

Paths and Metrics in a Planar Graph with Three or More Holes. II. Paths

A. V. KARZANOV*

*Institute for System Analysis of Russian Academy of Science,
9, Prospect 60 Let Oktyabrya, 117312 Moscow, Russia*

Received August 19, 1989; revised September 2, 1992

Suppose that $G = (VG, EG)$ is a planar graph embedded in the euclidean plane, that I, J, K are three of its faces (*holes*), that $s_1, \dots, s_r, t_1, \dots, t_r$ are vertices of G such that each pair $\{s_i, t_i\}$ belongs to the boundary of some of I, J, K , and that the graph $(VG, EG \cup \{\{s_1, t_1\}, \dots, \{s_r, t_r\}\})$ is eulerian. We prove that there exist edge-disjoint paths P_1, \dots, P_r in G such that each P_i connects s_i and t_i if the obvious necessary conditions with respect to the cuts and the so-called 2, 3-metrics are satisfied. In particular, such paths exist if the corresponding (fractional) multi-commodity flow problem has a solution. This extends Okamura's theorem on paths in a planar graph with two holes. The proof uses a theorem on a packing of cuts and 2, 3-metrics obtained in Part I of the present series of two papers. We also exhibit an instance with four holes for which the multicommodity flow problem is solvable but the required paths do not exist. © 1994 Academic Press, Inc.

1. INTRODUCTION

Throughout, we deal with an undirected planar graph G embedded in the euclidean plane \mathbb{R}^2 . VG is the vertex set, EG is the edge set of G (multiple edges and loops are admitted), and $\mathcal{F} = \mathcal{F}_G$ is the set of faces of G . A subset $\mathcal{H} \subseteq \mathcal{F}$ of faces of G , called its *holes*, is distinguished. Let $U = \{\{s_1, t_1\}, \dots, \{s_r, t_r\}\}$ be a family of pairs (possibly repeated) of vertices of G such that each $\{s_i, t_i\}$ is contained in the boundary $\text{bd}(I)$ of some hole $I \in \mathcal{H}$.

Problem (G, U, k) . Given an integer $k \geq 1$, find $P_1^1, \dots, P_1^k, P_2^1, \dots, P_2^k, \dots, P_r^1, \dots, P_r^k$ such that each P_i^j is a path in G connecting s_i and t_i , and each edge of G occurs at most k times in these paths.

The problem $(G, U, 1)$ is denoted by (G, U) ; it consists in finding edge-disjoint paths P_1, \dots, P_r in G , where P_i connects s_i and t_i .

* This work was partially supported by "Chaire municipale," Marie de Grenoble, France.

For $X \subseteq V$, let $\delta X = \delta^G X$ denote the set of edges of G with one end in X and the other in $VG - X$; a nonempty set δX is called a *cut* in G ; we say that X (or δX) *separates* vertices x and y if exactly one of x, y is in X .

We prove the following theorem.

THEOREM 1. *Let $|\mathcal{H}| = 3$, and let*

(1) $|\delta X| + |\{i \mid X \text{ separates } s_i \text{ and } t_i\}|$ *be even for any* $X \subseteq VG$.

Then (G, U) *has a solution (that is, required paths exist) if and only if:*

(2) *each* $X \subseteq VG$ *separates at most* $|\delta X|$ *pairs in* U ;

(3) $\sum_{e \in EG} m(e) \geq \sum_{i=1}^r m(s_i, t_i)$ *for all 2, 3-metrics* m *on* VG .

(A 2, 3-metric on VG is a function m on $VG \times VG$ such that $m(x, y)$ is equal to $\text{dist}^{K_{2,3}}(\sigma(x), \sigma(y))$ for some mapping σ of VG onto the vertex-set of the complete bipartite graph $K_{2,3}$; here $\text{dist}^G(u, v)$ is the distance between vertices u and v in a graph G . We say that m is *induced by* σ , and denote m as m_σ .) Obviously, (2) is necessary for the solvability of (G, U, k) with any k . (3) is necessary as well because if P_i^j 's as above give a solution of (G, U, k) then

$$\sum_{e \in EG} m(e) \geq \frac{1}{k} \sum_{i=1}^r \sum_{j=1}^k (m(e) \mid e \in P_i^j) \geq \sum_{i=1}^r m(s_i, t_i),$$

since m satisfies the triangle inequalities (here we write $e \in P_i^j$ considering a path as an edge-set). Hence, Theorem 1 has the following corollary.

1.1. *If $|\mathcal{H}| = 3$, (1) holds, and (G, U, k) has a solution for some k , then (G, U) has a solution as well.*

Okamura [2] showed that for $|\mathcal{H}| = 2$, (G, U) has a solution whenever (1)–(2) hold (for $|\mathcal{H}| = 1$ this was shown in [3]). For $|\mathcal{H}| = 3$, (1)–(2) are, in general, not sufficient for the solvability of (G, U, k) ; e.g., consider $G = K_{2,3}$ and $U := \{\{s^1, s^2\}, \{s^2, s^3\}, \{s^3, s^1\}, \{t^1, t^2\}\}$, see Fig. 1a. The essence of Theorem 1 is that for $|\mathcal{H}| = 3$ adding (3) to (1)–(2) ensures the solvability of (G, U, k) with any k .

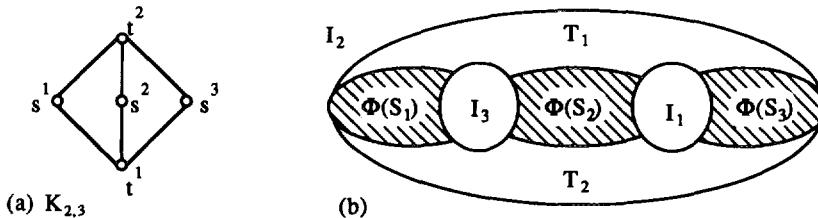


FIGURE 1

The proof of the theorem relies on the following result on packings of cuts and 2, 3-metrics obtained in Part I [1]. Let $\text{dist}_i(x, y)$ denote the distance between vertices x and y in G whose edges $e \in EG$ have lengths $l(e) \in \mathbb{Q}_+$ (\mathbb{Q}_+ is the set of nonnegative rationals). A mapping $\sigma: VG \rightarrow VK_{2,3}$ determines the ordered partition $\Pi(\sigma) = (T_1, T_2, S_1, S_2, S_3)$ of VG , where $T_i := \sigma^{-1}(t^i)$, $S_j := \sigma^{-1}(s^j)$, and the vertices of $K_{2,3}$ are labelled by t^1, t^2, s^1, s^2, s^3 as shown in Fig. 1a. Let $\langle X \rangle = \langle X \rangle_G$ denote the subgraph of G induced by $X \subseteq VG$, and let $V(F)$ denote the set of vertices in $\text{bd}(F)$, $F \in \mathcal{F}$. By a *region* we mean a connected set in the plane that is the union of some vertices, edges, and faces of G ; an edge (a face) of G is identified with the corresponding curve without the endpoints (respectively, the corresponding open two-dimensional set) in the plane.

One sort of 2, 3-metrics will be important in what follows. Let m be a 2, 3-metric induced by a mapping σ . We call σ (as well as m and $\Pi(\sigma)$) *proper* if for some labelling I_1, I_2, I_3 of the holes of G , the partition $\Pi(\sigma) = (T_1, T_2, S_1, S_2, S_3)$ satisfies:

(4) for $i = 1, 2, 3$, $\langle S_i \rangle$ is connected, and $S_i \cap V(I_p) = \emptyset$ if and only if $p = i$;

(5) the space $\Omega(\sigma) := \mathbb{R}^2 - (I_1 \cup I_2 \cup I_3 \cup \Phi(S_1) \cup \Phi(S_2) \cup \Phi(S_3))$ consists of two disjoint regions, one containing T_1 and the other containing T_2 ; here $\Phi(S_i)$ is the union of $\langle S_i \rangle$ and the faces F of G with $\text{bd}(F) \subseteq \langle S_i \rangle$.

(See Fig. 1b.) In particular, (5) implies that no edge of G connects T_1 and T_2 .

THEOREM 2 [1]. *Let G be connected, $|\mathcal{H}| = 3$, and $l: EG \rightarrow \mathbb{Q}_+$. Then there exist cuts $\delta X_1, \dots, \delta X_N$ in G , proper 2, 3-metrics m_1, \dots, m_M on VG , and numbers $\lambda_1, \dots, \lambda_N, \mu_1, \dots, \mu_M \in \mathbb{Q}_+$ such that*

$$\sum (\lambda_i | i = 1, \dots, N, e \in \delta X_i) + \sum_{j=1}^M \mu_j m_j(e) \leq l(e) \quad \text{for all } e \in EG; \quad (6)$$

$$\sum (\lambda_i | i = 1, \dots, N, X_i \text{ separates } s \text{ and } t) + \sum_{j=1}^M \mu_j m_j(s, t) = \text{dist}_i(s, t) \quad \text{for all } s, t \in V(I), \quad I \in \mathcal{H}. \quad (7)$$

In Section 2 from Theorem 2 we obtain a criterion of the solvability of (G, U, k) for some k and then, in Section 3, using this criterion, we shall prove Theorem 1.

Note that in Part I it was shown also that for the case $|\mathcal{H}| = 4$, (6)–(7) can be satisfied by taking as m_i 's 2, 3-metrics or metrics induced by

mappings into planar graphs with four faces. Using arguments from Section 2, for this case one can derive from that result a combinatorial criterion of the solvability of (G, U, k) for some k . However, (1.1) does not remain true for $|\mathcal{H}| = 4$, as we explain in Section 4.

2. MULTICOMMODITY FLOWS AND METRICS

Standard linear programming duality arguments enable us to obtain from Theorem 2 a weaker, fractional, version of Theorem 1. Let G, \mathcal{H}, U be as in the hypotheses of Theorem 1.

Denote by $\mathcal{P}_i = \mathcal{P}(G, s_i, t_i)$ the set of simple paths from s_i to t_i (or $s_i - t_i$ paths) in G . Let $\mathcal{P} = \mathcal{P}(G, U) := \bigcup (\mathcal{P}_i | i = 1, \dots, r)$.

Problem (c, g) . Given a function $c: EG \rightarrow \mathbb{Q}_+$ (of capacities of edges) and numbers $g_1, \dots, g_r \in \mathbb{Q}_+$ (demands), find a function $f: \mathcal{P} \rightarrow \mathbb{Q}_+$ satisfying:

$$f^e := \sum (f(P) | e \in P \in \mathcal{P}) \leq c(e) \quad \text{for all } e \in EG; \quad (8)$$

$$\sum (f(P) | P \in \mathcal{P}_i) = g_i \quad \text{for } i = 1, \dots, r. \quad (9)$$

Such an f is called a (c, g) -admissible *multicommodity flow*. For $c \equiv 1$ and $g \equiv 1$, (c, g) with the additional requirement on f to be integer-valued turns into the above problem (G, U) .

By Farkas lemma, (8)–(9) is solvable if and only if

$$cl := \sum_{e \in EG} c(e) l(e) \geq \sum_{i=1}^r g_i b_i \quad (10)$$

holds for any $l \in \mathbb{Q}_+^{EG}$ and $b_1, \dots, b_r \in \mathbb{Q}$ satisfying

$$l(P) := \sum (l(e) | e \in P) \geq b_i, \quad P \in \mathcal{P}_i, \quad i = 1, \dots, r. \quad (11)$$

Since (11) is equivalent to $b_i \leq \text{dist}_l(s_i, t_i)$ ($i = 1, \dots, r$), (c, g) is solvable if and only if

$$cl \geq \sum_{i=1}^r g_i \text{dist}_l(s_i, t_i) \quad (12)$$

holds for any $l \in \mathbb{Q}_+^{EG}$. For a fixed l choose X_i 's, λ_i 's, m_j 's, μ_j 's as in Theorem 2. Define

$$c(X_j) := \sum (c(e) | e \in \delta X_j); \quad g(X_j) := \sum (g_i \rho X_j(s_i, t_i) | i = 1, \dots, r);$$

$$c(m_q) := \sum (c(e) m_q(e) | e \in EG); \quad g(m_q) := \sum (g_i m_q(s_i, t_i) | i = 1, \dots, r),$$

where for $X \subseteq VG$, $\rho_X(x, y)$ denotes the function on $VG \times VG$ taking the value one if X separates x and y , and zero otherwise. Then (6) implies

$$cl \geq \lambda_1 c(X_1) + \cdots + \lambda_N c(X_N) + \mu_1 c(m_1) + \cdots + \mu_M c(m_M),$$

while (7) implies

$$\sum_{i=1}^r g_i \text{dist}_l(s_i, t_i) = \sum_{j=1}^N \lambda_j g(X_j) + \sum_{q=1}^M \mu_q g(m_q),$$

whence (by (12)) we deduce the following statement:

2.1. *(c, g) is solvable if and only if the following hold:*

$$c(X) \geq g(X) \quad \text{for any } X \subseteq VG; \quad (13)$$

$$c(m) \geq g(m) \quad \text{for any proper 2, 3-metric } m \text{ on } VG. \quad (14)$$

(The “only if” part follows from the facts that if $c(X) < g(X)$ for some $X \subseteq VG$ then, obviously, (12) is violated for $l := \rho_X|_{EG}$, and similarly, if $c(m) < g(m)$ for some 2, 3-metric m on VG then (12) is violated for $l := m|_{EG}$.)

3. PROOF OF THEOREM 1

Let G, \mathcal{H}, U be as the hypotheses of Theorem 1, and let (1)–(3) hold. Put $c(e) := 1$ for $e \in EG$ and $g_i := 1$ for $i = 1, \dots, r$. Then (2)–(3) is equivalent to (13)–(14). Therefore (by (2.1)), the problem (c, g) has a solution. One must prove that (c, g) has an integral solution (the “only if” part in Theorem 1 was explained in the Introduction).

Without loss of generality one may assume that: G is connected; the outer (unbounded) face of G is a hole; all s_i ’s and t_i ’s are distinct and have valency 1 (since for $i = 1, \dots, r$ one can add new vertices s'_i, t'_i and edges $\{s'_i, s_i\}, \{t'_i, t_i\}$ and consider the pair $\{s'_i, t'_i\}$ instead of $\{s_i, t_i\}$). Let $T := \{s_1, \dots, s_r, t_1, \dots, t_r\}$.

Next, one may assume that each vertex in $VG - T$ is of valency 2 or 4. For if $x \in VG - T$ has valency $h > 4$, one can transform G at x as shown in Fig. 2 (it is easy to see that such a transformation yields an equivalent problem).

FIGURE 2

We proceed by induction on $|EG|$, assuming $|\mathcal{H}| \leq 3$. If G has a loop or a vertex of valency 2 in $VG - T$, the result obviously follows by induction; while if $|\mathcal{H}| \leq 2$ or $T \cap V(I) = \emptyset$ for some $I \in \mathcal{H}$, the result follows from Okamura's theorem.

The proof falls into two parts. We first prove the existence of a *half-integral* solution for (c, g) ; using it, we then show that it has an integral solution as well.

Some conventions. By a *circuit* we mean an arbitrary x - x path. When it leads to no confusion we identify a path (circuit) in G and its image in the plane. The boundary $bd(F)$ of a face F will be often considered as a (possibly not simple) circuit oriented clockwise from a point in F . For $x \in VG$, $E(x)$ denotes the clockwise-ordered sequence (considered up to a shifting cyclically) of the edges incident to x .

Consider a vertex $x \in VG - T$ and two consecutive edges $e, e' \in E(x)$. The triple $\tau = (e, x, e')$ is called a *fork*. Denote by G_τ the (planar) graph obtained from G by adding a new edge (or a loop) e_τ connecting the ends of the edges e and e' different from x . Define the function ω_τ on EG_τ by

$$\begin{aligned} \omega_\tau(u) &:= 1 && \text{for } u = e, e', \\ &:= -1 && \text{for } u = e_\tau, \\ &:= 0 && \text{otherwise.} \end{aligned}$$

For $0 \leq \varepsilon \leq 1$, let $c_{\tau, \varepsilon}$ denote the function on EG_τ taking the value $1 - \varepsilon$ on e and e' , ε on e_τ , and 1 on the edges in $EG - \{e, e'\}$. We say that ε is *feasible* if the problem $(c_{\tau, \varepsilon}, g)$ has a solution, or, in other words, if (13)–(14) hold for G_τ and $c_{\tau, \varepsilon}$. E.g., $\varepsilon = 0$ is feasible. The maximum feasible $\varepsilon \leq 1$ is denoted by $\alpha(\tau)$.

Our main aim is to prove the existence of a fork τ such that $\alpha(\tau) = 1$. Then the proof of Theorem 1 is completed as follows. Let G' be the graph arising from G by deleting e, e' and adding e_τ . Then the solvability of $(c_{\tau, 1}, g)$ means that (2)–(3) hold for G' and U . Since $|EG'| = |EG| - 1$, and (G', U) satisfy (1), the result for (G, U) easily follows by induction.

Thus, one may assume that $\alpha(\tau) < 1$ for all forks τ in G . Denote by \mathcal{M} the set of all proper 2, 3-metrics on VG . For $0 \leq \varepsilon \leq 1$ and $X \subset VG$ (respectively, $m \in \mathcal{M}$), put $\Delta_{\tau, \varepsilon}(X) := c_{\tau, \varepsilon}(X) - g(X)$ (respectively, $\Delta_{\tau, \varepsilon}(m) := c_{\tau, \varepsilon}(m) - g(m)$). Then

$$\Delta_{\tau, \varepsilon}(X) = c(X) - g(X) - \varepsilon \omega_\tau(X), \quad (15)$$

$$\Delta_{\tau, \varepsilon}(m) = c(m) - g(m) - \varepsilon \omega_\tau(m), \quad (16)$$

where $\omega_\tau(X)$ stands for $\rho X(e) + \rho X(e') - \rho X(e_\tau)$, and $\omega_\tau(m)$ stands for $m(e) + m(e') - m(e_\tau)$. Observe that: (i) $\Delta_{\tau, 0}(X) \geq 0$ and $\Delta_{\tau, 0}(m) \geq 0$ (by

(13)–(14)); (ii) $\omega_\tau(X) \geq 0$ and $\omega_\tau(m) \geq 0$ (since ρX and m are metrics); and (iii) if ε' is such that $\alpha(\tau) < \varepsilon' \leq 1$ then there is $X \subset VG$ such that $\Delta_{\tau, \varepsilon'}(X) < 0$ or there is $m \in \mathcal{M}$ such that $\Delta_{\tau, \varepsilon'}(m) < 0$ (by the definition of $\alpha(\tau)$). This implies that $\alpha(\tau)$ satisfies

$$\begin{aligned} \alpha(\tau) = \min \{ \min \{ (c(X) - g(X)) / \omega_\tau(X) \mid X \subset VG, \omega_\tau(X) > 0 \} \\ \min \{ (c(m) - g(m)) / \omega_\tau(m) \mid m \in \mathcal{M}, \omega_\tau(m) > 0 \} \}. \end{aligned} \quad (17)$$

We say that $X \subset VG$ (or $m \in \mathcal{M}$) is *crucial* for τ if it achieves the minimum in (17).

3.1. *If $\alpha(\tau) > 0$ then no set $X \subset VG$ is crucial for τ .*

Proof. Let $X \subset VG$ and $b := \omega_\tau(X) > 0$. Since $\alpha(\tau) > 0$, $a := c(X) - g(X) > 0$. Hence $a \geq 2$ (by (1)). On the other hand, $b \leq 2$. Thus, $a/b \geq 1 > \alpha(\tau)$. ■

Remark. A simple fact (implied, e.g., by (3.5) below) is that if $\alpha(\tau) = 0$ holds for all forks τ then (c, g) has a unique solution f and, moreover, f is integral. Thus (cf., e.g., [4]), (3.1) enables to derive Okamura's theorem directly from its fractional version: if $|\mathcal{H}| \leq 2$ and (13) holds then (c, g) has a solution.

3.2. *Let $\alpha(\tau) > 0$, and let $m \in \mathcal{M}$ be crucial for τ . Then $\alpha(\tau) = \frac{1}{2}$, $c(m) - g(m) = 2$, and $\omega_\tau(m) = 4$.*

Proof. Put $b := \omega_\tau(m)$ and $a := c(m) - g(m)$. Then $b > 0$ and $\alpha(\tau) = a/b$. From (1) it easily follows that a is even. Next, since $m(y, z) \leq 2$ for any $y, z \in VG$ and every circuit in $K_{2,3}$ is even, b is even and $b \leq 4$. In view of $0 < \alpha(\tau) < 1$, only one case is possible, namely, $a = 2$ and $b = 4$.

Thus, $\alpha(\tau) \in \{0, \frac{1}{2}\}$ for any fork τ . Let us fix a multicommodity flow $f: \mathcal{P}(G, U) \rightarrow \mathbb{Q}_+$ that is a solution of (c, g) . It will be convenient to think of f as consisting of three “flows” f_I , f_J , and f_K , where $\mathcal{H} = \{I, J, K\}$, and f_F is the restriction of f to the set of paths in $\mathcal{P}(G, U)$ with both ends in $V(F)$, $F \in \mathcal{H}$. Denote by $\mathcal{L} = \mathcal{L}(f)$ the set of paths $P \in \mathcal{P}(G, U)$ with $f(P) > 0$ (the *support* of f). Similarly, $\mathcal{L}_F = \mathcal{L}_F(f)$ denotes the support of f_F ; so $\{\mathcal{L}_I, \mathcal{L}_J, \mathcal{L}_K\}$ is a partition of \mathcal{L} .

A path $P \in \mathcal{L}_F$ ($F \in \mathcal{H}$) splits the space $\mathbb{R}^2 - F$ into the pair $\mathcal{R}(P)$ of closed regions whose intersection is P and union is $\mathbb{R}^2 - F$. We say that f is *regular* if any $P \in \mathcal{L}_F$ and $P' \in \mathcal{L}_{F'}$ for $F \neq F'$ do not cross, that is, P' is contained entirely in some Ω_i , where $\mathcal{R}(P) = \{\Omega_1, \Omega_2\}$. The following property is shown by use of standard uncrossing techniques.

3.3. If f is $1/k$ -integral then (c, g) has a $1/k$ -integral solution f' that is regular.

In what follows we assume that f is regular. Consider a hole, say I . Denote by Ψ_I the region that is the union of $Q_I := \text{bd}(I) \cup \bigcup_{P \in \mathcal{L}_I} P$ and those components of $\mathbb{R}^2 - Q_I$ which contain no hole; call Ψ_I the region of the flow f_I . Each component Z of $\mathbb{R}^2 - (I \cup \Psi_I)$ contains at least one hole among J, K ; moreover, the fact that every path in \mathcal{L}_I is simple implies that the boundary of Z is formed by a simple circuit C . If $J \subseteq Z$, say, we denote C by $C_I(J)$. If $C_I(J) = C_I(K)$ then $C_I(J)$ is denoted by C_I . If $C_I(J) \neq C_I(K)$, we say that f_I is separating. In view of the regularity of f ,

- (18) (i) at least two of f_I, f_J, f_K are non-separating;
- (ii) for $F, F' \in \mathcal{H}$ ($F \neq F'$), the sets $\Psi_F - C_F(F')$ and $\Psi_{F'} - C_{F'}(F)$ are disjoint.

(See Fig. 3.) For $F \in \mathcal{H}$ and $e \in EG$ put $f_F^e := \sum (f(P) | e \in P \in \mathcal{L}_F)$. We shall prove the following lemma.

3.4. LEMMA. Let f_I be non-separating. Then for any edge e in the circuit C_I , at least one of the values f_I^e and $f_J^e + f_K^e$ is zero.

In the assumption that Lemma 3.4 is valid the existence of a half-integral solution for (c, g) is proved as follows. Let G_1 (G_2) be the subgraph of G contained in Ψ_I (respectively, in $\Psi_J \cup \Psi_K$), and let U_1 (U_2) be the set of pairs $\{s, t\} \in U$ with $s, t \in V(I)$ (respectively, $s, t \in V(J) \cup V(K)$). For $i = 1, 2$, define the capacity $c_i(e)$ of an edge $e \in EG_i$ to be two if $f_i^e > 0$, and zero otherwise; here $f_1^e := f_I^e$ and $f_2^e := f_J^e + f_K^e$. Put $g_i(\{s, t\}) := 2$ for $\{s, t\} \in U_i$. Since $f_J^e + f_K^e \leq \frac{1}{2} c_2(e)$ for each $e \in EG_2$, the flows $2f_J$ and $2f_K$ determine a solution for (c_2, g_2) . Furthermore, the functions c_2 and g_2 take even values and each pair $\{s, t\} \in U_2$ is contained in the boundary of some of two faces of G_2 . Thus, by Okamura's theorem (c_2, g_2) has an integral solution ϕ_2 . Similarly, (c_1, g_1) has an integral solution ϕ_1 .

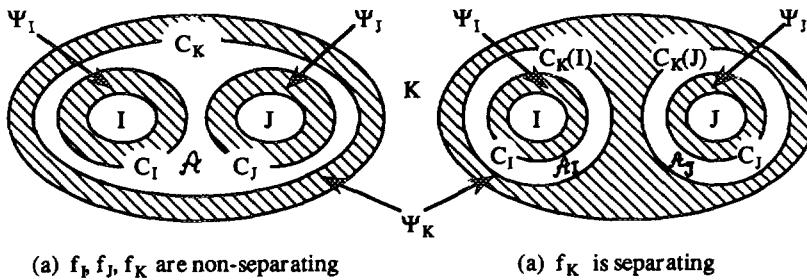


FIGURE 3

We know that $G_1 \cap G_2 \subseteq C_1$ (by (18)(ii)), and $c_1(e) + c_2(e) \leq 2 = 2c(e)$ for any edge e in C_1 (by (3.4)). Thus, $\frac{1}{2}\phi_1$ and $\frac{1}{2}\phi_2$ determine a half-integral solution of (c, g) .

In order to prove (3.4) we need the auxiliary statements (3.5)–(3.8); they will be also used to show the existence of an integral solution for (c, g) .

For $e \in EG$ ($e, e' \in EG$), denote by $\mathcal{D}(e) = \mathcal{D}_f(e)$ (respectively, $\mathcal{D}(e, e') = \mathcal{D}_f(e, e')$) the set of paths in \mathcal{L} containing e (respectively, e and e'). Put $f^e := \sum (f(P) | P \in \mathcal{D}(e))$ (cf. (8)) and $f^{e, e'} := \sum (f(P) | P \in \mathcal{D}(e, e'))$. For a fork $\tau = (e, x, e')$ introduce the value $\beta(\tau)$ which, as we shall see later, gives a lower bound for $\alpha(\tau)$:

$$\beta(\tau) := 1 - \frac{1}{2}f^e - \frac{1}{2}f^{e'} + f^{e, e'} \quad (= 1 - \frac{1}{2}(f^{e, u} + f^{e, u'} + f^{e', u} + f^{e', u'})),$$

where $E(x) = (e, e', u, u')$. By symmetry,

$$\beta(e, x, e') = \beta(u, x, u') \quad \text{for } E(x) = (e, e', u, u'). \quad (19)$$

3.5. $\beta(\tau) \leq \alpha(\tau)$.

Proof. Let for definiteness $f^e \geq f^{e'}$. Define the capacity function c' on EG_τ as: $c'(e) := f^e - f^{e, e'}$; $c'(e') := f^{e'} - f^{e, e'}$; $c'(e_\tau) := 1 + f^{e, e'} - f^e$; and $c(w) := c(w)$ for the other edges w . It is easy to see that (c', g) has a solution. Now put $c'' := c_{\tau, \beta(\tau)}$ and $\varepsilon := (f^e - f^{e'})/2$. A straightforward checkup shows that $c''(w) - c'(w)$ is equal to ε for $w = e'$, e_τ ; $-\varepsilon$ for $w = e$; and zero for the other $w \in EG_\tau$. Since $\varepsilon > 0$, the solvability for (c', g) implies that for (c'', g) . Hence $\alpha(\tau) \geq \beta(\tau)$. ■

Thus, $\beta(\tau) \leq \frac{1}{2}$ for all forks τ in G . In particular, this implies that G has no multiple edges. For suppose that two edges e, u' have the same ends x, y . Without loss of generality one may assume that G is embedded in the plane so that u', e are consecutive in $E(x)$, that each path in $\mathcal{D}(e)$ passes e' , and each path in $\mathcal{D}(u')$ passes u , where $E(x) = (e, e', u, u')$. Then $f^{e, u'} = f^{e, u} = f^{e', u'} = 0$, whence $1 \geq 2\beta(e, x, e') = 2 - f^{e', u}$. Hence, $\beta(e', x, u) \geq f^{e', u} = 1$, a contradiction.

Note also that $\beta(e, x, e') = 0$ would imply $f^{e, e'} = 0$. Therefore, if $\beta(\tau) = 0$ for all forks τ in G then any two paths in \mathcal{L} having a common edge must coincide, whence f is integer-valued.

In what follows an edge in G with ends x and y (a path $P = (x_0, e_1, x_1, \dots, e_p, x_p)$) may be denoted by xy (respectively, by $x_0 x_1 \dots x_p$).

Let us fix a fork $\tau = (e, x, e')$; let $E(x) = (e, e', u, u')$. Statement (3.6) exhibits a situation (which will take place often later on) when $\beta(\tau) = \frac{1}{2}$ occurs, while (3.7) and (3.8) describe important properties of τ with $\beta(\tau) = \frac{1}{2}$.

3.6. *Let $\mathcal{D}(e, u) = \emptyset$. Then $\beta(\tau) = \frac{1}{2}$, $f^{e, e'} = f^{e, u}$, and the edges e' and u' are saturated by f .*

Proof. We have $2\beta(\tau) = 2 - f^{e, u} - f^{e', u} - f^{e', u'}$ (since $f^{e, u} = 0$) and $1 = c(e') \geq f^{e'} = f^{e', e} + f^{e', u} + f^{e', u'}$. This implies $1 \geq 2\beta(\tau) \geq 1 + f^{e, e'} - f^{e, u'}$, whence $f^{e, e'} \leq f^{e, u'}$. Similarly, considering the fork (u', x, e) we obtain $f^{e, u'} \leq f^{e, e'}$. Thus, equality should hold throughout, and the result follows ($f^{u'} = 1$ is shown similarly to $f^{e'} = 1$). ■

Consider a metric $m = m_\sigma \in \mathcal{M}$ crucial for τ . Let $\Pi(\sigma) = (T_1, T_2, S_1, S_2, S_3)$, and let $e = xy$ and $e' = xz$.

3.7. Let $\beta(\tau) = \frac{1}{2}$. Then

- (i) $x \in S_i$ and $y, z \in S_{i'}$ for some $i \neq i'$;
- (ii) each path in $\mathcal{L} - \mathcal{D}(e, e')$ is shortest with respect to m ;
- (iii) each $h \in EG - \{e, e'\}$ with $m(h) > 0$ is saturated by f ; that is, $f^h = 1$.

Proof. By (3.2), $\omega_\tau(m) = m(e) + m(e') - m(y, z) = 4$, whence $m(e) = m(e') = 2$ and $m(y, z) = 0$. This implies that either (a) $x \in T_j$, $y, z \in T_{3-j}$ for some $j \in \{1, 2\}$, or (b) $x \in S_i$, $y, z \in S_{i'}$ for some $i \neq i'$. By (5), (a) is impossible; thus (i) is true. Next, for an $s - t$ path P put $\mu(P) := \sum_{h \in P} m(h) - m(s, t)$. Since m is a metric, $\mu(P) \geq 0$ for all $P \in \mathcal{L}$. Furthermore, $m(e) = m(e') = 2$ and $m(y, z) = 0$ imply that $\mu(P) \geq 4$ for all $P \in \mathcal{D}(e, e')$. We have (by (3.2))

$$\begin{aligned}
2 = c(m) - g(m) &= \sum_{h \in EG} m(h) - g(m) \\
&= \sum_{h \in EG} m(h)(1 - f^h) + \sum_{h \in EG} m(h)f^h - g(m) \\
&\geq m(e)(1 - f^e) + m(e')(1 - f^{e'}) + \sum_{h \in EG} m(h)f^h - g(m) \\
&= 4 - 2f^e - 2f^{e'} + \sum_{P \in \mathcal{L}} \mu(P)f(P) \\
&\geq 4 - 2f^e - 2f^{e'} + 4 \cdot \sum_{P \in \mathcal{D}(e, e')} f(P) \\
&= 4 - 2f^e - 2f^{e'} + 4f^{e, e'} = 4\beta(\tau) = 2.
\end{aligned} \tag{20}$$

Hence, all the inequalities in (20) hold with equality, whence (ii) and (iii) follow. ■

For $\Pi(\sigma) = (T_1, T_2, S_1, S_2, S_3)$ as above, let $\Phi(T_i)$ denote the component of $\Omega(\sigma)$ containing T_i , $i = 1, 2$ (where $\Omega(\sigma)$ is defined in (5)). For a path $P = x_0x_1 \dots x_p$ and $0 \leq j \leq j' \leq p$, the part of P from x_j to $x_{j'}$ is denoted by $P(x_j, x_{j'})$. For $x' \in VG$ let $\mathcal{P}(x')$ denote the set of paths in \mathcal{L} passing x' .

3.8. Let $\beta(\tau) = \frac{1}{2}$. Let i and i' be as in (3.7). Suppose that I is the hole such that $S_i \cap V(I) \neq \emptyset$ and $S_{i'} \cap V(I) \neq \emptyset$. Then each path in $\mathcal{P}(x)$ belongs to \mathcal{L}_I .

Proof. Consider a path in \mathcal{L} containing exactly one of the edges e, e' , say $P = s \cdots xy \cdots t$. Then P is shortest for m (by 3.7(ii)), $m(x, y) = 2$ and $m(s, t) \leq 2$, whence all vertices of $P(s, x)$ are in S_i and those of $P(y, t)$ are in $S_{i'}$. In particular, $s, t \in T \cap V(I)$ (by (4)), that is, $P \in \mathcal{L}_I$. Note also that the facts that $P(s, x)$ lies in $\Phi(S_i)$ and $P(y, t)$ lies in $\Phi(S_{i'})$ imply that one region in $\mathcal{R}(P)$ contains no hole ($\mathcal{R}(P)$ was defined before (3.3)).

Suppose that $\mathcal{D}(e, e') \neq \emptyset$. Since $(f^e - f^{e, e'}) + (f^{e'} - f^{e, e'}) = 2 - 2\beta(\tau) = 1$ and $f^{e, e'} > 0$, we have $f^e > f^{e, e'}$ and $f^{e'} > f^{e, e'}$. So there are paths $P, P' \in \mathcal{L}$ such that $e \in P \setminus e'$ and $e' \in P' \setminus e$; let $P = s \cdots xy \cdots t$ and $P' = s' \cdots xz \cdots t'$. By the above arguments, (i) $P(s, x), P'(s', x)$ lie in $\Phi(S_i)$; (ii) $P(y, t), P'(z, t')$ lie in $\Phi(S_{i'})$; and (iii) there are $\Omega \in \mathcal{R}(P)$ and $\Omega' \in \mathcal{R}(P')$ which contain no hole. By (iii), $\Omega \subseteq \Psi_I$ and $\Omega' \subseteq \Psi_{I'}$. Since $e' \notin P$, either e' is outside of Ω or e' lies in $\Omega - P$. In the latter case e' lies in the interior of the region $\Psi_I \cup I$, whence each path in $\mathcal{D}(e, e')$ belongs to \mathcal{L}_I (by (18)(ii)). Now suppose that $e' \cap \Omega = \emptyset$ and $e \cap \Omega' = \emptyset$. In view of (i)–(ii) above $e = xy$ traverses a region $\Phi(T_I)$ and $e' = xz$ traverses a region $\Phi(T_{I'})$. Moreover, from the supposition one can deduce that $j \neq j'$; this means that the edges e, e' split $\Phi(S_i)$ into two parts, one containing $S_i \cap V(I) \neq \emptyset$ and the other containing $S_i \cap V(F) \neq \emptyset$ for some $F \in \mathcal{H} - \{I\}$. Then the graph $\langle S_i \rangle$ is not connected (taking into account that e, e' are consecutive in $E(x)$); a contradiction.

Finally, applying similar arguments to $\tau' = (u, x, u')$ we obtain $\mathcal{D}(u, u') \subseteq \mathcal{L}_I$. (Note that $\beta(\tau') = \beta(\tau) = \frac{1}{2}$). ■

Proof of Lemma 3.4. Let $C := C_I$. For $h \in EG$ denote f_I^h by f_1^h and denote $f_J^h + f_K^h$ by f_2^h . Let E_1 (E_2) be the set of edges in $EG - C$ lying in Ψ_I (respectively, outside Ψ_I). Then the paths in $\mathcal{L}_J \cup \mathcal{L}_K$ use no edges in E_1 , and the paths in \mathcal{L}_I use no edges in E_2 .

Consider a vertex x in C , and let h and h' be the edges in C incident to x . We say that x is an i, j -vertex if $|E(x) \cap E_1| = i$ and $|E(x) \cap E_2| = j$. From the fact that f_I is non-separating it follows that the elements of E_i occurring in $E(x)$ go in succession. Let $E(x) = (e_1, e_2, e_3, e_4)$.

CLAIM 1. If x is a 1, 1-vertex, then $f_i^h = f_i^{h'} = 1$ for some $i \in \{1, 2\}$.

Proof. Let $h = e_1$ and $h' = e_3$. Then one of e_2, e_4 belongs to E_1 and the other to E_2 , whence $\mathcal{D}(e_2, e_4) = \emptyset$. By (3.6), $f^h = f^{h'} = 1$ and $\beta(e_1, x, e_2) = \frac{1}{2}$. Then, by (3.8), all paths in $\mathcal{D}(h)$ and $\mathcal{D}(h')$ belong to the same \mathcal{L}_F . ■

CLAIM 2. *Let x be a 2, 0-vertex. If $f_i^h = 0$ for some $i \in \{1, 2\}$ then $f_2^{h'} = 0$.*

Proof. Observe that $f_2^u = 0$ for $u \in E(x) - \{h, h'\}$ (since $u \in E_1$). Therefore, $f_2^h = 0$ if and only if $f_2^{h'} = 0$. Now suppose that $f_1^h = 0$. Assuming that $h = e_1$ and $h' = e_2$, we have $f_2^{e_3} = 0$ (as $e_3 \in E_1$). Then $\mathcal{D}(e_1, e_3) = \emptyset$, whence $\beta(h, x, h') = \frac{1}{2}$ (by (3.6)). By (3.8), all paths in $\mathcal{P}(x)$ belong to the same \mathcal{L}_F . Since $f^{e_4} > 0$ (by (3.6)) and $f_2^{e_4} = 0$ (as $e_4 \in E_1$), only $F = I$ is possible. Hence, $f_2^{h'} = 0$. ■

CLAIM 3. *Let x be a 0, 2-vertex. If $f_i^h = 0$ for some $i \in \{1, 2\}$ then $f_1^{h'} = 0$.*

Proof. Similar to that of Claim 2. ■

Let $C = x_0 x_1 \dots x_p$. Suppose that $f_1^i = 0$ or $f_2^i = 0$ for some $i \in \{1, \dots, p\}$, where f^i stands for $f^{x_{i-1} x_i}$. Applying Claims 1–3 to the vertex x_i and the edges $h = x_{i-1} x_i$ and $h' = x_i x_{i+1}$, we obtain $f_1^{i+1} = 0$ or $f_2^{i+1} = 0$. This implies that $f_1^e = 0$ or $f_2^e = 0$ holds for each edge e in C .

Now suppose that $f_1^i > 0$ and $f_2^i > 0$ for all $i = 1, \dots, p$. Then, by Claim 1, C has no 1, 1-vertices. Note also that C contains at least one 2, 0-vertex and one 0, 2-vertex (otherwise G would be not connected). So there are a 2, 0-vertex x and a 0, 2-vertex y such that x and y are adjacent in C . Let for definiteness $E(x) = (e_1, e_2, e_3, e_4)$, $E(y) = (u_1, u_2, u_3, u_4)$, $e_1 = u_1 = xy$, and $e_4, u_4 \in C$, see Fig. 4. Put $a_{ij} := f^{e_i, e_j}$ and $b_{ij} := f^{u_i, u_j}$. For $\tau = (e_4, x, e_1)$ and $\tau' = (u_4, y, u_1)$ we have

$$2 - a_{12} - a_{13} - a_{24} - a_{34} = 2\beta(\tau) \leq 1, \quad (21)$$

$$2 - b_{12} - b_{13} - b_{24} - b_{34} = 2\beta(\tau') \leq 1. \quad (22)$$

Note also that each path in $\mathcal{D}(e_i, e_1)$ for $i = 1, 2$ must pass through the edge u_4 (since $u_2, u_3 \in E_2$). Hence,

$$a_{12} + a_{13} + b_{24} + b_{34} \leq f^{u_4} \leq 1. \quad (23)$$

Similarly, each path in $\mathcal{D}(u_i, u_1)$ for $i = 1, 2$ must pass through e_4 ; therefore,

$$a_{24} + a_{34} + b_{12} + b_{13} \leq f^{e_4} \leq 1. \quad (24)$$

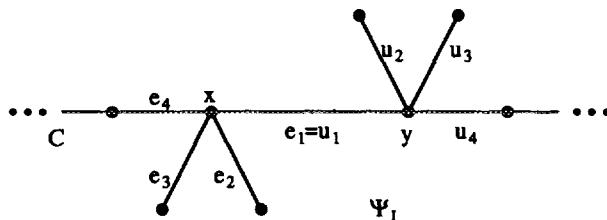


FIGURE 4

Summing up (21)–(24) we obtain $4 \leq 4$, so all the inequalities there hold with equality. Thus, $\beta(\tau) = \frac{1}{2}$. Then, by (3.8), all paths in $\mathcal{P}(x)$ belong to the same \mathcal{L}_F . This contradiction proves the lemma. ■

Thus, one may assume that f is half-integral. Now we prove that (c, g) has an integral solution.

From the half-integrality of f it follows that, for a fork $\tau = (e, x, e')$:

(25) (i) if $f^{e, e'} > 0$ then $f^{e, e'} = \beta(\tau) = \frac{1}{2}$ and $f^e = f^{e'} = 1$ (as $\frac{1}{2} \geq \beta(\tau) \geq f^{e, e'} \geq f(P) \in \{0, \frac{1}{2}, 1\}$ for any $P \in \mathcal{D}(e, e')$);
(ii) if $f^e = 0$ then $\beta(\tau) = \frac{1}{2}$ and $f^{e'} = 1$ (as $\frac{1}{2} \geq \beta(\tau) \geq 1 - \frac{1}{2}f^e - \frac{1}{2}f^{e'}$).

For $F \in \mathcal{H}$ let G_F denote the subgraph of G contained in Ψ_F . Consider two holes, say I and J . By (18) we know that

$$\Psi_I \cap \Psi_J = C_I(J) \cap C_J(I) = G_I \cap G_J. \quad (26)$$

For a proper partition $\Pi(\sigma) = (T_1, T_2, S_1, S_2, S_3)$ of VG , the set S_i such that $S_i \cap V(I) \neq \emptyset$ and $S_i \cap V(J) \neq \emptyset$ is denoted by S_{IJ} .

3.9. *The circuits $C := C_I(J)$ and $C' := C_J(I)$ are disjoint (and similarly for the other pairs of holes).*

Proof. First of all observe that

(27) for each $x \in VG - T$ all paths in $\mathcal{P}(x)$ belong to the same set \mathcal{L}_F , $F \in \mathcal{H}$.

Indeed, let $E(x) = (e_0, e_1, e_2, e_3)$. If $f^{e_i, e_{i+1}} > 0$ or if $f^{e_i} = 0$ for some i then (27) follows from (25) and (3.8) (taking indices modulo 4). Otherwise, there are $P, P' \in \mathcal{P}(x)$ such that P contains e_0, e_2 while P' contains e_1, e_3 . Then P, P' belong to the same \mathcal{L}_F because of the regularity of f , and (27) follows as well.

Next, we assert that

(28) $f_J^e = f_K^e = 0$ for each $e \in C$ (and similarly for C').

For suppose that this is false. From (27) it follows that there is $F \in \mathcal{H} - \{I\}$ such that either (i) $f_F^e > 0$ for each $e \in C$ or (ii) $f_F^e = 0$ and $f_F^u > 0$ for some consecutive edges $e = xy$ and $u = xy'$ in C . Note that in both cases e belongs to $\text{bd}(I)$, by definition of Ψ_I and $C_I(J)$. In case (ii), choose a fork $\tau = (e, x, e')$; then $\beta(\tau) = \frac{1}{2}$. In case (i), the facts that all edges of C are in $\text{bd}(I)$, G is connected, and $T \cap V(I) \neq \emptyset$ imply that there is a fork $\tau = (e, x, e')$ such that $e = xy \in C$ while e' is outside of Ψ_F ; then $f^{e'} = 0$ (by (27)), whence $\beta(\tau) = \frac{1}{2}$. For both cases, consider a metric $m = m_\sigma \in \mathcal{M}$ crucial for τ ; let $\Pi(\sigma) = (T_1, T_2, S_1, S_2, S_3)$, $x \in S_1$ and $y, z \in S_2$, where z is the end of e' different from x . Since $x, y \in V(I)$, the pair $\{S_1, S_2\}$ coincides

with $\{S_{IJ}, S_{IK}\}$ (by (4)). Next, obviously, $f^e + f^{e'} > f^{e, e'} = 0$; so there is a path $P \in \mathcal{L}$ containing exactly one of e, e' . By (3.7), P is shortest for m , whence P has one end in S_{IJ} and the other in S_{IK} . This means that $P \in \mathcal{L}_i$; a contradiction with the fact that $\mathcal{P}(x) \subseteq \mathcal{L}_F$. Thus, (28) is true.

Now suppose that C and C' have a common vertex x . By (27), $\mathcal{P}(x) \subseteq \mathcal{L}_F$ for some $F \in \mathcal{H}$; one may assume that $I \neq F$. Then for the edges e, e' in C incident to x , one has $f^e = f^{e'} = 0$ (by (28)). Hence e, e' are opposite edges in $E(x)$, and there is a path in L containing the other pair of opposite edges in $E(x)$. This contradicts the regularity of f . ■

In what follows we assume that f_I and f_J are non-separating. By (3.9), the regions Ψ_I, Ψ_J , and Ψ_K are pairwise disjoint. Let $\mathcal{A} := \mathbb{R}^2 - (I \cup J \cup K \cup \Psi_I \cup \Psi_J \cup \Psi_K)$. If f_K is non-separating then \mathcal{A} is the open region bounded by C_I, C_J, C_K ; while if f_K is separating then \mathcal{A} consists of two open regions one of which, say \mathcal{A}_I , is bounded by C_I and $C_K(I)$, and the other, \mathcal{A}_J , is bounded by C_J and $C_K(J)$ (see Fig. 3). Denote by \mathcal{C} the set of distinct circuits among $C_F(F'), F, F' \in \mathcal{H}$. We say that $C \in \mathcal{C}$ separates holes F, F' if they are in different components of $\mathbb{R}^2 - C$.

Let B be the set of edges of G contained in \mathcal{A} , that is, $B = EG - (EG_I \cup EG_J \cup EG_K)$. Consider a fork $\tau = (e, x, e')$ with $e \in B$. Then $f^e = 0$, whence $\beta(\tau) = \frac{1}{2}$ and $f^{e'} = 1$. In particular, this implies that B is a matching. Let $m = m_\sigma \in \mathcal{M}$ be crucial for τ , and let $\Pi(\sigma) = (T_1, T_2, S_1, S_2, S_3)$. From (3.7) and the fact that $\mathcal{D}(e, e') = \emptyset$ it follows that

(29) (i) $f^u = 1$ for any $u \in EG - \{e\}$ such that $m(u) > 0$;
(ii) each path in \mathcal{L} is shortest for m .

Consider some S_i . By (4), $\Phi(S_i)$ meets the boundaries of exactly two holes, say F and F' , and the part of $\text{bd}(F)$ (respectively, $\text{bd}(F')$) lying in $\Phi(S_i)$ is connected. In addition, from (29)(ii) we observe that: (i) each path in \mathcal{L}_F of $\mathcal{L}_{F'}$ crosses the boundary of $\Phi(S_i)$ at most once; and (ii) each path in $P \in \mathcal{L}_{F'}$ (where $\mathcal{H} = \{F, F', F''\}$) either does not meet $\Phi(S_i)$, or it crosses its boundary twice (in the latter case $f_{F''}$ is separating, P connects T_1 and T_2 , and it meets neither $\Phi(S_{i-1})$ nor $\Phi(S_{i+1})$). Using these arguments, one can show (e.g., by induction on $|\mathcal{L}|$) that for any $C \in \mathcal{C}$:

(30) (i) if C does not separate F and F' then C does not meet $\Phi(S_{FF'})$;
(ii) if C meets $\Phi(S_{FF'})$ then the part of C contained in $\Phi(S_{FF'})$ is connected.

Now we finish the proof of Theorem 1 as follows:

(i) Suppose that f_K is separating. Then the circuit $C := C_K(I)$ does not separate J and K . Choose an edge $e = xy$ with x in C and y in C_I .

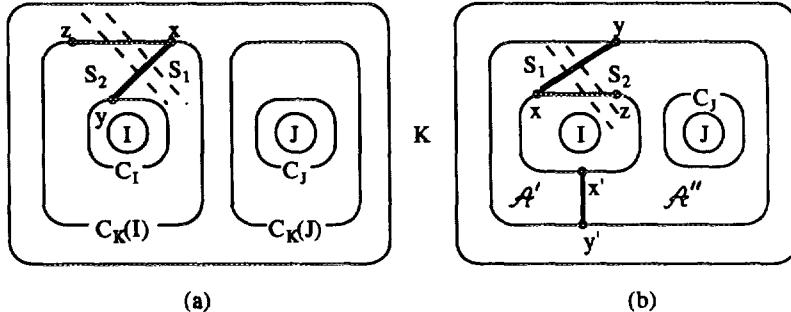


FIGURE 5

(e exists because G is connected). Consider a fork $\tau = (e, x, e')$; then the edge $e' = xz$ is in C . Let $m = m_\sigma \in \mathcal{M}$ be crucial for τ , let $\Pi(\sigma) = (T_1, T_2, S_1, S_2, S_3)$, and let $x \in S_1$ and $y, z \in S_2$, see Fig. 5a. By (29), there is a path $P \in \mathcal{L}$ containing e' and shortest for m . Then one end of P is in S_1 and the other in S_2 . Since e' is in Ψ_K , P belongs to \mathcal{L}_K . Therefore, $S_i \cap V(K) \neq \emptyset$ for $i = 1, 2$, whence $\{S_1, S_2\} = \{S_{IK}, S_{JK}\}$ (by (4)). Since C meets both S_1 and S_2 (as $x \in S_1$ and $z \in S_2$), we conclude that C meets S_{JK} . But C does not separate J and K , a contradiction with (30)(i). Thus, all f_I, f_J, f_K are non-separating.

(ii) Suppose that two edges $u = xy$ and $u' = x'y'$ in B connect the same pair of circuits in \mathcal{C} , say C_I and C_K . Let x, x' be in C_I , and y, y' be in C_K . The edges u and u' split \mathcal{A} into two regions \mathcal{A}' and \mathcal{A}'' ; the inner boundary of one of them, say \mathcal{A}'' , is C_J ; see Fig. 5b. Let $e = xz$ be the edge in C_I such that e belongs to the outer boundary of \mathcal{A}'' . Consider $m = m_\sigma \in \mathcal{M}$ crucial for $\tau = (u, x, e)$; let $\Pi(\sigma) = (T_1, T_2, S_1, S_2, S_3)$, $x \in S_1$ and $y, z \in S_2$. Since e belongs to a path in \mathcal{L}_I , $\{S_1, S_2\} = \{S_{II}, S_{IK}\}$. Moreover, $S_2 = S_{IK}$ because S_2 meets both C_I (at z) and C_K (at y). Hence, $S_1 = S_{II}$. Let X be the set of vertices of C_I that are in S_1 . We know that: S_1 does not meet C_K (by (30)(i)); $S_1 \cap V(J) \neq \emptyset$; the graph $\langle S_1 \rangle$ is connected; $z \notin S_1 \ni x$; and the elements of X go in C_I in succession (by (30)(ii)). These facts imply that X must contain x' . Thus, $x' \in S_1$ and $y' \notin S_1$, whence $m(u') > 0$. But $f'' = 0$ (as $u' \in B$), a contradiction with (29)(i).

It remains to consider the case when each two circuits among C_I, C_J, C_K are connected by at most one edge in G . Then each pair of these circuits are connected by exactly one edge because G is connected and $|\delta(VG_F)|$ is even for each hole F . For $F \in \mathcal{H}$ add to G_F the edges from B with both ends in C_F , forming the graph G'_F . We assert that problem (G'_I, U_I) (and similarly, (G'_J, U_J) and (G'_K, U_K)) has a solution, where U_F is the set of

pairs $\{s, t\} \in U$ with $s, t \in V(F)$. Let e connect C_I and C_J , and e' connect C_I and C_K .

Consider $G' := G'$, and $U' := U_i \cup \{\{x, y\}\}$, where x, y are the ends of e, e' in C_i . It suffices to show that (G', U') has a solution. Obviously, G' and U' satisfy (1). By Okamura's theorem, (G', U') has a solution if

$$b(X) := |\delta^{G'} X| - |\{ \{s, t\} \in U' \mid X \text{ separates } s \text{ and } t\}| \geq 0 \quad (31)$$

holds for any $X \subset VG'$. Inequality (31) follows from (2) if X does not separate x and y . Let $X \subset VG'$ separate x and y . Then $|\delta^G X| = |\delta^G X| - 1$, and X separates exactly one pair more in U' than in U . Hence,

$$d := |\delta^G X| - |\{(s, t) \in U \mid X \text{ separates } s \text{ and } t\}| = b(X) + 2.$$

Suppose that $b := b(X) < 0$. Then $b \leq -2$ (as b is even), whence $\Delta = 0$ (as $\Delta \geq 0$). This means that f , being a solution of (c, g) , saturates all edges in $\delta^G X$ (since $c(X) = g(X)$). But $\delta^G X$ contains e or e' , and $f^e = f^{e'} = 0$, a contradiction. This completes the proof of Theorem 1.

4. THE CASE OF FOUR HOLES

We give a counterexample (G, U) to the statement (1.1) for $|\mathcal{H}| = 4$. Figure 6 illustrates a planar graph G' (whose edges are drawn by the solid lines) and a set U of pairs in VG' (indicated by dotted lines); here $\mathcal{H} = \mathcal{F}_{G'} = \{I, J, K, O\}$. The graph G is obtained from G' by replacing each edge of G' by two parallel edges. Then G and U satisfy (1). Instead of considering G , it is convenient to mean that G' has the capacity $c(e) = 2$ for each its edge e .

Each $\{s', t'\} \in U$ belongs to the boundary of exactly one hole F of G' ; let $\mathcal{P}(s', t')$ denote the pair of simple $s' - t'$ paths going along the boundary of

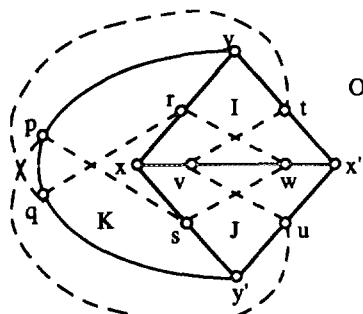


FIGURE 6

F. The problem (c, g) (with g to be all-units on U) has a solution f , defined by $f(P) = f(P') = \frac{1}{2}$ for $\{P, P'\} = \mathcal{P}(s', t')$, $\{s', t'\} \in U$.

In order to prove that (c, g) has no integral solution consider the length function l on EG' such that $l(e) = 2$ for $e = pq, vw$ and $l(e) = 1$ for the other edges e in EG' . Then for any $\{s', t'\} \in U$, we have $\text{dist}_l(s', t') = 4$ and there are exactly two $s' - t'$ paths shortest for l , namely, the paths in $\mathcal{P}(s', t')$. In addition, one can see that

$$cl = \sum (\text{dist}_l(s', t') \mid \{s', t'\} \in U).$$

This implies that any f' solving (c, g) saturates each edge of G' , and each path P with $f'(P) > 0$ is shortest for l . Thus, to construct an integral solution for (c, g) one has to choose one path in each $\mathcal{P}(s', t')$ ($\{s', t'\} \in U$) in such a way that any edge of G' should belong to exactly two of these paths.

Consider possible choices of paths for the pairs $\{r, w\}$, $\{t, v\}$, $\{s, w\}$, $\{u, v\}$. Up to the symmetry of I and J , there are only two possibilities: (i) $P_1 := rxvw$, $P_2 := tx'vw$, $P_3 := sy'ux'w$, $P_4 := uy'sxv$; and (ii) $Q_1 := rxvw$, $Q_2 := tyrxv$, $Q_3 := sy'ux'w$, $Q_4 := ux'wv$. In case (i), the edges sy' and uy' are covered twice (by P_3 and P_4); therefore, the edge qy' cannot be saturated. Similarly, in case (ii), xs cannot be saturated. This, (c, g) has no integral solution.

ACKNOWLEDGMENT

I thank the referee for some corrections and stylistic improvements.

REFERENCES

1. A. V. KARZANOV, Paths and metrics in a planar graph with three or more holes. I. Metrics, *J. Combin. Theory Ser. B* **60** (1994), 1–18.
2. H. OKAMURA, Multicommodity flows in graphs, *Discrete Appl. Math.* **6** (1983), 55–62.
3. H. OKAMURA AND P. D. SEYMOUR, Multicommodity flows in planar graphs, *J. Combin. Theory Ser. B* **31** (1981), 75–81.
4. A. SCHRIJVER, The Klein bottle and multicommodity flows, *Combinatorica* **9** (1989), 375–384.