e) = 2 for e = pg, vw and /(e) =1 for the other
edges e in EG’. Then for any {s’, t'} € U, we have dist,(s’, 1) =4 and there
are exactly two s’ — ¢’ paths shortest for /, namely, the paths in 2(s’, ¢'). In
addition, one can see that

c=Y (dist,(s', )| {s’, '} e U).

This implies that any f” solving (c, g) saturates each edge of G', and each
path P with f'(P)> 0 is shortest for /. Thus, to construct an integral solu-
tion for (¢, g) one has to choose one path in each 2(s', t') ({s', '} € U) in
such a way that any edge of G’ should belong to exactly two of these paths.

Consider possible choices of paths for the pairs {r, w}, {1, v}, {s, w},
{u, v}. Up to the symmetry of / and J, there are only two possibilities: (i)
P, :=rxvw, P,:=tx'wv, Py:=sy'ux'w, P,:=uy'sxv; and (ii} Q, := rxvw,
0, =tyrxv, @, :=sy'ux'w, Q, :=ux'wr. In case (i), the edges sy’ and uy’
are covered twice (by P, and P,); therefore, the edge gy’ cannot be
saturated. Similarly, in case (ii), xs cannot be saturated. This, (¢, g) has no
integral solution.
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