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1. Introduction

Kashiwara [K90] introduced the fundamental notion of a crystal in represen-
tation theory. This is an edge-colored directed graph in which each connected
monochromatic subgraph is a finite path and there are certain interrelations on
the lengths of such paths, described in terms of a Cartan matrix M ; this matrix
characterizes the type of a crystal. An important class of crystals is formed by the
crystals of representations, or regular crystals; these are associated to irreducible
highest weight integrable modules (representations) over the quantum enveloping
algebra related to M . There are several models to characterize the regular crys-
tals for a variety of types; e.g., via generalized Young tableaux [KN94], Lusztig’s
canonical bases [Lu90], Littelmann’s path model [Lt95], MV-polytopes [K].

Here we propose a new model for the Cartan matrix of type A. In this model,
the set of vertices of the crystal is the set of integer tropical Plücker functions on
the Boolean cube which have zero values on the vertices of the chain (0, . . . , 0),
(0, . . . , 0, 1), (0, . . . , 0, 1, 1), . . . , (0, 1, . . . , 1), (1, . . . , 1). To decide if a pair of func-
tions f and g is connected by an edge of some color i, we have to restrict f and g
to a surface adopted to i (such a surface is obtained as the union of certain 2-faces
in the Boolean cube; see for details Section 2).

This model is symmetric on the colors (see Section 5). This allows us to obtain
regular crystals for the Cartan matrices of Dynkin Bn- and Cn-types as symmetric
extracts from crystals of A2n−1- and A2n-types, respectively. Note that among
the above-mentioned models, Littelmann’s path model of A-type and Kamnitzer’s
MV-polytope model are also symmetric, and this property was used in [NS] for
construction of B- and C-types of Littelmann’s path model as symmetric extracts
from A-types; a direct combinatorial proof, based on the so-called crossing model,
is given in [DKK12].

There are some advantages of our TP-method. Firstly, it is not too intricate
and provides a new viewpoint on Young tableaux of B and C types. Secondly, using
our model, we obtain an explicit description of the principal lattice of crystals of
types A, B and C. The principal lattice in A-type crystals was introduced and
studied in [DKK08].
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In Section 2 we recall some basic facts on tropical Plücker functions (TP-
functions). In Section 3 we define a structure of free crystal on the set of TP-
functions. In Section 4 we consider ’bounded’ subcrystals (intervals) in a connected
free crystal. In the last Section 5, we explain how crystals of Bm- and Cm-types
can be derived from symmetric TP-functions on 2[2m] and 2[2m+1], respectively.

2. Tropical Plücker functions

1. For a positive integer n, let [n] denote the ordered set of elements 1, 2, . . . , n.
A real-valued function f on the subsets of [n], or on the Boolean cube 2[n], is said
to be a tropical Plücker function, or a TP-function, if it satisfies the TP3-relation

(1) f(Aik) + f(Aj) = max{f(Aij) + f(Ak), f(Ai) + f(Ajk)},

for any triple i < j < k in [n] and subset A ⊆ [n] − {i, j, k}, where for brevity we
write Ai′ . . . j′ instead of A ∪ {i′} ∪ . . . ∪ {j′}.

The set of integer TP-functions on 2[n] is denoted by TPn, and the set of real
TP-functions by TPn(R).

2. TPn is a subset of the space R2[n]

of all functions on 2[n]. The polyhedral
conic complex TPn(R) is stable under multiplication on positive numbers, but not
under addition, in general. However, it contains a lineal of dimension 2n constituted
by principal TP-functions. These are affine functions of the form α+ µ(A), where
α ∈ R and µ is a measure on [n]; in other words, such functions depend only on
cardinalities of sets (arguments), and their sums.

3. Definition. A subset B ⊆ 2[n] is called a TP-basis, or simply a basis, if
the restriction map res : TPn(R) → RB is a bijection. In other words, each TP-
function is determined by its values on B, and moreover, the values on B can be
chosen arbitrarily.

Such bases do exist, and it is convenient for our purposes to assume that a basis
is given in the form of the spectrum of a rhombus tiling diagrams. Let us recall
these notions (for details, see [DKK10]).

Rhombus tilings live within a zonogon, which is defined as follows. In the upper
half-plane, take n non-colinear vectors ξ1, . . . , ξn so that:

(i) ξ1, . . . , ξn follow in this order clockwise around (0, 0), and
(ii) all integer combinations of these vectors are different.

Then the set Z = Zn := {λ1ξ1 + . . . + λnξn : 0 ≤ λi ≤ 1, i = 1, . . . , n} is a 2n-
gone. Moreover, Z is a zonogon, as it is the sum of n line-segments {λξi : 1 ≤
λ ≤ 1}, i = 1, . . . , n. Also it is the image by a linear projection π of the solid
cube conv(2[n]) into the plane R2, defined by π(x) := x1ξ1 + . . . + xnξn. The
boundary bd(Z) of Z consists of two parts: the left boundary, lbd(Z), formed by
the points (vertices) zℓi := ξ1+ . . .+ξi (i = 0, . . . , n) connected by the line-segments
zℓi−1z

ℓ
i := zℓi−1 + {λξi : 0 ≤ λ ≤ 1}, and the right boundary, rbd(Z), formed by the

points zri := ξi+1 + . . . + ξn (i = 0, . . . , n) connected by the line-segments zri z
r
i−1.

So zℓ0 = zrn is the minimal vertex of Z and zℓn = zr0 is the maximal vertex. We
direct each segment zℓi−1z

ℓ
i from zℓi−1 to zℓi and direct each segment zri z

r
i−1 from zri

to zri−1.
A subset X ⊆ [n] is identified with the corresponding vertex of the n-cube and

with the point
∑

i∈X ξi in the zonogon Z. Due to (ii), all such points in Z are
different.
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In fact, it does not matter what vectors ξ1, . . . , ξn are chosen subject to (i),(ii).
It is convenient for us to assume that these vectors have unit height, i.e. each ξi is
of the form (ai, 1) (and a1 < . . . < an).

By a tile we mean a parallelogram τ of the form X+{λξi+λ′ξj : 0 ≤ λ, λ′ ≤ 1},
where X ⊂ [n] and 1 ≤ i < j ≤ n; we also call it an ij-tile at X and denote by
τ(X; i, j). According to a natural visualization of τ , its vertices X,Xi,Xj,Xij are
called the bottom, left, right, top vertices of τ and denoted by b(τ), ℓ(τ), r(τ), t(τ),
respectively. The edge from b(τ) to ℓ(τ) is denoted by bℓ(τ), and the other three
edges of τ are denoted as br(τ), ℓt(τ), rt(τ) in a similar way. Also we say that a
point (subset) Y ⊆ [n] is of height |Y |.

4. A (rhombus) tiling diagram, or a tiling for short, is a certain collection T of
tiles τ(X; i, j) which cover Zn and such that the corresponding polyhedral complex
is homeomorphic to a disc; for a precise definition, see [DKK10].

A vertex (an edge) of a tiling T is a vertex (an edge) of any rhombus in T . Thus,
the set of vertices of T defines a collection of corresponding subsets of [n]. This
collection is called the spectrum of T and denoted by Sp(T ). Note that boundary
vertices of Zn, namely, ∅, {1}, {1, 2},..., {1, 2, ..., n}, {2, ..., n},..., {n}, belong to the
spectrum of any tiling.

5. It turns out that the spectrum Sp(T ) of any tiling T is a TP-basis, and any
TP-basis is obtained in this way; see [DKK10]. The bijection

TPn(R) → RSp(T )

is a piecewise linear map. One can consider tilings as charts of an atlas for TPn. The
transformation maps between charts take the form of sequences of TP3-relations
(1); see [DKK10].

6. Let R be a tile τ(A; i, j). Then the excess of a function f : 2[n] → R at the
rhombus R is defined to be the value

ε(f,R) = f(Ai) + f(Aj)− f(A)− f(Aij).

Any function on the vertices of a tiling T is determined by its values on the vertices
of the right boundary of Zn together with the list of tile excesses for T .

3. TP-functions and free crystal of type A

1. A pre-crystal with n colors is a certain digraph K in which each edge is
endowed with a color, which is an element of [n]. In other words, the set of edges of
K is partitioned into n subsets: E(K) = E1 ⊔ . . .⊔En, where the edges in each Ei

have color i. In order to be a pre-crystal, such a digraph K should satisfy a number
of axioms. The first axioms requires that for any color i, the subgraph (K,Ei) is
a disjoin union of monochromatic (finite or infinite) directed paths. A move along
an edge of a color i is understood as an action of the (partial) operation i on the
set of vertices V (K) of K. Namely, if an edge (v, u) has color i, then iv = u, and
we say that the operation i acts at v.

Reversing the edges of K, we can define the reverse operations i−1. That is, if
i acts at v and u = iv, then i−1 acts at u and v = i−1u.

Example. A commutative pre-crystal is an Abelian group Z[n] on which an
operation i sends x to x+ 1i, where 1i is the i-th basis vector.
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Let K and K ′ be two n-colored pre-crystals. Then a morphism K → K ′ is
a mapping φ : V (K) → V (K ′) which commutes with the actions of operations
i; that is if i acts at v in the pre-crystal K, then i acts at φ(v), and there holds
φ(iv) = iφ(v).

The second axiom of pre-crystals requires an existence of a weight map, a
morphism wt : K → Z[n].

2. Crystals are associated to (generalized) Cartan matrices. Let M = (mij),
i, j ∈ [n], be such a matrix, that is mij ∈ Z, mii = 2, and mij ≤ 0 for i ̸= j. A pre-
crystal is a crystal if some additional axioms on the weight map and Cartan data are
satisfied. However, according to the 2-color reduction theorem in [KKMMNN],
a ’bounded’ pre-crystal is a crystal of an integrable M -module if and only if the
restriction of K to any pair of colors i, j is a crystal of the corresponding M |ij-
module. For simply- and doubly-laced cases, one deals with 2-colored crystals of
three types A1 + A1, A2 and B2. Crystals of types A2 and B2 were exhaustively
studied in [DKK07, DKK09].

3. One can obtain a pre-crystal with n colors by considering as the set of
vertices the set of integer TP-functions TP = TPn+1(Z) on 2[n+1] (as we shall see
later, such a pre-crystal is, moreover, an An-crystal). We need some definitions.

Let us call a rhombus τ of a tiling T a left rhombus if it shares 2 edges with
the left boundary of the zonogon Zn+1. Specifically, τ is a left rhombus at height
h if b(τ) = [h − 1], l(τ) = [h], and t(τ) = [h + 1]. We denote such a rhombus by
LRh. Analogously, one defines the right rhombus RRh at height h.

We say that a tiling T in Zn+1 fits the color i (i = 1, . . . , n) if T contains the
left rhombus LRi. For any color i, there exists a tiling which fits i

4. Now all is ready to define a crystal operation i (i = 1, . . . , n) at a TP-
function f ∈ TPn+1. Choose a tiling T which fits the color i. Then the function if
is defined by the rule

(if)(v) =

{
f(v) + 1, if v = [i],
f(v) otherwise.

In other words, within the chart T , the function if differs from f at the only vertex
v. Note that the functions f and if may differ at many vertices of the Boolean
cube. Nevertheless, they coincide on the vertices of rbd(Zn+1).

5. Theorem. The operations i (i = 1, ..., n) are well defined and they endow
the set TP = TPn+1 with a structure of a free An-crystal.

According to the 2-color reduction theorem of [KKMMNN], it suffices to
consider the case n = 3. In this case, one can establish an explicit bijection with
the A2-crystals described via the crossing model of [DKK07].

6. The crystal operations i commute with the operation of adding any in-
teger principal TP-function. That is, for any TP-function f and any principal
TP-function p, there holds

i(f + p) = if + p.

7. As is said above, the crystal actions preserve values of TP-functions at the
vertices of rbd(Zn+1). Thus, the values at these vertices are n + 2 ’integrals’, and
any connected component of the crystal TPn+1(R) is specified by x ∈ Rn+2, being
the list of values at the vertices of rbd(Z). Denote such a crystal (component) by
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K[x]. Since the crystals K[x] are isomorphic for all x, we can consider the crystal
K = K[0] whose vertices are the integer TP-functions which are zero on the vertices
of rbd(Zn+1).

8. Consider the set P of principal TP-functions which belong to K[0], i.e.
taking value 0 on the vertices of rbd(Z). We can specify the excesses of such
functions at the rhombi of each height. This gives an isomorphism between P and
the Abelian group Zn. A natural basis of the lattice P consists of the principal
functions p1, . . . , pn, where i-th function pi is defined by the following conditions:

(1) pi is 0 at each vertex of rbd(Z);
(2) for any j ̸= i and any rhombus R at the height j, ε(pi, R) = 0;
(3) for any rhombus R at the height i, ε(pi, R) = 1.

4. Subcrystals of K[0]

1. Since the operations i and i−1 act at each vertex of K[0], the crystal K[0] is a
free crystal, that is all maximal monochromatic paths are infinite in both directions.
Now we interested in subgraphs of K[0] giving An-type crystals.

Introduce the following partial order ≼ on the vertices ofK[0]: for TP-functions
f, g in K[0], we write f ≼ g if there exists a word w in the alphabet {1, . . . ,n} such
that g = wf . In other words, f ≼ g if there exists a directed path in K[0] starting
at f and ending at g.

For a principal vertex p ∈ K[0], we denote by Kp (resp. Kp) the set {f ∈
K[0], p ≼ f} (resp. {f ∈ K[0], f ≼ p}). The vertex p is the unique source in the
poset Kp and the unique sink in Kp. We have

Kp = p+K0 and Kp = p+K0.

Because of this, we are interested in the sets K0 and K0.

2. It is useful to give an alternative definition of the set K0. Recall that
a function f : 2[n+1] → R is submodular if any ‘rhombus’ R in 2[n+1] satisfies
ε(f,R) ≥ 0. The following property can be shown: a TP-function f is submodular
if and only if for any fixed tiling T in Zn+1, ε(f, τ) ≥ 0 holds for each tile τ ∈ T .

3. Theorem. The set of vertices of K0 is the set of integer submodular TP-
functions which are equal to 0 on rbd(Zn+1).

4. The intersection of K0 and the lattice of principal TP-functions P ∼= Zn is
the semigroup Zn

+. In fact, every principal function pi, i = 1, . . . , n, is submodular.
Moreover, the only nonnegative linear combinations of them are submodular.

5. From Theorem in 4.3 it follows that the crystal K[0] is connected. In other
words, any function of K[0] is of the form w 0, where w is a word in the alphabet
{1±1, . . . ,n±1}. Specifically, for any f ∈ K[0], we can find a principal function
p ∈ P such that the TP-function f +p is submodular. Then, according to Theorem
in 4.3, there exists a word w in the alphabet {1, . . . ,n} such that f + p = w0.
Hence f = w(−p). Since, due to this theorem, there exists a word v such that
p = v0, we have −p = v−10. This implies f = wv−10.

6. Next we give a description of vertices of K0 using excesses.

Theorem. A TP-function f ∈ K[0] belongs to K0 if and only if each right
rhombus RRi satisfies ε(f,RRi) ≤ 0.
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This theorem has the following generalization:

Let p ∈ P ∩K[0] be a principal function in K. Then a function f ∈ K[0] belongs
to Kp if and only if for any i = 1, . . . , n, there holds ε(f,RRi) ≤ ε(p,RRi).

7. The crystals of the form Kp
q = Kp∩Kq (intervals), where p, q ∈ P and q ≼ p,

correspond to finite-dimensional integrable modules. W.l.o.g., we may assume that
q = 0. Then p =

∑
i cipi, where ci ∈ Z≥0. The graph Kp

0 is finite and connected,
and it has the unique source 0 and the unique sink p.

Due to Theorems in 4.3 and 4.6, a function f ∈ K belongs to the crystal
Kp

0 = K0 ∩Kp (for some p ∈ P ) if and only if:

(1) any rhombus R satisfies ε(f,R) ≥ 0; and
(2) any right rhombus RRi, i = 1, . . . , n, satisfies ε(f,RRi) ≤ ε(p,RRi).

It follows that the intersection of a crystal Kp
0 and the principal lattice P

consists of the functions of the form
∑

i cipi, where 0 ≤ ci ≤ ε(p,RRi). This means
that this intersection is an integer parallelepiped. For a tuple c = (c1, ..., cn) ∈ Zn

≥0,

we denote by K(c) the crystal Kp
0 with p =

∑
i cn+1−ipi.

8. Proposition. 1) ci is equal to the maximal number α such that the function
iα0 belongs to K(c).

2) cn−i+1 is equal to the maximal number β such that the function i−βp belongs
to K(c).

5. Extracts from symmetric A-crystals

1. The inversion σ(i) = n + 2 − i of the set [n + 1] can be considered as an
inversion of the Dynkin diagram An. Consider the inversion γ of the Boolean cube
2[n+1], defined by γ(A) = σ([n+ 1]−A).

Consider an extension of the inversion γ to the zonogon Z = Zn+1. For this,
consider symmetric (w.r.t. σ) vectors ξi = (xi, 1), that is ξn+2−i = (−xi, 1). Denote
by γ the symmetry of the plane w.r.t. the horizontal line y = (n + 2)/2. This
symmetry sends Z to itself: if a point v ∈ Z corresponds to a subset A ⊂ [n + 1],
then the point γ(v) corresponds to the subset γ(A). This symmetry extends to the
space of functions on the Boolean cube. Namely, let f : 2[n+1] → R be a function
on the Boolean cube. Then the function γ∗f : 2[n+1] → R sends a set A to f(γ(A)).
Obviously, f is a TP-function if and only if γ∗f is a TP-function.

Denote by T̃P the set of symmetric TP-functions, γ∗f = f . We are going to

endow the set T̃P with a crystal structure. This depends on the parity of n.

2. Let n be odd, n = 2m−1, m ≥ 1. In this case there are plenty of symmetric
tilings. A tiling T is symmetric if its set of vertices and edges is stable under the
symmetry γ, i.e. γT = T .

In this case, any symmetric TP-function defines a symmetric function on any

symmetric tiling, and vice versa. Consider m operations 1̃, . . . , m̃ on T̃P , where

1̃ = 1n = n1, . . . , m̃− 1 = (m−1)(m+1), m̃ = m, where 1, . . . ,n are the crystal
operations on TP . These operations can be defined as follows. For ith operation,
we consider a symmetric tiling T which fits the color i. Then, by the symmetry,
T also fits the color n + 1 − i = 2m − i. The ith operation on the vertices of T is
defined by the rule

(̃if)(v) =

{
f(v) + 1, if v = [i], γ[i] = [2m− i]
f(v) otherwise.
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Note that for i = m, we have [m] = [2m−m], and ith operation increases by 1 the
value of a function at the symmetric vertex [m].

3. Theorem. T̃P is a free Bm-crystal.

4. Considering symmetric functions in the subcrystals K0, K
0 and K(c), with

symmetric c (cσ(i) = ci, i = 1, . . . ,m) of type A2m+1, we obtain Bm-subcrystals in

the free Bm-crystal T̃P . The symmetric part of K̃(c) of K(c) is an interval in the

poset K̃[0] consisting of symmetric TP-functions between the principal vertices 0

and p =
∑2m+1

i=1 cipi.
Let us consider simplest examples for n = 3. The A3-crystal K(0, 1, 0) is drawn

in the left part of the picture below. The symmetric vertices are indicated by bold

circles, and the extracted B2-crystal K̃(0, 1) is depicted in the right part.
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The A3-crystal K(1, 0, 1) is drawn in the left part of the next picture, and the

extracted B2-crystal K̃(1, 0) in the right part.
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5. Now let n be even, n = 2m. In this case there are no symmetric tilings,
but there exist symmetric hexagonal-rhombus tilings, or HR-tilings for short. Tiles
of an HR-tiling are rhombi or hexagons (where a hexagon is the zonogon Z3). An
HR-tiling is symmetric if it contains, for each rhombus R, the symmetric rhombus
γ(R), and for each hexagon H, the symmetric hexagon γ((H).

Consider the case n = 2. There is a unique HR-tiling, the zonogon Z3 itself.
Below we illustrate Z3 and its two rhombus tilings.
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A symmetric TP-function is specified by the following conditions: a = b, a′ = b′,
and c = c′. TP3-relation (1) reads as c + c′ = max(a + b′, b + a′) and boils down
to the equality 2c = a+ a′. Because of this, the values of a symmetric function on
the boundary of Z3 determine the whole function.

In this case, a symmetric TP-function in K[0] is a triple a, b = a, c = a/2.
Apply the sequence of operations 1221 to a symmetric TP-function correspond-

ing to a, b = a and c = a/2. The result is a symmetric function corresponding to

ã = a+2, b̃ = a+2, and c̃ = c+1. We can apply the sequence of crystal operation
to the same symmetric TP-function. The result is again ã = a+ 2, b̃ = a+ 2, and
c̃ = c+1. Thus, the symmetric extraction of A2 endowed with the operation 1221
is an A1-crystal.

6. Any symmetric TP-function on the Boolean cube 2[2m+1] defines a sym-
metric function on the vertices of any HR-tiling, and vice versa. As before, we

denote by T̃P the set of symmetric TP- functions. Define the operations on

T̃P as follows. The operations 1̂,. . . , m̂− 1 are defined as in part 5.2: 1̂ :=
1(2m), . . . , 1̂ := (m− 1)(m+ 2). The operation m̂ is defined as the sequence
m(m+ 1)(m+ 1)m = (m+ 1)mm(m+ 1).

In terms of symmetric HR-tilings, these operations are expressed as follows.
For 1 ≤ i < m, take a symmetric HR-tiling which fits the color i. Then the ith
operation is defined on a vertex v of the tiling by the rule

(2) (̃if)(v) =

{
f(v) + 1, if v = [i], γ[i] = [2m− i]
f(v) otherwise.

For i = m, we take a symmetric HR-tiling which has a hexagon containing the
vertices [m− 1],[m],[m+ 1],[m+ 2]. Then the mth operation is defined by the rule

(3) (m̃f)(v) =

{
f(v) + 2, if v = [m], v = [m+ 1]
f(v) otherwise.

7. Theorem. The set of symmetric function T̃P endowed with operations (2)
and (3) is a free Cm-crystal.

8. Analogous to part 5.4, one can define the Cm-subcrystals K̃0, K̃0, and K̃(c).

The next picture illustrates the extract K̃(1, 0) from the crystal K(1, 0, 0, 1).
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