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Abstract. We design an algorithm for finding a maximum packing of T -cuts and a minimum

T -join in an edge-weighted undirected graph G = (V G, EG) with a distinguished subset T ⊆
V G of even cardinality. The running time of the algorithm is O(pm log n + p3 log p), where

n = |V G|, m = |EG| and p = |T |. Applications of the algorithm include the Chinese postman

problem, the multicommodity flow problem in a planar graph, and the problem of finding a negative

circuit in an undirected edge-weighted graph.

1. Introduction

Throughout the paper by a graph we mean a finite undirected graph without
loops and multiple edges. The vertex-set and the edge-set of a graph H are denoted
by V H and EH, respectively; an edge with end vertices u and v is denoted by uv.
A chain, or an s − t chain, of a graph is a subgraph L in it such that V L = {s =
v0, v1, . . . , vk = t} and EL = {vi−1vi | i = 1, . . . , k}. A connected subgraph all the
vertices of which have valency 2 is called a circuit .

We shall deal with a connected graph G whose edges e ∈ EG have nonnegative
rational-valued weights (lengths) l(e) ∈ Q+ and with a subset T ⊆ V G of even
cardinality |T |, called the set of terminals in G.

A subgraph J in G is called a T -join if the set of odd valency vertices of J
is exactly T (such a definition slightly differs from that introduced in [Se2] since
we admit circuits in J). Clearly a T -join can be represented as the union of pair-
wise edge-disjoint chains and circuits so that the ends of these chains are distinct
and form the set T . Originally T -joins appeared in connection with the so-called
“Chinese postman problem” [Me,Ed] that consists in determining a closed route of
minimum length in G passing through each edge at least once. The length of such
a route is equal to l(EG) + l(EJ), where J is a minimum length T ′-join for T ′ to
be the set T ′ of odd valency vertices of G. (For a subset S′ ⊆ S and a mapping
g : S → Q, g(S′) denotes

∑
(g(e) | e ∈ S′).)

There is a minimax relation between T -joins and packings of special cuts of
G. More precisely, for X ⊆ V G let δX = δGX denote the set of edges of G with
one end in X and the other in V G − X. We say that X ⊂ V is an odd-terminus
set if |X ∩ T | is odd; the cut δX for such an X is usually called a T -cut [Se3]. Let
D(G,T ) denote the set of odd-terminus sets for G and T . When V = T , we say
that X ∈ D(G,T ) is an odd set. For a collection D′ ⊆ 2V G of subsets of vertices in
G, we call a mapping f : D′ → Q+ an l-packing of D′ if the corresponding “cuts”
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weighted by f satisfy the packing condition:

(1) λf (e) :=
∑

(f(X) | X ∈ D′, e ∈ δGX) ≤ l(e) for all e ∈ EG.

An l-packing f is maximum (for given D′) if the value 1 · f :=
∑

(f(X) |
X ∈ D′) is as great as possible.

A simple fact is that a subgraph J of G is a T -join if and only if |EJ ∩ δX| is
odd for all X ∈ D(G,T ). This implies for an l-packing f : D(G,T ) → Q+ and a
T -join J :

1 · f ≤
∑

X∈D(G,T )

f(X)(|δX ∩ EJ |) =
∑

e∈EJ

∑
(f(X) | X ∈ D(G, T ), e ∈ δX)

=
∑

e∈EJ

λf (e) ≤ l(EJ).

Edmonds and Johnson proved that there exist f and J for which the inequalities
in this expression hold with equality.

Theorem 1 [EJ] max 1·f = min l(EJ), where f runs over the l-packings of D(G,T )
and J runs over the T -joins in G.

The proof of this theorem given in [EJ] follows from an algorithm developed
there to find optimal f and J . An analysis of this algorithm shows that it can be
implemented with running time (counted in elementary arithmetical operations and
data transfers) O(n4) for n := |V G|. Whenever l is integer-valued, the algorithm
determines an optimal f which turns out to be half-integral (an independent proof
of the existence of a half-integral optimal packing of T -cuts appeared in [Lo]).

The latter result was strengthened by Seymour as follows. We say that l ∈ ZEG
+

is cyclically even if the length l(EC) of every circuit C in G is even (Z+ is the set
of nonnegative integers).

Theorem 2 [Se3]. If l is cyclically even then the equality in Theorem 1 is achieved
on an integral l-packing f .

Note that the proof of Theorem 2 given in [Se3] is “non-constructive”. On the
other hand, in the case of cyclically even l the algorithm from [EJ] guarantees only
a half-integral rather than integral optimal packing of T -cuts.

The problem of determining optimal f and J will be denoted P(G,T, l). In the
present paper we describe an algorithm to solve P(G, T, l) for l ∈ QEG

+ , in running
time O(pnm + p4), where m := |EG| and p := |T | (Sections 2 and 3). In Section
4 a modification of this algorithm is developed which is based on a dynamic data
structure and has running time O(pm log n+p3 log p). The algorithm, as well as its
modification, determines an integral optimal f whenever l is cyclically even. This
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gives an alternative proof of Theorem 2. The algorithm uses the reduction method
from [Ka3, Sect. 5] that was developed there to solve a certain larger class of cut
packing problems. Namely, the problem P(G,T, l) in question is reduced to the
“smaller” problem P(KT , T, h). Here KT is the complete graph with the vertex-set
T , and h(st) is the distance distl(s, t) between terminals s, t ∈ T in the graph G
with length l of edges, that is, distl(s, t) := min{l(EL) | L is an s − t chain in
G}. The fact that h is a metric implies that P(KT , T, l) is, in essense, a variant
of the minimum weight perfect matching problem, as we shall explain in Section 3;
therefore it can be solved by use of alternating chains techniques.

Two applications of the problem in question are well-known.

I. Suppose that U is a distinguished subset of edges of G, and X is the collection
of all sets X ⊂ V G such that |δX ∩ U | = 1. Seymour studied the problem of the
existence of an l-packing f ′ : X → Q+ satisfying the equality λf ′(e) = l(e) for all
e ∈ U (the problem A(G,U, l)).

Theorem 3 [Se1]. A(G,U, l) has a solution if and only if the inequality

(2) l(EC ∩ U) ≤ l(EC − U)

holds for any circuit C in G; in other words, when the graph G with edges weighted
as w(e) := l(e) for e ∈ EG − U and w(e) := −l(e) for e ∈ U has no circuit of
negative w-length.

The problem A(G, U, l) is immediately reduced to the problem P(G,T, l)) with
T to be the set of vertices in G covered by an odd number of edges from U . More
precisely, let f and J be optimal solutions for the latter problem. Since U generates
a T -join for given T , one has l(EJ) ≤ l(U). If l(EJ) < l(U) then A(G,U, l) has no
solution (since the subgraph induced by the edge set (EJ−U)∪(U−EJ) obviously
contains a circuit C which violates (2)). But if l(EJ) = l(U) then f determines a
solution ofA(G,U, l) (since 1·f = l(U) easily implies that: (i) |δX∩U | = 1 whenever
X ∈ D(G,T ) and f(X) > 0, and (ii) λf (e) = l(e) for all e ∈ U). Theorem 2 implies
also that if l is cyclically even and A(G,U, l) is solvable then it has an integral
solution [Se3] (note that, as it was shown in [Ka4, Sect. 8], this, stronger, version
of Theorem 3 can be derived directly from Theorem 3 itself).

Thus the algorithm can be apply to solve the problem A(G,U, l) and, as a con-
sequence, to recognize a circuit of negative length in an undirected edge-weighted
graph. In the latter case, the running time of the algorithm is O(min{pm log n, pn2}+
p3 log p), where p is the number of vertices covered by an odd number of edges of
negative weight; the time estimate becomes smaller because the algorithm does
constructs no packing of cuts.

II. Let us be given a planar graph G (explicitly embedded in the plane), a
subset U of its edges, a vector c ∈ QEG−U

+ of edge capacities, and a vector d ∈ QU
+

of demands. It is required to find a multicommodity flow {Fu | u ∈ U} such that:
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(i) Fu is a flow in the the graph (V G,EG−U) which connects the ends of the edge
u ∈ U and has value d(u), and (ii) the total flow through an edge e ∈ EG−U does
not exceed c(e). Let G∗ denote the planar graph dual to G, and U∗ be the set of
edges of G∗ corresponding to U . Define l(e∗) to be c(e) for e ∈ EG− U and to be
d(e) for e ∈ U , where e∗ denotes the edge in G∗ corresponding to e ∈ EG. One can
see that the above multicommodity flow problem is equivalent to A(G∗, U∗, l), and
hence Theorems 2 and 3 imply the following result.

Theorem 4 [Se3]. For G, U , c, d as above, a required multicommodity flow exists
if and only if the cut condition

(3) c(δX − U)− d(δX ∩ U) ≥ 0

holds for any X ⊂ V G. Moreover, if c and d are integer-valued and the value of
the left hand side in (3) is nonnegative and even then the problem has an integral
solution.

2. Reduction

For x, y ∈ T , x 6= y, the unordered pair xy will be identified with the edge
connecting x and y in the complete graph KT .

The algorithm for solving P(G,T, l) consists of three stages.
The first stage is to determine the distances distl(s, t) for all s, t ∈ T . It takes

O(pn2) time assuming that a shortest path procedure of complexity O(n2) is used,
e.g., the Dijkstra’s method.

Let h denote the restriction of the distance function distl on EKT . Notice that
if l is cyclically even then h is cyclically even as well (h concerns KT ).

The second stage, the core of the algorithm, will be described in Section 3. The
aim of this stage is to solve the reduced problem P(KT , T, h). More precisely, we
shall construct an h-packing g : D(KT , T ) → Q+ of odd sets in KT and a T -join of
a special form, namely, a perfect matching M in KT so that

(4) 1 · g = h(M).

(Recall that a matching in a graph is a subset of its edges all ends of which
are distinct; a matching is perfect if it covers all vertices of the graph; clearly the
subgraph induced by a perfect matching in KT is a T -join.)

Define Q := Q(g) := {A ∈ D(KT , T ) | g(A) > 0}. The function g that will be
found at the second stage satisfies the following properties:

(5) g is integral whenever h is cyclically even;
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(6) for any distinct A,B ∈ Q, either A ⊂ B, or B ⊂ A, or A ∩B = ∅.

The aim of the third stage is to transform g and M to an l-packing f :
D(G,T ) → Q+ and T -join J in G such that

1 · f = 1 · g and l(EJ) = h(M).

This and (4) imply 1 · f = l(EJ), and hence, f and J give an optimal solution of
P(G,T, l).

We now describe the third stage. A required T -join J is formed in a natural
way. Namely, for each st ∈ M we choose an s− t chain Lst in G with l(Lst) = h(st);
one may take for Lst the shortest chain found at the first stage of the algorithm.
Let J be the subgraph induced by the edges in G occurring in odd number of
these chains. It is easy to see that J is a T -join, and l(EJ) ≤ h(M) (actually this
inequality holds with equality).

Finding a required packing f is a bit more complicated. This is solved by the
following algorithm (it does no matter for the algorithm that Q consists of odd
subsets, but it is important that Q satisfies property (6)).

Algorithm (of constructing f). Choose a minimal set A in Q. Define

X := {x ∈ V G | distl(s, x) = 0 for some s ∈ A};
and

a := min{g(A), min{l(e) | e ∈ δX}}.

Put f(X) := a, and change g and l by putting g(A) := g(A) − a and l(e) :=
l(e)− a for e ∈ δX (preserving the old values of g and l on the other elements). By
the definition of a, the new l and g are nonnegative. If g(A) becomes 0, remove A
from Q. Repeat these steps until the current Q becomes empty.

Let f be the resulting function (extended by zero to the sets X ∈ D(G,T ) not
appeared on the steps of the algorithm). It follows from the definition of a that f
is an l-packing (for the initial l), that is, f satisfies (1). We prove that

(7) g(A) =
∑

(f(X) | X ∈ D(G, T ), X ∩ T = A)

holds for each A ∈ Q, which implies 1 · f = 1 · g. The proof is divided into several
claims.

Claim 1. X ∩ T = A.

Proof.If x ∈ A then distl(x, x) = 0 implies x ∈ X, while if x ∈ T − A then for any
s ∈ T we have
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distl(s, x) = h(s, x) ≥ λg(sx) =
∑

(g(B) | B ∈ Q, sx ∈ δB) ≥ g(A) > 0,

therefore, x 6∈ X. •
In particular, it follows from Claim 1 that every set X occurring in the algo-

rithm belongs to D(G,T ).

Claim 2. Let l′ and g′ be the functions obtained from current l and g as a result
of one step. Let λg(pq) ≤ distl(p, q) for all p, q ∈ T . Then λg′(pq) ≤ distl′(p, q) for
all p, q ∈ T (in the other words, g′ is an h′-packing if g is an h-packing, where h′ is
the distance function in KT with respect to l′).

Proof.Put λ := λg and λ′ := λg′ . One has to prove that for a pq-chain L in G with
p, q ∈ T ,

(8) l′(EL) ≥ λ′(pq).

Apply induction on k(L) := |EL ∩ δX| (for any p, q and L).
(i) If k(L) = 0 then l′(EL) = l(EL) ≥ distl(p, q) ≥ λ(pq) = λ′(pq).
(ii) Let k(L) = 1. Then exactly one of p and q is in A. We have l′(EL) =

l(EL)− a and λ′(pq) = λ(pq)− a, and (8) follows.
(iii) If p, q ∈ A then, by (6) and the minimality of A, λ(pq) = λ′(pq) = 0.
(iv) Suppose we are in a case different from (i)-(iii). Then L contains a vertex

x such that x ∈ X, k(L′) ≥ 1 and k(L′′) ≥ 1, where L′ and L′′ are the parts of L
from p to x and from x to q, respectively. By the definition of X, there is a terminal
s ∈ A such that distl(sx) = 0. Choose an s − x chain P with l(EP ) = 0; clearly,
V P ⊆ X. Let L1 be a p − s chain in the graph L′ ∪ P and L2 be an s − q chain
in the graph L′′ ∪ P . Obviously, k(L′) = k(L1) < k(L) and k(L′′) = k(L2) < k(L),
whence by induction l′(EL1) ≥ λ(ps) and l′(EL2) ≥ λ(sq). We have

l′(EL) = l′(EL1) + l′(EL2) ≥ λ′(ps) + λ′(sq) ≥ λ′(pq)

(the latter inequality follows from the fact that if B ⊂ T and pq ∈ δB then {ps, sq}∩
δB 6= ∅), as required. •

Claim 3. Let the same set A ∈ Q be chosen on i-th and j-th steps of the algorithm,
i < j, and let Xi and Xj be the sets determined on these steps respectively. Then
Xi ⊂ Xj .

Proof.Since l can only decrease during the algorithm, we have Xi ⊆ Xj . Moreover,
this inclusion is strict because, after the i-th iteration, g(A) remains positive and
therefore l(xy) becomes 0 for some x ∈ Xi and y ∈ V G −Xi (by the definition of
a), whence y ∈ Xj . •
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Claims 1-3 prove correctness of the algorithm for the third stage. Claim 3
shows that the algorithm finishs in no more than n|Q| steps, and that all sets X
found on the steps are distinct. Now Claim 2 implies (7).

To estimate the number of steps of the algorithm, note that the cardinality of
Q is bounded by a linear function in the number of terminals. Namely, the following
claim is easily proved by induction on |T |.

Claim 4. If Q ⊂ 2T satisfies (6) then |Q| ≤ 2|T | − 3.

Thus the algorithm for the third stage consists of O(pn) steps. Obviously, a
step can be designed to take O(m) operations. This gives the running time of the
third stage to be O(pnm). (Note also that, by Claim 3, the sets X found for the
same A ∈ Q can be stored as corresponding initial parts of a certain list of vertices.
This enables us to decrease space needed to write the output of the algorithm.)

3. Algorithm for the Reduced Problem

In what follows the graph KT and its edge set EKT will be briefly denoted by K
and E, respectively. Current objects of the algorithm solving the problem P(K, T, h)
(the second stage of the algorithm for P(G,T, l)) that we develope in this section
will be a (not necessarily perfect) matching M ⊆ E, a collection D ⊆ D(K, T ) of
odd sets in K, and an h-packing g ∈ QD

+ satisfying (5) and (6).
An edge e ∈ E is called saturated (with respect to g) if λg(e) = h(e). Let MA

be the set of edges in M with both ends in a subset A ⊆ T . The following properties
will be maintained during the algorithm:

(9) all edges in M are saturated;

(10) D is regular ; this means that:
(i) for any distinct A,B ∈ D, either A ⊂ B or B ⊂ A or A ∩B = ∅;
(ii) |MA| = (|A| − 1)/2 for any A ∈ D.

Let rA denote the unique vertex in A ∈ D not covered by MA (the root of A).
One can see that (9) and (10) imply the following properties of M :

(11) |M ∩ δA| is at most 1 for any A ∈ D, and it is exactly 1 if and only if rA is
covered by M ;

(12) if M is perfect then 1 · g = h(M).

The algorithm consists of |T |/2 iterations. Initially one puts M := ∅ and
D := ∅. An iteration starts with choosing a vertex r ∈ T not covered by the current
M . The purpose of the iteration is to transform the current M , D and g (preserving

7



validity of (9)-(10)) in such a way that r becomes covered by M . As soon as M
becomes perfect the current g (extended by zero on D(G,T )−D) and M turns into
an optimal solution of P(K, T, h), by (12). Note that (10)(i) provides validity of
(6).

We need some terminology and notations.
1) Let V = VD be the set whose elements are the vertices of K and the sets of

D. Define a partial order ≺ on V by setting v ≺ v′ if either v, v′ ∈ D and v ⊂ v′,
or v ∈ T , v′ ∈ D and v ∈ v′ (in particular, s ≺ {s} if s ∈ T and {s} ∈ D). Note
that any two non-comparable elements in V contain no common vertex, by (10)(i).
When v ≺ v′, we say that v precedes v′; if, in addition, there is no v′′ such that
v ≺ v′′ ≺ v′, we say that v immediately precedes v′.

2) For S ⊆ T , let WS denote the set of elements v ∈ V such that v is maximal
provided that either v ∈ S or v is strictly included in S. For S ⊆ T and s ∈ S,
wS(s) denotes the (unique) element v of WS for which s ¹ v. Let FS = FD

S be
the multigraph on the vertex set WS in which elements v, v′ ∈ WS are connected
by k edges, where k is the number of saturated edges st ∈ E with v = wS(s) and
v′ = wS(t). The edge in FS corresponding to st ∈ E will be denoted by τS(st). A
vertex v in FS is called simple if v ∈ T . When S = T , we use notations W , w(s),
F and τ(st) for WS , wS(s), FS and τS(st), respectively.

3) In the algorithm we shall deal with (current) multigraphs F and FA, A ∈ D.
Let M(F ) (M(FA)) denote the set of edges e of F (FA) such that τ−1(e) belongs
to the matching M .

The property (11) and the fact that each set in D has odd cardinality imply:

(13) |W | is even, and |WA| is odd for all A ∈ D;

(14) M(F ) (M(FA)) is a matching in F (in FA).

A chain L in F (FA) is called alternating (with respect to M) if it contains
b|EL|/2c edges in M(F ) (M(FA)). During the algorithm the following additional
property holds:

(15) for each A ∈ D with |A| > 1 there is a circuit CA in FA which passes through
all the vertices of FA and contains (|WA| − 1)/2 edges in M(FA).

For v ∈ WA the chain in CA that joins v with w(rA) and has an even number
of edges is denoted by LA(v) (clearly such a chain is alternating); if |A| = 1, we put
LA(v) := ({rA}, ∅)).

Iteration. Like the majority of matching algorithms, the main work on the
iteration consists in “growing” an alternating tree. We say that a subgraph H in
F is an alternating tree rooted at w(r) if: (i) w(r) ∈ V H, H is connected and has
no circuits; (ii) for each v ∈ V H the chain in H joining v with w(r) is alternating;
this chain is denoted by L(v); (iii) for each one-valency vertex v in H, L(v) has
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even number of edges. Let V H+ (V H−) denote the set of vertices of H for which
|EL(v)| is even (respectively, odd), and let W 0 := W − V H.

An iteration is a sequence of steps. A step is an execution of one of the proce-
dures P0-P5 below. At the beginning of an iteration we put H := ({w(r)}, ∅) and
start with P0.

Procedure P0. Choose an edge e in F with ends u and v such that either (i)
u ∈ V H+ and v ∈ W 0, or (ii) u, v ∈ V H+. Let e = τ(st), u = w(s) and v = w(t).
In case (i), go to P1 (increasing the matching) if v is not covered by M(F ), and go
to P2 (increasing the tree) if it is. In case (ii), go to P3 (shrinking an odd circuit).
If there is no edge e as above, choose in V H− a non-simple vertex A ∈ D with
g(A) = 0 and go to P4 (destroying a non-simple vertex). If such an A does not
exist, go to P5 (changing the packing g).

Procedure P1 (increasing M). Let r′ := t if v = t (that is, if v is a simple
vertex), and r′ := rA if v = A ∈ D; then r′ is not covered by M . Add the edge e
and the vertex v to the alternating chain L(u) in H, forming an alternating chain L
in F connecting the vertices w(r) and v = w(r′) (these vertices are not covered by
M(F )). If L contains a non-simple vertex A′ ∈ D, we replace A′ by the alternating
chain with even number of edges from the circuit CA′ , forming an alternating chain
in FD′

which connects vertices not covered by M(FD′); here D′ := D − {A′}.
Repeat such replacements, one by one, until an alternating r − r′ chain L̃ in the
graph K will be obtained. Now change M along L̃ by putting M := M 4 EL̃
(X 4 Y denotes the symmetric difference (X − Y ) ∪ (Y −X) of sets X, Y ).

Procedure P1 completes the iteration. The resulting M has become larger and
the vertices r and r′ have been covered by M . One can check that (9),(10) and (15)
are true as before.

Procedure P2 (increasing H). Let e′ be the edge in M(F ) incident to v, and let
v′ be the other end of e′. (It follows from properties of H that v′ ∈ W 0.) Expand
H by adding the vertices v, v′ and the edges e, e′. Return to P0.

Procedure P3 (shrinking an odd circuit). Let C be the circuit in the graph H ′

obtained by adding the edge e to H; C is formed by e and the corresponding parts
of the chains L(u) and L(v) in H, and it contains (|EC|−1)/2 edges in M(F ). Form
a new odd set A to be {s′ ∈ T | w(s′) ∈ V C}, and put D := D ∪ {A}, g(A) := 0
and CA := C. The new tree H is obtained from H ′ by shrinking C.

Procedure P4 (destroying a non-simple vertex). Let e = τ(st) and e′ = τ(s′t′)
be the edges in H incident to A, and let e ∈ M(F ). Let for definiteness s and s′ are
in A; then s = rA. Take the chain L := LA(wA(s′)) in CA connecting wA(t) with
the “root” wA(rA) of FA. Delete the set A from D and correct H by replacing the
vertex v in it by the chain L. Return to P0.

Define
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E0+ := {st ∈ E | w(s) ∈ W 0, w(t) ∈ V H+};
E0− := {st ∈ E | w(s) ∈ W 0, w(t) ∈ V H−};
E++ := {st ∈ E | w(s), w(t) ∈ V H+, w(s) 6= w(t)};
E−− := {st ∈ E | w(s), w(t) ∈ V H−, w(s) 6= w(t)}.

Procedure P5 (changing g). Determine the value ε := min{ε0+, ε++, γ}, where

ε0+ := min{h(e)− λg(e) | e ∈ E0+};
ε++ :=

1
2

min{h(e)− λg(e) | e ∈ E++};
γ := min{g(A) | A ∈ V H− ∩D}

Add to D all the one-element sets {s} such that s is a simple vertex in V H+.
Transform g as g(A) := g(A) + ε for A ∈ V H+ and g(A) := g(A) − ε for A ∈
V H− ∩D. Return to P0.

Correctness and complexity of the algorithm.

Lemma 3.1. When applying P5, all the vertices in V H− are non-simple.

Proof.As it follows from the description of P0, when we go from P0 to P5, the
current g satisfies:

(16) λg(e) < h(e) for any edge e ∈ E0+ ∪ E++

(otherwise one must go from P0 to one of P1-P3 rather than to P5). Suppose
that the lemma is not valid, and let v be a simple vertex in V H−, that is, v ∈ T .
Consider edges sv, vt in K such that τ(sv), τ(vt) are the edges in H incident to
v. Since {v} 6∈ D and w(s) 6= w(t), there is no set A ∈ D such that sv, vt ∈ δA,
whence |{sv, vt} ∩ δA′| = |{st} ∩ δA′| for any A′ ∈ D. This implies λg(st) =
λg(sv) + λg(vt). But λg(e) = h(e) for e = sv, vt, and now we conclude from (16)
that h(st) > h(sv) + h(vt), which is impossible because h is a metric. •

Lemma 3.1 and the definition of ε easily imply that the function g resulting
in procedure P5 is an h-packing. We leave to the reader to check that M,D, g,H
resulting in each of procedures P1-P5 are correct; in particular, (9),(10) and (15)
are true for them.

Suppose that the iteration is completed in a finite number of steps, and denote
by Ni the number of occurences of procedure Pi on the iteration. Let N :=

∑5
i=0 Ni.

Then N1 ≤ 1 and N0 =
∑5

i=1 Ni. One can see from the definition of ε in P5
that after application of this procedure at least one of the two possibilities occurs:
λg(e) = h(e) for some e ∈ E0+ ∪ E++; or g(A) = 0 for some non-simple vertex
A ∈ V H−. (The case when all the sets E0+, E++, V H− are empty is impossible;
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otherwise H would consist of a single vertex, and V H = W , whence |W | = 1
would follow, contrary to (13).) Hence P5 will be immediately followed by P0 and
then by one of P1-P4. Thus N5 ≤ ∑4

i=1 Ni, and therefore, N is estimated as
O(N2 + N3 + N4). To estimate the latter quantity, introduce the sets:

T̃ := {s ∈ T | w(s) ∈ V H+}; and

D̃ := D − {A ∈ D | A ¹ v for some v ∈ V H+}
One can observe that:

(i) after every application of P0-P5, the new set T̃ contains the previous one
and the new set D̃ is contained in the previous one;

(ii) every application of P2 or P3 increases T̃ ;
(iii) every application of P4 decreases D̃.
Thus N2 + N3 ≤ |T | − 1, and N4 does not exceed the cardinality of D at the

beginning of the iteration. By Claim 4 in Section 2, this cardinality is O(|T |). Hence
the iteration is terminated after O(p) steps.

In order to estimate the running time of the iteration we need to specify data
structures used in it. The elements A ∈ D are given in the current set V as
identificators (references) rather than subsets of T . Elements v, v′ ∈ V such that
v immediately precedes v′ are joined by references to each other; such references
define structure of a (directed) forest on V. The multigraphs F , FA (A ∈ D) and
the tree H are designed in a natural way.

Clearly each of procedures P1-P4 can be executed using O(p) operations. P0
consists, in fact, in examination of vertices and edges of F (and/or FA’s) and it
takes O(p2) operations. When P5 applies, we have to calculate efficiently the values
λg(e) for e ∈ E0+ ∪E++, required for determining ε and for correction of the edge-
set of F (according to the new g). To do this, define for v ∈ V the set V scr(v) to
be {v} ∪ {v′ ∈ V | v′ ≺ v} and the set T (v) to be T ∩ V scr(v); define the value
ρ(v) := ρg(v) to be

∑{g(A) | A ∈ D, v ¹ A}. One can see that λg(st) = ρ(s)+ ρ(t)
for any s, t ∈ T such that w(s) 6= w(t). Note also that, for fixed v ∈ W , the
numbers ρ(v′) can be recursively calculated for all v′ ∈ V scr(v) using O(|V (v)|), or
O(|T (v)|), operations. Hence, for u, v ∈ W , u 6= v, determining the values λg(st)
for all edges st in the set S := {st ∈ E | s ∈ T (u), t ∈ T (v)} takes O(|T (u)||T (v)|),
or O(|S|), operations. This gives the estimate O(p2) for the running time of P5.

Thus the iteration can be executed within O(p3) operations, whence the run-
ning time for the algorithm to solve P(KT , T, h) is O(p4). This implies that the
running time of the algorithm for the initial problem P(G,T, l) is exactly as men-
tioned in the Introduction.

It remains to show that whenever h is cyclically even the algorithm finds an
integral optimal h-packing. It suffices to prove that when h is cyclically even and P5
applies to an integral g, the resulting function g′ will be integral too. In other words,
one has to prove that the value ε++ defined in the description of P5 is an integer. To
see this, consider arbitrary s, t ∈ T such that w(s), w(t) ∈ V H+ and w(s) 6= w(t).
Let C be the circuit in F formed by the edge τ(st) and the corresponding parts of
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the chains L(w(s)) and L(w(t)). Replacing successively non-simple vertices in C by
appropriate alternating chains (in a similar way as in P1) we get a circuit C̃ in K
all of whose edges except st are saturated by g. Then

h(st)− λg(st) = h(EC̃)− λg(EC̃) = h(EC̃)−
∑

A∈D

g(A)|EC̃ ∩ δA|

Now evenness of h(EC̃) and |EC̃ ∩ δA| together with integrality of g imply
that h(st)− λg(st) is even. Hence, ε++ is an integer.

4. A faster modification

In this section we describe a faster modification of the above algorithm. It is
based on certain dynamic data structures. As a consequence, the running time of
the second stage becomes O(p3 log p) (instead of O(p4)) and that of the third stage
becomes O(pm log n) (instead of O(pnm)).

More precisely, in the modification we have to search, as fast as possible, for a
minimal element in a dynamic ordered set. Formally, the problem can be stated as
follows. Suppose we are given a current set S whose elements e ∈ S have rational
weights a(e). At moments 1, . . . , N the set S is changed by removing some of its
elements and inserting new ones. At certain moments it is required to find an
element e in the current set such that a(e) is minimum. How fast can this be done?
One approach to do this is to apply a well-known way of data design, the so-called
AVL-tree [AL]. When S is designed as an AVL-tree, the above task can be executed
with the total amount of operations to be O(η log ω), where η is the cardinality of
the initial S plus the number of elements inserted at moments 1, . . . , N , and ω is
the maximum cardinality of current S (note that for our purposes one can use the
method developed in [Ka1] which is simpler to implement but requires O(η log η)
operations). We shall use the term “order structure” for a set S together with a
design of it which enables to execute the above task in time at most O(η log η).

First of all we explain how to modify the third stage of the algorithm, using
notations from Section 2. One may assume that the steps on which the same set
A ∈ Q is chosen go in succession. We arrange the set of edges of the cut e ∈ δGX as
an order structure R = R(A). An element e ∈ R has a weight q(e) (these weights
determine the ordering in R), and there is a number d associated with R. The
numbers q(e) and d are assigned so that for each e ∈ δGX, the current length l(e)
is equal to q(e) − d. The structure R(A) is created at the beginning of treatment
of A ; at this moment we put q(e) := l(e), e ∈ R(A), and d := 0.

Suppose that i steps with a given A ∈ Q have been executed; let Ri and Xi

stand for R and X, respectively, obtained on the i-th step. Then the new set Xi+1

is constructed as follows. Firstly, find the set ∆ of elements e ∈ Ri such that
q(e)− d (= l(e)) is 0 (obviously, ∆ is the set of minimal elements in R). Secondly,
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find the set Z of vertices x ∈ V G−Xi such that there is a chain of zero length in G
connecting x with a vertex incident to an edge from ∆. Then Xi+1 is just Xi ∪ Z.

To get the new R = Ri+1 corresponding to Xi+1, one should delete from Ri

the edges with one end in Xi and the other in Z, and add the edges with one end in
Z and the other in V −Xi+1. Each latter edge e is included in R with the weight
q(e) := l(e) + d. The number a, defined for given X as in the algorithm of Section
2, is the minimum of values q(e) − d among the elements e ∈ Ri+1. Finally, we
correct d as d := d + a; this corresponds to decreasing by a the lengths of the edges
in δXi+1.

Clearly, while working with the same A ∈ Q, each edge of G can be included
in R at most once. Hence the total number of operations to handle with R during
this period is O(m log m), or O(m log n). This implies the running time of the third
stage to be O(pm log n), as required.

Now we show how to modify the second stage of the algorithm. The distinctions
with what was developed in Section 3 are as follows.

(i) The set E++ is desined as an order structure ranged by numbers b(e),
e ∈ E++, such that b(e)−d is equal to the “excess” h(e)−λg(e), where d is a number
attached to E++ as a whole. Similarly, for each s ∈ T such that w(s) ∈ V H−∪W 0,
there is an order structure R(s) consisting of the edges st ∈ E with w(t) ∈ V H+;
these edges are ranged in R(s) by numbers c(st) such that c(st)− d(s) is equal to
h(st)−λg(st), where d(s) is a number attached to R(s). These order structures are
created at the beginning of each iteration, and at this moment the numbers d and
d(s) are assigned to be zero.

(ii) The first part of the procedure P0 is executed by examination of minimal
elements in the structures E++ and R(s) for s ∈ T such that w(s) ∈ W 0; we
determine whether or not there exists an edge st among them such that the excess
b(st) − d (if st ∈ E++) or c(st) − d(s) (if st ∈ R(s)) is 0. This implies that each
occurence of P0 requires running time O(p). Next, when P5 applies, the number
ε++ is determined as (b(e)− d)/2, and ε0+ is determined as min{c(st)− d(s) | s ∈
T,w(s) ∈ W 0}, where e (respectively, st) is a minimal element in E++ (respectively,
R(s)). When changing the current function g in P5, one should correct d and d(s)
for s ∈ T with w(s) ∈ W 0; namely, one has to put d := d + 2ε and d(s) := d(s) + ε
(this corresponds to increasing λg(e) by 2ε for e ∈ E++ and by ε for e ∈ R(s)).

(iii) Each application of the procedures P2-P4 has to be completed with cor-
rection of the corresponding order structures. We explain how to correct them for
P4 that consists in destroying a non-simple vertex A ∈ V H− (for P2 and P3 the
corresponding structures are corrected easier and this is left to the reader). Let
D̂ := D − {A}, Ŵ := (W − {A}) ∪WA and Ĥ be the objects obtained from D, W

and H as a result of application of P4. As it was explained earlier, Ĥ is formed
from H by replacing the vertex A by a chain L from CA. Define L+ (resp., L−)
to be the set of vertices v in L such that the part of L from wA(rA) to v has even
(resp., odd) number of edges. Let W 0

A := WA − V L. Then
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V Ĥ+ = V H+ ∪ L−, V Ĥ− = (V H− − {A}) ∪ L+, Ŵ 0 = W 0 ∪W 0
A.

Using techniques given in the end of Section 3, determine the values ρ(s), ρ(t) and
then the values λg(st) for all s, t ∈ T such that s ¹ v′ and t ¹ v′′, where v′ runs over
the set V Ĥ− ∪ Ŵ 0 and v′′ runs over L−; by arguments in Section 3, this takes the
amount of operations proportional to the number of such edges st. Now for each
s ∈ T with ŵ(s) ∈ V Ĥ− ∪ Ŵ 0, one has to insert in R(s) all the edges st ∈ E for
which ŵ(t) ∈ L−, and put c(st) := h(st)−λg(st)+ d(s) (ŵ(x) denotes the maximal
element v ∈ Ŵ such that x ¹ v). In addition, for each s ∈ T with ŵ(s) ∈ L−,
each element st ∈ E for which ŵ(t) ∈ V H+ has to be transferred from R(s) to the
structure E++, with weight b(st) := c(st)− d(s) + d, after that the rest of R(s) is
deleted.

It was noted in Section 3 that the current set T̃ := {s ∈ T | w(s) ∈ V H+} is
monotonously extended during the iteration. This implies that each edge st ∈ E
can be included at most once in R(s) or R(t) and it can be included at most once
in E++. Hence, the total amount of operations spent on the iteration to support
the above order structures is O(p2 log p). This and arguments in (ii)-(iii) give the
running time of the iteration to be O(p2 log p), and the running time of the second
stage to be O(p3 log p). Thus the modified algorithm to solve the initial problem
P(G,T, l) has running time as mentioned in the Introduction.
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