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Abstract. Studying quasicommuting flag minors of a quantum matrix, Leclerc
and Zelevinsky introduced the notion of weakly separated collections of subsets
of the set [n] = {1, . . . , n}. Answering their conjectures on such collections,
there have been proved that some natural domains D ⊆ 2[n], in particular, the
Boolean cube 2[n] and the discrete Grassmannian {X ⊆ [n] : |X| = m} for m ∈
[n], possess the property of purity, which means that all inclusion-wise maximal
weakly separated collections in D have the same size.

In this note we prove the purity for a class of domains generalizing Boolean cubes
and discrete Grassmannians. It is generated by so-called steep ladder diagrams.
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1 Introduction

For a positive integer n, the set {1, 2, . . . , n} with the usual order is denoted by [n]. For
a subset X ⊆ [n] formed by elements x1 < x2 < . . . < xk, we use notation (x1, . . . , xk)
for X, min(X) for x1, and max(X) for xk, where min(X) = max(X) := 0 if X = ∅.

There are several natural binary relations on the set 2[n] of all subsets of [n]. Namely,
for distinct A,B ⊆ [n], we write:

(1.1) (i) A ≺ B if A = (a1, . . . , ak), B = (b1, . . . , bm), k ≤ m, and ai ≤ bi for
i = 1, . . . , k (termwise dominating);

(ii) A < B if max(A) < min(B) (global dominating);

(iii) A l B if (A − B) < (B − A), where A′ − B′ stands for the set difference
{i′ : A′ ∋ i′ ̸∈ B′} (global dominating after cancelations);

(iv) A ◃ B if A − B ̸= ∅, and B − A can be expressed as a disjoint union of
nonempty subsets B′, B′′ so that B′ < (A−B) < B′′ (splitting).
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Relations (iii) and (iv) give rise to two important notions introduced by Leclerc and
Zelevinsky in [3] (where these notions appear in characterizations of quasi-commuting
flag minors of a generic q-matrix).

Definitions. Sets A,B ⊆ [n] are called strongly separated (from each other) if AlB
or B l A or A = B. Sets A,B ⊆ [n] are called weakly separated if either they are
strongly separated, or A ◃ B and |A| ≥ |B|, or B ◃ A and |B| ≥ |A|. Accordingly,
a collection F ⊆ 2[n] is called strongly (resp. weakly) separated if any two of its
members are such. For brevity we refer to strongly and weakly separated collections
as s-collections and w-collections, respectively.

Consider a set-system D ⊆ 2[n], referring to it as a ground collection, or a domain.
Our interest is focused on the situation when D possesses the property of purity with
respect to (strongly or weakly) separated collections, which means the following.

Definitions. We say that D is s-pure if all (inclusion-wise) maximal s-collections in
D have the same cardinality, which in this case is called the s-rank of D and denoted
by rs(D). Similarly, we say that D is w-pure if all maximal w-collections in D have the
same cardinality, called the w-rank of D and denoted by rw(D).

(The term “purity” is often used for complexes in which all maximal cells have the
same dimension. In our case we can interpret each s-collection (resp. w-collection) as a
cell, forming an abstract simplicial complex with D regarded as the set of 0-dimensional
cells. This justifies the names “s-pure” and “w-pure”.)

Leclerc and Zelevinsky [3] proved that the full domain (Boolean cube) D = 2[n]

is s-pure and conjectured that 2[n] is w-pure as well (in which case there would be

rw(2[n]) = rs(2[n]) = n(n+1)
2

+ 1). A sharper version of this conjecture deals with
ω-chamber sets X ⊆ [n] for a permutation ω on [n], where X obeys the condition:

(1.2) if i < j, ω(i) < ω(j), and j ∈ X, then i ∈ X.

They conjectured that the domain D(ω) formed by the ω-chamber sets is w-pure (in
our terms), with the w-rank equal to |Inv(ω)| + n + 1. Here Inv(ω) denotes the set
of inversions of ω (the pairs (i, j) in [n] such that i < j and ω(i) > ω(j)), and the
number |Inv(ω)| is called the length of ω. For the longest permutation ω0 (where
ω0(i) = n− i+ 1), we have D(ω0) = 2[n].

The above conjecture was proved affirmatively in [2]. The key part consisted in
proving the w-purity of 2[n]; based on this, the result was then shown for an arbitrary
permutation ω, and more.

Theorem 1.1 ([2]) The full domain 2[n] is w-pure. As a consequence, the following
domains D are w-pure as well:

(i) D = D(ω) for any permutation ω on [n];

(ii) D = D(ω′, ω), where ω′, ω are two permutations on [n] with Inv(ω′) ⊂ Inv(ω),
and D(ω′, ω) is formed by the ω-chamber sets X ⊆ [n] satisfying the additional
condition: if i < j, ω′(i) > ω′(j), and i ∈ X, then j ∈ X; furthermore,
rw(D(ω, ω′)) = |Inv(ω)| − |Inv(ω′)|+ n+ 1;
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(iii) D = ∆m′,m
n := {X ⊆ [n] : m′ ≤ |X| ≤ m} for any m′ ≤ m; furthermore,

rw(∆m′,m
n ) =

(
n+1
2

)
−
(
n−m+1

2

)
−
(
m′+1

2

)
+ 1 (which turns into m(n−m) + 1 when

m′ = m).

Note that (ii) generalizes (i) since D(ω) = D(id, ω), where id is the identical per-
mutation (id(i) = i). The domain ∆m′,m

n in (iii), which generalizes the Boolean simplex
(or discrete Grassmannian) ∆m

n := ∆m,m
n . The domains in cases (i),(ii) are s-pure as

well, and the w- and s-ranks are equal; see [2]. (Note that in general a domain D may
be w-pure but not s-pure (e.g. for D = ∆2

5), and vice versa; also when both w- and
s-ranks exist, they may differ.) Using simple observations from [3], one can reduce case
(iii) to 2[n] as well. In its turn, the proof of w-purity for 2[n] given in [2] is direct and
essentially relies on a mini-theory of generalized tilings developed in [1].

Another proof for cases (i),(iii) in Theorem 1.1 was given by Oh, Postnikov, and
Speyer [4], using a machinery of plabic graphs and alternating strand diagrams elabo-
rated in [5].

The purpose of this note is to show that the w-purity for 2[n] implies the w-purity
for a wider class of domains. They are described in terms of lattice paths in the so-
called steep ladder diagrams in the plane (defined in Section 3). Our method of proof for
“ladder domains” D borrows an idea used in [2] for domains D(ω) as in Theorem 1.1(i).
More precisely, we will consider some w-pure domain L that includes D and construct
a certain w-collection C ⊂ L. This C, called a checker for D, has the property that for
any X ∈ L−C, the following are equivalent: (a) X belongs to D, and (b) X is weakly
separated from C. Then for any maximal w-collection F in D, F ∪ C is a maximal
w-collection in L, and now the w-purity of D follows from that of L.

Section 2 describes properties of checkers needed to us. Section 3 introduces do-
mains generated by steep ladder diagrams, gives illustrations and proves the w-purity
for these domains.

Additional terminology. An interval in [n] is a set of the form {p, p+1, . . . , q}, and
a co-interval is the complement of an interval to [n]. For p ≤ q, we denote by [p..q] the
interval {p, p+ 1, . . . , q}.

By a path in a directed graph we mean a sequence P = (v0, e1, v1, . . . , ek, vk),
where each ei is an edge connecting vertices vi−1 and vi. An edge ei is called forward
(backward) if it goes from vi−1 to vi (resp. from vi to vi−1), and we write ei = (vi−1, vi)
(resp. ei = (vi, vi−1)). The path is called directed if all its edges are forward. When it
is not confusing, we may use notation for P via vertices, writing P = v0v1 . . . vk.

2 Checkers

In fact, the concept of “checkers” mentioned in the Introduction is applicable wider,
due to the following procedure of constructing pure domains. It is convenient to be
described in graph theoretic terms, as follows. Let us associate to a domain D ⊆ 2n

the undirected graph GD = (V,E) whose vertices are the elements of D and whose
edges are the weakly (resp. strongly) separated pairs A,B ∈ D, A ̸= B. Then each
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w-collection (resp. s-collection) in D corresponds to a clique of GD, a subset of vertices
such that any two of them are adjacent (connected by edge) in GD. Accordingly, the
w-purity (resp. s-purity) means that all maximal cliques in GD have the same size.

In general we can consider an arbitrary undirected graph G = (V,E) and a vertex
subset D ⊆ V (playing the role of “domain”). We write G[D] for the subgraph of G
induced by D (i.e. the subgraph (D,E ′) with E ′ maximal). We say that D is pure
(w.r.t. cliques) if all maximal cliques in G[D] have the same size.

Lemma 2.1 Let C be a clique in a graph G = (V,E) and let C ′ ⊆ C. Define D to be
the set of vertices v of G such that v ̸∈ C − C ′ and {v} ∪ C is a clique. Suppose that
the whole set V is pure. Then D is pure as well.

Proof Consider a maximal clique X in G[D]. Then X ∩ C = C ′, and Y := X ∪ C is
a clique of G. Moreover, Y is a maximal clique of G. Indeed, suppose that there is a
vertex v ̸∈ Y such that Y ∪{v} is a clique. Then v ̸∈ C and {v}∪C is a clique. Hence
v belongs to D. Moreover, we have v ∈ X, contradicting the maximality of X. Now
the purity of D follows from that of V and the equality |Y | = |X|+ |C − C ′|.

Corollary 2.2 Let L ⊆ 2[n] be a w-pure domain. Let C ⊆ L be a weakly separated
collection and let C ′ ⊆ C. Define DL

C,C′ to be the set of X ∈ L such that X /∈ C −C ′ and

X is weakly separated from C. Then the domain DL
C,C′ is w-pure. A similar assertion

is valid for the strong separation.

When a domain D ⊆ L is representable in the form DL
C,C′ , where L and C are as in

the corollary, and C ′ = D ∩ C, we say that C is a checker for D within L (regarding
either w- or s-purity). If we take as L the entire set 2[n], we abbreviate DL

C,C′ to DC,C′ .

It should be noted that all particular domains whose purity has been known to us
so far are just checker-possessing ones within 2n. In light of this, one may ask: whether
every w-pure domain D ⊂ 2[n] has a checker within 2n? However, this is not so, as can
be shown by a rather simple counterexample.

For completeness of our description we now outline explicit constructions of checkers
for the domains exposed in Theorem 1.1.

Example 1. Consider the domain ∆m′,m
n as in case (iii) of this theorem, where m′ ≤ m.

Let C consist of all intervals of size ≥ m and all co-intervals of size ≤ m′. One can
check that C is a w-collection. Also one can check that C is weakly separated from
each member of ∆m′,m

n , and that X ∈ 2[n] −∆m′,m
n together with the weak separation

of X from C is possible only if X ∈ C (cf. [3, Lemma 3.8]). Therefore, C is a checker
for ∆m′,m

n , and we have ∆m′,m
n = DC,C′ , where C ′ is formed by the intervals of size m

and the co-intervals of size m′.

Example 2. For a permutation ω on [n], consider the domain D(ω) consisting of the
ω-chamber sets (defined by (1.2)). As is shown in [2, Theorem 2.1], D(ω) has as a
checker the following set-system

C(ω) := {ω−1[k] ∩ [j..n] : k, j ∈ [n]} ∪ {∅}
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(where possible repeated sets are ignored and where ω−1[k] stands for {i : ω(i) ∈ [k]}).
This implies that D(ω) = DC(ω),C′ with C ′ := {ω−1[k] : k ∈ [n]}.
Example 3. Consider the domain D(ω′, ω) defined in case (ii) of Theorem 1.1. It follows
from a description in [2, Sec. 7] that D(ω′, ω) has as a checker the set-system

C(ω) ∪ {(ω′)−1[k] ∩ [j] : k, j ∈ [n]},

where C(ω) is defined as in the previous example.

(Note that verifications of the checkers in Examples 2,3 are not straightforward; in
particular, a proof for D(ω′, ω) in [2] uses a machinery of generalized tilings. It seems
that the w-purity of D(ω′, ω) is not implied by results in [4].)

3 Steep ladder diagrams

In this section we define ladder diagrams and associate to them lattice paths and
domains. Then we present a class of ladder diagrams that generate w-pure domains.

1. By the (full square) grid we mean the directed graph Γ whose vertices are the
points in Z2 and whose edges are the unit-length segments directed up or to the right.
So each vertex (point) (i, j) has one outgoing horizontal edge ((i, j), (i+1, j)), denoted
by hori,j, and one outgoing vertical edge ((i, j), (i, j + 1)), denoted by verti,j.

Each finite directed path P in Γ beginning at the origin (0, 0) encodes a finite set
S(P ) as follows:

(3.1) for P = v0v1 . . . vk with v0 = (0, 0), S(P ) consists of the elements i ∈ [k] such
that the edge (vi−1, vi) of P is horizontal.

In particular, the set of directed paths P of length n is bijective to 2[n], and the set of
directed paths P ending at (m,n−m) is bijective to ∆m

n (where P begins at (0, 0)).

We consider a certain finite part of Γ. It is determined by a sequence λ =
(λ0, λ1, . . . , λk) of weakly decreasing nonnegative integers, i.e., λ0 ≥ λ1 ≥ . . . ≥ λk ≥ 0
(a (k + 1)-partition). Define m := λ0 and n := m+ k. The subgraph Γλ = (Vλ, Eλ) of
Γ induced by the set of vertices

Vλ := ∪k
j=0{(i, j) : 0 ≤ i ≤ λj}

is called the ladder determined by λ. Its north-east boundary L = Lλ is formed by a
(non-directed) path from (m, 0) to (0, k) in which the vertical (horizontal) edges are
traversed in the forward (resp. backward) direction. Two examples are drawn in Fig. 1
where the paths Lλ are indicated in bold (omitting directions of edges).

Clearly for each vertex v of Γλ, any directed path P in Γ going from (0, 0) to v is
entirely contained in Γλ. Also the set S(P ) does not change under extending P from
the end by any number of vertical edges. We define:

(3.2) (i) Tλ to be the set of vertices (i, j) in Lλ that are “seen from north and from
east”, or “forming outer corners”, i.e., such that neither hori,j nor verti,j
belongs to Γλ;
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Figure 1: (a) Γ4,4,2,1,0; (b) Γ5,4,4,3,2,2

(ii) Pλ to be the set of directed paths from (0, 0) to Tλ;

(iii) Dλ to be the collection {S(P ) : P ∈ Pλ}.

(In Fig. 1 the set Tλ is indicated by circles.) The domain Dλ is just of interest to us.
Note that the map P 7→ S(P ) is injective on Pλ.

Example 4. When k = m and λi = k − i for i = 0, . . . , k (see Fig. 2(a)), we have

Dλ = 2[k].

Example 5. When λ0 = λ1 = . . . = λk (= m) (see Fig. 2(b)), Γλ spans the rectangle
between (0, 0) and (m, k), Tλ consists of the unique vertex (m, k), and Dλ = ∆m

m+k.
This ladder is denoted by Γm,k.

Example 6 (generalizing Examples 4,5). Let λ0 = λ1 = . . . = λk′ (= m) and λj =

λj−1 − 1 for j = k′ + 1, . . . , k (see Fig. 2(c)). Then Dλ = ∆m′,m
n for n := m + k′ and

m′ := m+ k′ − k.

(a)

e e e e e e
(b)

e (c)

e e e e e
Figure 2: (a) λ = (5, 4, 3, 2, 1, 0), Dλ = 2[5]; (b) λ = (4, 4, 4, 4), Γλ = Γ4,3, Dλ = ∆4

7;
(c) λ = (6, 6, 5, 4, 3, 2), Dλ = ∆2,6

7

2. Next we specify a class of ladder diagrams and then prove that the domains
generated by these ladders are w-pure.

Definition. A ladder Γλ is called steep if λi ≥ λi−1 − 1 for all i = 1, . . . , k. The
adjective steep will be applied to the partition λ as well.

In particular, the ladders in Examples 4–6 and in Fig. 1(b) are steep, but the one
in Fig. 1(a) is not. The domains Dλ in Examples 4–6 are pure by Theorem 1.1, and
relying on the w-purity in case (iii) of that theorem, we show the following
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Theorem 3.1 For a steep ladder Γλ=(λ0,...,λk), the domain Dλ is w-pure.

Remark 1. Dλ need not be w-pure when Γλ is not steep. Indeed, let
λ be as in Fig. 1(a). Then Tλ = {(0, 4), (1, 3), (2, 2), (4, 1)} and Dλ =
{∅, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 1234, 1235, 1245, 1345, 2345}. Since the intervals
∅, 1, 12, 1234, 2345 are weakly separate from any subset in the interval [5], we can con-
sider the rest in Dλ. It has maximal w-collections of sizes 4 and 5, e.g. {2, 4, 24, 1245}
and {2, 3, 4, 23, 34}, whence Dλ is not w-pure.

Proof of Theorem 3.1 As before, m stands for λ0, and we set

m′ := λk and n := k +m′.

Define the partition µ = (µ0, . . . , µk) by

µ0 := n and µj := µj−1 − 1 for j = 1, . . . , k.

This µ is as in Example 6 (with k′ = 0), and we have Dµ = ∆m′,n
n . Also

µk = m− k = m′ = λk,

and the steepness of Γλ implies µj ≥ λj for all j. Therefore, Γλ is entirely contained in
Γµ, and (m′, k) is a common vertex of these ladders. This gives Dλ ⊆ ∆m′,n

n . Indeed,
for X ∈ Dλ, if P is the path in Pλ with S(P ) = X, then adding vertical edges to the
end of P (if needed), we obtain a path P ′ in Pµ such that S(P ′) = S(P ). We call P ′

the extension of P (within Γµ).

By Theorem 1.1(iii), the domain ∆m′,n
n is w-pure. We are going to show the w-

purity of Dλ by constructing a checker for Dλ within ∆m′,n
n ; then the result will follow

from Corollary 2.2.

To this aim, we first reformulate the weak separation condition in Dµ in graphic
terms as suggested in [6]. We denote i-th edge of a path P by ePi .

Definition. Two directed paths P,Q in Pµ are said to be conflicting if

(3.3) there are 1 < a < b ≤ n such that, up to renaming P and Q, the edges ePa , e
Q
b are

horizontal, the edges ePb , e
Q
a are vertical, eQa is below ePa , and eQb is below ePb .

Here for edges e, e′ leaving vertices (i, j) and (i′, j′), respectively, with i + j = i′ + j′,
we say that e is (located) below e′ if either j < j′, or j = j′ and e is horizontal, whereas
e′ is vertical. A pair (a, b) as in (3.3) is called critical. See the picture.

@
@
@
@

@
@

@
@
@

@
@
@

@
@
@
@

@
@@

@
@
@

@
@
@@

a

b

ePa

eQa

ePb

eQb
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Claim Let P,Q ∈ Pµ, X = S(P ), and Y = S(Q). The sets X, Y are weakly separated
if and only if P,Q are non-conflicting.

This fact was established in [6]. To make our description self-contained (and for
the reason that the text of [6] is not accessible at present), we give a proof.

Proof of the Claim Suppose that P,Q are conflicting, and let (a, b) be a critical
pair for them. Then (up to renaming P,Q), ePa = hori,j, e

Q
a = verti′,j′ , e

P
b = vertp,q,

eQb = horp′,q′ , where i + j = i′ + j′ = a − 1, i < i′, p + q = p′ + q′ = b − 1, p ≤ p′. It
follows that b, c ∈ Y − X and a ∈ X − Y for some c < a (where c exists because of
|X ∩ [a− 1]| = i < i′ = |Y ∩ [a− 1]|). Using these relations together with |X ∩ [b]| =
|X ∩ [b− 1]| = p < p′ +1 = |Y ∩ [b]|, it is not difficult to conclude that X, Y cannot be
weakly separated.

Conversely, suppose thatX, Y are not weakly separated. LetX−Y = X1∪X2∪. . .∪
Xα and Y −X = Y1∪Y2∪ . . .∪Yβ, where all Xi, Yj are nonempty and, up to renaming
X, Y , one has Y1 < X1 < Y2 < X2 < · · · (with < defined in (1.1)(ii)). Then one of
the following takes place: (i) β ≥ 2 and |X1| < |Y1 ∪ Y2|, and (ii) α, β ≥ 2 and |X1| ≥
|Y1 ∪ Y2|. Define a := min(X1) and b := max(Y2). Then a < b; ePa , e

Q
b are horizontal;

eQa , e
P
b are vertical; and eQa is below ePa (since |Y ∩ [a− 1]| − |X ∩ [a− 1]| = |Y1| > 0).

Also, in case (i), eQb is below ePb (since |Y ∩ [b]| − |X ∩ [b]| = |Y1 ∪ Y2| − |X1| > 0),
whence (a, b) is critical and P,Q are conflicting. And in case (ii), for d := min(X2),
we have: b < d; eQb , e

P
d are horizontal; ePb , e

Q
d are vertical; ePb is below eQb (since

|X ∩ [b− 1]| > |Y ∩ [b− 1]|); and ePd is below eQd . So (b, d) is critical and P,Q are again
conflicting.

Next we construct the desired checker. Its members are induced by certain paths
in Pµ, as follows. For a vertex (i, j) ∈ Vµ, let Hi,j be the directed path formed by
the vertical path P1 from (0, 0) to (0, j), followed by the horizontal path P2 from (0, j)
to (i, j), followed by the vertical path P3 from (i, j) to the vertex (i, j′) of Γµ with j′

maximum (some of P1, P2, P3 may be degenerate). Such an Hi,j is called a double hook
in Γµ, and we say that it is essential for Γλ if the horizontal edge hori,j does not belong
to Γλ (note that hori,j need not belong to Γµ either). In particular, an essential Hi,j

ends in Tµ (and therefore belongs to Pµ), and the vertex (i, j) either is not in Γλ, or
belongs to the boundary Lλ and is “seen from east”.

We assert that the collection C of sets S(H) over all essential double hooks H for
Γλ is a checker for Dλ within Dµ.

Indeed, first of all it is easy to see that any two double hooks are non-conflicting;
so C is a w-collection by the Claim.

Consider an essential double hook H = Hi,j and its corresponding concatenation
into P1, P2, P3 (where P1, P3 are vertical and P2 is horizontal). Suppose that some path
Q ∈ Pµ is conflicting to H. Then there is a critical pair (a, b) such that (taking into
account the construction of H): eHa ∈ P2, eHb ∈ P3, eQa is vertical and lies below
eHa , and eQb is horizontal and lies below eHb . Let eHb = verti′,j′ and eQb = horp,q. Since
eHb ∈ P3, we have i

′ = i, j′ ≥ j, and i+ j ≤ i+ j′ = b−1. At the same time, p ≥ i′ = i
(since eQb is below eHb ) and p+ q = b− 1. Now the facts that Γλ is steep and that hori,j
is not in Γλ imply that the edge eQb is not in Γλ either. This means that Q cannot be
the extension of any path in Pλ, and hence S(Q) is not in Dλ.
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Conversely, suppose that a path Q ∈ Pµ is not the extension of any path in Pλ.
Let e = horp,q be the last horizontal edge of Q. Then e does not belong to Γλ. Let Q

′

be the part of Q from (0, 0) to (p+ 1, q). Two cases are possible.

(i) Q′ is the concatenation of the vertical path from (0, 0) to (0, q) and the horizontal
path from (0, q) to (p + 1, q). Then Q is nothing else than the double hook Hp+1,q.
Moreover, Q is essential since the vertex (p+ 1, q) (and therefore the edge horp+1,q) is
not in Γλ.

(ii) Q′ is not as in (i). Let e′ = (i′, j′) be the last vertical edge of Q′. Then 0 < i′ ≤ p
and j′ = q− 1. Take the double hook H = Hp,q. It is essential since horp,q is not in Γλ.
Also (p, q) cannot be the endvertex of H (since the fact that (p + 1, q) is a vertex of
Γµ implies (p, q) /∈ Tµ). Therefore, H contains the edge vertp,q. Now define a := i′ + q
and b := p + q + 1. Then a < b, the edge eHa is horizontal (namely, hori′−1,q) and lies
above eQa = e′ = verti′,q−1, and the edge eHb is vertical (namely, vertp,q) and lies above

eQb = horp,q. Hence Q and H are conflicting, implying that the sets S(Q) and S(H) ∈ C
are not weakly separated.

Thus, C is indeed a checker for Dλ within Dµ = ∆m′,m
n (and Dλ is represented

as DL
C,C′ , where C ′ consists of essential double hooks Hi,j with (i, j) contained in the

boundary Lλ and seen from east). Then Dλ is w-pure by Corollary 2.2, yielding the
theorem.

Remark 2. For a steep partition λ = (λ0, . . . , λk), the w-rank rw(Dλ) is computed as
1 + λ0 + · · · + λk−1 =: ηλ, which is equal to the number of little squares (inner faces)
in Γλ plus the number |Tλ| of outer corners (cf. (3.2)(i)). To see this, take a vertex
(i, j) ∈ Vλ that either belongs to Tλ or is the south-east vertex of a little square in Γλ.
We associate to (i, j) the directed path Ri,j in Γλ that is the concatenation of three
paths going, respectively, from (0, 0) to (0, j), from (0, j) to (i, j), from (i, j) to (i, j′)
with j′ maximum, and in case (i, j′) ̸∈ Tλ (i.e. when i < λk and j′ = k), Ri,j is extended
by the path from (i, k) to (λk, k). Let R be the set of such paths; then |R| = ηλ. A
routine verification shows that the paths in R (more precisely, their extensions in Γµ)
are not conflicting. Also any other path Q ∈ Pλ is conflicting to some path in R. (Such
a Q must have consecutive edges vertp,q−1 and horp,q with p > 0 and q < k; therefore,
Q is conflicting to Rp,q.) So {S(R) : R ∈ R} is a maximal w-collection in Dλ.

In conclusion it is reasonable to ask: what is the behavior of ladder diagrams with re-
spect to the strong separation relation? We know (due to [3, Sec. 4]) that the diagrams
generating Boolean cubes (illustrated in Example 4) are such. On the other hand, dis-
crete Grassmannians (generated by diagrams as in Example 5) are not s-pure in gen-
eral. For example, ∆2

5 (mentioned in the Introduction) contains maximal s-collections
of different sizes, e.g. {12, 13, 15, 35, 45} and {12, 13, 23, 34, 35, 45}. One more bad
example is generated by the steep partition λ = (2, 2, 2, 1, 1, 0); here Dλ has maximal
s-collections with different sizes {1, 12, 13, 14, 34, 4, 5} and {1, 2, 12, 23, 24, 34, 4, 5}.

However, in spite of seemingly poor behavior of ladder diagrams with respect to the
s-purity, the strong separation relation for the Boolean cube can be reformulated in
terms of “conflicting paths” in the corresponding ladder diagram, in spirit of what was
done in the weakly separation case. Now the definition of conflicting paths is modified
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as follows (cf. the definition in the proof of Theorem 3.1). Let µ be the partition with
Dµ = 2[n].

Definition. We say that directed paths P,Q in Pµ are s-conflicting if

(3.4) there are 1 < a < b ≤ n such that, up to renaming P and Q, the edges ePa , e
Q
b are

horizontal, the edges ePb , e
Q
a are vertical, and eQa is located below ePa .

(Now the conditions on eQb and ePb are weakened by admitting both cases: eQb below
ePb , or e

Q
b above ePb , as illustrated in the picture below.) We call (a, b) an s-critical pair

for P,Q.
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Lemma 3.2 Paths P,Q ∈ Pµ are s-conflicting if and only if the sets X := S(P ) and
Y := S(Q) are not strongly separated.

Proof Suppose that P,Q are conflicting, and let a, b be as in (3.4). The fact that
eQa is below ePa implies the existence of c ∈ Y − X with c < a. We have c < a < b,
c, b ∈ Y −X, and a ∈ X − Y , whence X,Y are not strongly separated.

Conversely, suppose that X, Y are not strongly separated. Let c := min(Y −X) and
a := min(X − Y ); one may assume that c < a. Since X,Y are not strongly separated,
there exists b ∈ Y −X such that b > a. One can see that the pair (a, b) is s-critical for
P,Q, as required.
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