A FAST ALGORITHM FOR DETERMINING THE DISTANCES
OF THE POINTS OF A GIVEN SET IN AN INTEGRAL LATTICE
FROM ITS COMPLEMENT

A. V. Karzanov UDC 519.854

A linear-time algorithm is proposed for determining the distances of the points of a given set in an r-
dimensional integral latrice Jrom its complement.

1. STATEMENT OF THE PROBLEM AND RESULTS

Analysis of cartographic data for predicting the location of natural resources involves determination of the distances
trom the points of a section of a given trajectory to the nearest points within the scope of a certain geological factor. Knowledge
of these distances for a sufficiently large number of factors makes it possible to develop valid hypotheses concerning the

We start with a formal statement of the problem for the general multidimensional case. The formulation of the problem
for the two-dimensional case and the cartographic application described above have been communicated to the author by E.
A. Nemirovskii.

In the r-dimensional Euclidean space R’ consider an integral lattice T of dimension) X ny X ... X n, which consists
of all integer vectors x such that | < x() £ n,l=1,..,r where x(1) is the I-th component of the vector x. A subset B is
given in T'; the points of B are called "black” and the points of W:=T' — B are called "white." Let d(x, X) be the Euclidean
distance of the point x € R” from a finite subset X C R', i.e., d(x, X) = min{d(x, y)|y € X}, where d(x, y) is the Euclidean
distance between the points x and Yy (it X = &, then d(x, X) =). For each black point x € B it is required to find the
distance d(x, W) from the set of white points W.

We propose an effective algorithm to find these distances (more precisely, squared distances) with an upper bound of
O(rN) on the number of operations (the running time) and O(N + n) on the number of memory locations of length not
exceedingw = C + max{log,N, log,rn?}, where N = |B|,n = max(ny,...,n,), and Cis a constant. The algorithm is realized
on a random-access computer, using standard logical and arithmetic operations on words of length not exceeding w and
addressable read/write operations. The input of the algorithm are the numbers ny,...,n, and the set B; we assume that B is
defined in the form of an N-element list or array, and each element in turn is detined as a list or array of coordinates of the
corresponding point. The size of the input data is thus + rN and the algorithm runs in linear time.

The proposed algorithm can be easily modified to solve a similar problem in a fairly wide class of metrics, in
particular, for an arbitrary metric 7, | < p = oo. This class of metrics is described in Sec. 3, where two generalizations of
our problem are also considered. The proposed algorithm can be used in computer graphics and other areas.

2. THE ALGORITHM

Forx €ETand/ € {1,...,r}, we denote:

W;(x) is the set of points y in W such that y(j) = x@G) torj =i+ 1,..r

§;(x) is the line formed by the vectors y € K for which y(j) = X()j = Lei = Li+ L,...r
7;(x) is the point y in §;(x) for which y(i) = x(@) + 1;

dy(x) is the distance d(x, Wyx)).

Translated from Kibernetika i Sistemnyi Analiz, No. 2, pp. 177-181, March-April, 1992. Original article submitted
April 11, 1988.

316 1060-0396/92/2802-0316$12.50 ©1992 Plenum Publishing Corporation

54

o O B3 wn W

e bds

s

We also assume that Wo(x) = {x} N Wand do(x) = d(x, Wy(v)), i.e., dofx) = 0t x € Wand dy(x) = w ifx € B.
For x € B the sequence T of elements in £;(x) N B ordered by increasing values of the i-th component is called a complete
i-segment and the inclusionwise maximal subsequence § = (xq,...,%,,) in T such that xjﬂ(i) = xj(i) +1,j=1,...m—1,is
called an i-segment; the i-segment § is called left if X (i) = 1 and right if X)) = n;. Let z € §;(x) and
yY1o-Yk € &i(x) N T. We say that y dominates (strictly dominates) y,,...,y, for z it d;(z, W;_(y)) is not greater than (resp.
is less than) d;(z, W, l(y})) forallj = 1,... k.

The idea of the algorithm is the followmg. Consider somc i-segment S. Let ¢ = £;(x) for x € S and let @ and b
respectively be the first and the last elements in S. Let @’ = ;" '(@) and &' = 7i(b). Let D = (y,,...,y,) be a sequence of
elements in S U {a’, '} such that | < y,(i) < y,(i) < ... < y,(i) < n; and di_y(y) < = (ie, W, _1(y;) is nonempty), j =
I,...,k. Consider the element x € §. Clearly

d7 (x) = min {d® (x, W,_, (4)) = (x () — y ()2 +d2_, () g €LNT}.

Moreover, if § is not a left segment (not a right segment), then d_i(@) = 0 and d(x, W_\@')) < dx, W_,(y)) for all
y € & N T such that y(i) < a'(i) (resp., d_\(6') =0and dx, W_(®')) < dix, W_ () forally € ¢ N T such that y(i) >
b'(i)). Thus,

dj x)=min{(x (i) — g; O + 41)1 =1, ..., &, ()

Also note that for 1 < j < j' < k there is a point z on the line £ such that

¥ strictly dominates Yy for all 2’ € & with 2'() < z(i),
yj strictly dominates yjforall 2 € & with 2'(i) > z(i). 2)

Assume that d;_ (x) have been determined for x € B (in particular, d,_l (y) are known fory € D). Then, using (1)
and (2), we can compute d (x) for all x € § by the following procedure. Moving along the segment §' = S U {a’, b’ },
successively identify the elements y;,y,,... that constitute the sequence D introduced above. If k = D] =0, thend(x) = o
for all x € S. Assume that by the time we reach the next element y;j we have already constructed the subsequence V =
v, v), vy < ... < v, of elements from {yl,...,}y_,} and the subsequence Z = (@ = z),25,...,2), 7, (i) < ... < (i), of
elements from S such that:

for each ¢ = 1,...,/, the point Vg dominates Vi Yjm1 for all x € £ with
zq(i) S X S g (l) 3)

(by definition, zj.; = b). It j = 1, thenset [:= 1, v, := v, and g, := a. The processing of the element Y; consists of a
sequence of steps. The current step considers the pair {y; Vjs v;}. Approximately solving the corresponding quadratic equation,
we find the integer point z on the line £ such that y; strictly dominates v, for the points x € ¢ with x(i} > z(i) and v, dominates
y; for the points x € ¢ with x(i) < z(i) — . Three cases are possible.

1. z(i) > b(i). By (2) and (3), this means that ¥j does not strictly dominate y,.. -.¥j— for any point from S. Go to find
the next point Yj+1in D.

2. z[i) < z{i) < b(i). This means that Y strictly dominates Yioe-Yj-1 for x € S with x(i) = z(i). Set!:=1 + 1,
Vit=Yj, 7= zand go to find the next point Yi+1-

3. z(i) < z(i). This means that v, does not strictly dominate vy,...,v,_ 1,; for any point from S. Remove v, from V and
yfromZ. Ifl = |, thenset v, : = yjand z;:= a and go to the nextelement y;, . It/ > 1, then set/:=/ — 1 and go to the
next step of processing Yj» examining the pair Oj» v;) for the new /.

As a result of the processing of Yj» the current sets V and Z still satisty (3) (with j — 1 replaced by j) The final
sequences V and Z obtained by processing y, enable us to tind quukly (in time O(|S])) the sought distances d;” ’x), x € S,
specifically, these distances are calculated as d; 2(x) (x(i) — q(z))~ +d; (vq), where q is such that zq(z) < xfi) < zq+1(z)
(and x(i) < b(i) for g = I).

The total number of steps when processing the elements y; obviously does not exceed D, plus the number of changes
in V. Every change in V involves either removing the current v; or adding the current y;. Since every element y; may be added
at most once to V and removed at most once from V, the number of changes in V does not exceed 2|D|. The other operations

317

used in calculating the distances d,-z(x), x € §, are bounded by a constant for each element in S (assuming that the segment § &
is given and the values d,-_lz(x), x € §, are already known). We thus obtain a running time of the order O(S]) for the
proposed procedure.

Let us now describe the general scheme of the algorithm. It consists of r iterations. The current iteration / rung intwg §
stages. In the first stage, the algorithm identifies the set of all complete /-segments and then the set of all i-segments. Ip the
second stage, for each l-segment S, the algorithm calculates d,-z(x), X € §, by the method described above. The last iteration
r thus produces the squares of the sought distances d(x, W) = d,(x) for all x € B. To ensure more efficient execution of the

M’ ("secondary" in relation to M) by their indices ("addresses") in M. In particular, when we say that the point x € B jg an
element of the work array M’, we mean that this element in M’ is the index of the point x in the original array B.

Preprocessing. The preprocessing procedure creates the auxiliary arrays M, and M, and also determines the numbers
afx)and B(x), x € B. The array M, consists of the elements (indices) of B arranged in natural lexicographic order: x precedes
yin M, if for some i € {1,...,r} we have XG) =y@,j=1,..i- 1, and x(i) < y(i). The array M, consists of the elements
of B in reverse lexicographic order: x precedes y in M, if for some | € {1,...,r} we have X(G) =y() j=1i+ L,...,r, and
x(i) < yfi). Forx € B, the numbers «(x) and B(x) are defined as follows. Lety (y') be the point in B that directly follows x
in the array M, (M,). Then «(x) (B(x)) is the minimal (resp., maximal) index i for which x(i) # y(i) (resp., x(i) = Y'(i).

These arrays can be constructed by distribution (coordinatewise) sorting of the set B, which requires O(rN) operations
on words of length C + log,N and a work space of O(N + n) words (for details of distribution sorting, see [1, Sec. 5.2.5)).
The set of numbers alk), B(x), x € B, is also constructed in time O(rN).

An i-fragment of the array M (M,) is an inclusionwise maximal subarray M’ of consecutive elements, e.g. XpyeeXyy,
such that a(xj) = [(resp., B(xj) sihforj=1,...m— 1. 1Itis €asy to see that i-fragments define a partition of the array M,
(M>) and that the complete i-segments are in one-to-one correspondence with the nonempty intersections M’ N M", where M’
(M") is an i-fragment of the array M; (M,).

First stage of iteration i. Successively scanning the elements of the array M, and using the numbers a(x), we identity
the i-fragments in M. To each elementx € B we assign the index y(x) of the i-fragment that contains x. We similarly identify
the i-fragments in M, and assign to the elements x € B the indices §(x) of the corresponding fragments in M,. Sorting M, by
ascending values of \, we construct an array M of the elements x € B which is lexicographically ordered by the pair of indices
(v(x), 6(x)). Identify in M the subarrays T of elements x with tixed y(x) and 8(x). For the given sorting, the elements x in each
T are arranged in the order of ascending values of x(/) and form a complete /-segment. Finally, successively scanning the
elements of each complete /-segment 7, we identify its component i-segments S,

It is easy to see that the identification of all i-segments requires O(N) operations on words of length C + log,N and
a memory space of O(N) words. Using the previous bounds, we see that the algorithm on the whole performs O(rN) operations
on words of length C + min{log,N, log,m2} and uses a memory space of O(N + n) words (words of length [log,m?] are
needed for storing the distances d,’(x)). Q.E.D.

3. GENERALIZATIONS

~

l.Forx ETandi € {1,...,r}, denote by I‘i(x) and Bi(x) the sets of points ' N ¢&ix)and B N §:(x), respectively.
Consider the class # of nonnegative functions d: B X W — R, such that for each | = I,...,r we have:

Hitx €EB,x' € Bi(Jc) andy, y' € W,_ (x), then dix’, y) < dix’, y’) if and only if dix, y) < dx, y');

(i)ifx, y € W,z € B’Yx) and either y(i) < x(i) < z{i) or Yi) = x(i) = z(i), then d(z, x) < dz, y);

(i) ifx € B, x' € Bi(X), xX'() > xfi),y € Wi_ilx)and y' € W;_(x’), then one of the following three holds:

A)dz',y) < d',y')forall z € B,

b di',y) = d@z', y') for all ' € Bigy),

¢) there is a point z € B'(x) such that d(z, Y) < d(,y')forallz’ € B'x) with 2'(i) < (i) and de',y) = di,y)
for all 2' € B'(x) with 2/(1) > z(3).

We can check that the class % includes functions induced by the metrics /”, | < P = o (in particular, the functions
dix, y) = |x(1) =YD+ .+ |x(r) = yr)| and dx, y) = max{[x(1) — y()},..., |x(r) - Y()|}). * is the class of
"distances" for which the proposed algorithm is applicable. Conditions (i) and (ii) combined are equivalent to (1): they show
that in order to compute the distances di(x), x € S (where S is an i-segment) it is sufficient to consider the white points w that

318

ion
the

ray
an

s
les
ats
nd
P X

satisfy a’(i) < w(i) < b'(i), and foreachy € S U {a’, b'} it is sufficient to take one point in W_, (y) that is closest to y.
Condition (iii) is a weaker form of condition (2) (cases a) and b) may hold in the metric {!). The algorithm should be
augmented with an oracle that produces the values of the function d (with prescribed accuracy) and another oracle that
recognizes the cases a), b), and ¢) in (iii) and determines the corresponding "separating” point z. It is left to the reader to work
out the details of the algorithm for the general case and for particular functions d.

2. Assume that the lattice I' is the Cartesian product of r ordered numerical sets [= (a,-l,a,- , ..,ai"(i)), ai1 <..<
a,-"ﬁ), i = 1,...,r. Form the lattice I'* by associating to each point x € T the vector x* with the components x*(i) = j, where
x(i) = af, i = 1,...,r. Consider the problem for the set B C T and the function ¢: B X (I' = B) > R, that satisfies (i)-(iii)
(e.g., for the Euclidean metric d). Conditions (i)-(iii) are obviously preserved on passing from I' to I'* (and to the induced B*
and d°). We can thus pass from a problem on the "nonhomogeneous” lattice T to a problem on I'* and solve the latter by the
proposed algorithm with virtually the same time and memory bounds.

3. Let us consider the following generalization of the original problem: for each point in B C T, find the Euclidean
distance from some set W C T disjoint with B (but not necessarily W =T — B). If the set B' = ' — Wis "not too large,”
this problem can be reduced to the original problem with the set B’ and solved by the proposed algorithm.

2

LITERATURE CITED

1. D. Knuth, The Art of Computer Programming [Russian translation], Vol. 3, Mir, Moscow (1978).

AN ITERATIVE METHOD FOR COMPUTING CLOSED
QUEUEING NETWORKS

D. M. Sologub UDC 519.8

An iterative method is proposed for calculating closed queueing nerworks. The method successively calculates
the state probabilities of each server treated as a closed queueing system.

The formula for the state probabilities of a. closed queueing network under steady conditions has the form (1]

R ip
2 L —ip — TR
aM =i iy (R i (mt®) — i)
(k) i —
& W g T o
o8 PSRRI L el B
mRY =g =0 k=l R
mD L 4wt LBy, o <m0, <

< m® W0 i mR,

where R is the number of server nodes in the closed network, m is the total number of jobs circulating in the system, O is the
transportation time of jobs from node (k — 1) to node k as a proportion of the total transportation time in the network, oy is
the load factor of node k.

Calculations using formula (1) involve solution of complex combinatorial problems, which is impossible without a
computer. We propose an approximate iterative method for calculating closed queueing networks, which produces a result with
prescribed accuracy using a hand-held calculator. The proposed method relies on the following property of closed queueing
networks.

Translated from Kibernetika i Sistemnyi Analiz, No. 2, pp. 181-183, March-April, 1992. Original article submitted
July 10, 1991.

1060-0396/92/2802-0319$12.50 ©1992 Plenum Publishing Corporation 319

