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1. Introduction

In this work, acting in spirit of Lindström’s construction [7], we consider a wide
class of functions which take values in an arbitrary commutative semiring and are
generated by flows (systems of paths) in a planar acyclic directed graph. Functions
of this sort satisfy plenty of “stable” (or “universal”) quadratic relations, extending
well-known quadratic relations for minors of matrices (in particular, Plücker’s and
Dodgson’s ones) and their tropical analogues. We develop a combinatorial method
to completely characterize the set of such “stable” relations. In particular, applying
this method to Gessel–Viennot’s model, one can describe quadratic relations on
Schur functions (related to semi-standard Young tableaux). The full version of this
work is to appear in J. Algebraic Combinatorics (DOI 10.1007/s10801-012-0344-6);
see also Arxiv:1102.2578v2[math.CO].

We start with specifying terminology and notation, and with backgrounds.

1.1. Commutative semirings. In order to embrace both algebraic and trop-
ical cases (and more), we will deal with functions taking values in an arbitrary
commutative semiring (briefly, CS ), a set S equipped with two associative and
commutative binary operations ⊕ (addition) and ⊙ (multiplication) satisfying the
distributive law a ⊙ (b ⊕ c) = (a ⊙ b) ⊕ (a ⊙ c). When needed, we additionally
assume that S contains neutral elements 0 (for addition) and/or 1 (for multiplica-
tion). Important special cases are:

(i) a commutative ring (when 0 ∈ S and each element has an additive inverse);
(ii) a CS with division (when 1 ∈ S and each element has a multiplicative

inverse); e.g., the set R>0 of positive reals (with ⊕ = + and ⊙ = ·), and the
tropicalization Lmax of a totally ordered abelian group L (with ⊕ = max and
⊙ = +); the most popular case of the latter is the real tropical semiring Rmax.

1.2. Planar flows. By a planar network we mean a finite directed planar
acyclic graph G = (V,E) in which two subsets S = {s1, . . . , sn} and T =
{t1, . . . , tn′} of vertices are distinguished, called sources and sinks, respectively.
We assume that the sources and sinks, also called terminals, lie on the boundary O
of a compact convex region in the plane, and the remaining part of G lies inside O.
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The terminals appear in O in the clockwise cyclic order sn, . . . , s1, t1, . . . , tn′ (with
possibly s1 = t1 or sn = tn′). Three examples are illustrated in the picture.
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Let En,n′
denote the set of pairs (I ⊆ [n], I ′ ⊆ [n′]) with equal sizes: |I| = |I ′|

(where [k] := {1, 2, . . . , k}). By an (I|I ′)-flow we mean a collection ϕ of |I| pairwise
(vertex) disjoint directed paths in G going from the source set SI := {si : i ∈ I} to
the sink set TI′ := {tj : j ∈ I ′}. The set of (I|I ′)-flows is denoted by ΦI|I′ = ΦG

I|I′ .

Each vertex v ∈ V is endowed with a weight w(v) ∈ S, where S is a CS
(alternatively, one can consider a weighting on the edges, which does not affect our

results in essence). This gives rise to the function f = fG,w on En,n′
defined by

(1.1) f(I|I ′) :=
⊕

ϕ∈ΦI|I′
w(ϕ), (I, I ′) ∈ En,n′

,

where w(ϕ) denotes the weight ⊙(w(v) : v ∈ Vϕ) of a flow ϕ, and Vϕ is the set of
vertices occurring in ϕ. We call f a flow-generated function, or an FG-function for
short, and say that f is determined by G,w. The set of such functions over all
corresponding G and w (with n, n′,S fixed) is denoted by FGn,n′(S).

Remark 1. When S = R, (1.1) is specified as f(I|I ′) :=
∑

ϕ∈ΦI|I′
(
∏

v∈Vϕ
w(v)),

and when S = Rmax, (1.1) turns into f(I|I ′) := maxϕ∈ΦI|I′ (
∑

v∈Vϕ
w(v)). In the

former (latter) case, we refer to f as an algebraic (resp. tropical) FG-function.

Remark 2. Note that an (I|I ′)-flow in G may not exist, making f(I|I ′) undefined
if S does not contain 0. To overcome this trouble, we formally extend S, when
needed, by adding an “extra neutral” element ∗, setting ∗ ⊕ a = a and ∗ ⊙ a = ∗
for all a ∈ S. In the extended semiring, one defines f(I|I ′) := ∗ in case ΦI|I′ = ∅.

When an (I|I ′)-flow ϕ enters the first |I| =: k sinks (i.e. I ′ = [k]), we say that ϕ
is a flag flow for I. Accordingly, notation ΦI| [k] is abbreviated to ΦI , and f(I| [k])
to f(I). When we are interested in the flag case only, f is regarded as a function
on the set 2[n] of subsets of [n].

1.3. Lindström’s lemma. Assume that weights w of vertices of G belong to
a commutative ring and consider the n′×n matrixM whose entries mji are defined

as
∑

ϕ∈Φ{i}|{j}
(
∏

v∈Vϕ
w(v)) (cf. Remark 1). For (I, I ′) ∈ En,n′

, let fM (I|I ′) denote
the minor of M with the column set I and the row set I ′. A remarkable property
shown by Lindström [7] is that fM = fG,w.

(Note that the class of matrices whose minor functions are flow-generated is
large. In particular, it has been shown that any totally nonnegative matrix (a real
matrix whose all minors are nonnegative) is such; see [1]. The question whether
this class contains all matrices over any commutative ring is still open, but we can
show that it contains any matrix over a field ; see Arxiv:1102.2578v2[math.CO].)
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1.4. Quadratic relations. Minors of (real or complex) matrices obey many
quadratic relations. Most popular among them are quadratic relations on flag mi-
nors, or Plücker relations (which, in particular, describe flag manifolds and Grass-
mannians embedded in corresponding projective spaces). Therefore, by Lindström’s
lemma, similar relations should be valid for any FG-function f = fG,w when S = R
or C (or even an arbitrary commutative ring). Below are two examples.

(i) The simplest example of Plücker relations (in the flag case) involve triples:
for any three elements i < j < k in [n] and any subset X ⊆ [n]− {i, j, k},

(1.2) f(Xik)f(Xj) = f(Xij)f(Xk) + f(Xjk)f(Xi),

where for brevity we write Xi′ . . . j′ for X ∪ {i′, . . . , j′} (and as before, f(I) stands
for f(I| [|I|])). This is called the AP3-relation (abbreviating “algebraic Plücker
relation with triples”).

(ii) The simplest relation in the non-flag case arises from Dodgson’s condensa-
tion formula for matrices [3]: for elements i < k of [n] and elements i′ < k′ of [n′]
and for X ⊆ [n]− {i, k} and X ′ ⊆ [n′]− {i′, k′},

(1.3) f(iX| i′X ′) f(Xk|X ′k′) = f(iXk| i′X ′k′) f(X|X ′)+f(iX|X ′k′) f(Xk| i′X ′).

The “tropical counterpart” of (1.2) is the TP3-relation, viewed as

(1.4) f(Xik) + f(Xj) = max{f(Xij) + f(Xk), f(Xjk) + f(Xi)}.

This is valid for any tropical FG-function f ; see [2] (where the case S = Rmax is
considered, but the argument is extended straightforwardly to any Lmax).

In general, the quadratic relations of our interest involve FG-functions on En,n′

over an arbitrary CS S and can be expressed as

(1.5)
⊕

(A,A′)∈A

(
f(XA|X ′A′)⊙ f(XA|X ′A ′)

)
=

⊕
(B,B′)∈B

(
f(XB|X ′B′)⊙ f(XB|X ′B ′)

)
.

Here: X,Y (resp. X ′, Y ′) are disjoint subsets of [n] (resp. [n′]); we write KL for
K∪L; the complement Y −C of C ⊆ Y is denoted by C, and the complement Y ′−C ′

of C ′ ⊆ Y ′ by C ′. The families A,B consist of certain pairs (C ⊆ Y,C ′ ⊆ Y ′),
admitting multiple ones. (The sizes of sets above are assumed to be agreeable: they

should satisfy |X|+ |C| = |X ′|+ |C ′| and |X|+ |C| = |X ′|+ |C ′|, or, equivalently,
2|X|+ |Y | = 2|X ′|+ |Y ′| and |Y | − 2|C| = |Y ′| − 2|C ′|.)

In fact, an instance of (1.5) represents a variety of relations of “the same type”,
which does not depend on X,Y,X ′, Y ′ and is specified by two patterns A0 and B0.
More precisely, letting m := |Y | and m′ := |Y ′|, take the order preserving maps
γ : [m] → Y and γ′ : [m′] → Y ′ (i.e. γ(i) < γ(j) for i < j, and similarly for γ′).
Then the pattern A0 (inducing A) consists of pairs (A0 ⊆ [m], A′

0 ⊆ [m′]) so that
A = {(γ(A0), γ

′(A′
0)) : (A0, A

′
0) ∈ A0), and the pattern B0 (inducing B) is defined

similarly. We write A = γY,Y ′(A0) and B = γY,Y ′(B0).
It should be noted that in the flag case, the setsX ′, Y ′, as well as A′, B′ in (1.5),

are determined uniquely. For this reason, we omit them in the above expressions
and think of A,B (resp. A0,B0) as consisting of subsets of Y (resp. [m]).

Examples. Relation (1.3) deals with Y = {i, k}, Y ′ = {i′, k′}, [m] = {1, 2},
[m′] = {1′, 2′}, A = {i|i′}, B = {ik|i′k′, i|k′}, A0 = {1|1′}, and B0 = {12|1′2′, 1|2′}.
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In turn, Plücker’s type relations (1.2) and (1.4) concern Y = {i, j, k}, m = 3,
A = {ik}, B = {ij, jk}, A0 = {13}, and B0 = {12, 23}.

Definition. When (1.5) holds for fixed A0,B0 as above and any corresponding
S, G,w,X, Y,X ′, Y ′ and the families A := γY,Y ′(A0) and B := γY,Y ′(B0), we
call (1.5) a stable quadratic relation, or an SQ-relation, and say that this relation
is induced by the patterns A0,B0.

Our goal is to give a relatively simple combinatorial method of characterizing
the patterns A0,B0 inducing SQ-relations. In fact, our method generalizes a flow
rearranging approach used in [2] for proving the TP3-relation for tropical FG-
functions. It consists in reducing the task to a certain combinatorial problem on
matchings, and as a consequence, provides an “efficient” procedure to recognize
whether or not a given pair A,B yields an SQ-relation. It should be noted that our
approach is close in essence to a lattice paths method elaborated in Fulmek and
Kleber [5] and Fulmek [4] to generate quadratic identities on Schur functions.

2. Balanced families and the main result

Consider (agreeable) X,Y,X ′, Y ′,A,B,A0,B0 as above. It will be convenient
for us to think that the elements of Y and Y ′ are placed, respectively, on the lower
half and on the upper half of a circumference O in the plane, in the increasing
order from left to right. Also, considering a member (C,C ′) of A ∪ B, we call the
elements of C and C ′ white, and the elements of their complements C = Y −C and

C
′
= Y − C ′ black. For members of patterns A0 and B0, white/black colorings on

[m] ⊔ [m′] are defined similarly (where ⊔ denotes the disjoint union).
Let M be a perfect matching on Y ⊔ Y ′, i.e. M is a partition of Y ⊔ Y ′ into

2-element subsets, or couples. We say that M is feasible for (C,C ′) (as above) if:

(2.1) (i) For a couple π ∈M , if either π ⊆ Y or π ⊆ Y ′, then the elements of
π have different colors;

(ii) If one element of π ∈M belongs to Y and the other to Y ′, then these
elements have the same color;

(iii) M is planar, in the sense that the chords of O connecting the couples
in M are pairwise not intersecting.

Let M(C,C ′) denote the set of feasible matchings for (C,C ′). We define M(A)
to be the family being the union of sets M(C,C ′) (respecting multiplicities) over
all (C,C ′) ∈ A. Analogous families are defined for B and for A0,B0 (concerning
matchings on [m] ⊔ [m′]).

Definition. Families A,B are called balanced if M(A) = M(B) (regarding M(·)
as a multi-set).

(Clearly A,B are balanced if and only if so are the patterns A0,B0.)
Our main result is the following

Theorem 2.1. (1.5) is an SQ-relation if and only if A,B are balanced.

A sketch of the proof of this theorem will be outlined in Sections 4 and 5.

3. Examples of stable quadratic relations

In this section we illustrate Theorem 2.1 with several simple examples (for more
examples, see Arxiv:1102.2578v2[math.CO]). According to this theorem, once we
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are able to show that one or another pair of patterns A0,B0 is balanced, we can
declare that (1.5) holds for any corresponding X,Y,X ′, Y ′,A,B.

3.1. Let m = m′ = 2. Consider the patterns A0 = {1|1′} and B0 =
{1|2′, 12|1′2′} for the intervals [m] = {1, 2} and [m′] = {1′, 2′}. One can see that
the only member 1|1′ of A0 admits two feasible matchings, namely, M(1|1′) =
{{12, 1′2′}, {11′, 22′}}, whereas each member of B0 has exactly one feasible match-
ing, namely, M(1|2′) = {{12, 1′2′}} and M(12|1′2′) = {{{11′, 22′}}. This im-
plies that A0,B0 are balanced. The corresponding feasible matchings and bijection
are illustrated in the picture (where the white/black partitions and matchings on
[m] ⊔ [m′] are indicated by using two-level diagrams).

c sc s
c sc s
1 2

1′ 2′

c cc c
c ss c
1 2

1′ 2′

1|1′

12|1′2′

1|2′

-�

-�

This gives rise to the SQ-relation extending Dodgson’s condensation formula (1.3)
(by taking Y = (i < k), Y ′ = (i′ < k′), A = {i|i′}, and B = {i|k′, ik|i′k′}).

The next two examples concern SQ-relations of Plücker’s type (the flag case).
Here all members of patterns A0,B0 are subsets C of [m] (as before, we say that
the elements of C are white, and the ones of C := [m] − C are black). One can
check that these subsets have the same cardinality p; one may assume, w.l.o.g., that
p ≥ m− p =: q. Furthermore, instead of perfect matchings on [m] ⊔ [m′] occurring
in the general case, we now should consider matchings M of cardinality q on [m].
Such an M is called feasible for a (white) subset C ⊆ [m] of size p if

(i) the elements of each couple in M have different colors; and
(ii) there are no i < j < k < ℓ such that ik, jℓ ∈ M (i.e. M is nested), and

there are no i < j < k such that ik ∈M and j ∈ C − ∪(π ∈M).

3.2. When m = 3 and p = 2, there are three p-element subsets in [m], namely,
12, 13, 23. Each of 12 and 23 admits only one feasible matching, namely, M(12) =
{{23}} and M(23) = {{12}}, whereas 13 has two feasible matchings: M(13) =
{{12}, {23}}. Hence the patterns A0 := {13} and B0 := {12, 23} are balanced. The
feasible matchings and bijection are illustrated in the picture.
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This gives rise to the SQ-relation “on triples” extending (1.2) and (1.4) (by taking
Y = (i < j < k), A = {ik}, and B = {ij, jk}).

3.3. For m = 4 and p = 2, take A0 := {13} and B0 := {12, 14}. Each of
12 and 14 admits a unique feasible matching: M(12) = {{14, 23}} and M(14) =
{{12, 34}}, whereas M(13) consists of two feasible matchings: just those {14, 23}
and {12, 34}. Hence A0,B0 are balanced. See the picture.
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This implies the following SQ-relation: for i < j < k < ℓ and X ⊆ [n]− {i, j, k, ℓ},
f(Xik)⊙ f(Xjℓ) = (f(Xij)⊙ f(Xkℓ))⊕ (f(Xiℓ)⊙ f(Xjk)).

4. A sketch of proof of “if” part in the theorem.

Consider corresponding G,w,S, X, Y,X ′, Y ′,A,B. We have to show that if
A,B are balanced, then (1.5) is valid.

First of all one easily shows that it suffices to examine only those planar net-
works G (with n sources and n′ sinks) that satisfy the following condition:

(C) the source set S and sink set T are disjoint, and each vertex has either at
most one entering edge, or at most one leaving edge, or both.

Below we refer to an arbitrary, not necessarily directed, path P in G as a route,
referring to its edges as forward and backward ones, depending on their orientation
in P . A route P is called simple if all vertices in it are distinct. A closed route with
distinct vertices is called a circuit.

Our approach is based on examining certain pairs of flows in G and rearranging
them to form other pairs. Fix (A,A′) ∈ A and consider an (XA|X ′A′)-flow ϕ and a
(XA|XA ′)-flow ϕ′ in G. The pair (ϕ, ϕ′) is called a double flow for (A,A′), and the
set of such double flows is denoted by D(A,A′). We use two lemmas; their proofs
are rather simple and rely on condition (C). Here we write C△D for the symmetric
difference (C −D) ∪ (D − C) of sets C,D, and regard a flow as edge set.

Lemma 4.1. ϕ△ϕ′ is partitioned into (the edge sets of) pairwise disjoint cir-
cuits C1, . . . , Cd and simple routes P1, . . . , Pp, where p = 1

2 (m +m′), and each Pi

connects either SA and SA, or SA and TA′ , or SA and TA ′ , or TA′ and TA ′ . In
each circuit or route, the edges of ϕ and the edges of ϕ′ have opposite directions.

The next lemma explains how to rearrange a double flow (ϕ, ϕ′) for (A,A′) so
as to obtain a double flow for another (useful) pair (B ⊆ Y, B′ ⊆ Y ′). Define
P(ϕ, ϕ′) := {P1, . . . , Pp}. For a route P in P(ϕ, ϕ′), let π(P ) denote the pair of
elements in Y ⊔ Y ′ corresponding to the end vertices of P . By Lemma 4.1, π(P )
belongs to one of A×A, A×A′, A′ ×A ′, A×A ′. Moreover, the set

M(ϕ, ϕ′) := {π(P ) : P ∈ P(ϕ, ϕ′)}
is a perfect matching on Y ⊔ Y ′.

Lemma 4.2. Choose an arbitrary subset M0 ⊆ M(ϕ, ϕ′). Define Z := ∪(π ∈
M0), B := A△ (Z∩Y ), and B′ := A′△ (Z∩Y ′). Let U be the set of edges of routes
P ∈ P(ϕ, ϕ′) with π(P ) ∈ M0. Then ψ := ϕ△U gives an (XB|X ′B′)-flow, and
ψ′ := ϕ′△U gives an (XB|X ′B ′)-flow. Also ψ ⊔ ψ′ = ϕ ⊔ ϕ′.

Obviously, M(ψ,ψ′) = M(ϕ, ϕ′) and P(ψ,ψ′) = P(ϕ, ϕ′), and the transforma-
tion of ψ,ψ′ by use of the routes P ∈ P(ψ,ψ′) with π(P ) ∈M0 returns ϕ, ϕ′.

Now consider the FG-function f = fG,w on En,n′
. The summand concerning

(A,A′) ∈ A in the L.H.S. of (1.5) can be expressed via double flows as follows:

(4.1) f(XA|X ′A′)⊙ f(XA|X ′A ′)

=

(⊕
ϕ∈ΦXA|X′A′

w(ϕ)

)
⊙

(⊕
ϕ′∈ΦXA|X′A ′

w(ϕ′)

)
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=
⊕

(ϕ,ϕ′)∈D(A,A′)
w(ϕ)⊙ w(ϕ′)

=
⊕

M∈M(A,A′)

⊕
(ϕ,ϕ′)∈D(A,A′) : M(ϕ,ϕ′)=M

w(ϕ)⊙ w(ϕ′).

The summand concerning (B,B′) ∈ B in the L.H.S. of (1.5) is expressed similarly.
Finally, for (A,A′) ∈ A and M ∈ M(A,A′), consider (ϕ, ϕ′) ∈ D(A,A′) such

that M(ϕ, ϕ′) = M (if it exists). Since A,B are balanced, (A,A′,M) is bijective
to some (B,B′,M) such that (B,B′) ∈ B and M ∈ M(B,B′). Since M is a
feasible matching for both (A,A′) and (B,B′), it follows from (2.1)(i),(ii) that
(B,B′) is obtained from (A,A′) by “recoloring” w.r.t. some M0 ⊆ M . Then the
transformation of (ϕ, ϕ′) by use of the routes P ∈ P(ϕ, ϕ′) with π(P ) ∈ M0 (as
described in Lemma 4.2), results in a double flow (ψ,ψ′) for (B,B′) such that
ψ⊔ψ′ = ϕ⊔ϕ′, implying w(ψ)⊙w(ψ′) = w(ϕ)⊙w(ϕ′). Moreover, (ϕ, ϕ′) 7→ (ψ,ψ′)
gives a bijection between all double flows for (A,A′,M) and those for (B,B′,M).
Now (1.5) follows by considering the last term in (4.1).

5. Necessity of the balancedness

Part “only if” of Theorem 2.1 says that if patternsA0,B0 are not balanced, then
there exist corresponding G,w,S, X, Y,X ′, Y ′ for which (1.5) with A = γY,Y ′(A0)
and B = γY,Y ′(B0) is violated. (Hereinafter X,Y are disjoint subsets of [n], X ′, Y ′

are disjoint subsets of [n′], and X,Y,X ′, Y ′,A0,B0 should be agreeable, i.e. there
hold m + 2|X| = m′ + 2|X ′| and m − 2|C| = m′ − 2|C ′| for all (C,C ′) ∈ A0 ∪ B0,
where m := |Y |, m′ := |Y ′|.) We can show a sharper result, saying that if the
patterns are not balanced, then (1.5) is violated for any choice of X,Y,X ′, Y ′ and
for S := Z+.

Theorem 5.1. Suppose that patterns A0,B0 are not balanced. Fix (agreeable)
X,Y,X ′, Y ′. Then there exists, and can be explicitly constructed, a planar network
G = (V,E) such that (1.5) is false for f = fG,w, where w(v) = 1 for all v ∈ V .

The idea of the proof is roughly as follows. Since A0,B0 are not balanced, there
exists a planar perfect matching M on Y ⊔ Y ′ such that

|AM | ̸= |BM |,
where AM is the set of members of A havingM as a feasible matching, and similarly
for B. We succeed to construct a planar network G (depending on X,Y,X ′, Y ′,M)
with the following properties: for any pair (C ⊆ Y, C ′ ⊆ Y ′),

(P1) If M ∈ M(C,C ′), then G has a unique (XC|X ′C ′)-flow and a unique
(XC|X ′C ′)-flow, i.e. |ΦXC|X′C′ | = |ΦXC|X′C ′ | = 1;

(P2) If M /∈ M(C,C ′), then at least one of ΦXC|X′C′ and ΦXC|X′C ′ is empty.

Take the function f = fG,w for w ≡ 1. By (P1) and (P2), for a pair (C,C ′),

each of the values f(XC|X ′C ′) and f(XC|X ′C ′) is equal to 1 if M ∈ M(C,C ′),
and at least one of them is 0 otherwise. This implies that the values in the L.H.S.
and R.H.S. of (1.5) are exactly |AM | and |BM |, respectively. Thus, these values are
different and (1.5) is violated.

6. Applications to Schur functions

It is known that Schur functions (polynomials) are expressed as minors of a
certain matrix, by Jacobi–Trudi’s formula. Therefore, these functions satisfy many
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quadratic relations. [4, 5] and some other works (see a discussion in [4]) explain
how to obtain quadratic relations for ordinary and skew Schur functions by use of
a lattice paths method based on the Gessel–Viennot interpretation of semistandard
Young tableaux [6]. This lattice path method is, in fact, a specialization to a
particular planar network of the flow approach that we described in Sections 1,2.
Below we give a brief discussion on this subject.

Recall that a partition of length r is an r-tuple λ of weakly decreasing non-
negative integers λ1 ≥ λ2 ≥ . . . ≥ λr. The Ferrers diagram of λ is meant to be
the array Fλ of cells with r left-aligned rows containing λi cells in ith row. (We
assume that the row indices grow from the bottom to the top.) For N ∈ N, an
N -semistandard Young tableau of shape λ is a filling T of Fλ with natural numbers
not exceeding N so that the numbers weakly increase in each row and strictly in-
crease in each column. We associate to T the monomial xT to be the product of
variables x1, . . . , xN , each xk being taken with the degree equal to the number of
occurrences of k in T . Then the Schur function for λ and N is the polynomial

sλ = sλ(x1, . . . , xN ) :=
∑

T
xT ,

where the sum is over all N -semistandard Young tableaux T of shape λ. Besides,
one often considers a skew Schur function sλ/µ, where µ is a partition of length
r with µi ≤ λi; it is defined in a similar way w.r.t. the skew Ferrers diagram
Fλ/µ obtained by removing from Fλ the cells of Fµ. When needed, an “ordinary”
diagram Fλ is regarded as Fλ/µ with µ = (0, . . . , 0), and similarly for tableaux.

There is a one-to-one correspondence between the partitions λ of length r and
the r-element subsets Aλ of the set Z>0 of positive integers, namely:

(6.1) λ = (λ1 ≥ . . . ≥ λr) ⇐⇒ Aλ := {λr + 1, λr−1 + 2, . . . , λ1 + r}.

The graph of our interest is the directed square grid Γ = Γ(N) whose vertices
are the points (i, j) for i ∈ Z>0 and j ∈ [N ] and whose edges e are directed up or
to the right, i.e. e = ((i, j), (i, j +1)) or ((i, j), (i+1, j)) (it suffices to take a finite
truncation of this grid). The vertices si := (i, 1) and ti := (i,N) are regarded as
the sources and sinks in Γ, respectively, and we assign to each horizontal edge e at
level h the weight to be the indeterminate xh:

(6.2) w(e) := xh for e = ((i, h), (i+ 1, h)), i ∈ Z>0, h = 1, . . . , N ,

and assign weight 1 to each vertical edge. Now using the Gessel–Viennot model [6]
(in a slightly different form), one can associate to an N -semistandard skew Young
tableau T with shape λ/µ the system PT = (P1, . . . , Pr) of directed paths in Γ,
where for k = 1, . . . , r:

(6.3) Pk is related to (r+1−k)th row of T : it goes from the source sk+µr+1−k
to

the sink tk+λr+1−k
, and for h = 1, . . . , N , the number of horizontal edges

of Pk at level h equals the number of occurrences of h in kth row of T .

So the sources occurring in PT are the si for i ∈ Aµ, and the sinks are the tj
for j ∈ Aλ. Observe that the semistandardness of T implies that these paths are
pairwise disjoint, i.e. PT is an (Aµ|Aλ)-flow in Γ. One can see the converse as well:
if P is an (Aµ|Aλ)-flow in Γ, then the filling T of Fλ/µ determined, in a due way,
by the horizontal edges of paths in P is just a semistandard skew Young tableau,
and one has PT = P. This gives a nice bijection between corresponding flows and
tableaux. The next picture illustrates an example of a semistandard Young tableau



PLANAR FLOWS AND QUADRATIC RELATIONS 9

T with N = 6, r = 5, λ = (6, 5, 3, 3, 2) and µ = (2, 2, 1, 1, 0), and its corresponding
flow PT = (P1, . . . , P5).

1 2 3 4 5 6

1
2
3
4
5

1 3 3 5
2 4 4

1 3
2 6

2 5
T

c c c c c

c c c c c

1 2 3 4 5 6 7 8 9 10 11 12
1
2
3
4
5
6

P1 P2P3 P4 P5

Note that when T is “ordinary” (i.e. µ = 0), the sources used in PT are
s1, s2, . . . , sr; in other words, PT is a co-flag flow (it becomes a flag flow if we
reverse the edges of Γ and swap the sources and sinks).

The above bijection between the N -semistandard skew Young tableaux with
shape λ/µ and the (Aµ|Aλ)-flows in Γ = Γ(N) implies that (ordinary or skew)
Schur functions are “values” of the flow-generated function fΓ,w for the weighting
w as in (6.2). (It leads to no confusion that the weights are given on the horizontal
edges of Γ and belong to a polynomial ring.) This enables us to exhibit quadratic
relations on Schur functions, by properly translating SQ-relations on FG-functions.
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son’s condensation formula and Plücker relations, Electron. J. Combin. 8 (1): Research Paper

16, 2001, 22 pp.
[6] I.M. Gessel and X. Viennot, Determinants, paths, and plane partitions, Preprint, 1989.
[7] B. Lindström, On the vector representation of induced matroids, Bull. London Math. Soc. 5

(1973) 85–90.

V.I. Danilov and G.A. Koshevoy: Central Institute of Economics and Math-
ematics of the RAS, 47, Nakhimovskii Prospect, 117418 Moscow, Russia. Emails:
danilov@cemi.rssi.ru (V.I. Danilov), and koshevoy@cemi.rssi.ru (G.A. Koshevoy).

A.V. Karzanov: Institute for System Analysis of the RAS, 9, Prospect 60 Let
Oktyabrya, 117312 Moscow, Russia. Email: sasha@cs.isa.ru. Corresponding author.


