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Abstract.
Let G = (V,E) be a finite acyclic directed graph. Being motivated by a study of certain aspects of cluster algebras, we
are interested in a class of triangulations of the cone of non-negative flows in G, F+(G). To construct a triangulation, we
fix a framing at each inner vertex v of G, which consists of two linear orders: one on the set of incoming edges, and the
other on the set of outgoing edges of v. A digraph G endowed with a framing at each inner vertex is called framed. Given a
framing on G, we define a reflexive and symmetric binary relation on the set of extreme rays of F+(G). We prove that that
the complex of cliques formed by this binary relation is a pure simplicial complex, and that the cones spanned by cliques
constitute a unimodular simplicial regular fan Σ(G) covering the entire F+(G).
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1 Introduction
Let G = (V,E) be a finite acyclic directed graph. We associate to G a vector space F(G) of flows in G and
a cone F+(G) of nonnegative flows. The extreme rays of the cone F+(G) correspond to the maximal paths
in G, called routes, or, equivalently, to the integer flows of value one. Being motivated by a study of certain
aspects of cluster algebras, we are interested in a class of triangulations of the cone F+(G).

To construct a triangulation, we fix a framing at each inner vertex v of G, which consists of two linear orders:
one on the set of incoming edges, and the other on the set of outgoing edges of v. A digraph G endowed with
a framing at each inner vertex is called framed. We define a reflexive and symmetric binary relation on the
routes of a framed G (or on the set of extreme rays of F+(G)). Theorem 1 asserts that the complex of cliques
formed by this binary relation is a pure simplicial complex, and that the cones spanned by cliques constitute a
unimodular simplicial fan Σ(G) covering the entire F+(G). Theorem 2 asserts that this fan is regular, which
means the existence of a convex function on F+(G) whose affine areas are exactly the maximal cones in the
fan.

A route of a framed digraph G is called exceptional if it belongs to each maximal clique. We define the
reduced cone Fred and the reduced fan Σred to be the quotients of F+(G) and Σ(G), respectively, by the
subspace generated by exceptional routes. The fan Σred is simplicial and regular as well.

We specify the above results for the class of planar grids forming skew staircase diagrams. For the so-called
canonical framing of a skew staircase diagram, the fan Σred is complete in the space Fred. This affirmatively
answers Conjecture 8.10 in (5).

Next, considering the canonical framing, we study flips between neighboring cones of the fan. Theorem 3
asserts that, for any maximal clique K and any non-exceptional A ∈ K, there exists a pair of routes A′, B ∈
K \ {A} such that B′ = A′ +B −A is a route and (K \ {A}) ∪ {B′} is again a maximal clique.

In the case of staircase diagrams, the routes are identified, in a natural way, with the subsets of the corre-
sponding ground set [n] = {1, 2, . . . , n}. Using results from (1), we show that any weakly separated set-system
on [n] forms a clique. The cliques of this sort are linked by flips which are associated to certain Plücker rela-
tions. Relying on the existence of the Plücker cluster structure on weakly-separated set systems (2), we get a
relationship between the fan Σ and the Plücker cluster fan. It is shown that for a staircase diagram Γ(n) with
n ≤ 5, the cluster fan is a refinement of Σ(Γ(n)), and we conjecture that this is true for any n.
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2 Paths, routes and flows
Let G = (V,E) be a finite acyclic directed graph with vertex set V and edge set E. For a vertex v ∈ V , let
in(v) denote the set of incoming edges, and out(v) the set of outgoing edges. A vertex v is called a source if
in(v) = ∅, and a sink if out(v) = ∅; the other vertices are called inner.

A path in G is a sequence of edges e1, . . . , ek such that h(ei) = t(ei+1) for i = 1, . . . , k − 1, where t(e)
and h(e) denote the beginning and ending vertices (or the tail and the head) of an edge e, respectively. Since
G is acyclic, any path is simple (i.e. all vertices in it are different). A maximal path is called a route; it begins
at a source and ends at a sink. The set of routes is denoted by P(G), or simply by P . The set of routes passing
a vertex v is denoted by P(v). For P ∈ P(v), we write Pv for the initial part of P , from the beginning to v,
and write vP for the final part of P , from v to the end.

A flow in G is a function F : E → R satisfying the conservation (or Kirchhoff) law at each inner vertex v:∑
e∈in(v)

F (e) =
∑

e∈out(v)
F (e).

The set F = F(G) of flows in G is a vector subspace of RE . Let F+ denote the cone of nonnegative flows,
FZ the Abelian group of integer flows, and F1 the convex polytope of nonnegative flows F of value one (i.e.
satisfying

∑
(F (e) : t(e) is a source) = 1). The characteristic function of a route is a vertex of F1, and vice

versa. Thus, the set P can be identified with the set of extreme rays of the cone F+.
The following elementary facts are well-known.

Proposition 1. The dimension of F(G) is equal to |E| minus the number of inner vertices. The cone F+

spans the vector space F .

Since the cone F+(G) is defined by the inequalities F (e) ≥ 0 for e ∈ E, the facets (in F(G)) of this cone
are of the form F (e) = 0 for some edges e. Let us say that an edge e is idle if at least one takes place: t(e) is
inner and out(t(e)) = {e}, or h(e) is inner and in(h(e)) = {e}. For an idle edge e, the inequality F (e) ≥ 0
follows from F (e) =

∑
e′∈in(t(e)) F (e′) in the former case, or from F (e) =

∑
e′∈out(h(e)) F (e′) in the latter

case. Contracting an idle edge, we get a graph which is different from G but has the same flow cone F+ in
essence. The following fact is easy.

Proposition 2. The set of facet of the cone F+(G) can be identified with the set of non-idle edges of G.

3 Coherent routes
A framing on a digraph G is a setting, for each inner vertex v ∈ V , a linear order ≺in(v) on the set in(v) and a
linear order ≺out(v) on the set out(v). A digraph endowed with a framing is called a framed graph, or a net.

For a framed graph G and an inner vertex v, we denote by In(v) the set of maximal paths, or semi-routes,
in G entering v, and denote by Out(v) the set of semi-routes leaving v. We define a linear order ≺In(v) on
the set In(v) and a linear order ≺Out(v) on the set Out(v) as follows. Suppose that paths P,Q ∈ Out(v)
coincide before a vertex w (including w) and differ after w (possibly w = v). Let eP be the edge of P such
that t(eP ) = w, and let eQ be a similar edge for Q. Then we set P ≺Out(v) Q if eP ≺out(w) eQ. The linear
order ≺In(v) on In(v) is defined in a similar way.

Let P and Q be two routes passing an inner vertex v. We say that P,Q are in conflict at v if the initial
parts Pv, Qv are ordered differently than the final parts vP , vQ ; say, Pv ≺In(v) Qv but vQ ≺Out(v) vP .
Otherwise we say that P and Q are coherent at v.

Definition. Routes P and Q are called coherent if they are coherent at each common inner vertex.

The following lemma will be of use.

Lemma 1. Let routes P and Q be coherent at some common vertex v, and let D be the route obtained by
concatenating Pv and vQ. Suppose that a route C is coherent to P and to Q, but not to D. Then C and D are
conflicting at v.

Proof. If Pv = Qv then D = Q, and if vP = vQ then D = P ; in both cases C as above does not exist.
Thus, Pv ̸= Qv and vP ̸= vQ.

Consider the case Pv ≺In(v) Qv. Since P and Q are coherent at v, we have vP ≺Out(v) vQ. Since C
and D are not coherent, there is a node w at which C and D are conflicting. W.l.o.g., we may assume that w
precedes v on the route D (and hence w precedes v on P ). Then C and D are conflicting at v as well. If C
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and D would become different before v, then C and P should be not coherent, contrary to the conditions. The
other cases are checked similarly. 2

Corollary. Under the hypotheses of Lemma 1, assume, in addition, that Pv ≺In(v) Qv. Then Pv ≺In(v)

Cv ≼In(v) Qv and vP ≼Out(v) vC ≺Out(v) vQ.

Proof. The relation Pv ≺In(v) Cv follows from the hypotheses of the lemma and the fact that C and D are
conflicting at v. Since P and C are coherent, we get vP ≼Out(v) vC. Similarly, Cv ≼In(v) Qv. 2

The coherence is a reflexive and symmetric binary relation on the set of routes P . We will refer to a set of
mutually coherent routes as a clique. Of most interest for us are maximal cliques.

Proposition 3. Let K be a maximal clique, and let P , Q ∈ K be such that:
a) P and Q have a common vertex v;
b) Pv and Qv are neighbors in the chain K(In(v)) = {Pv, P ∈ K}, and vP and vQ are neighbors in the

chain K(Out(v)) = {vP, P ∈ K}.
Let D denote the route PvQ (obtained by concatenating Pv and vQ), and F the route QvP . Then:
1) P +Q = D + F ;
2) D and F cannot simultaneously belong to K;
3) if D /∈ K, then F ∈ K, and K′ = (K − F ) ∪D is a maximal clique.

Proof. Assertion 1) is obvious. Assertion 2) follows from the fact that D and F are in conflict at v. To prove
3), assume that Pv ≺In(v) Qv. Since K is maximal and D /∈ K, there is C ∈ K such that D and C are in
conflict. By the above Corollary, we have Pv ≺In(v) Cv ≼In(v) Qv, and vP ≼Out(v) vC ≺Out(v) vQ. Since
Pv and Qv are neighbors, we have Cv = Qv. Similarly, vP = vC. Hence C = F . Similar arguments show
that D is coherent to any route in K −G. Thus, K′ = (K − F ) ∪D is a clique. Obviously, K′ is maximal. 2

4 Decomposition Theorem
Let G be a net (a framed graph). For each clique C, we consider the cone Con(C) =

∑
P∈C R+P . Clearly

Con(C) ⊆ F+. When C runs over the set of cliques, we get a collection of cones. The next theorem asserts
that this collection forms a fan Σ (the coherent fan) covering the cone F+.

Theorem 1. Let F ∈ F+ be a nonnegative flow in a net G. Then there exists a clique C and a decomposition
F =

∑
P∈C αPP with all αP ≥ 0. Moreover, such a decomposition is unique, and if F is integer-valued, then

all numbers αP are integers.

Proof. A) If G is such that all routes are coherent, we are done.

B) Suppose that G contains non-coherent routes, and that no idle edge in G enters a sink. (For deleting such
an edge affects neither the cone F+, nor the set of routes, nor any coherent relation on routes.) Since G is
acyclic, there exists an inner vertex v such that all edges leaving v enter sinks.

Removing these sinks, we obtain the graph G′ = (V \ ∪e∈out(v)h(e), E \ out(v)) and take the induced
framing on it. The vertex v becomes a sink in G′.

This gives the corresponding map on routes:

res : P = P(G) → P(G′) = P ′.

This map is surjective, but need not be injective. One can see that if C is a clique in P , then its image C′ =
res(C) is a clique in P ′. Moreover, we have a correspondence between the set C′(v) = C(In(v)) of paths in
G′ ending at v and the set out(v) of edges leaving v (in G).

More precisely, consider the set of paths C(v) in C passing v. Then sending Pv ∈ C′(v) to vP ∈ out(v)
gives the correspondence C(v) : C′(v) =⇒ out(v). Due to the net structure, both sets are ordered. We need the
following.

Proposition 4. The correspondence C(v) : C′(v) =⇒ out(v) involves the whole set C′(v) and is monotone
with respect to the orders induced by the net G.

Here the proof follows from the facts that the map C(v) → C′(v) is surjective and monotone, and that the map
C(v) → out(v) is monotone. See the picture.
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Conversely, any correspondence R : C′(v) =⇒ out(v) which is monotone and defined on the whole set
C′(v) determines a natural ’prolongation’ of a clique C′ in G′ to some clique C in G. Namely, the subset of
routes in C′ that avoid v are included in C, and each route Q′ ∈ C′(v) (in G′) generates the set R(Q′) of routes
Q (in G) such that Qv = Q′ and vQ ∈ R(Q′). The collection C is a clique. Indeed, the routes of C are coherent
at any vertex w ̸= v as being coherent in C′, and they are coherent at v due to the monotonicity of R.

Note that for such a prolongation, some routes in C′(v) can be split. This depends on the cardinality of
its images in the correspondence R. In all cases the size of the clique C exceeds the size of C′ by at most
|out(v)| − 1. Note that there exists a correspondence for which the size grows by exactly |out(v)| − 1. As a
consequence, the maximum clique size in P is equal to dim(F).

C) Finally, we describe the decomposition of a flow with respect to cliques in P(G). Let F be a flow in G,
and let F ′ = res(F ) be its restriction. By induction there is a clique C′ in res(P) and a decomposition of F ′

into a nonnegative linear combination of routes from C′.
We construct an appropriate correspondence from C′(v) to out(v) and check the uniqueness of this corre-

spondence. By the conservation low, the value of F ′ entering the sink v (in G′) is equal to
∑

e∈out(v) F (e).
Now the construction is seen from the following picture.

-

-

↑ ↑↑ ↑

↓ ↓↓ ↓ ↓
↕ ↕ ↕ ↕ ↕ ↕ ↕

α′
1

... α′
k

F (e1) F (en)

Here e1 < e2 < . . . < en is the ordering of the set out(v) in the net G, P ′
1 < . . . < P ′

k is the ordering of
routes in C′(v), and α′

i denotes the weight of the route P ′
i ∈ C′(v) in the decomposition of F ′ in the clique C′,

i = 1, . . . , k.
This gives the required monotone correspondence, yielding uniquely the prolongation of C′ to C and the

decomposition of F over C. The integrality result easily follows. 2

In particular, from Theorem 1 it follows that for any maximal clique K, the routes in K form a basis of the
Abelian group FZ of integer flows. For particular staircase diagram graphs, such a property was proved in (5).

5 Regularity of the fan of cliques
For a net G, consider the fan Σ of cliques in P(G). The regularity of Σ means that there exists a homogeneous
concave function w : F+ → R whose linearity areas are exactly the clique cones in Σ. Extending a result
in (5), we show the following

Theorem 2. For an arbitrary net G, the fan Σ of cliques in P(G) is regular.

Proof. We explicitly construct a required concave function. Since Σ is formed by simplicial cones, it suffices
to define values w(P ) on the routes P ∈ P . Then for each flow F =

∑
P∈C αPP , where C is a clique and all

αP ≥ 0, we define w̃(F ) :=
∑

αPw(P ).
We have to ensure that the resulting w̃ is concave and, moreover, it is strictly concave with respect to the fan

Σ. The latter can be described as follows. Let Con(C) be a full dimensional cone in Σ, and let lC be the unique
linear function on F taking the values w(P ) for all P ∈ C. Then any flow F ̸∈ Con(C) should satisfy the strict
inequality w̃(F ) < lC(F ).

Lemma 2. Let w : P → R be a function satisfying the following condition:
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(∗) for any two non-coherent routes P and Q, there exist routes P ′ and Q′ such that P +Q = P ′ +Q′ and
w(P ) + w(Q) < w(P ′) + w(Q′).

Then the piecewise linear extension w̃ is strictly concave w.r.t. the fan Σ.

Proof of Lemma 2. Consider a concave interpolation ŵ of w, i.e. for each flow F , the value ŵ(F ) is
the supremum of values

∑
αPw(P ) over the decompositions

∑
αPP = F with nonnegative coefficients

α = (αP ), P ∈ P . Such α’s constitute a compact set, and hence the supremum is attained at some of these
decompositions. Let α = (αP ) be the tuple of coefficients in it. We claim that

The collection C of those P ∈ P where αP > 0 is a clique.

Indeed, if C contains a non-coherent pair P,Q, then we can achieve a bigger value of ŵ(F ) by involving the
pair P ′, Q′ as in condition (∗).

It follows that w̃ and ŵ coincide, implying the concavity of w. To show the strict concavity, consider a
maximal clique K and the corresponding cone Con(K). W.l.o.g. we may assume that the linear function lK is
zero on Con(K). Then for any P /∈ K, the concavity of ŵ implies w(P ) ≤ 0. We have to show that w(P ) < 0.

Take a small ε > 0 so that the flow F =
∑

K∈K K + εP belong to the cone Con(K), and hence ŵ(F ) = 0.
Since K is a maximal clique and P /∈ K, there exists a route Q ∈ K such that Q,P are not coherent. Let P ′, Q′

be as in (∗) and consider the decomposition

F =
∑

K∈K,K ̸=Q
K + (1− ε)Q+ ε(P ′ +Q′).

Since ŵ(F ) = 0, we have∑
K∈K,K ̸=Q

w(K) + (1− ε)w(Q) + ε(w(P ′) + w(Q′)) ≤ 0.

Since w(K) = 0 for any K ∈ K, we obtain w(P ′) + w(Q′) ≤ 0. Now (∗) and w(Q) = 0 imply w(P ) < 0,
proving the lemma. 2

To construct the desired w on P , we consider a route P and define numbers δk(e) = δk(e, P ) for each k ≥ 1
and each edge e of P as follows. Let n(e) be the number of e in the order ≺in(h(e)). Let e′ be the k-th successor
of e in P (if e′ does not exist, we set δk(e) := 0), and let n(e′) be the number of e′ in the order ≺out(t(e′)). We
define

δk(e) := (n(e) + n(e′))2 and wk(P ) :=
∑
e∈P

δk(e).

Finally, taking a small positive real ε, define

w(P ) := w1(P )ε+ w2(P )ε2 + . . . . (1)

Lemma 3. The function w : P → R defined in (1) satisfy condition (∗).

(Then Lemmas 2 and 3 imply Theorem 2.)

Proof of Lemma 3. Let P and Q be conflicting at some vertex v, say, Pv ≺In(v) Qv and vQ ≺Out(v) vP .
Denote by K the maximal common subpath of P and Q containing v. Let K = (e1, . . . , ek−1). Denote by eP
the edge of P such that h(eP ) = t(e1), and denote by fP the edge of P such that h(ek−1) = t(fP ). Denote
by eQ and fQ the corresponding edges for Q. See the picture.

-��������*
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P

fP

eQ

Q

fQ
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Let P ′ := PvQ (the concatenation of Pv and vQ), and Q′ := QvP . Obviously, P + Q = P ′ + Q′. We
claim that

w(P ′) + w(Q′) > w(P ) + w(Q). (2)

1) If l < k then

wl(P ) + wl(Q) = wl(P
′) + wl(Q

′). (3)

Indeed, let e and e′ be edges of P such that the subpath L = (e, . . . , e′) of P has length l. Then K cannot be a
proper subpath of L. Therefore, L is contained either in P ′ or in Q′, and (3) is valid.

2) Let l = k. Arguing as above, one can see that the difference wk(P ) + wk(Q) − (wk(P
′) + wk(Q

′)) is
equal to

(n(eP ) + n(fP ))
2 + (n(eQ) + n(fQ))

2 − ((n(eP ) + n(fQ))
2 + (n(eQ) + n(fP ))

2).

Denote a := n(eP ), b := n(fP ), c := n(eQ), and d := n(fQ). Since P,Q are conflicting at v, we have a < c
and d < b. Therefore,

(a+ b)2 + (c+ d)2 − ((a+ d)2 + (c+ b)2) = −2(a− c)(d− b) < 0.

This implies

wk(P ) + wk(Q) < wk(P
′) + wk(Q

′).

3) Let l > k. In this case we cannot estimate the difference wl(P ) + wl(Q) − (wl(P
′) + wl(Q

′)), but we
can choose ε so that the “tail”

∑
l>k ε

l(wl(P ) + wl(Q) − (wl(P
′) + wl(Q

′))) provide the negativity of the
“head”: ε(wk(P ) + wk(Q) − (wk(P

′) + wk(Q
′))) =

∑
l≤k ε

l(wl(P ) + wl(Q) − (wl(P
′) + wl(Q

′))) < 0.
This gives (2). 2

6 Reduced picture
A route P in a net G is said to be exceptional if P is coherent to each route in G. Let E be the set of exceptional
routes. Then E lies in each maximal clique. The reduced picture arises when we apply factorization by the
subspace RE . Let Fred := F/RE be the corresponding factor space, and p : F → Fred the canonical
projection. This determines the reduced cone F+,red = p(F+) in the space Fred and the reduced fan Σred

consisting of simplicial cones σ(C) := p(Con(C)).
The reduced fan Σred is regular. This follows from Theorem 2. Indeed, let w : F+ → R be a strictly concave

function (w.r.t. Σ). Considering w up to subtracting a linear function l such that l(P ) = w(P ) for all P ∈ E ,
we may assume that w(P ) = 0 for any P ∈ E . Then w = p∗(w̃) for some function w̃ on the reduced cone
F+,red, and w̃ is strictly concave w.r.t. the fan Σred. So Σred is regular.

This construction is of interest when E is “large”.

Definition. We say that the set E is ample if it is not contained in any facet of F+.

Proposition 5. The following statements are equivalent:
1) E is ample;
2) the reduced cone F+,red is the whole space Fred;
3) each non-idle edge belongs to an exceptional route.

Proof. If E lies in none of the facets of the cone F+, then 0 lies in none of the facets the reduced cone
F+,red. Hence 0 is an interior point of F+,red, implying that this cone coincides with whole space Fred. The
converse is also true. Thus, 1) and 2) are equivalent.

The equivalence of 1) and 3) follows from Proposition 2. 2

Note that there are nets with empty E . In the next section we will consider a class of “grid nets” which
possess ample exceptional sets.
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7 Canonical framing on grid nets
Let λ = (λ1 ≥ . . . ≥ λn) and µ = (µ1 ≥ . . . ≥ µn) be two partitions and λ ≥ µ (i.e. λi ≥ µi for each i).
Denote by Γ = Γ(λ, µ) the digraph (called a skew staircase diagram, or a grid net) being the union of directed
unit squares in Z2 (where the edges are directed to the east and north) corresponding to the skew Young diagram
for λ, µ drawn in the French style. The sources are located at the south-west corners and the sinks are located
at the north-west corners of Γ. The picture below illustrates Γ((3, 2, 1), (1, 0, 0)).

6

6
-

- - -
6

6

6

- -
66

6
- -

Definition. We say that a framing on a grid net Γ is canonical if the vertical edge is bigger than the horizontal
one in each corresponding local order.

In the rest of the paper we consider only canonical grid nets.
For the canonical framing on Γ(λ, µ), the exceptional routes are of two types: horizontal and vertical.

Namely, consider a horizontal edge of Γ (which is directed east). Then there exists a unique route which
contains this edge and goes horizontally between the SW and NE boundaries of Γ. Similarly, for each vertical
edge (directed north), there is a unique route which contains this edge and goes vertically between the SW and
NE boundaries of Γ. Example of horizontal- and vertical-type routes are depicted below.

-

6
-

-
6

The following lemma is a slight generalization of Lemma 6.8 in (5).

Lemma 4. Any horizontal- or vertical-type route as defined above is exceptional.

Proof. Consider a horizontal-type route H; for a vertical-type route, the argument is similar. For any route
P , there is at most one component of P ∩H containing neither the source nor the sink of H . This component
has only horizontal edges, and now the fact that P and H are coherent easily follows. 2

Since the exceptional routes cover all edges, Proposition 5 implies the following

Corollary. For the net Γ(λ, µ), the cones in the reduced fan Σ(Γ(λ, µ))red cover the reduced vector space
Fred. Hence the reduced fan is complete and regular.

This affirmatively answers Conjecture 8.10 in (5).

Let us return to the fan Σ(Γ(λ, µ)). Consider a maximal clique K and a route A ∈ K. This route generates
the extreme ray R+A of the simplicial cone Con(K). Also Con(K−A) is the facet opposite to A in Con(K).
If this facet is not included in a facet of F+(Γ(λ, µ)), then it belongs to another full dimensional simplicial
cone Con(K′). Hence there is a route B′ such that K′ = (K − A) ∪ B′. The transformation of Con(K) into
Con(K′) is called a flip at A.

Since any maximal clique contains all exceptional routes, such routes cannot be used in flips. If A ∈ K is
non-exceptional, then, due to the above Corollary, the cone spanned by K − A is not contained in a facet of
F+, and hence we can make a flip at A. This implies that in the reduced fan Σred, one can make a flip at each
element.

Theorem 3. Let K be a maximal clique in the net Γ(λ, µ), and let A ∈ K be a non-exceptional route. Then
there exist routes A′, B ∈ K−{A} such that B′ = A′+B−A is a route and the collection K′ = (K−A)∪B′

is a maximal clique.
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To prove this theorem, we explicitly construct the routes A′ and B.

The construction of A′. We say that a route Ã ̸= A is a fellow-traveler of A if Ã belongs to K and has the
same source as A. Among the fellow-travelers of A, we consider the set A of routes which have the longest
common path with A starting at the source of A. Let v be the last vertex of this path. (Clearly v is an inner
vertex.) Then we take as A′ the route in A which is closest to A in the order ≺Out(v).

Suppose that the edge of A′ leaving v is vertical, while the edge of A leaving v is horizontal.

The construction of B. Let B be the subset of routes B̃ ̸= A in K satisfying the following conditions:

1. B̃ contains v and its edge leaving v is horizontal;

2. B̃ ≺In(v) A.

Note that the set B is nonempty. Indeed, B ∪ {A} contains the horizontal-type exceptional route E passing
through the horizontal edge leaving v. It suffices to check that Ev ̸= Av. If this is not so, then either E is a
longer fellow-traveler of A than the route A′, or A is an exceptional route; both cases are impossible. Thus, B
is nonempty.

Let B be a minimal element of B w.r.t. the order ≺In(v). If there are several such elements, we take as B
the one which is maximal w.r.t. the order ≺Out(v).

We claim that vB coincides with vA.

Indeed, since B and A are coherent and B ≺In(v) A, we have B ≼Out(v) A. We show that the strict
comparison here is impossible, as follows.

Suppose that B ≺Out(v) A, and let D = AvB. Then D ̸= A. The route D does not belong to the clique K,
otherwise D would be a longer fellow-traveler of A than A′.

By the Corollary from Lemma 1, there exists a route C ∈ K located “between” A and B such that: the first
edges of C and A are different, and the last edges of C and B are different. One can see that C ∈ B. Since B
is maximal in B w.r.t. ≺In(v), we get Cv = Bv. But then B ≺Out(v) C, contradicting the choice of B. This
proves the claim.

Now Theorem 3 follows from Proposition 3. 2

8 Weakly separated set-systems and Plücker cluster algebra
Consider a staircase net Γ(n) being the canonically framed grid Γ((n − 1, . . . , 1), (0, . . . , 0)). Below the net
Γ(4) is depicted.
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6
- -
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The dimension of the cone F+(Γ(n)) is n(n+1)/2−1 and its extreme rays can be identified with 2[n]\{∅, n}.
In fact, routes in Γ(n) can be identified with words of length n in the alphabet {N,E}. There is a bijection
between the set of such words and the set of subsets of [n] minus ∅ and [n]. Namely, a word is sent into a subset
indexing the letter N in the word. For example, the word NEEN is sent to a subset {1, 4}.

Thus any clique of the coherence relation gives a subset in 2[n] (or a set-system in [n]).
Some of such cliques corresponds to seed into the Plücker cluster algebra of the coordinate ring of the

flag variety. Namely, Leclerc and Zelevinsky in (4), in connection with the problem of characterizing quasi-
commuting quantum flag minors, introduced a reflexive and symmetric binary relation on subsets of [n], the
so-called weak separation. It is not difficult to show that the cliques of this complex constitute a subset of
cliques of the coherence complex for the canonical framing on Γ(n). Because of main result in (1), the cliques
complex of this binary relation is pure of the dimension n(n + 1)/2 − 1. Thus, we get a pure subcomplex
of Σ(Γ(n)) of the same dimension. In (2), we established that maximal weakly-separated set-systems in [n]
correspond to seeds into the Plücker cluster algebra. Thus, such ’Plücker seeds’ correspond to cones in the
coherence fan Σ(Γ(n)).

We illustrate this relation by an example with n = 4.
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8.1 Example n = 4

Consider Γ(4). There are 14 sets-routes 2[4] \ {∅, [4]}. Six of them, 1, 12, 123, 234, 34 and 4 constitute the ex-
ceptional set E(Γ(4)). The non-exceptional sets-routes are 2, 3, 24, 14, 23, 13, 134, and 124. We implement the
non-exceptional routes by vectors in the three-dimensional reduced space F(Γ(4))red = F(Γ(4))/RE(Γ(4)).

In this space F(Γ(4))red the images of routes are related by the following relations (these relations follows
from the corresponding relations in F(Γ(4)):

3 + 14 = 0 (because there holds 3+14=1+34 in F)

2 + 134 = 0 (2+134=1+234)

23 + 124 = 0 (23+124=12+234)

2 + 14 = 24 (2+14=1+24)

23 + 134 = 13 (23+134=13+234).

Let the vectors 3, 23 and 2 be a basis of the 3-dim space F(Γ(4))red. Then eight non-exceptional vectors
are of the form

3 = (1, 0, 0), 14 = (−1, 0, 0) , 23 = (0, 1, 0), 124 = (0,−1, 0), 2 = (0, 0, 1), 134 = (0, 0,−1), 24 =
(−1, 0, 1), 13 = (0, 1,−1).
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The reduced fan Σ(Γ(4))red is the normal fan to the following polytope
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Figure 1

This fan as a simplicial complex is depicted below (the triangle (14, 124, 134) is also a simplex of the
complex).
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Figure 2

All cliques except two, K3 and K7, correspond to maximal weakly-separated sets. Let us make the baricentric
subdivision of the complex (Fig. 2) in the middle of the edge (3, 124), which separates the cliques K3 and K7

(this corresponds to cut away the north-east edge of the facet 3 of the polytope (Fig. 1)). Then the resulting fan
will be the cluster fan for SL(4)/N . This fan is the normal fan to the Postnikov associahedron. The Postnikov
associahedron differs from the Chapoton-Fomin-Zelevinsky associahedron, see (6).
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