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Abstract. Let m be an integer-valued metric on a finite set V such that the
length of any circuit on V is even, and let H = (V H, EH) be an undirected graph with
V H ⊆ V . A family {m1, . . . , mk} of metrics on V is called an H-packing for m if the
value m1(x, y) + . . . + mk(x, y) does not exceed m(x, y) for any x, y ∈ V and equals
m(x, y) for each edge xy ∈ EH. A metric m′ on V is said to be induced by a graph G

if there is a mapping σ from V onto V G such that for any x, y ∈ V , m′(x, y) is equal
to the distance in G from σ(x) to σ(y). It is known that if |V H| ≤ 4 then there exists
an H-packing for m consisting of metrics induced by the graph K2 (i.e., cut metrics),
and this is, in general, false when |V H| > 4.

We prove that if |V H| = 5 then there exists an H-packing for m consisting of
metrics induced either by the graph K2 or by the graph K2,3. Also other results on
packings and decompositions of metrics are presented.

Keywords. Finite metric, cut cone, multicommodity flow.

1. Introduction

Throughout the paper, by a graph we mean a finite undirected graph without loops
and multiple edges; V G is the vertex set and EG is the edge set of a graph G. An edge
with end vertices x and y may be denoted by xy.

Let V be a finite set of n elements, and (V, m) a semimetric space, i.e., m(x, x) = 0,
m(x, y) = m(y, x) ≥ 0 and m satisfies the triangle inequalities m(x, y) + m(y, z) ≥
m(x, z), x, y, z ∈ V . For brevity, we refer to m as a metric (rather than a semimetric)
on V ; m(x, y) will be denoted by m(xy). A metric m is called positive if m(xy) > 0 for
all distinct x, y ∈ V .

We may identify m with the corresponding function on the edge set EKV of the
complete graph KV with the vertex set V . Then the set of metrics on V forms a
polyhedral cone MV in the

(
n
2

)
-dimensional euclidean space IREKV (whose coordinates

correspond to the edges of KV ), called the metrical cone. The metrics belonging to
extreme rays in MV are called primitive. The obvious fact is that if m(xy) = 0 for
some x 6= y, then m is primitive if and only if the corresponding metric on the set
obtained from V by identifying x and y is primitive.

For a connected graph G, we say that a metric m′ on V is induced by G if there
is a mapping σ from V onto V G such that m′(xy) = dG(σ(x)σ(y)) for x, y ∈ V , where
dG(uv) denote the distance in G between vertices u and v (assuming that the length of
each edge of G is 1). An elementary example gives a metric m′ induced by the graph
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K2 (where Kp is the complete graph with p vertices). Such an m′ is often called a cut
metric. In other words, m′ = ρX is generated by a proper subset X of V as follows:

ρX(xy) := 1 if |{x, y} ∩X| = 1,

:= 0 otherwise. (1)

Note that m′ is primitive since the metric dK2 is obviously primitive. For a cut metric
m′ and a real number t ≥ 0, the metric tm′ is called a Hamming metric.

One natural problem on metrics is:

(D): given a metric m on V , decide whether m is decomposable into a sum

m = m1 + . . . + mk, (2)

where m1, . . . ,mk are metrics from a certain collection S.

In particular, if S is the set S1 of Hamming metrics, we obtain the membership
problem: decide whether a metric m is contained in the Hamming (or cut) cone HV .
[HV is the convex hull of the set of Hamming metrics on V . An equivalent definition:
HV is the set of metrics on V such that (V, m) is embeddable isometrically into L1

(see [1]).] Unfortunately, already for this “simplest” collection S1 the problem (D)
turns out to be NP-hard; this follows from the NP-hardness of the separation problem
for HV [7] and the fact that the membership problem and the separation problem are
polynomially equivalent for a large class of convex sets [6]. It was proved in [3] that
the problem is NP-complete if S is the set S2 of cut metrics. However, a number of
nontrivial sufficient conditions on a metric to be decomposable into a sum of metrics in
S1 or S2 is known. See, e.g., [4,5]. One more of them will be pointed out in statement
(1.4) below.

Now we introduce a notion closely related to decompositions of metrics. Let G be
a connected graph with V G = V whose edges e ∈ EG have nonnegative real-valued
lengths l(e), and let H be a graph with V H ⊆ V .

Definition. A family {m1, . . . , mk} of (possibly repeated) metrics on V is called an
H-packing for l if

l(xy) ≥ m1(xy) + . . . + mk(xy) for all x, y ∈ V ; (3)

and
dl(s, t) = m1(st) + . . . + mk(st) for all st ∈ EH. (4)

Here dl(xy) denotes the distance between vertices x, y ∈ V G with respect to l.
In order to demonstrate a relation between packings and decompositions we need the
following definition.

Definition. An extremal graph of a metric m on V is a minimal (with respect to
inclusion) graph H such that for any u, v ∈ V , there is an edge st ∈ EH satisfying

m(su) + m(uv) + m(vt) = m(st). (5)
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[In [10,11] the term “antipode graph” was introduced for such a graph in the case of a
positive metric.] For example, if m is a cut metric ρX, then a graph H is extremal for
m if and only if it consists of two vertices x ∈ X and y ∈ V −X and one edge xy.

Considering (2)–(5) for G = KV and l = m and applying triangle inequalities we
easily obtain the following.

(1.1) If H is an extremal graph for a metric m and F = {m1, . . . , mk} is an H-packing
for m, then F is a decomposition of m, i.e., (2) is valid. •
The problem which will be in focus of the present paper is: for any fixed H,

determine a minimal collection S of metrics so that, for any connected graph G with
V G ⊇ V H and any length function l on EG, there exists an H-packing for l consisting
of metrics in S. Such a problem is related to multicommodity flows, as we explain
in Section 4. In particular, if S is the collection of Hamming metrics, such a relation
enables us to derive the following statement from a multicommodity flow theorem of
Papernov [12]:

(1.2) If H is K4 or C5 or a union of two stars, then there exists an H-packing for l

consisting of Hamming metrics. •
[A star is a connected graph whose edges have a common vertex; C5 is the circuit

with five vertices. It is easy to see that any proper subgraph of K4 or C5 having no
isolated vertices is a union of two stars.] Statement (1.2) cannot be strengthened in
term of the graphs H; more precise, one can prove that if H is not as in (1.2) and
it contains no isolated vertex, then for any V ⊇ V H there exists a metric m on V

having no H-packing of Hamming metrics. There is a stronger, “half-integral”, version
of (1.2). We say that a (nonnegative) function l is cyclically even if it is integer-valued
and each circuit in G has an even length, i.e., l(x0x1)+ . . .+ l(xr−1xr)+ l(xrx0) is even
for any x0x1, . . . , xr−1xr, xrx0 ∈ EG.

(1.3) [7] If H is as in (1.2) and l is cyclically even, then there exists an H-packing for
l consisting of cut metrics. •
[Another, simpler, proof of (1.3) is given in [13].] Assertions (1.1) and (1.3) imply

the following:

(1.4) If a metric m has K4 or C5 or a union of two stars as an extremal graph, then
m ∈ HV . If, in addition, m is cyclically even, then m is decomposable into a sum
of cut metrics. •
A simplest example of a metric not decomposable into a sum of cut metrics gives

any metric dKp,q for p ≥ 2 and q ≥ 3 (Kp,q is the complete bipartite graph with parts
of p and q vertices). It is known that such a metric is primitive; see, for example, [10,2].
The metric induced by the graph Kp,q is called p, q-metric.

The main result of the present paper is the following.
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Theorem 1. If l is a cyclically even function on the edges of a connected graph G,
H is a graph with V H ⊆ V G and |V H| = 5, then there exists an H-packing for l

consisting of cut metrics and 2,3-metrics.

(1.5) (Corollary from (1.1) and Theorem 1) Every cyclically even metric having an ex-
tremal graph H with |V H| = 5 is representable as a sum of cut metrics and 2,3-
metrics. •
Theorem 1 will be proved in Section 2; the proof will provide a strongly polynomial

algorithm for finding a required packing. Note that, in fact, a slightly stronger version
of this theorem will be proved in which one asserts that all used 2,3-metrics can be
chosen to coincide on the set V H. In particular, if m is a cyclically even metric on a
set V of five elements, then m is a sum of cut metrics and of some number of copies of
one 2,3-metric on V .

Theorem 1 can be reformulated in polyhedral terms as follows (a corresponding
statement can be stated also for (1.3)). For U ⊂ EKV , define the cone MV,U to be the
nonnegative linear hull of the cone MV and the vectors Ie, e ∈ EKV − U , where Ie is
the e-th unit basis vector in IREKV (such a cone occurred in [10,11]).

(1.6) Let the edges in U span exactly 5 vertices. Then:

(i) each extreme ray of MV,U is {λa : λ ≥ 0}, where a is either Ie (e ∈ EKV −U)
or a cut metric or a 2,3-metric;

(ii) if l is an integral vector in MV,U such that l(xy) + l(yz) + l(xz) is even for
any distinct x, y, z ∈ V , then l is a sum of integral vectors lying on extreme rays
in MV,U .

Section 3 contains some generalizations. By the metrical spectrum MS(H) of a
graph H we will mean the minimal set S so that: (i) each d ∈ S is an integer-valued
metric on a set V (d), and td is not integer-valued for 0 < t < 1; and (ii) for any
connected graph G with V G ⊇ V H and a function l : EG → IR+, there exist metrics
d1, . . . , dk ∈ S and reals λ1, . . . , λk ≥ 0 such that {λ1m1, . . . , λkmk} is an H-packing
for l, where mi is a metric on V G induced by di, i.e., mi(xy) = di(σ(x)σ(y)), x, y ∈ V ,
for some mapping σ from V G onto V (di). For example, the metrical spectrum of K4

consists uniquely of the metric dK2 (by (1.2)), and the metrical spectrum of K5 consists
of the two metrics dK2 and dK2,3 (by Theorem 1). We give in Section 3 a complete
description of the set of graphs H for which MS(H) is finite.

2. Proof of Theorem 1

Put T := V H and E := EKV . It suffices to prove that if |T | ≤ 5 and m is a
cyclically even function (not necessarily a metric) on E, then there exists a KT -packing
for m consisting of cut metrics and 2,3-metrics. Our method of proof uses ideas of [8],
developed there for proving that if m′ is a primitive metric having an extremal graph
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H ′ with |V H ′| = 5, then m′ is proportional to 2,3-metric. In particular, the statements
(2.1),(2.3) and (2.4) occurred in [8]; we give here their proofs in order to make our
description self-contained.

By a path, or x − y path, on V we mean a sequence P = x0x1 . . . xk of distinct
elements x = x0, x1, . . . , xk = y of V . ei = xixi+1 is an edge of P and the value
m(P ) =

∑
(m(ei) : i = 1, . . . , k) is the length of P (with respect to m); P is shortest if

m(P ) = dm(xy).

For xy ∈ E and u, v, w ∈ V put:

φ(xy) = φm(xy) := min{dm(sx) + dm(xy) + dm(yt)− dm(st) : s, t ∈ T};

∆(u, v, w) = ∆m(u, v, w) := dm(uv) + dm(vw)− dm(uw).

The cyclically evenness of m implies that φ(xy) and ∆(u, v, w) are even.

We proceed by induction on

α = α(V, T, m) :=|V |+ |{e ∈ E : m(e) > 0}|+ |{e ∈ E : φ(e) > 0}|
+ |{(s, x, t) : x ∈ V, s, t ∈ T, ∆(s, x, t) > 0}|.

By (1.3), the theorem is true if |T | ≤ 4.

First of all we show that one may consider only the case when the following hold:

m is a positive metric; (6)

each e ∈ E is contained in some shortest s− t path, s, t ∈ T , i.e. φ(e) = 0; (7)

each p ∈ T is contained in some shortest s− t path with s, t ∈ T − {p}. (8)

This is achieved by use of the following simple reductions.

(i) Suppose that m(xy) = 0 for some xy ∈ E. Identify x and y with a new
vertex z, obtaining corresponding V ′, T ′. For u, v ∈ V ′, define m′(uv) := m(uv) if
u, v 6= z, and m′(uv) := min{m(ux),m(uy)} if v = z. Then m′ is cyclically even and
α(V ′, T ′,m′) < α(V, T, m). By induction there exists a required KT ′-packing for m′,
which naturally determines a required KT -packing for m.

Thus, one can assume that m(e) > 0 for all e ∈ E.

(ii) Suppose that m(e) ≥ 2 and φ(e) > 0 for some e ∈ E. Let a be the maximum
even number not exceeding max{m(e), φ(e)}. Put m′(e) := m(e) − a and m′(e′) :=
m(e′), e′ ∈ E−{e}. Clearly, m′ is cyclically even, dm′(st) = dm(st) for all s, t ∈ T , and
α(V, T, m′) ≤ α(V, T, m). Three case are possible: (a) m′(e) = 0, (b) φm′(e) = 0, and
(c) m′(e) = 1. In cases (a) and (b), we have α(V, T, m′) < α(V, T, m), and the result
follows by induction. So we may assume that φ(e) = 0 for all e ∈ E with m(e) ≥ 2.
Suppose there is an edge xy ∈ E with m(xy) = 1. Take z ∈ V − {x, y}, and let for
definiteness m(xz) ≥ m(yz). Since m(xy)+m(xz)+m(yz) is even and m is positive, we

5



have m(xz) ≥ 2 and m(xy) + m(yz) = m(xz). Since m(xz) ≥ 2, φ(xz) = 0, and hence
there exists a shortest path s . . . xz . . . t with s, t ∈ T . Then the path s . . . xyz . . . t is
also shortest.

Thus, one can assume that (7) holds. It follows easily from (7) that m is a metric,
whence (6) holds.

(iii) Suppose that ω(p) > 0 for some p ∈ T , where ω(p) := min{∆(s, p, t) : s, t ∈
T − {p}}. Put X := {p} and m′ := m− aρX, where

a := min{ω(p)/2, min{m(py) : y ∈ V − {p}}}.
Since a is integer, m′ is cyclically even. Obviously, dm′(st) = dm(st) and dm′(sp) =
dm(sp) − a for s, t ∈ T − {p}. Furthermore, at least one of the following is true:
∆m′(s, p, t) = 0 for some s, t ∈ T − {p}, or m′(xy) = 0 for some y ∈ V − {p}, whence
α(V, T, m′) < α(V, T, m). By induction there exists a required packing for m′. Adding
to it a copies of the cut metric ρX, we obtain a required packing for m.

Thus, one can assume that (8) holds.

Let H ′ be the extremal graph for m (it is easy to show that a positive metric has
a unique extremal graph). Let U := EH ′. (7) and (8) imply

each edge e ∈ E is in some shortest s− t path for st ∈ U ; (9)

for each p ∈ T , there is st ∈ U such that s, t 6= p and m(sp) + m(pt) = m(st). (10)

In view of (1.3), one can assume that H ′ is different from K4, C5 and a union of
two stars. In particular, this implies that |V H ′| = 5, i.e., V H ′ = T . Also one can show
that there are three vertices in H ′, say, s1, s2, s3, such that sisj ∈ U , 1 ≤ i < j ≤ 3
(otherwise H ′ is either C5 or a union of two stars). Let T1 := {s1, s2, s3} and T2 :=
T − T1 =: {s4, s5}.

(2.1) (i) U = {s1s2, s2s3, s3s1, s4s5};
(ii) m(sis4) + m(sis5) = m(s4s5) for i = 1, 2, 3.

Proof. Consider p ∈ T1. Let s and t be vertices as in (10). The minimality of the
extremal graph H ′ implies ps, pt 6∈ U . Thus, {s, t} ∩ T1 = ∅, i.e., {s, t} = {s4, s5}.
Hence, s4s5 ∈ U , ps4, ps5 6∈ U , and (ii) is true. •

For ∅ 6= X ⊂ V , let δX denote the set with one end in X and the other in V −X

(a cut on V ); δX is said to separate vertices x and y if |{x, y} ∩X| = 1. As before, for
a metric m one assumes by definition that m(xx) = 0, x ∈ V . For x, y ∈ V , let N(x, y)
denote the set of vertices contained in shortest x− y paths.

(2.2) Let s ∈ T1, t ∈ T2, {p, q} = T1 − {s}, and let N(s, t) ∩ N(p, q) = 0. Put X :=
N(s, t),

a :=
1
2
min{min{m(sz) + m(zt)−m(st) : z ∈ V −X},

min{m(pz) + m(zq)−m(pq) : z ∈ X}},

6



and m′ := m− aρX. Then m′ ≥ 0, a is an integer ≥ 1, and for each uv ∈ U the
following holds:

dm′(uv) = m(uv)− a if δX separates u and v,

= m(uv) otherwise. (11)

Proof. The condition that N(s, t) and N(p, q) are disjoint and the cyclically evenness
of m imply that a is an integer ≥ 1. Next, the vertex r in T2 different from t cannot
be in X, by the minimality of H ′.

(i) Consider vertices x, y ∈ X, and let for definiteness m(sx) ≤ m(sy). We assert
that the path sxyt is shortest (for m). This is true for x = y by the definition of N(s, t).
Let x 6= y. By (9), there is a shortest path s′xyt′ for some s′t′ ∈ U . Since x belongs
to no shortest p − q path, we have s′t′ 6= pq. Therefore, s′t′ ∈ {sp, sq, tr}. Suppose
s′t′ = sp. It follows from m(s′x) ≤ m(s′y) that s′ = s. Since the paths syt and s′xy

are shortest, the path sxyt is also shortest, as required. The cases s′t′ = sq, tr are
considered analogously.

(ii) Let x, y ∈ X and z ∈ V −X, and let for definiteness the path sxyt be shortest.
Then

m(xz) + m(zy)−m(xy) = m(sx)+m(xz) + m(zy) + m(yt)−m(st)

≥ m(sz) + m(zt)−m(st) ≥ 2a, (12)

by the definition of a. If x = y, we obtain from (12) that m(xz) ≥ a, whence m′ ≥ 0.

(iii) Let uv ∈ U . Consider a u− v path P = x0x1 . . . xk shortest for m′. One must
prove that m′(P ) is equal to m(uv) if uv = pq and equal to m(uv)−a if uv = sp, sq, tr.
One can assume that k is minimum (by uv fixed). The assertion is obvious when
k = 1. Let k ≥ 2. For i < k − 1, let Pi denote the path x0x1 . . . xixi+2 . . . xk; then
m′(Pi) > m′(P ). We observe that P has the following properties.

(a) xixi+1 ∈ δX. Indeed, suppose that xi, xi+1 ∈ X, and let for definiteness
i ≤ k−2. If xi+2 ∈ X, then m′(e) = m(e) for e = xixi+1, xixi+2, xi+1xi+2, and if xi+2 ∈
V −X, then m′(xixi+1) = m(xixi+1) and m′(e) = m(e)−a for e = xixi+2, xi+1xi+2. In
both cases, we obtain from m(xixi+1)+m(xi+1xi+2) ≥ m(xixi+2) that m′(Pi) ≤ m′(P );
a contradiction with the minimality of k. The case xi, xi+1 ∈ V − X is considered
similarly.

(b) There is no i such that xi, xi+2 ∈ X and xi+1 ∈ V −X. Otherwise, taking into
account (12), we have

m′(xixi+2) = m(xixi+2) ≤ m(xixi+1) + m(xi+1xi+2)− 2a

=m′(xixi+1) + m′(xi+1xi+2),

whence m′(Pi) ≤ m′(P ); a contradiction.
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It follows from (a) and (b) that k = 2, x0, x2 ∈ V −X and x1 ∈ X. Then uv = pq,
and now we conclude from the definition of a that m′(P ) = m(px1) + m(x1q) − 2a ≥
m(pq). •

Suppose that s, t, a, X and m′ are so as in (2.2). It follows easily from (11) that
φm′(e) ≤ φm(e) and ∆m′(s′, x, t′) ≤ ∆m(s′, x, t′) for all e ∈ E, x ∈ V and s′, t′ ∈ T .
Furthermore, m′ is cyclically even (as a is an integer) and ∆m′(s′, z, t′) = 0 for s′t′ = st

and some z ∈ V − X or for s′t′ = pq and some z ∈ X. Therefore, α(V, T, m′) <

α(V, T, m), and by induction there exists a required packing for m′. Adding to it a
copies of the cut metric ρX we obtain a required packing for m.

So we may assume that N(p, q) ∩N(s, t) 6= ∅ whenever {p, q, s} = T1 and t ∈ T2.
Put aij := m(sisj) for i = 1, 2, 3, j = 4, 5; bij = bji := m(sisj) for 1 ≤ i < j ≤ 3; and
c := m(s4s5).

(2.3) Let λ := a14. Then all aij are equal to λ and b12 = b23 = b31 = c = 2λ.

Proof. Let i ∈ {1, 2, 3} and j ∈ {4, 5}. Choose a vertex x in N(si, sj) contained in a
shortest sk − sr path for {i, k, r} = {1, 2, 3}. Then

aij + bkr = m(six) + m(sjx) + m(skx) + m(srx) ≥ akj + bir.

Therefore, a1j + b23 = a2j + b13 = a3j + b12. Considering these equalities for j = 4, 5
and the equalities in (2.1)(ii) we obtain a1j = a2j = a3j =: aj and b12 = b23 = b31 =: b.
Now since sj is in a shortest si − sk path for some 1 ≤ i < j ≤ 3 (by (10)), we have
2aj = b, whence a1 = a2 = λ and b = c = 2λ. •

Assertion (2.3) shows that the restriction of m on T is a metric proportional to
dK2,3 . Now our aim is to show that for a metric with such a property there exists a
packing consisting of 2,3-metrics.

For i, j = 1, . . . , 5, put Nij := N(si, sj). Define the sets:

S4 := {s4};
Si := Ni4 − {s4}, i = 1, 2, 3;

S5 := V − (S1 ∪ S2 ∪ S3 ∪ S4).

Clearly si ∈ Si, i = 1, 2, 3, 4. Also (2.3) implies that s5 ∈ S5. Below we shall prove the
following:

(2.4) The sets S1, . . . , S5 are disjoint.

The partition P := {S1, . . . , S5} of V defines the 2,3-metric d on V as

d(xy) := 1 if xy ∈ (Si, Sj), i = 1, 2, 3, j = 4, 5;

:= 2 if xy ∈ (S1, S2), (S2, S3), (S3, S1), (S4, S5);

:= 0 otherwise,
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where (X, Y ) is the set of edges with one end in X and the other in Y . By (2.3),
m(st) = λd(st), s, t ∈ T . Put

β := min{m(s4x) : x ∈ S1 ∪ S2 ∪ S3};

γ :=
1
2
min{m(s4x) + m(xsi)−m(s4si) : x ∈ S5, i = 1, 2, 3},

and a := min{β, γ}. Then a is an integer ≥ 1, as follows directly from the definition of
S1, . . . , Sk. Put m′ := m− ad. Below we shall prove the following:

(2.5) m′ ≥ 0 and dm′(st) = m(st)− ad(st) for all st ∈ U .

In the assumption that (2.4) and (2.5) are true, the proof of Theorem 1 is completed
as follows. It is easy to check that the metric dK2,3 is cyclically even, whence, in view
of the integrality of a, the metric m′ is cyclically even. It follows from the definition of
a that α(V, T, m′) < α(V, T, m). By induction there exists a required packing for m′.
Adding to it a copies of the metric d yields a required packing for m.

Proof of (2.4). It suffices to prove that Ni4 ∩Nj4 = {s4} for 1 ≤ i < j ≤ 3. Suppose
that Ni4 ∩Nj4 contains a vertex x different from s4. Since m(s4x) > 0 and m(six) +
m(xs4) = λ (where λ is defined as in (2.3)), then m(six) < λ; similarly m(sjx) < λ.
Hence, m(sisj) < 2λ, contrary to (2.3). •

Proof of (2.5). First of all we make several preliminary observations.

m′(xy) = m′(xs4) + m′(s4y) for x ∈ Si, y ∈ Sj , 1 ≤ i < j ≤ 3; (13)

m′(xz) + m′(zy) ≥ m′(xs4) + m′(s4y) for x ∈ Si, y ∈ Sj , 1 ≤ i < j ≤ 3, z ∈ S5. (14)

Indeed, since m(six) + m(xs4) = λ = m(sjy) + m(ys4) and m(sisj) = 2λ, the path
sixs4ysj is shortest for m, whence m(xy) = m(xs4) + m(s4y) and m(xz) + m(zy) ≥
m(xs4) + m(s4y). Now (13) and (14) follow from the fact that the value m(e)−m′(e)
is a for e ∈ (Sk, Sr), k = 1, 2, 3, r = 4, 5, and 2a for e ∈ (Si, Sj).

m′(xz) + m′(zy) ≥ m′(xy) for x ∈ Si ∪ S4, y ∈ Si, 1 ≤ i ≤ 3, and z ∈ S5 (15)

(where if x = y then m′(xy) := 0). Indeed, as it was shown earlier (see (12)),
∆(x, z, y) ≥ ∆(s4, z, si), where ∆(x′, z′, y′) is m(x′z′) + m(z′y′) − m(x′y′). Thus,
∆(s4, z, si) ≥ 2a (by the definition of a) implies ∆(x, z, y) ≥ 2a. If x ∈ Si then
m′(xy) = m(xy) and m′(e) = m(e) − a for e = xz, xy, and if x = s4 then m′(xz) =
m(xz)− 2a and m′(e) = m(e)− a for e = xy, zy, whence (15) follows.

m′(s4x) ≥ 0 for x ∈ S5. (16)

Indeed, let for definiteness m(s1x) ≤ m(s2x) ≤ m(s3x). Suppose that m(s1x) +
m(s2x) > 2λ. Then m(s2x) > λ and the edge s2x belongs to no shortest s − t
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paths for st = s1s2, s2s3, s3s1. Hence, s2x is in a shortest s4 − s5 path (by (9)).
But m(s4s2) = m(s2s5) = λ; a contradiction. Thus, m(s1x) + m(s2x) = 2λ. Now we
get from ∆(s4, x, si) ≥ 2a, i = 1, 2, and m(s1s4) + m(s4s2) = 2λ that m(s4x) ≥ 2a,
whence (16) follows.

We show m′(uv) ≥ 0 for all u, v. Let u ∈ Si and v ∈ Sj . If i = j then m′(uv) =
m(uv) ≥ 0. If i 6= j, then m′(uv) ≥ 0 follows for i = 4, j = 5 from (16), and
for i = 4, j = 1, 2, 3 from the definition of a. Therefore, m′(uv) ≥ 0 for {i, j} =
{1, 2}, {2, 3}, {3, 1}, by (13). Finally, this follows for i = 1, 2, 3, j = 5 from (15)
(putting x = y = u and z = v).

Finally we show the second half of (2.5). Let st ∈ U be fixed. Consider an s − t

path P = x0x1 . . . xk shortest for m′. One must prove that m′(P ) = m(st) − ad(st).
We may assume that P satisfies the following conditions: (i) the number of vertices
xi different from s4 is minimum; and (ii) the number of indices i such that xi = s4

is maximum subject to (i). Let Pi denote the path x0x1 . . . xixi+2 . . . xk. We observe
that P satisfies the following four properties.

(a) xi and xi+1 belong to different sets in P. Indeed, if, say, xi, xi+1 ∈ Sk, xi+2 ∈
Sr, k 6= r, then xi+1 6= s4 and we have from m′(xixi+1) = m(xixi+1) and m′(e) =
m(e)− ad(sksr) for e = xi+1xi+2, xixi+2 that m′(Pi) ≤ m′(P ), which contradicts (i).

(b) There is no i such that xi ∈ Sk and xi+1 ∈ Sr for k, r ∈ {1, 2, 3}, k 6= r.
Otherwise the path x0x1 . . . xis4xi+1 . . . xk is shortest for m′ (by (13)), contrary to (ii).

(c) There is no i such that xi ∈ Sk ∪ S4, xi+1 ∈ S5 and xi+2 ∈ Sr ∪ S4 for
k, r ∈ {1, 2, 3}. Otherwise m′(Pi) ≤ m′(P ) (by (14) or (15)), contrary to (i).

(d) There is no i such that xi+1 ∈ Sk for k ∈ {1, 2, 3} and either xi = s4 and
xi+2 ∈ S5, or xi ∈ S5 and xi+2 = s4. Otherwise it follows from m′(e) = m(e) − a

for e = xixi+1, xi+1xi+2 and from m′(xixi+2) = m(xixi+2)− 2a that m′(Pi) ≤ m′(P ),
contrary to (i).

Now in the case s = s4 and t = s5, we conclude easily from (a)–(d) that P =
s4s5. Then m′(P ) = m′(s4s5) = m(s4s5) − 2a. In the case s = sk and t = sr,
1 ≤ k < r ≤ 3, we conclude from (a)–(d) that either P = sksr or P = sks4sr, whence
m′(P ) = m(sksr)− 2a. •

This completes the proof of Theorem 1.

In fact, the proof of the theorem contains an algorithm for finding a required
packing whose running time is a polynomial in |V |.
Remark. One can see that if m and m′ are as in (2.5), then the metrics m and dm′

are proportional on EKT . Furthermore, obviously, dm′ satisfies the properties as in (9)
and (10). This gives the strengthening of Theorem 1 pointed out in the Introduction.

3. Metrical spectra of graphs
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Theorem 1 has the following corollary.

(3.1) Let H be a union of K3 and a star, and let l be a cyclically even function on the
edges of a connected graph G with V G ⊇ V K. Then there exists an H-packing for
l consisting of cut metrics and 2,3-metrics.

Proof. Let for definiteness H have the edges s1s2, s2s3, s3s1 and sti, i = 1, . . . , r

(possibly vertices in {s, t1, . . . , tr} coincide with some vertices in {s1, s2, s3}). Add to
G a new vertex t and the edges t1t, . . . , trt, forming the graph G′. Let l′ be a cyclically
even function on EG′ such that l′(e) = l(e) for e ∈ EG and

dl′(pq) = dl(pq) for all pq ∈ EH; (17)

dl′(st) = dl(sti) + l′(tit) for i = 1, . . . , r; (18)

it is easy to show that such a function exists. Let T be the set of different vertices
among s1, s2, s3, s, t; then |T | ≤ 5. By Theorem 1 there is a KT -packing {m′

1, . . . ,m
′
k}

for l′ consisting of cut metrics and 2,3-metrics. Let mj be the restriction of m′
j on V G.

One can see that each mj is a cut metric or a 2,3-metric or a sum of cut metrics. It
obviously follows from (17) and (18) that m1, . . . , mk determine a required H-packing
for l. •

Assertions (1.2),(3.1) and Theorem 1 give the metrical spectra MS(H) when
|V H| ≤ 5 or H is a union of two stars or H is a union of K3 and a star; in these
cases MS(H) is either {dK2} or {dK2 , dK2,3}. Now we study the metrical spectra for
the other graphs H. One can assume that H has no isolated vertices. A direct check-up
shows that H is one of the following:

H has a matching of three edges; (19)

H consists of two disjoint graphs K3. (20)

We assert that the set MS(H) is infinite for any graph H as in (19), and that it
is finite for the graph H as in (20).

Clearly if H ′′ is a subgraph of a graph H ′, then MS(H ′′) ⊆ MS(H ′). Let H0 be
the graph consisting of three disjoint edges. So infiniteness of MS(H) for H as in (19) is
implied by the infiniteness of MS(H0). In order to show the infiniteness of MS(H0) take
positive integers p, q, r ≥ 2, and let G be the graph whose vertices are the triples (i, j, k),
i = 1, . . . , p, j = 1, . . . , q, k = 1, . . . , r, and whose edges are the pairs {(i, j, k), (i′, j′, k′)}
such that either |i − i′| + |j − j′| + |k − k′| = 1 or i − i′ = j − j′ = k − k′ = 1. Then
the metric dG is primitive and the edges of its extremal graph correspond to the pairs
{(p, 1, 1), (1, q, r)}, {(1, q, 1), (p, 1, r)} and {(1, 1, r), (p, q, 1)} (see [8]). So dG belongs to
MS(H0). Hence MS(H0) is infinite.

Now consider the graph H as in (20); let for definiteness V H = {s1, . . . , s6} and
EH = {sisj : 1 ≤ i < j ≤ 3 or 4 ≤ i < j ≤ 6}. In order to prove that MS(H) is finite
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take a connected graph G with V G ⊇ V H and a nonnegative function l on EG. Add
to G new vertices t1, . . . , t6 and the edges siti, i = 1, . . . , 6, forming the graph G′. Let
H ′ be the graph with the vertex set {t1, . . . , t6} and the edge set {titj : 1 ≤ i < j ≤ 3
or 4 ≤ i < j ≤ 6}; then H ′ is isomorphic to H. Take τ > 0 such that τdl(pq) ≤ 1/2 for
all pq ∈ EH. For i = 1, . . . , 6, let Ji := {j : sisj ∈ EH}. Define the function l′ on EG′

by
l′(e) := τ l(e) for e ∈ EG,

:=
1
2
(1 + τdl(sjsk)− τdl(sisj)− τdl(sisk))

for e = siti, i = 1, . . . , 6, {j, k} = Ji.

Then l′ ≥ 0. It is easy to check that

dl′(pq) = τdl(pq) for all pq ∈ EH; (21)

dl′(p′q′) = 1 for all p′q′ ∈ EH ′. (22)

Introduce the metric dΓ of distances in the following special graph Γ (this metric oc-
curred in [8,9]). Γ consists of 16 vertices p1, . . . , p6, xij (1 ≤ i ≤ 3, 4 ≤ j ≤ 6)
and v, and of 27 edges pixij , pjxij and xijv, 1 ≤ i ≤ 3, 4 ≤ j ≤ 6. In [9] the
following statement (which is a particular case of a general theorem) was proved: if
H ′ is the graph as above and the function l′ satisfies (22), then there is a mapping
σ : V G′ → V Γ such that σ(ti) = pi, i = 1, . . . , 6, and the metric mσ H ′-decomposes
l′. Here mσ(xy) := dΓ(σ(x)σ(y)), x, y ∈ V G′, and we say that m′ H ′-decomposes l′ if
l′(e)−λm′(e) ≥ 0 for all e ∈ EG′ and dl′−λm′(pq) = dl′(pq)−λm′(pq) for all pq ∈ EH ′

and some λ > 0. This easily implies that for some finite k there exists an H ′-packing
{λ1m

σ1 , . . . , λkmσk}, where σi is some mapping as above. Then, by (21), {m1, . . . ,mk}
is an H-packing for l, where mi is the restriction of the metric τλim

σi on V G. Thus,
the cardinality of MS(H) does not exceed the number of primitive metrics, each being
a restriction of the metric dΓ on a subset in V Γ. Therefore MS(H) is finite.

A conjecture is: if H is as in (20) and l is cyclically even, then there exists an
H-packing {λ1m1, . . . , λkmk} for l such that mi = mσi for some σi : V G → V Γ and
all λi are multiple of 1

2 .

4. A relation of H-packings to multicommodity flows

Consider a connected graph G, a graph H with V H ⊇ V G, and functions l : EG →
IR+ (a capacity function) and g : EH → IR+ (a demand function). For st ∈ EH, denote
by Pst the set of simple paths in G connecting s and t, and let P := ∪(Pst : st ∈ EH).
The multicommodity flow problem F (G,H, c, g) (in the so-called “edge-path” form) is:
find a function (multicommodity flow) f : P → IR+ so that:

∑
(f(P ) : P ∈ P, e ∈ P ) ≤ c(e) for e ∈ EG; (23)
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and ∑
(f(P ) : P ∈ Pst) = g(st) for st ∈ EH; (24)

or establish that such a function does not exist.

By Farkas lemma, (23)–(24) is solvable if and only if, for any l : EG → IR+ and
b : EH → IR, the inequality c · l ≥ g · b holds provided that

∑
(l(e) : e ∈ P ) ≥ b(st) for P ∈ Pst, st ∈ EH, (25)

where a · a′ denotes the inner product of vectors a and a′. (25) is equivalent to b(st) ≤
dl(st) for st ∈ EH. So we have the following:

(4.1) F (G,H, c, g) is solvable (i.e., a required f exists) if and only if

c · l ≥
∑

(g(st)dl(st) : st ∈ EH) (26)

holds for any l : EG → IR+.

Now suppose we know that there is a set S = {m1, . . . , mN} of metrics on V G

such that for any l : EG → IR+ there exists a fractional H-packing for l using metrics
of S, i.e.

λ1m1(e) + . . . + λNmN (e) ≤ l(e) for e ∈ EG, (27)

and
λ1m1(st) + . . . + λNmN (st) = dl(st) for st ∈ EH (28)

hold for some λ1, . . . , λN ≥ 0. Considering l as above we have from (27) and (28) that

c · l ≥
N∑

i=1

(λi

∑

e∈EG

c(e)mi(e)) (29)

and
∑

st∈EH

g(st)dl(st) =
N∑

i=1

(λi

∑

e∈EG

g(st)mi(st)). (30)

Comparing (29) and (30) with (26) we obtain the following:

(4.2) F (G,H, c, g) is solvable if and only if for any l : EG → IR+ the inequality

∑
(c(e)m(e) : e ∈ EG) ≥

∑
(g(st)m(st) : st ∈ EH) (31)

holds for each m ∈ S. •
(The “only if” part of (4.2) follows from (4.1) if we take as l the restriction of m ∈ S on
EG.) Since arguments above can be reversed, we obtain the following relation between
H-packings and multicommodity flows, mentioned in the Introduction:
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(4.3) Let G and H be graphs as above, and let S be a set of metrics on V G. The following
are equivalent:

(i) for any c and g, problem F (G,H, c, g) is solvable if and only if (31) holds for
each m ∈ S;

(ii) for any l : EG → IR+, there exists a fractional H-packing for l using metrics
in S. •
For example, (4.3) enables us to derive the statement (1.2) directly from the the-

orem of Papernov [12] (and vice versa): if H is K4 or C5 or a union of two stars, then
F (G,H, c, g) is solvable if and only if (31) holds for all cut metrics m on V G. Similarly,
a weaker, “fractional”, version of Theorem 1 derives the following fractional version
of a theorem in [8]: if H = K5 then F (G,H, c, g) is solvable if and only if (31) holds
for each cut metric and each 2,3-metric on V G. Note that linear programming duality
arguments as above gives relations only between corresponding “fractional” problems
and they, of course, are not sufficient to derive half-integral H-packing theorems, such
as Theorem 1 or (1.3), as well as half-integral multicommodity flow theorems, such as
in [8] or in [11].
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