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1 Introduction

Among a variety of multi(commodity)flow problems, one popular class embraces
multiflow demand problems in undirected planar graphs in which the demand
pairs are located within specified faces of the graph. More precisely, a problem
input consists of: a planar graph G = (V,E) with a fixed embedding in the plane;
nonnegative integer capacities c(e) ∈ Z+ of edges e ∈ E; a subset H ⊆ FG of
faces, called holes (where FG is the set of faces of G); a set D of pairs st of
vertices such that both s, t are located on (the boundary of) one of the holes;
and demands d(st) ∈ Z+ for st ∈ D. A multiflow for G,D is meant to be a
pair f = (P, λ) consisting of a set P of D-paths P in G and nonnegative real
weights λ(P ) ∈ R+. Here a path P is called a D-path if {sP , tP } = {s, t} for
some st ∈ D, where sP and tP are the first and last vertices of P , respectively.
We call f admissible for c, d if it satisfies the capacity constraints:∑(

λ(P ) : e ∈ P ∈ P
)
≤ c(e), e ∈ E, (1.1)

and realizes the demands:∑(
λ(P ) : P ∈ P, {sP , tP } = {s, t}

)
= d(st), st ∈ D. (1.2)



The (fractional) demand problem, denoted as D(G,H, D, c, d), or D(c, d) for
short, is to find an admissible multiflow for c, d (or to declare that there is none).
When the number of holes is “small”, this linear program is known to possess
nice properties. To recall them, we need some terminology and notation.

For X ⊆ V , the set of edges of G with one end in X and the other in V −X
is denoted by δ(X) = δG(X) and called the cut in G determined by X. We also
denote by ρ(X) = ρD(X) the set of pairs st ∈ D separated by X, i.e., such that
|{s, t} ∩X| = 1. For a singleton v, we write δ(v) for δ({v}), and ρ(v) for ρ({v}).
For a function g : S → R and a subset S′ ⊆ S, g(S′) denotes

∑
(g(e) : e ∈ S′).

So c(δ(X)) is the capacity of the cut δ(X), and d(ρ(X)) is the total demand on
the elements of D separated by X.

A capacity-demand pair (c, d) is said to be Eulerian if c(δ(v)) − d(ρ(v)) is
even for all vertices v ∈ V .

The simplest sort of necessary conditions for the solvability of the multiflow
demand problem with any G,D is the well-known cut condition, saying that

∆c,d(X) := c(δ(X))− d(ρ(X)) ≥ 0 (1.3)

should hold for all X ⊂ V . It need not be sufficient, and in general the solvability
of a multiflow demand problem is provided by metric conditions. In our case the
following results have been known.

(A) For |H| = 1, Okamura and Seymour [9] showed that the cut condition is
sufficient, and that if (c, d) is Eulerian and the problem D(c, d) has a solution,
then it has an integer solution, i.e., there exists an admissible multiflow (P, λ)
with λ integer-valued. Okamura [8] showed that these properties continue to hold
for |H| = 2.

(B) For |H| = 3, the cut condition becomes not sufficient and the solvability
criterion involves also the so-called (2,3)-metric condition. It is related to a map
σ : V → V (K2,3), where Kp,q is the complete bipartite graph with parts of
p and q vertices. Such a σ defines the metric m = mσ on V by m(u, v) :=
dist(σ(u), σ(v)), u, v ∈ V , where dist denotes the distance (the shortest path
length) between vertices in K2,3. It gives a partition of V into five sets, with
distances 1 or 2 between them, and m is said to be a (2,3)-metric on V . (When
speaking of a metric, we admit zero distances between different points, i.e.,
consider a semimetric in essence.) We denote

∑
(c(e)m(e) : e ∈ E) by c(m), and∑

(d(st)m(st) : st ∈ D) by d(m). Karzanov showed the following

Theorem 1 ([4]). Let |H| = 3. Then D(c, d) has a solution if and only if cut
condition (1.3) holds, and

∆c,d(m) := c(m)− d(m) ≥ 0 (1.4)

holds for all (2,3)-metrics m on V (the (2,3)-metric condition). Furthermore, if
(c, d) is Eulerian and the problem D(c, d) has a solution, then it has an integer
solution.

2



We call ∆c,d(X) in (1.3) (resp. ∆c,d(m) in (1.4)) the excess of a set X (resp.
a (2,3)-metric m) w.r.t. c, d. One easily shows that ∆c,d(X) and ∆c,d(m) are
even if (c, d) is Eulerian.

(C) When |H| = 4, the situation becomes more involved. As is shown in [5],
the solvability criterion for D(c, d) involves, besides cuts and (2,3)-metrics, met-
rics m = mσ on V induced by maps σ : V → V (Γ ) with Γ running over a set
of planar graphs with four faces (called 4f-metrics), and merely the existence of
a half-integer solution is guaranteed in a solvable Eulerian case. When |H| = 5,
the set of unavoidable metrics in the solvability criterion becomes ugly (see [3,
Sec. 4]), and the fractionality status is unknown so far.

In this paper we focus on algorithmic aspects. The first combinatorial
strongly polynomial algorithm (having complexity O(n3 logn)) to find an integer
solution in the Eulerian case with |H| = 1 is due to Frank [1], and subsequently
a number of faster algorithms have been devised; a linear-time algorithm is given
in [11]. Hereinafter n stands for the number |V | of vertices of the graph. Efficient
algorithms for |H| = 2 are known as well. For a survey and references in cases
|H| = 1, 2, see, e.g., [10].

Our aim is to give an algorithm to solve problem D(c, d) with |H| = 3, which
checks the solvability and finds an integer admissible multiflow in the Eulerian
case. Our algorithm uses merely combinatorial means and is strongly polynomial
(though having a high polynomial degree). Its core is a subroutine for a certain
planar analogue of the (2,3)-metric minimization problem. We are able to fulfil
this task efficiently and in a combinatorial fashion, by reducing it to a series of
shortest paths problems in a dual planar graph.

Remark 1. The (2,3)-metric minimization problem in a general edge-weighted
graph with a specified set of five terminals can be solved in strongly polynomial
time (by use of the ellipsoid method) [2] or by a combinatorial weakly polynomial
algorithm [6].

This paper is organized as follows. Section 2 reviews needed facts from [4],
which refine the structure of cuts and (2,3)-metrics that are essential for the
solvability of our 3-hole demand problem. Using these refinements, Sections 3
and 4 develop efficient combinatorial procedures to verify the cut and (2,3)-
metric conditions for problem D(c, d) with initial or current c, d; moreover, these
procedures determine or duly estimate the minimum excesses of regular cuts and
(2,3)-metrics, which is important for the efficiency of our algorithm for D(c, d).
This algorithm is described in Section 5.

To slightly simplify the further description, we will assume, w.l.o.g., that the
boundary of any hole H contains no isthmus. For if b(H) has an isthmus e, we
can examine the cut {e}. If it violates the cut condition, the problem D(c, d)
has no solution. Otherwise D(c, d) is reduced to two smaller demand problems,
with at most 3 holes and with Eulerian data each, by deleting e and properly
modifying demands concerning H.

3



2 Preliminaries

Throughout the rest of the paper, we deal with G = (V,E),H, D, c, d as above
such that |H| = 3 and (c, d) is Eulerian. Let H = {H1,H2, H3}.

One may assume that the graph G = (V,E) is connected and its outer
(unbounded) face is a hole (say, H3). We identify objects in G, such as edges,
paths, subgraphs, and etc., with their images in the plane. A face F ∈ FG is
regarded as an open region in the plane. Since G is connected, the boundary
b(F ) of F is connected, and we identify it with the corresponding cycle (closed
path) considered up to reversing and shifting cyclically. Note that this cycle may
contain repeated vertices or edges (an edge of G may be passed by b(F ) twice,
in different directions). A subpath in this cycle is called a segment in b(F ).

We denote the subgraph of G induced by a subset X ⊆ V by [X] = [X]G,
the set of faces of G whose boundary is entirely contained in [X] by F(X), and
the region in the plane that is the union of [X] and all faces in F(X) by R(X).
We also need additional terminology and notation.

A subset X ⊂ V (as well as the cut δ(X)) is called regular if the region
R(X) is simply connected (i.e., it is connected and any closed curve in it can be
continuously deformed into a point), and for each i = 1, 2, 3, [X] ∩ b(Hi) forms
a (possibly empty) segment of b(Hi). In particular, the graph [X] is connected.

Let {t1, t2} and {s1, s2, s3} be the parts (color classes) in K2,3. Given σ :
V → V (K2,3), we denote the set σ−1(ti) by Ti = Tσ

i , and σ−1(sj) by Sj = Sσ
j .

Then Ξσ = (T1, T2, S1, S2, S3) is a partition of V . The (2,3)-metric mσ is called
regular if:

(2.1) (i) all sets T1, T2, S1, S2, S3 in Ξσ are nonempty;
(ii) for i = 1, 2, 3, the region R(Si) is simply connected;
(iii) for i, j ∈ {1, 2, 3}, Si ∩ b(Hj) = ∅ holds if and only if i = j; and for

i ̸= j, [Si] ∩ b(Hj) forms a segment of b(Hj).

Then the complement to R2 of H1 ∪H2 ∪H3 ∪R(S1) ∪R(S2) ∪R(S3) consists
of two connected components, one containing T1 and the other containing T2.
The structure described in (2.1) is illustrated in the picture.

s1 s3 s2

t2

t1

H3

H2 H1S3 S2S1

T2

T1

K2,3

The notions of regular sets (cuts) and (2,3)-metric are justified by the fol-
lowing important strengthening of the first assertion in Theorem 1 (cf. [4]).

Theorem 2. D(c, d) has a solution if and only if cut condition (1.3) holds for
all regular subsets X ⊂ V , and (2,3)-metric condition (1.4) holds for all regular
(2,3)-metrics on V .
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Remark 2. In fact, the refined solvability criterion for D(c, d) given in [4,
Stat. 2.1] involves a slightly sharper set of (2,3)-metrics compared with that
defined by (2.1); at the same time it does not restrict the set of cuts. Note,
however, that if X ⊂ V is not regular, then there are nonempty sets X ′, X ′′ ⊂ V
such that δ(X ′)∩δ(X ′′) = ∅, δ(X ′)∪δ(X ′′) ⊆ δ(X), and ρ(X) ⊆ ρ(X ′)∪ρ(X ′′).
Then X is redundant (it can be excluded from verification of (1.3)).

3 Verifying the cut condition

In this section and the next one we describe efficient procedures for checking
the solvability of D(G,H, D, c, d) (considering the initial or current data). By
Theorem 2, it suffices to verify validity of cut condition (1.3) for regular sets and
(2,3)-metric condition (1.4) for regular (2,3)-metrics.

A check-up of the cut condition is rather straightforward. Moreover, we can
duly estimate from below the minimum excess ∆c,d(X) among the regular sets
X ⊂ V . In fact, we will compute the minimum excess in a somewhat larger
collection of sets.

Definition. We say that a subset X ⊂ V is semi-regular if |δ(X) ∩ b(Hi)| ≤ 2
for each i = 1, 2, 3.

One can see that any regular set X is semi-regular. Also for each i, the fact that
b(Hi) has no isthmus (as mentioned in the Introduction) implies that |δ(X) ∩
b(Hi)| is 0 or 2.

Based on Theorems 1 and 2, we are going to compute the minimum ex-
cess ∆c,d(X) among the semi-regular sets X; denote this minimum by µcut

c,d . In

particular, if µcut
c,d < 0, then the problem D(c, d) has no solution.

To compute µcut
c,d , we fix a nonempty I ⊆ {1, 2, 3} and scan the possible

collections A = {Ai : i ∈ I}, where each Ai consists of two edges in b(Hi). We
say that a semi-regular set X is consistent with A (or with (I,A)) if δ(X) ∩
b(Hi) = Ai for each i ∈ I, and δ(X) ∩ b(Hi) = ∅ for i /∈ I. Also for i ∈ I, we
denote the set of demand pairs st ∈ D located on b(Hi) and spanning different
components (segments) in b(Hi) − Ai by D(Ai). Then for all semi-regular sets
X consistent with A, the right hand side value in (1.3) is the same, namely,
d(ρ(X)) =

∑
(d(D(Ai) : i ∈ I).

Using this, for each (I,A), we compute the minimum excess among the semi-
regular sets consistent withA in a natural way, by solving 2|I|−1 minimum s–t cut
problems. Here each problem arises by choosing one component Si in b(Hi)−Ai,
for each i ∈ I. We transform G by shrinking ∪(Si : i ∈ I) into a new vertex s,
shrinking the rest of b(Hi) − Ai, i ∈ I, into a new vertex t, and shrinking each
cycle b(Hj), j /∈ I, into a vertex. Solving the corresponding min cut problem
in the arising graph (with the induced edge capacities), we obtain the desired
minimum excess among those X satisfying δ(X) ∩ b(Hi) = Ai, i ∈ I.

Thus, by applying the above procedure to all possible combinations (I,A)
(whose number is O(n6)), we can conclude with the following
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Proposition 3 The task of computing µcut
c,d reduces to finding O(n6) minimum

cuts in graphs with O(n) vertices and edges. In particular, this enables us to
efficiently verify cut condition (1.3) for D(c, d).

4 Verifying the (2,3)-metric condition

In this section we develop a procedure of verifying the (2,3)-metric condition
for D(G,H, D, c, d). Moreover, the procedure duly estimates from below the
minimum excess of a regular (2,3)-metric, which is crucial for our algorithm. We
use a shortest paths technique in a modified dual graph.

This graph is constructed as follows. First we take the standard planar dual
graph G∗ = (V ∗, E∗) of G, i.e., V ∗ is bijective to FG and E∗ is bijective to
E, defined by F ∈ FG 7→ vF ∈ V ∗ and e ∈ E 7→ e∗ ∈ E∗. Here a dual edge
e∗ connects vertices vF and vF ′ if F, F ′ are the faces whose boundaries share e
(possibly F = F ′). (Usually vF is visualized as a point in F , and e∗ as a line
crossing e.)

Next we slightly modify G∗ as follows. For i = 1, 2, 3, let Ei denote the
sequence of edges of the cycle b(Hi). (Recall that b(Hi) has no isthmus, hence
all edges in Ei are different.) Let zi denote the vertex of G∗ corresponding to
the hole Hi. Then zi has degree |Ei| and is incident with the dual edges e∗ for
e ∈ Ei. We split zi into |Ei| vertices zi,e of degree 1 each, where e ∈ Ei, making
zi,e be the end of e∗ instead of zi. These pendant vertices are called terminals.

They belong to the boundary of the same face, denoted as Ĥi, and the set of
terminals ordered clockwise around Ĥi is denoted by Zi.

This gives the desired dual graph for (G,H), denoted as Ĝ∗. An example

of transforming G into Ĝ∗ in a neighborhood of a hole Hi is illustrated in the
picture, where A, . . . , F are faces in G, and the terminals in b(Ĥi) are indicated
by bold circles.

A

B

C
D

E

FHi
vB

vC

vA

vD

vE

vFHi
^

The edges of Ĝ∗ are endowed with lengths c inherited from the capacities in
G; namely, we assign c(e∗) := c(e) for e ∈ E.

Consider a regular (2,3)-metric m = mσ and its corresponding partition
(T1, T2, S1, S2, S3) (cf. (2.1)). By the regularity of m, for i = 1, 2, 3, the cycle
b(Hi) shares two edges with the cut δ(Si−1), say, g(i− 1) and h(i− 1), and two
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edges with δ(Si+1), say, g
′(i+1) and h′(i+1); let for definiteness g(i− 1), h(i−

1), h′(i+1), g′(i+1) follow in this order clockwise in b(Hi) (taking indices modulo
3). Note that, although the segments [Si−1]∩b(Hi) and [Si+1]∩b(Hi) are disjoint,
the edges g(i−1) and g′(i+1) may coincide, and similarly for h(i−1) and h′(i+1).

So, for p = 1, 2, 3, the cut δ(Sp) meets b(Hp+1) by {g(p), h(p)}, meets b(Hp−1)
by {g′(p), h′(p)}, and does not meet b(Hp). Since the region R(Sp) is simply con-
nected, the cut δ(Sp) corresponds to a simple cycle C(Sp) in G∗; it passes the
elements g(p)∗, zp+1, h(p)

∗, h′(p)∗, zp−1, g
′(p)∗ (in the counterclockwise order).

The cycle C(Sp) turns into two disjoint paths in Ĝ∗: path Pp connecting the ter-
minals zp+1,g(p) and zp−1,g′(p), and path Qp connecting zp+1,h(p) and zp−1,h′(p).
See the picture.

h'(p)

g'(p)

Hp-1 Sp

h(p)

g(p)

Hp+1

Qp

Pp

Hp-1 Hp+1
^ ^

This correspondence gives c(δ(Sp)) = c(Pp) + c(Qp), implying

c(m) =
∑(

c(δ(Sp)) : p = 1, 2, 3
)
=

∑(
c(Pp) + c(Qp) : p = 1, 2, 3

)
,

taking into account the evident fact that no edge of G connects T1 and T2.
In order to express the “demand value” d(m), consider arbitrary edges

b1, b2, b3, b4 occurring in this order in a cycle b(Hi), possibly with bq = bq+1

for some q (letting b5 := b1). Removal of these edges from the cycle produces
four segments ω1, ω2, ω3, ω4, where ωq is the (possibly empty) segment between
bq and bq+1. Let di(b1, b2, b3, b4) denote the sum of demands d(st) over the pairs
st spanning neighboring segments ωq, ωq+1 plus twice the sum of demands d(st)
over st spanning either ω1 and ω3, or ω2 and ω4.

Now for i = 1, 2, 3, take as b1, b2, b3, b4 the edges g(i − 1), h(i − 1), h′(i +
1), g′(i+1), respectively. Then the contribution to d(m) from the demand pairs
on b(Hi) is just di(g(i− 1), h(i− 1), h′(i+ 1), g′(i+ 1)). Hence

d(m) =
∑(

di(g(i− 1), h(i− 1), h′(i+ 1), g′(i+ 1)) : i = 1, 2, 3
)
.

This prompts the idea to minimize c(m) over a class of (2,3)-metrics m
which, for each i = 1, 2, 3, deal with the same quadruple of edges in b(Hi), and
therefore have equal values d(m). (In reality, we will be forced to include in this
class certain non-regular (2,3)-metrics as well.)

On this way we come to the following task, which is solved by comparing
O(1) combinations of the lengths of c-shortest paths in Ĝ∗:

(4.1) Given, for each i = 1, 2, 3, a quadruple Z̃i = (z1i , z
2
i , z

3
i , z

4
i = z0i ) of terminals

in Zi (with possible coincidences), find a set P of six (simple) paths in Ĝ∗

minimizing their total c-length, provided that:

7



(∗) each path in P connects terminals zpi and zqj with i ̸= j, and the set

of endvertices of the paths in P is exactly Z̃1 ∪ Z̃2 ∪ Z̃3 (respecting the
possible multiplicities).

Next we need some terminology and notation. For i = 1, 2, 3, let Ai be the
quadruple of edges in the cycle b(Hi) of G that corresponds to Z̃i (respecting the
possible multiplicities). Let A := (A1, A2, A3). Define ζ(A) to be the minimum c-
length of a path system in (4.1), and define d(A) to be the sum of corresponding
demand values d(Ai). Then d(A) = d(m) for any m ∈ M(A), and

ζ(A) ≤ min{c(m) : m ∈ M(A)}, (4.2)

where M(A) denote the set of regular (2,3)-metrics m = mσ in G agreeable to A,
i.e., such that for the partition Ξσ = (T1, T2, S1, S2, S3) and for each i = 1, 2, 3,
δ(Si−1) ⊔ δ(Si+1) meets b(Hi) by Ai.

In general, inequality (4.2) may be strong. Nevertheless, we can get a converse
inequality by extending M(A) to a larger class of (2,3)-metrics.

Definition. Let us say that a (2,3)-metric m = mσ is semi-regular if the sets
S1, S2, S3 in Ξσ are nonempty and satisfy (iii) in (2.1).

(Whereas T1, T2 may be empty and (ii) of (2.1) need not hold; in particular,
subgraphs [Si] need not be connected.) We show the following

Proposition 4 ζ(A) is equal to c(m) for some semi-regular (2,3)-metric m
agreeable to A.

(When a (2,3)-metric m is semi-regular but not regular, it is “dominated by
two cuts”, in the sense that there are X,Y ⊂ V such that ∆c,d(m) ≥ ∆c,d(X)+
∆c,d(Y ), cf. [3, Sec. 3].)

Proof. We use the observation that problem D(c, d) remains equivalent when
an edge e is subdivided into several edges in series, say, e1, . . . , ek (k ≥ 1) with
the same capacity: c(ei) = c(e). In particular, we can subdivide edges in the
boundaries of holes, due to which we may assume that each quadruple Ai consists
of different edges. Then all terminals in each Z̃i become different.

Another advantage is that when considering an optimal path system P
in (4.1), we may assume that the paths in P are pairwise edge-disjoint. In-

deed, if some edge e∗ of Ĝ∗ is used by k > 1 paths in P, we can subdivide the
corresponding edge e of G into k edges in series. This leads to replacing e∗ by a
tuple of k parallel edges (of the same length c(e)) and we assign each edge to be
passed by exactly one of those paths.

We need to improve P so as to get rid of “crossings”. More precisely, consider
two paths P, P ′ ∈ P, suppose that they meet at a vertex v, let e, e′ be the edges
of P incident to v, and let g, g′ be similar edges of P ′. We say that P and P ′ cross
(each other) at v if e, g, e′, g′ occur in this order (clockwise or counterclockwise)
around v, and touch otherwise.
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For an inner (nonterminal) vertex v, let P(v) be the set of paths in P passing
v, and E(v) the clockwise ordered set of edges incident to v and occurring in P(v).
We assign to the edges in E(v) labels 1, 2 or 3, where an edge e is labeled i if

for the path P ∈ P(v) containing e, P begins or ends at a terminal z in Z̃i and

e belongs to the part of P between v and z. (So if P connects Z̃i and Z̃j and e′

is the other edge of P incident to v, then e′ has label j.)

We iteratively apply the following uncrossing operation. Choose a vertex v
with |E(v)| ≥ 4. Split each path of P(v) at v. This gives, for each edge e ∈ E(v)
with label i, a path containing e and connecting v with a terminal in Z̃i; denote
this path by Q(e). These paths are regarded up to reversing. Now we recombine
these paths into pairs as follows, using the obvious fact that for each i = 1, 2, 3,
the number of edges in E(v) with label i is at most |E(v)|/2.

Choose two consecutive edges e, e′ in E(v) by the following rule: e, e′ have
different labels, say, i, j, and the number of edges in E(v) having the third label
k (where {i, j, k} = {1, 2, 3}) is strictly less than |E(v)|/2. (Clearly such e, e′

exist.) We concatenate Q(e) and Q(e), obtaining a path connecting Z̃i and Z̃j ,
update E(v) := E(v) − {e, e′}, apply a similar procedure to the updated E(v),
and so on until E(v) becomes empty.

One can see that the resulting path system P ′ satisfies property (∗) in (4.1)
and has the same total c-length as before (thus yielding an optimal solution
to (4.1)), and now no two paths in P ′ cross at v. Note that for some vertices
w ̸= v, edge labels in E(w) may become incorrect (this may happen with those
vertices w that belong to paths in P ′(v)). For this reason, we finish the procedure
of handling v by checking such vertices w and correcting their labels where
needed. In addition, if we reveal that one or another path in P ′(v) is not simple,
we cancel the corresponding cycle in it (which has zero c-length since P ′ is
optimal).

At the next iteration we apply a similar uncrossing operation to another
vertex v′, and so on. Upon termination of the process (taking < n iterations) we

obtain a path system P̃ such that

(4.3) P̃ is optimal to (4.1) and admits no crossings.

Property (∗) in (4.1) implies that for each p = 1, 2, 3, the sets Z̃p−1 and

Z̃p+1 are connected by exactly two paths in P̃. We denote them by Pp, Qp and

assume that both paths go from Z̃p−1 to Z̃p+1 (reversing paths in P̃ if needed).

Since Pp, Qp nowhere cross, we can subdivide the space R2 − (Ĥp−1 ∪ Ĥp+1)
into two closed regions R,R′ such that R∩R′ = Pp ∪Qp, R lies “on the right
from Pp” and “on the left from Qp”, while R′ behaves conversely. (Here we give
informal, but intuitively clear, definitions of R,R′, omitting a precise topological
description.) One of R,R′ does not contain the hole Ĥp; denote it by Rp. We
observe the following:

(4.4) no path in P̃ meets the interior int(Rp) of Rp.
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Indeed, if P ∈ P̃ goes across int(Rp), then P is different from Pp and Qp;

hence P has one endvertex in Z̃p. Since Z̃p∩Rp = ∅, P must cross the boundary
of Rp. This implies that P crosses some of Pp, Qp, contrary to (4.3).

From (4.4) it follows that the interiors of R1,R2,R3 are pairwise disjoint

and that for p = 1, 2, 3, the paths Pp, Qp begin at consecutive terminals in Z̃p−1

and end at consecutive terminals in Z̃p+1 (thinking of both paths as going from

Z̃p−1 to Z̃p+1). So we may assume for definiteness that

(4.5) for i = 1, 2, 3, the terminals z1i , z
2
i , z

3
i , z

4
i of Z̃i are, respectively, the end of

Pi−1, the end of Qi−1, the beginning of Qi+1, and the beginning of Pi+1;

see the picture, where for simplicity all paths are vertex disjoint.

z2 z3

z1 z4

z2 z2

z1 z1

z3z3

z4 z42

2

2

2
3

3

3

3

11

1 1

Q1
Q3 Q2

P1 P3
P2

ℜ ℜ ℜ
1 23

Then the space R2 − (Ĥ1 ∪ Ĥ2 ∪ Ĥ3 ∪ int(R1) ∪ int(R2) ∪ int(R3)) can be
subdivided into two closed regions L1 and L2, where the former lies “on the
right from P1, P2, P3” and the latter lies “on the left from Q1, Q2, Q3”. One can
see that

(4.6) each edge of Pp is shared by the regions Rp and L1, and each edge of Qp is
shared by Rp and L2.

Now the sets of faces in (the natural extensions to G∗ of) the regions
L1,L2,R1,R2,R3 induce vertex sets T1, T2, S1, S2, S3 in G, respectively, giv-
ing a partition of V . Let m be the (2,3)-metric determined by this partition.
Then (4.5) implies that m is semi-regular and agreeable to A. By (4.6), for
p = 1, 2, 3, each edge of δ(Sp) connects Sp with one of T1, T2 (whereas no edge
of G connects T1 and T2, or connects Si and Sj for i ̸= j). Therefore,

ζ(A) =
∑

(c(Pp) + c(Qp) : p = 1, 2, 3) = c(m),

yielding the proposition.

Remark 4. Strictly speaking, the metric m in the above proof concerns the
modified graph, obtained by replacing some edges e = uv of the original graph
G by paths Le connecting u and v. When returning to the original G, those
elements of Sp or Tq that are intermediate vertices of such paths Le disappear,
and as a result, there may appear (original) edge connecting T1 and T2, or Si

and Sj , i ̸= j. One can see, however, that this does not affect the value c(m) for
the corresponding m.

Finally, define µ23
c,d(A) := ζ(A)− d(A). We conclude with the following

10



Corollary 1. (i) Let A = (A1, A2, A3), where Ai is a quadruple of edges in
b(Hi). Then ∆c,d(m) ≥ µ23

c,d(A) for any regular (2,3)-metric m agreeable to
A, and there exists a semi-regular (2,3)-metric m′ agreeable to A such that
∆c,d(m

′) = µ23
c,d(A). In particular, if µ23

c,d(A) < 0, then problem D(c, d) has no
solution.

(ii) The minimum µ23
c,d of excesses ∆c,d(m) over all semi-regular (2,3)-metrics

m can be found in O(n12 + n · SP (n)) time, where SP (n′) is the complexity of
a shortest paths algorithm in a planar graph with n′ nodes.

5 Algorithm

As before, we consider a 3-hole demand problem D(G = (V,E),H, D, c, d) in
which the capacity-demand pair (c, d) is Eulerian.

The algorithm to solve this problem uses efficient procedures of Sections 3,4
which find, for a current (c, d), the minimum excess µcut

c,d among the semi-regular

sets and the minimum excess µ23
c,d among the semi-regular (2,3)-metrics. Let

µc,d denote min{µcut
c,d , µ

23
c,d} As mentioned above, Theorems 1 and 2 imply the

following

Proposition 5 Problem D(c, d) has a solution if and only if µc,d ≥ 0.

The algorithm starts with verifying the solvability of the problem, by finding
µc,d for the initial (c, d). If µc,d < 0, it declares that the problem has no solution.
Otherwise the algorithm recursively constructs an integer admissible multiflow.
We may assume, w.l.o.g., that all current capacities and demands are nonzero
(for edges e with c(e) = 0 can be immediately deleted from G, and similarly for
pairs st ∈ D with d(st) = 0), and that the boundary b(Hi) of each hole Hi is
connected and isthmusless, regarding it as a cycle.

An iteration of the algorithm applied to current G,H, D, c, d (with (c, d)
Eulerian) chooses arbitrarily i ∈ {1, 2, 3}, an edge e = uv in b(Hi), and a pair
st ∈ Di, where Di denotes the set of demand pairs for Hi.

Let for definiteness s, u, v, t follow in this order in b(Hi). Suppose that we
take a nonnegative integer ε ≤ min{c(e), d(st)} and transform (c, d) into the
capacity-demand pair (c′, d′) by

c′(e) := c(e)− ε, d′(st) := d(st)− ε, (5.1)

d′(su) := d(su) + ε, and d′(vt) := d(vt) + ε.

(Note that we add to D the demand pair su with d(su) := 0 if it does not exist
there, and similarly for vt. When s = u (v = t), the pair su (resp. vt) vanishes.)
Clearly (c′, d′) is Eulerian as well. We say that (c′, d′) is obtained by the (e, st, ε)-
reduction of (c, d). We call ε a feasible reduction number for (c, d, e, st), or, simply,
feasible, if the problem D(c′, d′) is still solvable (and therefore it has an integer
solution). The goal of the iteration is to find the maximum (integer) feasible ε
and then update c, d accordingly.
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Here we rely on an evident transformation of an integer admissible multiflow
f ′ for (c′, d′) into an integer admissible multiflow f for (c, d): extract from f ′ an
integer subflow g of value ε from s to u and an integer subflow h of value ε from
v to t, and increase the flow between s and t by concatenating g, h and the flow
of value ε through the edge e.

The maximum feasible ε for (c, d, e, st) is computed in at most three steps,
as follows.

First we try to take as ε the maximum possible value, namely, ε1 :=
min{c(e), d(st)}; let c1, d1 be defined as in (5.1) for this ε1. Compute the value
ν1 := µc1,d1

(step 1). If ν1 ≥ 0 then ε := ε1 is as required (relying on Proposi-
tion 5).

Next, if ν1 < 0, we take ε2 := ε1 + ⌊ν1/4⌋, define c2, d2 as in (5.1) for this ε2
and for c, d as before. Compute ν2 := µc2,d2 (step 2). Again, if ν2 ≥ 0 then ε2 is
just the desired ε.

Finally, if ν2 < 0, we take as ε the number ε3 := ε2 + ν2/2 (step 3).

Lemma 1. The ε determined in this way is indeed the maximum feasible reduc-
tion number for c, d, e, st.

Proof. We argue in a similar spirit as for an integer splitting in [2]. For a semi-
regular set X ⊂ V , define

β(X) := ωX(s, u) + ωX(u, v) + ωX(v, t)− ωX(s, t),

where we set ωX(x, y) := 1 if X separates vertices x and y, and 0 otherwise.
Then β(X) ≥ 0 (since ωX is a metric). Also the fact that |δ(X)∩ b(Hi)| ≤ 2 (as
X is semi-regular) implies that β(X) ∈ {0, 2}.

For a semi-regular (2,3)-metric m, define

γ(m) := m(su) +m(uv) +m(vt)−m(st).

Then γ(m) ≥ 0. Also the semi-regularity of m (cf. (iii) in (2.1)) implies that
γ(m) ∈ {0, 2, 4}.

One can check that if (c′′, d′′) is obtained by the (e, st, ε′)-reduction of a pair
(c′, d′) with an arbitrary ε′, then

∆c′′,d′′(X) = ∆c′,d′(X)−ε′β(X) and ∆c′′,d′′(m) = ∆c′,d′(m)−ε′γ(m). (5.2)

Let ε be the maximum feasible reduction number for c, d, e, st. When ν1 ≥ 0,
the equality ε = ε1 is obvious, so suppose that ν1 < 0. If ν1 is achieved by the
excess ∆c1,d1(m) of a semi-regular (2,3)-metric m and if γ(m) = 4, then using
the second expression in (5.2) and the equality ε2 = ε1 + ⌊ν1/4⌋, we have

∆c2,d2(m) = ∆c,d(m)− ε2γ(m) = ∆c,d(m)− ε1γ(m)− ⌊ν̃1/4⌋ · 4
= ∆c1,d1(m)− ⌊ν̃1/4⌋ · 4 = ν̃1 − ⌊ν̃1/4⌋ · 4 = τ,

where τ equals 0 if ν1 is divided by 4, and equals 2 otherwise. (Recall that the
excess of any (2,3)-metric is even when the capacity-demand pair is Eulerian.)
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In this case we have ε ≤ ε2. Indeed for ε′ := ε2 + 1, the pair (c′, d′) obtained by
the (e, st, ε′)-reduction of (c, d) would give ∆c′,d′(m) = ∆c2,d2(m)− 4 < 0; so ε′

is infeasible.
As a consequence, in case ν2 ≥ 0 we obtain ε = ε2.
Now let ν2 < 0. Note that for any semi-regular metric m′ with γ(m′) = 4,

the facts that γ(m′) = γ(m) and ∆c1,d1(m
′) ≥ ν1 = ∆c1,d1(m) imply that

∆c′,d′(m′) ≥ ∆c′,d′(m) ≥ 0 for any (c′, d′) obtained by the (e, st, ε′)-reduction of
(c, d) with ε′ ≤ ε2. Therefore, ν2 is achieved by the excess of either a semi-regular
set X with β(X) = 2 or a semi-regular (2,3)-metric m′′ with γ(m′′) = 2. This
implies ε = ε2 + ν2/2.

The above procedure of computing ε together with the complexity results in
Sections 3 and 4 gives the following

Corollary 2. Each iteration (finding the corresponding maximum reduction
number and reducing c, d accordingly) takes O(n12) time.

Next, considering (5.2) and using the facts that β(X), γ(m) ≥ 0, we can
conclude that under a reduction as above the excess of any set or (2,3)-metric
does not increase. This implies that

(5.3) if an iteration handles c, d, e, st, then for any capacity-demands (c′, d′) arising
on subsequent iterations, the maximum reduction number for (c′, d′, e, st) is
zero.

Therefore, it suffices to choose each pair (e, st) at most once during the
process.

Now we finish our description as follows. Suppose that, at an iteration with
i, e, st, the capacity of e becomes zero and the deletion of e fromG causes merging
Hi with another hole Hj . Then we can proceed with an efficient procedure
for solving the corresponding Eulerian 2-hole demand problem. Similarly, if the
demand on st becomes zero and if the deletion of st makes Di empty, then we
can withdraw the hole Hi, again obtaining the Eulerian 2-hole case.

Finally, suppose that we have the situation when for some (c, d), the holes
H1,H2, H3 are different (and the capacities of all edges are positive), each
D1, D2, D3 is nonempty, but the maximum feasible reduction number for any
corresponding pair e, st is zero. We assert that this is not the case.

Indeed, suppose such a (c, d) exists. The problem D(c, d) is solvable, and one
easily shows that there exists an integer solution f = (P, λ) to D(c, d) such that:
for some path P ∈ P with λ(P ) > 0 and for the holeHi whose boundary contains
sP , tP , some edge e of P belongs to b(Hi). But this implies that sP tP ∈ Di and
that ε = 1 is feasible for (c, d, e, sP tP ); a contradiction.

Thus, we obtain the following

Theorem 6. The above algorithm terminates in O(n3) iterations and finds an
integer solution to D(G,H, D, c, d) with |H| = 3 and (c, d) Eulerian.

Further algorithmic results (to be presented in a forthcoming paper). (i) Recall
that when |H| = 4 and (c, d) is Eulerian, the solvability of D(c, d) implies the
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existence of a half-integer solution, as is shown in [5] (see (C) in the Introduc-
tion). We can find a half-integer solution in strongly polynomial time by using
a fast generic LP method; the existence of a combinatorial (weakly or strongly)
polynomial algorithm for this problem is still open.

(ii) By a sort of polar duality, the demand problem D = D(G,H, D, c, d) with
|H| ∈ {3, 4} is interrelated to a certain problem on packing cuts and metrics so
as to realize the distances within each hole. More precisely, let ℓ : E → Z+ be a
function of lengths of edges of G. The solvability criteria for D with |H| = 3, 4
imply (via the polar duality specified to our objects) that there exist metrics
m1, . . . ,mk on V and nonnegative reals λ1, . . . , λk such that

λ1m1(e) + . . .+ λkmk(e) ≤ ℓ(e) for each e ∈ E;

λ1m1(st) + . . .+ λkmk(st) = distℓ(st) for all s, t ∈ V ∩ b(H), H ∈ H.

Here: distℓ is the distance of vertices in (G, ℓ); and each mi is a cut metric
or a (2,3)-metric if |H| = 3, and is a cut metric or a (2,3)-metric or a 4f-
metric if |H| = 4. Moreover, [3] shows the sharper property: if the lengths of all
cycles in (G, ℓ) are even, then in both cases there exists an integer solution (i.e.,
with λ integer-valued). We develop a purely combinatorial strongly polynomial
algorithm to find such solutions.
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