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Abstract. Let H = (T,U) be a connected graph. A T -partition of a set V ⊇ T is a

partition of V into subsets, each containing exactly one element of T .

We start with the following problem (∗): given a multigraph G = (V,E) with

V ⊇ T , find a T -partition Π of V that minimizes the sum of products d(s, t)n(s, t) over

all s, t ∈ T . Here d(s, t) is the distance from s to t in H and n(s, t) is the number of

edges of G between the sets in Π that contain s and t. When the graph H is complete,

(∗) turns into the minimum multiway cut problem, which is known to be NP-hard even

if |T | = 3. On the other hand, when H is the complete bipartite graph K2,r with parts

of 2 and r = |T | − 2 nodes, (∗) is specialized to be the minimum (2, r)-metric problem,

which can be solved in polynomial time.

We prove that the multicommodity flow problem dual of the minimum (2, r)-metric

problem has an integer optimal solution whenever G is inner Eulerian (i.e., the degree

of each node in V − T is even), and such a solution can be found in polynomial time.

Another nice property of K2,r is that, independently of G, the optimum objective

value in (∗) is the same as that in its fractional relaxation. We call a graph H with

a similar property minimizable and give a description of the minimizable graphs in

polyhedral terms. Finally, we show that every tree is minimizable.

Key words: metric, cut, multiway cut, multicommodity flow.

∗ This research was supported by European Union grant INTAS-93-2530 while the

first author was visiting LRI, University Paris-XI.

1



1. Introduction

Let G = (V,E) be an undirected graph, T ⊆ V a subset of nodes, and µ : T ×T →
ZZ+ a symmetric function, i.e., µ(s, t) = µ(t, s) for s, t ∈ T . We allow multiple edges

in G and usually assume that G is described by use of its edge multiplicity function

c = cG which indicates how many edges connect nodes x and y in G, for all x, y ∈ V
(this is important for algorithmic aspects). A T -partition is a partition of V into |T |
subsets Xt, t ∈ T , each containing exactly one element of T , namely, t ∈ Xt. Consider

the minimum T -partition problem:

(1.1) Find a T -partition {Xt : t ∈ T} of V that minimizes the sum of products

µ(s, t)n(s, t) over all s, t ∈ T , where n(s, t) is the number of edges of G between

Xs and Xt.

We deal with the special case of (1.1) in which µ is the distance function dH of

a connected graph H = (T,U) on T , i.e., for s, t ∈ T , dH(s, t) is the minimum length

(number of edges) of a path between s and t in H. In particular, µ(s, t) = 0 if s = t,

and we may assume that G has no loops. When H is the complete graph Kp with

p = |T | nodes, (1.1) is further specialized to be the minimum multiway cut problem. In

other words, it is required to minimize the number of edges of G connecting different

sets in a T -partition. This problem is known to be NP-hard even if p = 3 [2]. On

the other hand, if p = 2, the problem is efficiently solvable as being the minimum cut

problem for which plenty of polynomial and strongly polynomial time algorithms are

known (assuming that G is given via c as above).

Another interesting special case arises when H is the complete bipartite graph K2,r

with parts of 2 and r = |T | − 2 nodes. It turns out that in this case (1.1) can be solved

in strongly polynomial time [4]. This fact is also a consequence of the property that

(1.1) with µ = dK2,r is, in essense, equivalent to its fractional relaxation. The property

of such a kind is important for us in this paper and we are going to explain it in more

details, starting with some terminology and notations.

By a metric on a finite set V we mean a function m : V × V → IR+ which is

symmetric and satisfies

(i) m(x, x) = 0 for x ∈ V ; and

(ii) m(x, y) +m(y, z) ≥ m(x, z) for x, y, z ∈ V (triangle inequalities).

Note that we allow zero values m(x, y) for distinct x and y (i.e., in fact we deal

with semi-metrics). Because of (i) and the symmetry we may assume that m is given

on the set of edges EV of the complete undirected graph on V , using notation m(e) or

m(xy) for e = xy ∈ EV and, when needed, letting by definition m(xx) = 0.
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Given a graph H = (T,U), a metric m on V is called an extension of H (or

dH) to V if m coincides with dH within T , and a 0-extension if there is a T -partition

{Xt : t ∈ T} of V such that m(xy) = dH(st) for all s, t ∈ T , x ∈ Xs and y ∈ Xt.

0-extensions of K2 and K2,r are called cut metrics and (2, r)-metrics, respectively. For

µ = dH , (1.1) turns into the minimum 0-extension problem:

(1.2) Find a 0-extension m of H to V with c ·m as small as possible.

Here and later on we denote by a · b the inner product
∑

(a(e)b(e) : e ∈ S) of functions

a and b within the common part S of their domains. The fractional relaxation of (1.2)

is stated as follows:

(1.3) Find an extension m of H to V with c ·m as small as possible.

Fig. 1
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•
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Let τ = τ(G,H) and τ∗ = τ∗(G,H) denote the minima of c ·m in (1.2) and (1.3),

respectively. Since a 0-extension is an extension, we have τ ≥ τ∗. In general, this

inequality may not be equality. E.g., if G is as in Fig. 1, T = {s, t, u} and H is the

complete graph on T , then τ = 2 while τ∗ = 3/2. The simplest case with τ = τ∗ arises

when H = K2 (this is a reformulation of the fact that the minimum cut problem can

be stated as an integer linear program with a totally unimodular matrix; see, e.g., [3]).

A similar property is true for H = K2,r.

Theorem 1.1 [4]. If H = K2,r then τ = τ∗.

As mentioned above, there exists an efficient algorithm for solving the minimum

(2, r)-metric problem (i.e., (1.2) with H = K2,r). The existence of such an algorithm

is provided by Theorem 1.1 and a general observation, as follows. Let us say that a

graph H = (T,U) is minimizable if the equality τ = τ∗ holds for any graph G = (V,E)

with V ⊇ T . E.g., K2 and K2,r are minimizable while Kp and Kp,r (p, r ≥ 3) are not.

For a minimizable H, (1.2) can be solved in strongly polynomial time. Indeed, for an

arbitrary H, (1.3) can be written as the linear program:

(1.4) minimize c ·m subject to

m ≥ 0;

m satisfies the (|V | − 2)

(
|V |
2

)
triangle inequalities;

3



m(st) = dH(st) for s, t ∈ T.

Since the constraint matrix M in (1.4) consists of O(|V |3) rows and O(|V |2) columns

and all entries of M are 0,+1 or –1, a version of the ellipsoid method from [8] can be

applied to find τ∗ in strongly polynomial time. Now if we know that H is minimizable,

(1.2) is reduced in an obvious way to comparing τ∗(G,H) and τ∗(G′, H) for a sequence

of graphs G′, each obtained from G by sticking some nodes in V − T to nodes in T ;

clearly it suffices to test at most |V − T ||T | graphs G′. (Note that a faster algorithm

for H = K2,r in [4] applies the ellipsoid method only once.)

Next we discuss duality aspects for (1.2) and (1.3). They come up by analogy with

the classic duality between the minimum cut and maximum flow problems. In a general

case, (1.3) is dual to a certain multicommodity flow problem, as follows. A simple path

in the complete graph (V,EV ) connecting different nodes in T is called a T -path. By a

multicommodity flow, or, simply, a multiflow, for V, T is a pair f = (P, λ) consisting of

T -paths P1, . . . , Pk along with nonnegative real numbers λ1, . . . , λk. Define

fe =
∑

(λi : Pi contains e) for e ∈ EV ;(1.5)

fst =
∑

(λi : Pi connects s and t) for s, t ∈ T.

Considering c = cG as an edge capacity function, we call f c-admissible if

(1.6) fe ≤ c(e) for all e ∈ EV .

The value of f with respect to H, or the H-value of f , is
∑

(dH(st)fst : s, t ∈ T ),

denoted by 〈H, f〉. The kind of multiflow problems we deal with is:

(1.7) Maximize 〈H, f〉 among all c-admissible multiflows f for V, T .

Let ν∗ denote the maximum of 〈H, f〉 in (1.7), and ν the maximum of 〈H, f〉 if the

only integer multiflows f (i.e., with all λi’s integer) are allowed. Clearly (1.7) is a linear

program, and assigning dual variables m(e) to the constraints in (1.6), we observe that

the program dual of (1.7) consists in minimizing c ·m over all m : EV → IR+ such that

for each s, t ∈ T , the m-length of each path P connecting s and t is at least dH . Now

decreasing, if needed, m on some edges, we obtain a metric feasible to (1.3). This implies

ν∗ = τ∗, so we may think of (1.7) and (1.3) as a pair of mutually dual programs. This

minimax relation between metrics and multiflows was originally revealed by Lomonosov

[6].

Obviously, ν ≤ ν∗, and this inequality may be strict. E.g., for the above example

with H = K3 and G depicted in Fig. 1, ν = 1 while ν∗ = 3/2. Nevertheless, Lovász

[7] and Cherkassky [1], independently, proved that if H = Kp and G is inner Eulerian,
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then ν = ν∗. Here G is called inner Eulerian if each node in V − T is incident to an

even number of edges of G. In case H = K2,r the equality ν = ν∗ may not hold either.

In this paper we prove the following theorem.

Theorem 1.2. If H = K2,r and G is inner Eulerian, then ν = ν∗.

Theorems 1.1 and 1.2 imply ν = τ for H = K2,r and an inner Eulerian G.

This paper is organized as follows. Theorem 1.2 is proved in Section 2. The

proof is based on a splitting-off method and provides a strongly polynomial algorithm

to find an integer optimal multiflow in the inner Eulerian case. The details of this

algorithm are described in Section 3. It should be noted that the algorithm relies on

the ellipsoid method to certify the feasibility of the splitting-off operations that we

apply. Finally, concluding Section 4 returns us to a general case of H, describes the

minimizable graphs in polyhedral terms and presents a simple operation on graphs to

construct more minimizable graphs. This will show that the set of minimizable graphs

is rather large; in particular, it includes every tree.

2. Proof of the theorem

We show that if H = K2,r and G is inner Eulerian, then ν = τ . The proof borrows

some ideas from [4] and relies on certain transformations of the function c = cG. In

order to distinguish between the values of ν (τ, ν∗, τ∗) for different capacity functions we

use notation ν(c′) (respectively, τ(c′), ν∗(c′), τ∗(c′)), where c′ is a function on EV under

consideration. A function c′ : EV → ZZ+ is called inner Eulerian if
∑

(c′(xy) : y ∈ V )

is even for each x ∈ V − T .

Let E denote the set of 0-extensions of H to V . A metric m ∈ E is called tight for

c if c ·m = τ(c); the set of tight m’s is denoted by T (c). Let

η(c) =
∑

x∈V−T

∑
y∈V−{x}

c(xy).

We use induction, assuming that the equality ν(c′) = τ(c′) holds for each inner

Eulerian c′ on EV such that either |T (c′)| > |T (c)|, or |T (c′)| = |T (c)| and η(c′) < η(c)

(note that |T (c)| ≤ |E| and E is finite for V fixed). The base case T (c) = E together

with η(c) = 0 is easy (in fact the first condition is equivalent to the second one when

r > 0). Indeed, η(c) = 0 implies c ·m = c · dH for any 0-extension m, and the multiflow

f formed by the elementary paths Puv that consist of of one edge connecting distinct

u, v ∈ T , along with weights λuv = c(uv), has the H-value equal to c · dH , whence

ν(c) = τ(c). So, in the sequel we assume that η(c) > 0.

Consider x ∈ V − T for which the set Q(x) = {y ∈ V : c(xy) > 0} is nonempty.
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We may assume that |Q(x)| ≥ 2. Indeed, if Q(x) consists of a single element y, then

c(xy) ≥ 2 (as c is inner Eulerian). Decrease c(xy) by 2. Then the resulting function c′

is nonnegative and inner Eulerian. Moreover, it is easy to see that there is an m ∈ E
such that c′ ·m = τ(c′) and both x and y belong to the same set in the T -partition of

V corresponding to m (i.e., m(xy) = 0). Then c′ ·m = c ·m, implying τ(c′) = τ(c).

Obviously, T (c) ⊆ T (c′) and η(c) > η(c′), and the result follows by induction.

Let Φ be the set of pairs of distinct elements of Q(x). The splitting-off operation

applied to a pair {y, z} ∈ Φ transforms c as follows:

c′(e) = c(e)− 1 for e = xy, xz,(2.1)

= c(e) + 1 for e = yz,

= c(e) for e ∈ EV − {xy, xz, yz}.

Clearly c′ is nonnegative and inner Eulerian. For any metric m on V , c·m−c′ ·m =

m(xy) + m(xz) −m(yz) ≥ 0. Therefore, τ(c′) ≤ τ(c). We say that {y, z} is feasible if

τ(c′) = τ(c). In this case the relations c ·m ≥ c′ ·m ≥ τ(c′) = τ(c) for an arbitrary

m ∈ E imply that any metric from T (c) remains tight for c′ too; therefore, T (c) ⊆ T (c′).

Also η(c′) = η(c) − 1. By induction there exists a c′-admissible integer multiflow f ′

with 〈H, f ′〉 = τ(c′). Now f ′ can be transformed in an obvious way into a c-admissible

integer multiflow f of the same H-value. Hence, ν(c) ≥ 〈H, f〉 = τ(c), which implies

ν(c) = τ(c), as required.

Our aim is to show that there exists at least one feasible pair in Φ, from which the

theorem will follow by the above argument. Let {s1, s2} and {t1, . . . , tr} be the parts

of H = K2,r.

Claim 1. For any m ∈ E , c ·m− τ(c) is even.

Proof. Consider the T -partition {S1, S2, T1, . . . , Tr} of V corresponding to m, where

si ∈ Si and tj ∈ Tj . Let ρ be the cut metric corresponding to the cut separating

X = S1 ∪ S2 from V − X, i.e., ρ(xy) = 1 if |{x, y} ∩ X| = 1, and 0 otherwise. Then

m+ρ takes value 0 or 2 on each edge, whence c · (m+ρ) is even. Now the claim follows

from the fact that for each cut metric ρ′ that corresponds to a cut in G separating

{s1, s2} from {t1, . . . , tr}, the number c · ρ− c · ρ′ is even (because c is inner Eulerian).

•

Consider c′ as in (2.1) for some {y, z} ∈ Φ.

Claim 2. For each m ∈ E , ∆ = c ·m − c′ ·m equals 0, 2 or 4. Moreover, if ∆ = 4

then m(xy) = m(xz) = 2 and m(xz) = 0 (and therefore, both y and z belong to the

same member of the T -partition of V corresponding to m).
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Proof. We have ∆ = m(xy) + m(xz) −m(yz) ≥ 0. Observe that the length of any

closed path with respect to a (2, r)-metric is even. This implies that ∆ is even. Next,

m(uv) ≤ 2 for any u, v ∈ V . Hence, ∆ ∈ {0, 2, 4}. If ∆ = 4 then the only possible case

is m(xy) = m(xz) = 2 together with m(yz) = 0. •

The infeasibility of {y, z} ∈ Φ is equivalent to the existence of m ∈ E such that

c′ ·m is strictly less than τ(c). From Claims 1 and 2 it follows that

(2.2) if {y, z} ∈ Φ is infeasible, then for each m ∈ E with c′ ·m < τ(c), either

(i) m is tight and m(xy) +m(xz)−m(yz) > 0, or

(ii) c ·m = τ(c) + 2, c′ ·m = τ(c)− 2 and m(xy) +m(xz)−m(yz) = 4.

A metric m as in (2.2)(ii) is called critical for c and {y, z}.

In what follows we assume that each pair in Φ is infeasible and will attempt to

come to a contradiction. First we show that there exists {y, z} ∈ Φ for which the only

second alternative in (2.2) takes place.

By Theorem 1.1, τ(c) = τ∗(c) = ν∗(c). So, there is a c-admissible multiflow

f = (P1, . . . , Pk;λ1, . . . , λk) with 〈H, f〉 = τ(c); we assume that λi > 0 for i = 1, . . . , k.

An edge e is called saturated by f if fe = c(e) (cf. (1.6)). Let qi be the pair of end

nodes of Pi. For a path P , m(P ) stands for the sum of m(e)’s over the edges e of P .

Claim 3. Let {y, z} ∈ Φ and m ∈ T (c). Then:

(i) if m(xy) > 0 then xy is saturated by f ; and similarly for xz;

(ii) each path Pi is shortest for m, i.e., m(Pi) = dH(qi).

Proof. (i) and (ii) immediately follow from consideration of the complementary slack-

ness conditions for (1.3) and (1.7). More precisely,

ν∗(c) =

k∑
i=1

λid
H(qi) ≤

k∑
i=1

λim(Pi)

=
∑
e∈EV

fem(e) ≤
∑
e∈EV

c(e)m(e) = τ∗(c).

Since ν∗(c) = τ∗(c), equality holds throughout, whence (i) and (ii) follow. •

Claim 3 gives the following property: for {y, z} ∈ Φ, if xy is not saturated by f

or there is a path in f that contains both xy and xz, then m(xy) + m(xz) = m(yz)

for any m ∈ T (c). This easily implies that there is {y, z} ∈ Φ for which no metric as

in (2.2)(i) exists. We fix some of such {y, z}’s. By (2.2), there is a metric critical for c

and {y, z}.
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Consider the capacity function c̃ = 2c. We have τ(c̃) = 2τ(c). Furthermore,

by (2.2) and the choice of {y, z}, any metric m ∈ E with m(xy) + m(xz) > m(yz)

satisfies c̃ ·m ≥ τ(c̃) + 4. Hence, {y, z} becomes feasible for c̃. This implies that the

function c̃′ formed from c̃ by the splitting-off operation with respect to {y, z} satisfies

τ(c̃′) = τ(c̃) = 2τ(c). Let m be critical for c and {y, z}. Then

c̃ ·m = τ(c̃) + 4 and c̃′ ·m = τ(c̃).

Thus, T (c̃′) strictly includes T (c̃) = T (c). Obviously, c̃′ is inner Eulerian. By in-

duction there is an integer c̃′-admissible multiflow h with 〈H,h〉 = τ(c̃′). We transform

h in an obvious way into a c̃-admissible integer multiflow g = (P1, . . . , Pk; λ′1, . . . , λ
′
k).

Define f to be the multiflow formed by the same paths Pi and the numbers λi = λ′i/2,

i = 1, . . . , k. Then f is c-admissible and half-integer, and 〈H, f〉 = τ(c). Repeating

paths in f , if needed, we may assume that each λi is 1/2.

For two nodes u and v in a path P , truncating P at {u, v} is an operation that

replaces in P the part between u and v by the edge uv. Consider a path Pi that passes

through x (such a path must exist, otherwise each pair in Φ is, obviously, feasible). For

definiteness let Pi use edges e = xy and e′ = xz.

Claim 4. The edges e and e′ are saturated by f .

Proof. Consider m ∈ E critical for c and {y, z}. As above, let c̃′ be obtained from c̃

by the splitting-off operation with respect to {y, z}. Let h be the multiflow obtained

from g as above by truncating Pi at {y, z}. Since λ′i = 2λi = 1, h is c̃′-admissible.

Also 〈H,h〉 = τ(c̃′) and m is tight for c̃′. By Claim 3 applied to c̃′, h,m, e, e′, we have

he = c̃′(e) and he
′

= c̃′(e′). This implies that fe = c(e) and fe
′

= c(e′). •

By Claim 4 there are paths Pl and Pq (l, q 6= i) which contain e and e′, respectively.

Let al (bl) and aq (bq) be the first (respectively, last) node in Pl and Pq, respectively.

We may assume that al, y, x, bl follow in this order in Pl, and aq, z, x, bq follow in this

order in Pq.

Claim 5. al = aq.

Proof. Consider a metric m ∈ E critical for {y, z} and the partition Π = {S1, S2, T1,

. . . , Tr} of V corresponding to m, where sα ∈ Sα and tβ ∈ Tβ . Let c̃′ be obtained from c̃

by the splitting-off operation with respect to {y, z}, and let h be the multiflow obtained

from g by truncating Pi at {y, z}. Then h is c̃′-admissible, 〈H,h〉 = τ(c̃′), and m is tight

for c̃′. By Claim 2 applied to c̃, c̃′,m, x, y, z, either y, z ∈ Sj and x ∈ Sj′ , or y, z ∈ Tj
and x ∈ Tj′ for distinct j, j′. Assume the former, the other case is similar. By (ii) in

Claim 3, the path Pl is shortest for m. Since dH(albl) ≤ 2 and m(xy) = dH(sj′sj) = 2,

we observe that m(e) must be zero for each edge of Pl different from xy. Hence, al and
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y belong to the same set in Π, i.e., al ∈ Sj . Similar arguments for Pq yield aq ∈ Sj .
Since Sj contains exactly one element of T , namely, sj , we conclude that al = aq. •

Now we finish the proof as follows. We assume that f is chosen so that f is half-

integer, 〈H, f〉 = τ(c) and
∑

(fe : e ∈ EV ) is as small as possible. Also we may assume

that for each path Pi in f all inner nodes of Pi are not in T (otherwise split Pi into two

T -paths, which does not decrease the H-value), and that some path Pi has at least two

edges. Let y, x, z be the first, second and third node in Pi, respectively; then x ∈ V −T .

Let Pl, al and Pq, aq be defined as above for our y, x, z. By Claim 5, al = aq = y (as

y ∈ T ). So, Pi and Pq have the same first nodes and go through the edge xz in opposite

directions. Therefore, we can replace Pi and Pq by two paths which have the same first

node y, have the last nodes as in Pi and Pq, use merely the edges from these paths and

release the edge xz. This contradicts the minimality of
∑

(fe : e ∈ EV ) and completes

the proof of Theorem 1.2. ••

3. Algorithm

The splitting-off techniques developed in the proof of Theorem 1.2 gives rise to an

algorithm for finding an integer cG-admissible multiflow f with 〈H, f〉 = τ(G,H) for

H = K2,r and an inner Eulerian G. When G is not inner Eulerian, we can apply the

algorithm to the capacity function 2c to obtain a half-integer optimal solution for G.

The algorithm consists of two stages. The first stage consists of |V −T | iterations,

each of which treats a node x ∈ V − T . At a current step of the iteration for x, we

choose a pair {y, z} ∈ V − {x} with b = min{c(xy), c(xz)} > 0 (for the current c) and

finds the maximum α ∈ ZZ+ such that α ≤ b and τ(c′) = τ(c), where c′ is defined by

c′(e) = c(e)− α for e = xy, xz,(3.1)

= c(e) + α for e = yz,

= c(e) for e ∈ EV − {xy, xz, yz}

(i.e., c′ is obtained by performing splitting-off operation (2.1) α times for the same

{y, z}). Then we make c′ the new current c, choose a new pair {y′, z′}, and so on.

We need not consider the same pair {y, z} twice during the iteration because, after the

first application of splitting-off operation (3.1) to {y, z}, the corresponding number α

for the new function c becomes zero and it will remain zero up to termination of the

iteration. Since the problem for each current c has an integer optimal solution, the

iteration always terminates, after O(|V |2) steps, with the situation when c(xv) is zero

for all or all but one v ∈ V − {x}. In the latter case updating c(xv) := 0 obviously
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preserves τ(c) and remains c inner Eulerian. Thus, upon termination of the iteration

we can remove the node x from the set V .

The first stage finishes when the current V is just T . For the resulting c the optimal

multiflow f is obvious. The aim of the second stage is to restore the desired optimal

solution for the initial V and c. This is done in a natural way, by treating the nodes x

and pairs {y, z} in the order reverse to that occurred in the first stage.

It remains to explain how to find the number α efficiently. First we examine α that

equals the number b as above. For the resulting c′ compute τ∗(c′) = τ(c′) by solving

linear program (1.4). If τ(c′) = τ(c), we are done. Otherwise, the argument in Section

2 shows the existence of a metric m ∈ E such that m(xy) +m(xz)−m(yz) ∈ {2, 4} and

c′ ·m = τ(c′) < τ(c). Let ε = τ(c) − τ(c′). We now examine α to be b1 = b − bε/4c
(where bac is the greatest integer not exceeding a). Compute τ(c′′) for the resulting c′′.

One can see that if τ(c′′) equals τ(c), then α = b1 is as required, and if not, then for any

metric m ∈ E with c′′ ·m = τ(c′′) the only case m(xy) +m(xz)−m(yz) = 2 is possible.

This implies that in the latter case the desired α is b1 − ε/2, where ε = τ(c)− τ(c′′).

Hence, for each {y, z} that we handle at a step of an iteration, computing the

above number α is reduced to solving (1.4) at most twice. Since (1.4) is solvable in

strongly polynomial time and the total number of steps throughout the algorithm is

O(|V |3), the algorithm runs in strongly polynomial time.

Remark. The above algorithm is not “combinatorial” because it uses the ellipsoid

method. For H = K2,r “purely combinatorial” algorithms to solve (1.2) and (1.7) (with

f integral in the inner Eulerian case) can also be constructed but they run in pseudo-

polynomial or weakly polynomial time (we omit these algorithms here). No “purely

combinatorial” strongly polynomial algorithm for the problem in question is known at

present.

4. Minimizable graphs

As mentioned in the Introduction, the minimum 0-extension problem (1.2) can be

efficiently solved for each minimizable graph, in particular, for K2 and K2,r. Can we

present other examples of such graphs? In this section we show how to construct a new

minimizable graph, once we are given an arbitrary pair of minimizable graphs.

First of all we observe that the property of being minimizable can be stated in

polyhedral terms (in (4.1) below). Given a connected graph H = (T,U) and a set

V ⊇ T , let P = PH,V be the set of extensions of H to V . Since P is described via

linear constraints (cf. (1.4)), P is a polyhedron.
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Consider the dominant polyhedron

D = DH,V := {x ∈ IREV : x ≥ m some m ∈ P}

of P. A metric m on V that is a vertex of D is called H-primitive. In other words,

m is H-primitive if and only if there are no m′,m′′ ∈ P different from m such that

m ≥ λm′+ (1− λ)m′′ for some 0 ≤ λ ≤ 1. The minimizability of H is characterizad as

follows:

(4.1) H is minimizable if and only if, for any V ⊇ T , an H-primitive metric on V is a

0-extension of H to V , and vice versa.

Indeed, it is easy to check that each 0-extension of H is H-primitive. By linear

programming arguments, m ∈ P is a vertex of D if and only if there exists c : EV → ZZ+

such that c ·m < c ·m′ for any other vector m′ in P. Now (4.1) follows from the fact

that the nonnegative integer vectors c on EV one-to-one correspond to the graphs G

on V (with c = cG).

The next lemma suggests a way to construct new minimizable graphs.

Lemma 4.1. Let T ′ and T ′′ be subsets of T such that T ′ ∪ T ′′ = T and T ′ ∩ T ′′

consists of a single element s. Let H = (T,U) be the union of graphs H ′ = (T ′, U ′)

and H ′′ = (T ′′, U ′′). Let both H ′ and H ′′ be minimizable. Then H is minimizable as

well.

Proof. Obviously dH coincides with dH
′

and dH
′′

within T ′ and T ′′, respectively.

Consider an H-primitive metric m on a set V ⊇ T . Let V ′ be the set of x ∈ V such

that

(4.2) m(sx) +m(xp) = m(sp) (= dH(sp))

for some p ∈ T ′, and let V ′′ = (V − V ′) ∪ {s}. It is easy to see that V ′ ∩ T = T ′. This

implies V ′′ ∩ T = T ′′. First we assert that

(4.3) for any x ∈ V ′ and y ∈ V ′′, m(xy) = m(sx) +m(sy).

Indeed, this is trivial if some of m(sx) and m(sy) is zero, so assume that m(sx),

m(sy) > 0. We observe that there exist u, q ∈ T such that m(us) + m(sy) + m(yq) =

m(uq). For otherwise one can decrease m on sy and, possibly, some other edges pre-

serving the nonnegativity, triangle inequalities and constraints m(tt′) = dH(tt′) for

all t, t′ ∈ T , thus coming to a contradiction with the H-primitivity of m. The above

equality implies

(4.4) m(sy) +m(yq) = m(sq).
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Since y ∈ V ′′, (4.4) shows that q ∈ T ′′. Choose p ∈ T ′ satisfying (4.2) for our x. Since

s is an only common node in H ′ and H ′′, we have m(ps) +m(sq) = dH(ps) +dH(sq) =

dH(pq) = m(pq). This together with (4.2) and (4.4) yields (4.3), as required.

Let m′ and m′′ be the restrictions of m to V ′ and V ′′, respectively. We observe

that m′ is H ′-primitive. For otherwise there are m′1,m
′
2 ∈ PH′,V ′ different from m′

such that m′ ≥ λm′1 + (1 − λ)m′2 for some 0 ≤ λ ≤ 1. For i = 1, 2 define mi(uv) to

be m′i(uv) for u, v ∈ V ′, m(uv) for u, v ∈ V ′′, and m′i(us) + m(sv) for u ∈ V ′ and

v ∈ V ′′. One can see that both m1 and m2 are metrics in PV,H , and now, using (4.3),

we conclude that m ≥ λm1 + (1− λ)m2, contrary to the H-primitivity of m.

Since H ′ is minimizable, m′ is a 0-extension of H ′ to V ′ (by (4.1)). Similarly, m′′

is a 0-extension of H ′′ to V ′′. These facts and (4.3) imply that m is a 0-extension of H

to V , and now the lemma follows from (4.1). •

Repeatedly applying Lemma 4.1 to copies of the minimizable graph K2, we obtain

the following.

Corollary 4.2. Every tree is minimizable. •

Remark. One can generalize the concept of minimizability considering arbitrary met-

rics µ on T . An extension and 0-extension of µ and the numbers τ = τ(G,µ) and

τ∗ = τ∗(G,µ) are defined in an obvious way (replacing dH by µ in (1.2) and (1.3)),

and we say that µ is minimizable if τ and τ∗ coincide for each G = (V,E) with V ⊇ T .

Lemma 4.1 is also extended to this general case. More precisely, given metrics µ′ on

T ′ and µ′′ on T ′′, define µ(uv) to be µ′(uv) for u, v ∈ T ′, µ′′(uv) for u, v ∈ T ′′, and

µ(us) + µ(sv) for u ∈ T ′ and v ∈ T ′′. Then µ is minimizable if both µ′ and µ′′ are so.

Recently the first author found a complete characterization (in combinatorial

terms) of the set of minimizable graphs [5].
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