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Regular 𝐴
𝑛
-crystals are certain edge-colored directed graphs, which are related to representations of the quantized universal

enveloping algebra 𝑈
𝑞
(sl
𝑛+1

). For such a crystal 𝐾 with colors 1, 2, . . . , 𝑛, we consider its maximal connected subcrystals with
colors 1, . . . , 𝑛−1 and with colors 2, . . . , 𝑛 and characterize the interlacing structure for all pairs of these subcrystals.This enables us
to give a recursive description of the combinatorial structure of𝐾 via subcrystals and develop an efficient procedure of assembling
𝐾.

1. Introduction

Crystals are certain “exotic” edge-colored graphs.This graph-
theoretic abstraction, introduced by Kashiwara [1, 2], has
proved its usefulness in the theory of representations of Lie
algebras and their quantum analogues. In general, a finite
crystal is a finite directed graph 𝐾 such that the edges are
partitioned into 𝑛 subsets, or color classes, labeled 1, . . . , 𝑛,
each connected monochromatic subgraph of 𝐾 is a simple
directed path, and there are certain interrelations between
the lengths of such paths, which depend on the 𝑛 × 𝑛 Cartan
matrix 𝑀 = (𝑚

𝑖𝑗
) related to a given Lie algebra g. Of most

interest are crystals of representations, or regular crystals.
They are associated to elements of a certain basis of the
highest weight integrable modules (representations) over the
quantized universal enveloping algebra 𝑈

𝑞
(g).

This paper continues our combinatorial study of crystals
begun in [3, 4] and considers 𝑛-colored regular crystals of
type A, where the number 𝑛 of colors is arbitrary. Recall that
type A concerns g = sl

𝑛+1
; in this case the Cartan matrix𝑀

is viewed as 𝑚
𝑖𝑗
= −1 if |𝑖 − 𝑗| = 1, 𝑚

𝑖𝑗
= 0 if |𝑖 − 𝑗| > 1,

and 𝑚
𝑖𝑖
= 2. We will refer to a regular 𝑛-colored crystal of

type A as an𝐴
𝑛
-crystal and omit the term 𝑛when the number

of colors is not specified. Since we are going to deal with
finite regular crystals only, the adjectives “finite” and “regular”

will usually be omitted. Also we assume that any crystal in
question is (weakly) connected; that is, it is not the disjoint
union of two nonempty graphs (which does not lead to loss
of generality).

It is known that any A-crystal 𝐾 possesses the following
properties. (i) 𝐾 is acyclic (i.e., has no directed cycles) and
has exactly one zero-indegree vertex, called the source, and
exactly one zero-outdegree vertex, called the sink of𝐾. (ii) For
any 𝐼 ⊆ {1, . . . , 𝑛}, each (inclusion-wise) maximal connected
subgraph of 𝐾 whose edges have colors from 𝐼 is a crystal
related to the corresponding 𝐼 × 𝐼 submatrix of the Cartan
matrix for 𝐾. Throughout, speaking of a subcrystal of 𝐾, we
will mean a subgraph of this sort.

Two-colored subcrystals are of especial importance, due
to the result in [5] that for a crystal (of any type) with exactly
one zero-indegree vertex, the regularity of all two-colored
subcrystals implies the regularity of the whole crystal. Let𝐾󸀠
be a two-colored subcrystal with colors 𝑖, 𝑗 in an A-crystal𝐾.
Then 𝐾󸀠 is the Cartesian product of a path with color 𝑖 and a
path with color 𝑗 (forming an𝐴

1
× 𝐴
1
-crystal) when |𝑖−𝑗| >

1, and an 𝐴
2
-crystal when |𝑖 − 𝑗| = 1. (The A-crystals belong

to the group of simply-laced crystals, which are characterized
by the property that each two-colored subcrystal is of type
𝐴
1
× 𝐴
1
or 𝐴
2
; for more details, see [6].)
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Another important fact is that for any 𝑛-tuple 𝑐 = (𝑐
1
,

. . . , 𝑐
𝑛
) of nonnegative integers, there exists exactly one 𝐴

𝑛
-

crystal 𝐾 such that each 𝑐
𝑖
is equal to the length of the

maximal path with color 𝑖 beginning at the source (for short
combinatorial explanations, see [4, Section 2]. We denote the
crystal 𝐾 determined by 𝑐 in this way by 𝐾(𝑐) and refer to 𝑐
as the parameter of this crystal.

There have been known several ways to define A-crystals;
in particular, via Gelfand-Tsetlin pattern model, semistan-
dardYoung tableaux, and Littelmann’s pathmodel; see [7–10].
In the last decade there appeared additional, more enlighten-
ing, descriptions. A short list of “local” defining axioms for
A-crystals is pointed out in [6], and an explicit construction
for𝐴
2
-crystals is given in [3]. According to that construction,

any 𝐴
2
-crystal can be obtained from an 𝐴

1
× 𝐴
1
-crystal by

replacing each monochromatic path of the latter by a graph
viewed as a triangle-shaped half of a directed square grid.

When 𝑛 > 2, the combinatorial structure of 𝐴
𝑛
-crystals

becomesmuchmore complicated, even for 𝑛 = 3. Attempting
to learn more about this structure, we elaborated in [4] a
new combinatorial construction, the so-called crossing model
(which is a refinement of the Gelfand-Tsetlin pattern model).
This powerful tool has helped us to reveal more structural
features of an 𝐴

𝑛
-crystal 𝐾 = 𝐾(𝑐). In particular, 𝐾 has the

so-called principal lattice, a vertex subsetΠwith the following
nice properties:

(P1) Π contains the source and sink of 𝐾, and the vertices
𝑣 ∈ Π are bijective to the elements of the integer box
B(𝑐) := {𝑎 ∈ Z𝑛 : 0 ≤ 𝑎 ≤ 𝑐}; we write 𝑣 = 𝑣̆[𝑎];

(P2) for any 𝑎, 𝑎󸀠 ∈ B(𝑐) with 𝑎 ≤ 𝑎
󸀠, the interval of 𝐾

from 𝑣̆[𝑎] to 𝑣̆[𝑎
󸀠

] (i.e., the subgraph of 𝐾 formed
by the vertices and edges contained in directed paths
from 𝑣̆[𝑎] to 𝑣̆[𝑎

󸀠

]) is isomorphic to the 𝐴
𝑛
-crystal

𝐾(𝑎
󸀠

− 𝑎), and its principal lattice consists of the
principal vertices 𝑣̆[𝑎󸀠󸀠] of𝐾 with 𝑎 ≤ 𝑎

󸀠󸀠

≤ 𝑎
󸀠;

(P3) the set K(−𝑛) of (𝑛 − 1)-colored subcrystals 𝐾󸀠 of 𝐾
having colors 1, . . . , 𝑛 − 1 is bijective to Π; more
precisely,𝐾󸀠 ∩Π consists of exactly one vertex, called
the heart of𝐾󸀠 w.r.t.𝐾, and similarly for the setK(−1)
of subcrystals of 𝐾 with colors 2, . . . , 𝑛.

Note that a sort of “principal lattice” satisfying (P1) and
(P2) can be introduced for crystals of types B and C as well,
and probably for the other classical types (see [11, Section 8]);
for more about 𝐵

2
-crystals, see also [12]). However, (P3) does

not remain true in general for those types. Property (P3) is
crucial in our study of A-crystals in this paper.

For 𝑎 ∈ B(𝑐), let 𝐾↑[𝑎] (resp., 𝐾↓[𝑎]) denote the sub-
crystal in K(−𝑛) (resp., in K(−1)) that contains the principal
vertex 𝑣̆[𝑎]; we call it the upper (resp., lower) subcrystal at
𝑎. It is shown in [4] that the parameter of this subcrystal is
expressed by a linear function of 𝑐 and 𝑎, and that the total
amount of upper (lower) subcrystals with a fixed parameter
𝑐
󸀠 is expressed by a piecewise linear function of 𝑐 and 𝑐󸀠.

In this paper, we further essentially use the crossing
model, aiming to obtain a refined description of the structure
of an 𝐴

𝑛
-crystal 𝐾. We study the intersections of subcrystals

𝐾
↑

[𝑎] and 𝐾
↓

[𝑏] for any 𝑎, 𝑏 ∈ B(𝑐). This intersection
may be empty or consist of one or more subcrystals with
colors 2, . . . , 𝑛 − 1, called middle subcrystals of 𝐾. Each of
these middle subcrystals 𝐾̃ is therefore a lower subcrystal
of 𝐾↑[𝑎] and an upper subcrystal of 𝐾↓[𝑏]; so 𝐾̃ has a
unique vertex 𝑧 in the principal lattice Π

↑ of the former,
and a unique vertex 𝑧

󸀠 in the principal lattice Π
↓ of the

latter. Our main structural results—Theorems 7 and 8—give
explicit expressions showing how the “loci” 𝑎 and 𝑏 in Π,
the “deviation” of (the heart of) 𝐾̃ from 𝑧 in Π

↑, and the
“deviation” of 𝐾̃ from 𝑧

󸀠 in Π↓ are interrelated.
This gives rise to a recursive procedure of assembling of

the 𝐴
𝑛
-crystal𝐾(𝑐). More precisely, suppose that the (𝑛 − 1)-

colored crystals 𝐾↑[𝑎] and 𝐾
↓

[𝑏] for all 𝑎, 𝑏 ∈ B(𝑐) are
already constructed. Then we can combine these subcrystals
to obtain the desired crystal 𝐾(𝑐), by properly identifying
the corresponding middle subcrystals (if any) for each pair
𝐾
↑

[𝑎], 𝐾
↓

[𝑏]. This recursive method is implemented as an
efficient algorithm which, given a parameter 𝑐 ∈ Z𝑛

+
, outputs

the crystal 𝐾(𝑐). The running time of the algorithm and the
needed space are bounded by𝐶𝑛2|𝐾(𝑐)|, where𝐶 is a constant
and |𝐾(𝑐)| is the size of 𝐾(𝑐). (It may be of practical use
for small 𝑛 and 𝑐; in general, an 𝐴

𝑛
-crystal has “dimension”

𝑛(𝑛 + 1)/2 and its size grows sharply by increasing 𝑐.)
This paper is organized as follows. Section 2 contains

basic definitions and backgrounds. Here we recall “local”
axioms and the crossing model for A-crystals and review the
needed results on the principal lattice Π of an 𝐴

𝑛
-crystal

and relations between Π and the (𝑛 − 1)-colored subcrystals
from [4]. Section 3 states Theorems 7 and 8 and gives a
recursive description of the structure of an 𝐴

𝑛
-crystal 𝐾 and

the algorithm of assembling 𝐾. These theorems are proved
in Section 4. Section 5 illustrates our assembling method for
two special cases of A-crystals: for an arbitrary𝐴

2
-crystal (in

which case the method can be compared with the explicit
combinatorial construction in [3]) and for the particular𝐴

3
-

crystal 𝐾(1, 1, 1).
It should be noted that the obtained structural results on

A-crystals can also be applied to give a direct combinatorial
proof of the known fact that any regular 𝐵

𝑛
-crystal (𝐶

𝑛
-

crystal) can be extracted, in a certain way, from a symmetric
𝐴
2𝑛−1

-crystal (resp., 𝐴
2𝑛
-crystal); this is discussed in detail

in ([11], Sections 5–8). Here an 𝐴
𝑘
-crystal with parameter

(𝑐
1
, . . . , 𝑐

𝑘
) is called symmetric if 𝑐

𝑖
= 𝑐
𝑘+1−𝑖

.

2. Preliminaries

In this section we recall “local” axioms defining A-crystals,
explain the construction of crossing model, and review facts
about the principal lattice and subcrystals established in [4]
that will be needed later.

2.1. A-Crystals. Stembridge [6] pointed out a list of “local”
graph-theoretic axioms for the regular simply laced crystals.
The (regular) A-crystals form a subclass of those and are
defined by axioms (A1)–(A5) below; these axioms are given in
a slightly different, but equivalent, form compared with [6].
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Let 𝐾 = (𝑉(𝐾), 𝐸(𝐾)) be a directed graph whose edge
set is partitioned into 𝑛 subsets 𝐸

1
, . . . , 𝐸

𝑛
, denoted as 𝐾 =

(𝑉(𝐾), 𝐸
1
⊔ ⋅ ⋅ ⋅⊔𝐸

𝑛
). We assume𝐾 to be (weakly) connected.

We say that an edge 𝑒 ∈ 𝐸
𝑖
has color 𝑖 or is an 𝑖-edge.

Unless explicitly stated otherwise, by a path we mean a
simple finite directed path, that is, a sequence of the form (𝑣

0
,

𝑒
1
, 𝑣
1
, . . . , 𝑒

𝑘
, 𝑣
𝑘
), where 𝑣

0
, 𝑣
1
, . . . , 𝑣

𝑘
are distinct vertices and

each 𝑒
𝑖
is an edge from 𝑣

𝑖−1
to 𝑣
𝑖
(admitting 𝑘 = 0).

The first axiom concerns the structure of monochromatic
subgraphs of𝐾.
(A1) For 𝑖 = 1, . . . , 𝑛, each connected subgraph of (𝑉(𝐾),

𝐸
𝑖
) is a path.

So each vertex of𝐾 has at most one incoming 𝑖-edge and
at most one outgoing 𝑖-edge, and therefore one can associate
to the set 𝐸

𝑖
a partial invertible operator 𝐹

𝑖
acting on vertices:

(𝑢, 𝑣) is an 𝑖-edge if and only if 𝐹
𝑖
acts at 𝑢 and 𝐹

𝑖
(𝑢) = 𝑣 (or

𝑢 = 𝐹
−1

𝑖
(𝑣), where 𝐹−1

𝑖
is the partial operator inverse to 𝐹

𝑖
).

Since 𝐾 is connected, one can use the operator notation to
express any vertex via another one. For example, the expres-
sion 𝐹

−1

1
𝐹
2

3
𝐹
2
(𝑣) determines the vertex 𝑤 obtained from a

vertex 𝑣 by traversing 2-edge (𝑣, 𝑣󸀠), followed by traversing 3
edges (𝑣󸀠, 𝑢) and (𝑢, 𝑢󸀠), followed by traversing 1-edge (𝑤, 𝑢󸀠)
in backward direction. Emphasize that every timeweuse such
an operator expression in what follows, this automatically
says that all corresponding edges do exist in𝐾.

We refer to a monochromatic path with color 𝑖 on the
edges as an 𝑖-path. So eachmaximal 𝑖-path is an𝐴

1
-subcrystal

with color 𝑖 in𝐾.Themaximal 𝑖-path passing a given vertex 𝑣
(possibly consisting of the only vertex 𝑣) is denoted by 𝑃

𝑖
(𝑣),

its part from the first vertex to 𝑣 by 𝑃in
𝑖
(𝑣), and its part from

𝑣 to the last vertex by 𝑃out
𝑖

(𝑣) (the tail and head parts of 𝑃
w.r.t. 𝑣).The lengths (i.e., the numbers of edges) of 𝑃in

𝑖
(𝑣) and

𝑃
out
𝑖

(𝑣) are denoted by 𝑡
𝑖
(𝑣) and ℎ

𝑖
(𝑣), respectively.

Axioms (A2)–(A5) concern interrelations of different
colors 𝑖, 𝑗. They say that each component of the two-colored
graph (𝑉(𝐾), 𝐸

𝑖
⊔ 𝐸
𝑗
) forms an 𝐴

2
-crystal when colors 𝑖, 𝑗

are neighboring, which means that |𝑖 − 𝑗| = 1, and forms an
𝐴
1
× 𝐴
1
-crystal otherwise.

Whenwe traverse an edge of color 𝑖, the head and tail part
lengths ofmaximal paths of another color 𝑗 behave as follows.

(A2) For different colors 𝑖, 𝑗 and for an edge (𝑢, 𝑣) with
color 𝑖, one holds 𝑡

𝑗
(𝑣) ≤ 𝑡

𝑗
(𝑢) and ℎ

𝑗
(𝑣) ≥ ℎ

𝑗
(𝑢). The

value (ℎ
𝑗
(𝑢) − 𝑡

𝑗
(𝑢)) − (ℎ

𝑗
(𝑣) − 𝑡

𝑗
(𝑣)) is the constant

𝑚
𝑖𝑗
equal to −1 if |𝑖 − 𝑗| = 1, and 0 otherwise.

Furthermore, ℎ
𝑗
is convex on each 𝑖-path, in the

sense that if (𝑢, 𝑣), (𝑣, 𝑤) are consecutive 𝑖-edges, then
ℎ
𝑗
(𝑢) + ℎ

𝑗
(𝑤) ≥ 2ℎ

𝑗
(𝑣).

These constants𝑚
𝑖𝑗
are just the off-diagonal entries of the

Cartan 𝑛 × 𝑛 matrix 𝑀 related to the crystal type A and the
number 𝑛 of colors.

It follows that for neighboring colors 𝑖, 𝑗, each maximal
𝑖-path 𝑃 contains a unique vertex 𝑟 such that when traversing
any edge 𝑒 of 𝑃 before 𝑟 (i.e., 𝑒 ∈ 𝑃

in
𝑖
(𝑟)), the tail length 𝑡

𝑗

decreases by 1 while the head length ℎ
𝑗
does not change, and

when traversing any edge of𝑃 after 𝑟, 𝑡
𝑗
does not changewhile

ℎ
𝑗
increases by 1. This 𝑟 is called the critical vertex for 𝑃,

𝑖, 𝑗. To each 𝑖-edge 𝑒 = (𝑢, 𝑣), we associate label ℓ
𝑗
(𝑒) :=

ℎ
𝑗
(𝑣) − ℎ

𝑗
(𝑢); then ℓ

𝑗
(𝑒) ∈ {0, 1} and 𝑡

𝑗
(𝑣) = 𝑡

𝑗
(𝑢) − 1 + ℓ

𝑗
(𝑒).

We emphasize that the critical vertices on a maximal 𝑖-path
𝑃 w.r.t. its neighboring colors 𝑗 = 𝑖 − 1 and 𝑗 = 𝑖 + 1 may be
different (and so are the edge labels on 𝑃).

Two operators 𝐹 = 𝐹
𝛼

𝑖
and 𝐹󸀠 = 𝐹

𝛽

𝑗
, where 𝛼, 𝛽 ∈ {1, −1},

are said to commute at a vertex 𝑣 if each of 𝐹, 𝐹󸀠 acts at 𝑣 (i.e.,
corresponding 𝑖-edge and 𝑗-edge incident with 𝑣 exist) and
𝐹𝐹
󸀠

(𝑣) = 𝐹
󸀠

𝐹(𝑣). The third axiom indicates situations when
such operators commute for neighboring 𝑖, 𝑗.

(A3) Let |𝑖 − 𝑗| = 1. (a) If a vertex 𝑢 has outgoing 𝑖-edge
(𝑢, 𝑣) and outgoing 𝑗-edge (𝑢, 𝑣󸀠) and if ℓ

𝑗
(𝑢, 𝑣) = 0,

then ℓ
𝑖
(𝑢, 𝑣
󸀠

) = 1 and 𝐹
𝑖
, 𝐹
𝑗
commute at 𝑣. Symmetri-

cally: (b) if a vertex 𝑣 has incoming 𝑖-edge (𝑢, 𝑣) and
incoming 𝑗-edge (𝑢󸀠, 𝑣) and if ℓ

𝑗
(𝑢, 𝑣) = 1, then ℓ

𝑖
(𝑢
󸀠

,

𝑣) = 0 and 𝐹−1
𝑖
, 𝐹−1
𝑗

commute at 𝑣. (See the following
picture.)

0

00

11

𝑣𝑢

𝑤𝑣󳰀

0 0

1 1

1

𝑣𝑢

𝑤𝑢󳰀

(1)

One easily shows that if four vertices are connected by
two 𝑖-edges 𝑒, 𝑒󸀠 and two 𝑗-edges 𝑒, 𝑒󸀠 (forming a “square”),
then ℓ

𝑗
(𝑒) = ℓ

𝑗
(𝑒
󸀠

) ̸= ℓ
𝑖
(𝑒) = ℓ

𝑖
(𝑒
󸀠

) (as illustrated in the
picture). Another important consequence of (A3) is that for
neighboring colors 𝑖, 𝑗, if 𝑣 is the critical vertex on a maximal
𝑖-path w.r.t. color 𝑗, then 𝑣 is also the critical vertex on the
maximal 𝑗-path passing 𝑣 w.r.t. color 𝑖; that is, we can speak
of common critical vertices for the pair {𝑖, 𝑗}.

The fourth axiom points out situations when, for neigh-
boring 𝑖, 𝑗, the operators 𝐹

𝑖
, 𝐹
𝑗
and their inverse ones

“remotely commute” (forming the “Verma relation of degree
4”).

(A4) Let |𝑖 − j| = 1. (i) If a vertex 𝑢 has outgoing edges with
color 𝑖 and color 𝑗 and if each edge is labeled 1w.r.t. the
other color, then 𝐹

𝑖
𝐹
2

𝑗
𝐹
𝑖
(𝑢) = 𝐹

𝑗
𝐹
2

𝑖
𝐹
𝑗
(𝑢). Symmetri-

cally, (ii) if 𝑣 has incoming edgeswith color 𝑖 and color
𝑗 and if both are labeled 0, then 𝐹

−1

𝑖
(𝐹
−1

𝑗
)
2

𝐹
−1

𝑖
(𝑣) =

𝐹
−1

𝑗
(𝐹
−1

𝑖
)
2

𝐹
−1

𝑗
(𝑣). (See the following picture.)
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1

1 1

1

1

1

𝑢 𝑢

0

0

0

0

1

1

1

1

𝑣 𝑣

0

0

0

0

0

0
(2)

Again, one shows that the label w.r.t. 𝑖, 𝑗 of each of the
eight involved edges is determined uniquely, just as indicated
in the above picture (where the bigger circles indicate critical
vertices).

The final axiom concerns nonneighboring colors.
(A5) Let |𝑖 − 𝑗| ≥ 2. Then for any 𝐹 ∈ {𝐹

𝑖
, 𝐹
−1

𝑖
} and 𝐹

󸀠

∈

{𝐹
𝑗
, 𝐹
−1

𝑗
}, the operators 𝐹, 𝐹󸀠 commute at each vertex

where both act.
This is equivalent to saying that each component of the

two-colored subgraph (𝑉(𝐾), 𝐸
𝑖
⊔ 𝐸
𝑗
) is the Cartesian prod-

uct of an 𝑖-path 𝑃 and a 𝑗-path 𝑃󸀠, or that each subcrystal of
𝐾 with nonneighboring colors 𝑖, 𝑗 is an 𝐴

1
× 𝐴
1
-crystal.

One shows that any 𝐴
𝑛
-crystal𝐾 is finite and has exactly

one zero-indegree vertex 𝑠
𝐾
and one zero-outdegree vertex

𝑡
𝐾
, called the source and sink of𝐾, respectively. Furthermore,

the 𝐴
𝑛
-crystals 𝐾 admit a nice parameterization: the lengths

ℎ
1
(𝑠
𝐾
), . . . , ℎ

𝑛
(𝑠
𝐾
) of monochromatic paths starting at the

source determine 𝐾, and for each tuple 𝑐 = (𝑐
1
, . . . , 𝑐

𝑛
) of

nonnegative integers, there exists a (unique) 𝐴
𝑛
-crystal 𝐾

such that 𝑐
𝑖
= ℎ
𝑖
(𝑠
𝐾
) for 𝑖 = 1, . . . , 𝑛. (See [4, 6].) We call 𝑐

the parameter of𝐾 and denote𝐾 by 𝐾(𝑐).

2.2. The Crossing Model for 𝐴
𝑛
-Crystals. Following [4], the

crossing model M
𝑛
(𝑐) generating the 𝐴

𝑛
-crystal 𝐾 = 𝐾(𝑐)

with a parameter 𝑐 = (𝑐
1
, . . . , 𝑐

𝑛
) ∈ Z𝑛
+
consists of three ingre-

dients:
(i) a directed graph 𝐺

𝑛
= 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) depending

on 𝑛, called the supporting graph of the model;
(ii) a setF = F(𝑐) of feasible functions on 𝑉(𝐺);
(iii) a set E = E(𝑐) of transformations 𝑓 󳨃→ 𝑓

󸀠 of feasible
functions, called moves.

To explain the construction of the supporting graph 𝐺,
we first introduce another directed graphG = G

𝑛
that we call

the protograph of 𝐺. Its node set consists of elements 𝑉
𝑖
(𝑗)

for all 𝑖, 𝑗 ∈ {1, . . . , 𝑛} such that 𝑗 ≤ 𝑖. (To avoid a possible
mess, we prefer to use the term “node” for vertices in the
crossingmodel, and the term “vertex” for vertices of crystals.)
Its edges are all possible pairs of the form (𝑉

𝑖
(𝑗), 𝑉
𝑖−1
(𝑗))

(ascending edges) or (𝑉
𝑖
(𝑗), 𝑉
𝑖+1
(𝑗 + 1)) (descending edges).

We say that the nodes 𝑉
𝑖
(1), . . . , 𝑉

𝑖
(𝑖) form 𝑖th level ofG and

order them as indicated (by increasing 𝑗). We visualize G by
drawing it on the plane so that the nodes of the same level
lie in a horizontal line, the ascending edges point North-East,

and the descending edges point South-East. See the picture
where 𝑛 = 4.

𝑉4(1)

𝑉3(1)

𝑉2(1)

𝑉1(1)

𝑉2(2)

𝑉3(2)

𝑉4(2)

𝑉3(3)

𝑉4(3) 𝑉4(4)

(3)

The supporting graph 𝐺 is produced by replicating ele-
ments ofG as follows. Each node𝑉

𝑖
(𝑗) generates 𝑛−𝑖+1nodes

of 𝐺, denoted as 𝑣𝑘
𝑖
(𝑗) for 𝑘 = 𝑖 − 𝑗 + 1, . . . 𝑛 − 𝑗 + 1, which

are ordered by increasing 𝑘 (and accordingly follow from left
to right in the visualization). We identify 𝑉

𝑖
(𝑗) with the set of

these nodes and call it amultinode of𝐺. Each edge ofG gener-
ates a set of edges of𝐺 (amultiedge) connecting elements with
equal upper indices. More precisely, (𝑉

𝑖
(𝑗), 𝑉
𝑖−1
(𝑗)) produces

𝑛−𝑖+1 ascending edges (𝑣𝑘
𝑖
(𝑗), 𝑣
𝑘

𝑖−1
(𝑗)) for 𝑘 = 𝑖−𝑗+1, . . . , 𝑛−

𝑗 + 1, and (𝑉
𝑖
(𝑗), 𝑉
𝑖+1
(𝑗 + 1)) produces 𝑛 − 𝑖 descending edges

(𝑣
𝑘

𝑖
(𝑗), 𝑣
𝑘

𝑖+1
(𝑗 + 1)) for 𝑘 = 𝑖 − 𝑗 + 1, . . . , 𝑛 − 𝑗.

The resulting 𝐺 is the disjoint union of 𝑛 directed graphs
𝐺
1

, . . . , 𝐺
𝑛, where each 𝐺

𝑘 contains all vertices of the form
𝑣
𝑘

𝑖
(𝑗). Also 𝐺𝑘 is isomorphic to the Cartesian product of two

paths, with the lengths 𝑘−1 and 𝑛−𝑘. For example, for 𝑛 = 4,
the graph 𝐺 is viewed as

(4)

(where the multinodes are surrounded by ovals) and its com-
ponents 𝐺1, 𝐺2, 𝐺3, 𝐺4 are viewed as
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𝐺1: 𝐺2:

𝑣11(1)

𝑣12(2)

𝑣13(3)

𝑣14(4)

𝑣22(2)

𝑣21(1)

𝑣24(3)

𝑣23(3)

𝑣22(1)

𝑣33(2)

𝑣31(1)

𝑣32(2)

𝑣34(2)

𝑣33(1)

𝑣41(1)

𝑣42(1)

𝑣43(1)

𝑣44(1)

𝐺3:
𝐺4:

(5)

So each node 𝑣 = 𝑣
𝑘

𝑖
(𝑗) of 𝐺 has at most four incident

edges, namely, (𝑣𝑘
𝑖−1
(𝑗 − 1), 𝑣), (𝑣𝑘

𝑖+1
(𝑗), 𝑣), (𝑣, 𝑣𝑘

𝑖−1
(𝑗)), and

(𝑣, 𝑣
𝑘

𝑖+1
(𝑗 + 1)); we refer to them, when exist, as the NW-,

SW-, NE-, and SE-edges and denote them by 𝑒NW
(𝑣), 𝑒

SW
(𝑣),

𝑒
NE
(𝑣), and 𝑒SE(𝑣), respectively.
By a feasible function in the model (with a given 𝑐), we

mean a function 𝑓 : 𝑉(𝐺) → Z
+
satisfying the following

three conditions, where for an edge 𝑒 = (𝑢, 𝑣), 𝜕𝑓(𝑒) denotes
the increment 𝑓(𝑢) − 𝑓(𝑣) of 𝑓 on 𝑒, and 𝑒 is called tight for
𝑓, or 𝑓- tight, if 𝜕𝑓(𝑒) = 0:

(i) 𝑓 is 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑒 on the edges, in the sense that
𝜕𝑓 (𝑒) ≥ 0 for all 𝑒 ∈ 𝐸 (𝐺) ;

(ii) 0 ≤ 𝑓 (𝑣) ≤ 𝑐
𝑘
for each 𝑣 ∈ 𝑉 (𝐺

𝑘

) , 𝑘 = 1, . . . , 𝑛;

(iii) each multinode 𝑉
𝑖
(𝑗) contains a node 𝑣 with

the following property : the edge 𝑒SE (𝑢) is tight
for each node 𝑢 ∈ 𝑉

𝑖
(𝑗) preceding 𝑣, and 𝑒

SW
(𝑢
󸀠

)

is tight for each node 𝑢󸀠 ∈ 𝑉
𝑖
(𝑗) succeeding 𝑣.

(6)

The first node 𝑣 = 𝑣
𝑘

𝑖
(𝑗) (i.e., with 𝑘minimum) satisfying

the property in (iii) is called the switch-node of themultinode
𝑉
𝑖
(𝑗). These nodes play an important role in our transforma-

tions of feasible functions in the model.
To describe the rule of transforming 𝑓 ∈ F(𝑐), we first

extend each 𝐺
𝑘 by adding extra nodes and extra edges (fol-

lowing [4] and aiming to slightly simplify the description).
In the extended directed graph 𝐺

𝑘, the node set consists of
elements 𝑣𝑘

𝑖
(𝑗) for all 𝑖 = 0, . . . , 𝑛+1 and 𝑗 = 0, . . . , 𝑛 such that

𝑗 ≤ 𝑖. The edge set of 𝐺𝑘 consists of all possible pairs of the
form (𝑣

𝑘

𝑖
(𝑗), 𝑣
𝑘

𝑖−1
(𝑗)) or (𝑣𝑘

𝑖
(𝑗), 𝑣
𝑘

𝑖+1
(𝑗 + 1)). Then all 𝐺𝑘 are

isomorphic.The disjoint union of these𝐺𝑘 gives the extended
supporting graph 𝐺. The creation of 𝐺2 from 𝐺

2 for 𝑛 = 4 is
illustrated in the picture:

𝐺2

(7)

Each feasible function on 𝑉(𝐺) is extended to the extra
nodes 𝑣 = 𝑣

𝑘

𝑖
(𝑗) as follows: 𝑓(𝑣) := 𝑐

𝑘
if there is a path from

𝑣 to a node of 𝐺𝑘, and 𝑓(𝑣) := 0 otherwise (one may say that
𝑣 lies on the left of 𝐺𝑘 in the former case and on the right of
𝐺
𝑘 in the latter case; in the above picture, such nodes 𝑣 are

marked by white and black circles, resp.). 𝜕𝑓 is extended to
the extra edges accordingly. In particular, each edge 𝑒 of𝐺 not
incident with a node of𝐺 is tight; that is, 𝜕𝑓(𝑒) = 0. For a node
𝑣 = 𝑣
𝑘

𝑖
(𝑗) with 1 ≤ 𝑗 ≤ 𝑖 ≤ 𝑛, define the value 𝜀(𝑣) = 𝜀

𝑓
(𝑣) by

𝜀 (𝑣) := 𝜕𝑓 (𝑒
NW

(𝑣)) − 𝜕𝑓 (𝑒
SE
(𝑢))

= 𝜕𝑓 (𝑒
SW

(𝑣)) − 𝜕𝑓 (𝑒
NE

(𝑢)) ,

(8)

where 𝑢 := 𝑣
𝑘

𝑖
(𝑗 − 1). For a multinode 𝑉

𝑖
(𝑗), define the num-

bers

𝜀
𝑖
(𝑗) := ∑(𝜀 (𝑣) : 𝑣 ∈ 𝑉

𝑖
(𝑗)) , (9)

𝜀
𝑖
(𝑝, 𝑗) := 𝜀

𝑖
(𝑝) + 𝜀

𝑖
(𝑝 + 1) + ⋅ ⋅ ⋅ + 𝜀

𝑖
(𝑗) for 1 ≤ 𝑝 ≤ 𝑗,

𝜀
𝑖
(𝑗) := max {0,min {𝜀

𝑖
(𝑝, 𝑗) : 𝑝 = 1, . . . , 𝑗}} .

(10)

We call 𝜀(𝑣), 𝜀
𝑖
(𝑗), and 𝜀

𝑖
(𝑗) the slack at a node 𝑣, the total

slack at a multinode 𝑉
𝑖
(𝑗), and the reduced slack at 𝑉

𝑖
(𝑗),

respectively. (Note that 𝜀, 𝜀 are defined in (8), (9), and (10)
in a slightly different way than in [4], which, however, does
not affect the choice of active multinodes and switch-nodes
below.)

Now we are ready to define the transformations of 𝑓 (or
the moves from 𝑓). At most 𝑛 transformations 𝜙

1
, . . . , 𝜙

𝑛
are

possible. Each 𝜙
𝑖
changes 𝑓 within level 𝑖 and is applicable

when this level contains a multinode𝑉
𝑖
(𝑗
󸀠

) with 𝜀
𝑖
(𝑗
󸀠

) > 0. In
this case we take the multinode 𝑉

𝑖
(𝑗) such that

𝜀
𝑖
(𝑗) > 0, 𝜀

𝑖
(𝑞) = 0 for 𝑞 > 𝑗, (11)

referring to it as the activemultinode for the given𝑓 and 𝑖.We
increase𝑓 by 1 at the switch-node in𝑉

𝑖
(𝑗), preserving𝑓 on the

other nodes of 𝐺. It is shown [4] that the resulting function
𝜙
𝑖
(𝑓) is again feasible.
As a result, the model generates 𝑛-colored directed graph

K(𝑐) = (F,E
1
⊔⋅ ⋅ ⋅⊔E

𝑛
), where each color classE

𝑖
is formed

by the edges (𝑓, 𝜙
𝑖
(𝑓)) for all feasible functions𝑓 to which the

operator 𝜙
𝑖
is applicable. This graph is just an 𝐴

𝑛
-crystal.

Theorem 1 (see [4, Th. 5.1]). For each 𝑐 ∈ Z𝑛
+
, the 𝑛-colored

graphK(𝑐) is exactly the 𝐴
𝑛
-crystal 𝐾(𝑐).
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2.3. Principal Lattice and (𝑛−1)-Colored Subcrystals of an
𝐴
𝑛
-Crystal. Based on the crossing model, [4] reveals some

important ingredients and relations for an 𝐴
𝑛
-crystal 𝐾 =

𝐾(𝑐). One of them is the so-called principal lattice, which is
defined as follows.

Let 𝑎 ∈ Z𝑛
+
and 𝑎 ≤ 𝑐. One easily checks that the

function on the vertices of the supporting graph 𝐺 that takes
the constant value 𝑎

𝑘
within each subgraph 𝐺

𝑘 of 𝐺, 𝑘 =

1, . . . , 𝑛, is feasible. We denote this function and the vertex of
𝐾 corresponding to it by 𝑓[𝑎] and 𝑣̆[𝑎], respectively, and call
them principal ones. So the set of principal vertices is bijective
to the integer box B(𝑐) := {𝑎 ∈ Z𝑛 : 0 ≤ 𝑎 ≤ 𝑐}; this set
is called the principal lattice of 𝐾 and denoted by Π = Π(𝑐).
When it is not confusing, the term “principal lattice”may also
be applied toB(𝑐).

The following properties of the principal lattice will be
essentially used later.

Proposition 2 (see [4, Statement (6.4)]). Let 𝑎 ∈ B(𝑐),
𝑘 ∈ {1, . . . , 𝑛}, and 𝑎

󸀠

:= 𝑎 + 1
𝑘
(where 1

𝑘
is 𝑖th unit base

vector in R𝑛). The principal vertex 𝑣̆[𝑎󸀠] is obtained from 𝑣̆[𝑎]

by applying the operator string

𝑆
𝑛,𝑘

:= 𝑤
𝑛,𝑘,𝑛−𝑘+1

⋅ ⋅ ⋅ 𝑤
𝑛,𝑘,2

𝑤
𝑛,𝑘,1

, (12)

where for 𝑗 = 1, . . . , 𝑛 − 𝑘 + 1, the substring 𝑤
𝑛,𝑘,𝑗

is defined as

𝑤
𝑛,𝑘,𝑗

:= 𝐹
𝑗
𝐹
𝑗+1

⋅ ⋅ ⋅ 𝐹
𝑗+𝑘−1

. (13)

When acting on Π, any two (applicable) strings 𝑆
𝑛,𝑘
, 𝑆
𝑛,𝑘
󸀠

commute. In particular, any principal vertex 𝑣̆[𝑎] is expressed
via the source 𝑠

𝐾
= 𝑣̆[0] as

𝑣̆ [𝑎] = 𝑆
𝑎
𝑛

𝑛,𝑛
𝑆
𝑎
𝑛−1

𝑛,𝑛−1
⋅ ⋅ ⋅ 𝑆
𝑎
1

𝑛,1
(𝑠
𝐾
) . (14)

Proposition 3 (see [4, Prop. 6.1]). For 𝑐󸀠, 𝑐󸀠󸀠 ∈ 𝑍
𝑛

+
with 𝑐󸀠 ≤

𝑐
󸀠󸀠

≤ 𝑐, let 𝐾(𝑐󸀠 : 𝑐󸀠󸀠) be the subgraph of 𝐾(𝑐) formed by the
vertices and edges contained in (directed) paths from 𝑣̆[𝑐

󸀠

] to
𝑣̆[𝑐
󸀠󸀠

] (the interval of𝐾(𝑐) from 𝑣̆[𝑐
󸀠

] to 𝑣̆[𝑐󸀠󸀠]).Then𝐾(𝑐󸀠 : 𝑐󸀠󸀠)
is isomorphic to the 𝐴

𝑛
-crystal 𝐾(𝑐󸀠󸀠 − 𝑐

󸀠

), and the principal
lattice of 𝐾󸀠 consists of the principal vertices 𝑣̆[𝑎] of 𝐾(𝑐) with
𝑐
󸀠

≤ 𝑎 ≤ 𝑐
󸀠󸀠.

Let K(−𝑛)(𝑐) denote the set of subcrystals with colors 1,
. . . , 𝑛 − 1, andK(−1) the set of subcrystals with colors 2, . . . , 𝑛
in𝐾 (recall that a subcrystal is assumed to be connected and
maximal for the corresponding subset of colors).

Proposition 4 (see [4, Prop. 7.1]). Each subcrystal in K(−𝑛)

(in K(−1)) contains precisely one principal vertex. This gives a
bijection betweenK(−𝑛) and Π (resp., betweenK(−1) and Π).

We refer to the members of K(−𝑛) and K(−1) as upper
and lower ((𝑛− 1)-colored) subcrystals of𝐾, respectively. For
𝑎 ∈ B(𝑐), the upper subcrystal containing the vertex 𝑣̆[𝑎] is
denoted by𝐾↑[𝑎].This subcrystal has its own principal lattice
of dimension 𝑛−1, which is denoted byΠ↑[𝑎].We say that the
coordinate tuple 𝑎 is the locus of 𝐾↑[𝑎] (and of Π↑[𝑎]) in Π.
Analogously, for 𝑏 ∈ B(𝑐), the lower subcrystal containing

𝑣̆[𝑏] is denoted by𝐾↓[𝑏] and its principal lattice byΠ↓[𝑏]; we
say that 𝑏 is the locus of 𝐾↓[𝑏] (and of Π↓[𝑏]) in Π. It turns
out that the parameters of upper and lower subcrystals can be
expressed explicitly as follows.

Proposition 5 (see [4, Props. 7.2, 7.3]). For 𝑎 ∈ B(𝑐), the
upper subcrystal𝐾↑[𝑎] is isomorphic to the𝐴

𝑛−1
-crystal𝐾(𝑐↑),

where 𝑐↑ is the tuple (𝑐↑
1
, . . . , 𝑐

↑

𝑛−1
) defined by

𝑐
↑

𝑖
:= 𝑐
𝑖
− 𝑎
𝑖
+ 𝑎
𝑖+1
, 𝑖 = 1, . . . , 𝑛 − 1. (15)

Theprincipal vertex 𝑣̆[𝑎] is contained in the upper latticeΠ↑[𝑎]
and its coordinate ℎ↑ = (ℎ

↑

1
, . . . , ℎ

↑

𝑛−1
) in Π↑[𝑎] satisfies

ℎ
↑

𝑖
= 𝑎
𝑖+1
, 𝑖 = 1, . . . , 𝑛 − 1. (16)

Symmetrically, for 𝑏 ∈ B(𝑐), the lower subcrystal 𝐾↓[𝑏]
is isomorphic to the 𝐴

𝑛−1
-crystal 𝐾(𝑐↓) with colors 2, . . . , 𝑛,

where 𝑐↓ is defined by

𝑐
↓

𝑖
:= 𝑐
𝑖
− 𝑏
𝑖
+ 𝑏
𝑖−1
, 𝑖 = 2, . . . , 𝑛. (17)

The principal vertex 𝑣̆[𝑏] is contained in the lower latticeΠ↓[𝑏]
and its coordinate ℎ↓ = (ℎ

↓

2
, . . . , ℎ

↓

𝑛
) in Π↓[𝑏] satisfies

ℎ
↓

𝑖
= 𝑏
𝑖−1
, 𝑖 = 2, . . . , 𝑛. (18)

We call 𝑣̆[𝑎] the heart of𝐾↑[𝑎] w.r.t.𝐾, and similarly for
lower subcrystals.

(One more result given in [4, Remark 5] is a piecewise
linear formula to compute, for an (𝑛 − 1)-tuple 𝑞, the number
of upper subcrystals of 𝐾(𝑐) with the parameter equal to 𝑞,
but we do not need this in what follows.)

Remark 6. As is mentioned in the Introduction, the crossing
model is, in fact, a refinement of the Gelfand-Tsetlin pattern
(or GT-pattern) model [7]. More precisely, for 𝑐 ∈ Z𝑛

+
, form

the partition 𝜆 = (𝜆
1
≥ 𝜆
2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑛
≥ 𝜆
𝑛+1

= 0) by setting
𝜆
𝑖
:= 𝑐[1 : 𝑛− 𝑖 + 1], where 𝑐[𝑝 : 𝑞] denotes 𝑐

𝑝
+ 𝑐
𝑝+1

+ ⋅ ⋅ ⋅ + 𝑐
𝑞
.

A GT-pattern for 𝜆 is a triangular array 𝑋 = (𝑥
𝑖𝑗
)
1≤𝑗≤𝑖≤𝑛

of
integers satisfying (a) 𝑥

𝑖𝑗
≥ 𝑥
𝑖−1,𝑗

, 𝑥
𝑖+1,𝑗+1

and (b) 𝜆
𝑖
≥ 𝑥
𝑛,𝑖

≥

𝜆
𝑖+1

, for all possible 𝑖, 𝑗. It is shown in [4] that the set of
feasible functions 𝑓 in the crossing modelM

𝑛
(𝑐) is bijective

to the set of GT-patterns 𝑋 for 𝜆; such a correspondence is
given by 𝑥

𝑖,𝑗
:= 𝑓
𝑖
(𝑗) + 𝑐[1 : 𝑖 − 𝑗], where 𝑓

𝑖
(𝑗) denotes the

sum of values of 𝑓 over the multinode 𝑉
𝑖
(𝑗). However, it is

not clear how to visualize, and work with, principal vertices
directly in terms of GT-patterns, whereas such vertices are
well visualized and fit to handle in the crossing model.

3. Assembling an 𝐴
𝑛
-Crystal

As mentioned in the Introduction, the structure of an 𝐴
𝑛
-

crystal 𝐾 = 𝐾(𝑐) can be described in a recursive manner.
The idea is as follows. We know that 𝐾 contains |Π| = (𝑐

1
+

1) × ⋅ ⋅ ⋅ × (𝑐
𝑛
+ 1) upper subcrystals (with colors 1, . . . , 𝑛 − 1)

and |Π| lower subcrystals (with colors 2, . . . , 𝑛). Moreover,
the parameters of these subcrystals are expressed explicitly by
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(15) and (17). Assume that the setK(−𝑛) of upper subcrystals
and the set K(−1) of lower subcrystals are already available.
Then in order to assemble 𝐾, it suffices to point out, in
appropriate terms, the intersection 𝐾

↑

[𝑎] ∩ 𝐾
↓

[𝑏] for all
pairs 𝑎, 𝑏 ∈ B(𝑐) (the intersection may either be empty or
consist of one or more (𝑛−2)-colored subcrystals with colors
2, . . . , 𝑛 − 1 in𝐾). We give an appropriate characterization in
Theorems 7 and 8.

To state them, we need additional terminology and
notation. Consider a subcrystal 𝐾↑[𝑎], and let 𝑐

↑

, ℎ
↑ be

defined as in (15), (16). For 𝑝 = (𝑝
1
, . . . , 𝑝

𝑛−1
) ∈ B(𝑐

↑

),
the vertex in the upper lattice Π↑[𝑎] having the coordinate 𝑝
is denoted by 𝑣↑[𝑎, 𝑝]. We call the vector Δ := 𝑝 − ℎ

↑ the
deviation of 𝑣↑[𝑎, 𝑝] from the heart 𝑣̆[𝑎] in Π

↑

[𝑎] and we
will use the alternative notation 𝑣

↑

[𝑎 | Δ] for this vertex. In
particular, 𝑣̆[𝑎] = 𝑣

↑

[𝑎, ℎ
↑

] = 𝑣
↑

[𝑎 | 0].
Similarly, for a lower subcrystal 𝐾↓[𝑏], let 𝑐↓, ℎ↓ be as in

(17), (18). For 𝑞 = (𝑞
2
, . . . , 𝑞

𝑛
) ∈ B(𝑐

↓

), the vertex with the
coordinate 𝑞 in Π

↓

[𝑏] is denoted by 𝑣↓[𝑎, 𝑞]. Its deviation is
∇ := 𝑞 − ℎ

↓, and we may alternatively denote this vertex by
𝑣
↓

[𝑏 | ∇].
We call an (𝑛−2)-colored subcrystal with colors 2, . . . , 𝑛−

1 in 𝐾 a middle subcrystal and denote the set of these by
K(−1,−𝑛). Each middle subcrystal 𝐾↑↓ is a lower subcrystal
of some upper subcrystal 𝐾󸀠 = 𝐾

↑

[𝑎] of 𝐾. By Proposition 4
applied to𝐾󸀠,𝐾↑↓ has a unique vertex 𝑣↑[𝑎 | Δ] in the lattice
Π
↑

[𝑎]. So each𝐾↑↓ can be encoded by a pair (𝑎, Δ) formed by
a point 𝑎 ∈ B(𝑐) and a deviationΔ inΠ↑[𝑎]. At the same time,
𝐾
↑↓ is an upper subcrystal of some lower subcrystal 𝐾↓[𝑏] of

𝐾 and has a unique vertex 𝑣↓[𝑏 | ∇] in Π↓[𝑏]. Therefore, the
members ofK(−1,−𝑛) determine a bijection

𝜁 : (𝑎, Δ) 󳨃󳨀→ (𝑏, ∇) (19)

between all pairs (𝑎, Δ) concerning upper subcrystals and all
pairs (𝑏, ∇) concerning lower subcrystals.

The map 𝜁 is expressed explicitly in the following two
theorems. Here for a tuple 𝜌 = (𝜌

𝑖
: 𝑖 ∈ 𝐼) of reals, we

denote by 𝜌+ (𝜌−) the tuple formed by 𝜌+
𝑖
:= max{0, 𝜌

𝑖
} (resp.,

𝜌
−

𝑖
:= min{0, 𝜌

𝑖
}), 𝑖 ∈ 𝐼.

Theorem 7 (on two deviations). Let 𝑎 ∈ B(𝑐) and let Δ =

(Δ
1
, . . . , Δ

𝑛−1
) be a deviation in Π

↑

[𝑎] (from the heart of
𝐾
↑

[𝑎]). Let (𝑏, ∇) = 𝜁(𝑎, Δ). Then

∇
𝑖
= −Δ
𝑖−1
, 𝑖 = 2, . . . , 𝑛. (20)

Theorem 8 (on two loci). Let 𝑎, 𝑏, Δ, ∇ be as in the previous
theorem. Then

𝑏
𝑖
= 𝑎
𝑖
+ Δ
+

𝑖
+ Δ
−

𝑖−1
, 𝑖 = 1, . . . , 𝑛, (21)

letting Δ
0
= Δ
𝑛
:= 0.

Proofs of these theorems will be given in the next section.
Based onTheorems 7 and 8, the crystal𝐾(𝑐) is assembled

as follows. By recursion we assume that all upper and lower

subcrystals are already constructed. We also assume that for
each upper subcrystal 𝐾↑[𝑎] ≃ 𝐾(𝑐

↑

), its principal lattice is
distinguished by the use of the corresponding injective map
𝜎 : B(𝑐

↑

) → 𝑉(𝐾(𝑐
↑

)), and similarly for the lower sub-
crystals. We delete the edges with color 1 in each 𝐾

↑

[𝑎] and
extract the components of the resulting graphs, forming the
set K(−1,−𝑛) (arranged as a list) of all middle subcrystals of
𝐾(𝑐). Each 𝐾

↑↓

∈ K(−1,−𝑛) is encoded by a corresponding
pair (𝑎, Δ), where 𝑎 ∈ B(𝑐) and the deviation Δ in Π

↑

[𝑎]

is determined by the use of 𝜎 as above. Acting similarly for
the lower subcrystals 𝐾↓[𝑏] (by deleting the edges with color
𝑛), we obtain the same set of middle subcrystals (arranged
as another list), each of which being encoded by a corre-
sponding pair (𝑏, ∇), where 𝑏 ∈ B(𝑐) and ∇ is a deviation in
Π
↓

(𝑏). Relations (21) and (20) indicate how to identify each
member of the first list with its counterpart in the second
one. Now restoring the deleted edges with colors 1 and 𝑛,
we obtain the desired crystal 𝐾(𝑐). The corresponding map
B(𝑐) → 𝑉(𝐾(𝑐)) is constructed easily (e.g., by the use of
operator strings as in Proposition 2).

We conclude this section with several remarks.

Remark 9. For each 𝑎 ∈ B(𝑐) and each vertex 𝑣 = 𝑣
↑

[𝑎, 𝑝]

in the upper lattice Π
↑

[𝑎], one can express the parameter
𝑐
↑↓

= (𝑐
↑↓

2
, . . . , 𝑐

↑↓

𝑛−1
) of the middle subcrystal 𝐾↑↓ containing

𝑣, as well as the coordinate ℎ↑↓ = (ℎ
↑↓

2
, . . . , ℎ

↑↓

𝑛−1
) of its heart

w.r.t. 𝐾↑[𝑎] in the principal lattice of 𝐾↑↓. Indeed, since 𝐾↑↓

is a lower subcrystal of 𝐾↑[𝑎], one can apply relations as in
(17) and (18). Denoting the parameter of 𝐾↑[𝑎] by 𝑐↑ and the
coordinate of its heart inΠ↑[𝑎] by ℎ↑, letting Δ := 𝑝−ℎ

↑, and
using (15), (16), we have for 𝑖 = 2, . . . , 𝑛 − 1,

𝑐
↑↓

𝑖
= 𝑐
↑

𝑖
− 𝑝
𝑖
+ 𝑝
𝑖−1

= (𝑐
𝑖
− 𝑎
𝑖
+ 𝑎
𝑖+1
)

− (𝑎
𝑖+1

+ Δ
𝑖
) + (𝑎

𝑖
+ Δ
𝑖−1
) = 𝑐
𝑖
− Δ
𝑖
+ Δ i−1,

(22)

ℎ
↑↓

𝑖
= 𝑝
𝑖−1

= ℎ
↑

𝑖−1
+ Δ
𝑖−1

= 𝑎
𝑖
+ Δ
𝑖−1
. (23)

Symmetrically, if 𝐾↑↓ is contained in 𝐾
↓

[𝑏] and has
deviation ∇ in Π↓[𝑏], then for 𝑖 = 2, . . . , 𝑛 − 1,

𝑐
↑↓

𝑖
= 𝑐
𝑖
− ∇
𝑖
+ ∇
𝑖+1
,

ℎ
↓↑

𝑖
= 𝑏
𝑖
+ ∇
𝑖+1
,

(24)

where ℎ↓↑ is the coordinate of the heart of𝐾↑↓ w.r.t.𝐾↓[𝑏] in
the principal lattice of𝐾↑↓ (note that ℎ↓↑may differ from ℎ

↑↓).
We will use (22) and (24) in Section 4.

Remark 10. A straightforward implementation of the above
recursive method of constructing 𝐾 = 𝐾(𝑐) takes 𝑂(2𝑞(𝑛)𝑁)

time and space, where 𝑞(𝑛) is a polynomial in 𝑛 and𝑁 is the
number of vertices of𝐾. Here the factor 2𝑞(𝑛) appears because
the total number of vertices in the upper and lower subcrys-
tals is 2𝑁 (implying that there appear 4𝑁 vertices in total
on the previous step of the recursion, and so on). Therefore,



8 Algebra

such an implementation has polynomial complexity of the
size of the output for each fixed 𝑛, but not in general.However,
many intermediate subcrystals arising during the recursive
process are repeated, and we can use this fact to improve the
implementation. More precisely, the colors occurring in each
intermediate subcrystal in the process form an interval of the
ordered set (1, . . . , 𝑛). We call a subcrystal of this sort a color-
interval subcrystal, or a CI-subcrystal, of𝐾. In fact, every CI-
subcrystal of 𝐾 appears in the process. Since the number of
intervals is 𝑛(𝑛+1)/2 and theCI-subcrystals concerning equal
intervals are pairwise disjoint, the total number of vertices
of all CI-subcrystals of 𝐾 is 𝑂(𝑛2𝑁). It is not difficult to
implement the recursive process so that each CI-subcrystal
𝐾
󸀠 be explicitly constructed only once. As a result, we obtain

the following.

Proposition 11. Let 𝑐 ∈ Z𝑛
+
.The𝐴

𝑛
-crystal𝐾(𝑐) and all its CI-

subcrystals can be constructed in 𝑂(𝑞
󸀠

(𝑛)|𝑉(𝐾(𝑐))|) time and
space, where 𝑞󸀠(𝑛) is a polynomial in 𝑛.

Remark 12. Relation (21) shows that the intersection of𝐾↑[𝑎]
and 𝐾

↓

[𝑏] may consist of many middle subcrystals. Indeed,
if Δ
𝑖
> 0 and Δ

𝑖−1
< 0 for some 𝑖, then 𝑏 does not change

by simultaneously decreasing Δ
𝑖
by 1 and increasing Δ

𝑖−1
by

1. The number of common middle subcrystals of 𝐾↑[𝑎] and
𝐾
↓

[𝑏] for arbitrary 𝑎, 𝑏 ∈ B(𝑐) can be expressed by an explicit
piecewise linear formula, using (21) and the box constraints
−𝑎
𝑖+1

≤ Δ
𝑖
≤ 𝑐
𝑖
− 𝑎
𝑖
, 𝑖 = 1, . . . , 𝑛 − 1, on the deviations Δ in

Π
↑

[𝑎] (which follow from (15) and (16)).

4. Proofs of Theorems 7 and 8

Let 𝑎, Δ, 𝑏, ∇ be as in the hypotheses of Theorem 7. First we
show that Theorem 7 follows fromTheorem 8.

Proof of (20) (in the assumption that (21) is valid). The mid-
dle subcrystal𝐾↑↓ determined by (𝑎, Δ) is the same as the one
determined by (𝑏, ∇). The parameter 𝑐↑↓ of 𝐾↑↓ is expressed
simultaneously by (22) and by (24). Then 𝑐

𝑖
− Δ
𝑖
+ Δ
𝑖−1

=

𝑐
𝑖
− ∇
𝑖
+ ∇
𝑖+1

for 𝑖 = 2, . . . , 𝑛 − 1. Therefore,
Δ
1
+ ∇
2
= Δ
2
+ ∇
3
= ⋅ ⋅ ⋅ = Δ

𝑛−1
+ ∇
𝑛
=: 𝛼. (25)

In order to obtain (20), one has to show that 𝛼 = 0.
We argue as follows. Renumber the colors 1, . . . , 𝑛 as 𝑛, . . . , 1,
respectively; this yields the crystal 𝐾̂ = 𝐾(𝑐) symmetric to
𝐾(𝑐). Then𝐾↓[𝑏] turns into the upper subcrystal 𝐾̂↑[𝑏̂] of 𝐾̂,
where (𝑏̂

1
, . . . , 𝑏̂

𝑛
) = (𝑏
𝑛
, . . . , 𝑏

1
). Also the deviation∇ inΠ↓[𝑏]

turns into the deviation ∇̂ = (∇̂
1
, . . . , ∇̂

𝑛−1
) = (∇

𝑛
, . . . , ∇

2
) in

the principal lattice of 𝐾̂↑[𝑏̂]. Applying relations as in (21) to
(𝑏̂, ∇̂), we have

𝑎
𝑖
= 𝑏̂
𝑖
+ ∇̂
+

𝑖
+ ∇̂
−

𝑖−1
= 𝑏
𝑛−𝑖+1

+ ∇
+

𝑛−𝑖+1
+ ∇
−

𝑛−𝑖+2
, 𝑖 = 1, . . . , 𝑛,

(26)

where 𝑎
𝑖
:= 𝑎
𝑛−𝑖+1

and ∇̂+
𝑛
:= ∇̂
−

0
:= 0. On the other hand, (21)

for (𝑎, Δ) gives

𝑏̂
𝑖
= 𝑏
𝑛−𝑖+1

= 𝑎
𝑛−𝑖+1

+ Δ
+

𝑛−𝑖+1
+ Δ
−

𝑛−𝑖
, 𝑖 = 1, . . . , 𝑛.

(27)

Relations (26) and (27) imply

𝑎
𝑛−𝑖+1

= 𝑏
𝑛−𝑖+1

+ ∇
+

𝑛−𝑖+1
+ ∇
−

𝑛−𝑖+2

= (𝑎
𝑛−𝑖+1

+ Δ
+

𝑛−𝑖+1
+ Δ
−

𝑛−𝑖
) + ∇
+

𝑛−𝑖+1
+ ∇
−

𝑛−𝑖+2
,

(28)

whence

Δ
+

𝑛−𝑖+1
+ Δ
−

𝑛−𝑖
+ ∇
+

𝑛−𝑖+1
+ ∇
−

𝑛−𝑖+2
= 0, 𝑖 = 1, . . . , 𝑛.

(29)

Adding up the latter equalities, we obtain

(Δ
1
+ ⋅ ⋅ ⋅ + Δ

𝑛−1
) + (∇

2
+ ⋅ ⋅ ⋅ + ∇

𝑛
) = 0. (30)

This and (25) imply (𝑛 − 1)𝛼 = 0. Hence 𝛼 = 0, yielding (20)
andTheorem 7.

Proof of Theorem 8. It is more intricate and essentially uses
the crossing model.

For a feasible function 𝑓 ∈ F(𝑐) and its corresponding
vertex 𝑣 in 𝐾 = 𝐾(𝑐), we may denote 𝑣 as 𝑣

𝑓
and 𝑓 as 𝑓

𝑣
.

From the crossing model it is seen that

if a vertex 𝑣 ∈ 𝑉 (𝐾) belongs to 𝐾
↑

[𝑎] and to 𝐾
↓

[𝑏] ,

then the tuples 𝑎 and 𝑏 are expressed via the values of

𝑓 = 𝑓
𝑣
in levels 𝑛 and 1 as follows :

𝑎
𝑘
= 𝑓 (𝑣

𝑘

𝑛
(𝑛 − 𝑘 + 1)) ,

and 𝑏
𝑘
= 𝑓 (𝑣

𝑘

1
(1)) for 𝑘 = 1, . . . , 𝑛.

(31)

Indeed, the principal vertex 𝑣̆[𝑎] is reachable from 𝑣 by
applying operators 𝐹

𝑖
or 𝐹−1
𝑖

with 𝑖 ̸= 𝑛. The corresponding
moves in the crossing model do not change 𝑓 within level 𝑛.
Similarly, 𝑣̆[𝑏] is reachable from 𝑣 by applying operators 𝐹

𝑖
or

𝐹
−1

𝑖
with 𝑖 ̸= 1, and the corresponding moves do not change 𝑓

within level 1. Also the first (second) equality in (31) is valid
for the principal function 𝑓

𝑣̆[𝑎]
(resp., 𝑓

𝑣̆[𝑏]
).

Next we introduce special functions on the node set𝑉(𝐺)
of the supporting graph𝐺 = 𝐺

𝑛
. Consider a component𝐺𝑘 =

(𝑉
𝑘

, 𝐸
𝑘

) of 𝐺. It is a rectangular grid of size 𝑘 × (𝑛 − 𝑘 + 1)

(rotated by 45∘ in the visualization of 𝐺), and its vertex set is

𝑉
𝑘

= {𝑣
𝑘

𝑖
(𝑗) : 𝑗 = 1, . . . , 𝑛 − 𝑘 + 1, 𝑖 = 𝑗, . . . , 𝑗 + 𝑘 − 1} .

(32)

To represent it in amore convenient form, let us rename 𝑣𝑘
𝑖
(𝑗)

as 𝑥𝑘
𝑖−𝑗+1

(𝑗) or 𝑥
𝑖−𝑗+1

(𝑗) (as though rotating 𝐺𝑘 by 45∘). Then

𝑉
𝑘

= {𝑥
𝑚
(𝑗) : 𝑚 = 1, . . . , 𝑘, 𝑗 = 1, . . . , 𝑛 − 𝑘 + 1} ,

(33)

the SE-edges of 𝐺𝑘 become of the form (𝑥
𝑚
(𝑗), 𝑥
𝑚
(𝑗 + 1)),

and the NE-edges become of the form (𝑥
𝑚
(𝑗), 𝑥
𝑚−1

(𝑗)). We
distinguish the following subsets of 𝑉𝑘:



Algebra 9

∗

∗
∗

∗

𝑍𝑘
1

𝑍𝑘
2

𝑎𝑘
𝑍𝑘
3

𝑍𝑘
4

𝑎𝑘 + Δ+
𝑘 + Δ−

𝑘−1

𝑎𝑘 + Δ+
𝑘 𝑎𝑘 + Δ−

𝑘−1

Figure 1: The partition of 𝑉𝑘 (see Section 4).

(i) the SW-side 𝑃𝑘 := {𝑥
𝑘
(1), . . . , 𝑥

𝑘
(𝑛 − 𝑘 + 1)};

(ii) the right rectangle 𝑅𝑘 := {𝑥
𝑚
(𝑗) : 1 ≤ 𝑚 ≤ 𝑘 − 1, 1 ≤

𝑗 ≤ 𝑛 − 𝑘 + 1};
(iii) the left rectangle 𝐿𝑘 := {𝑥

𝑚
(𝑗) : 1 ≤ 𝑚 ≤ 𝑘, 1 ≤ 𝑗 ≤

𝑛 − 𝑘}.

Denote the characteristic functions (inR𝑉
𝑘

) of 𝑃𝑘, 𝑅𝑘, and 𝐿𝑘
as 𝜋𝑘, 𝜌𝑘, and 𝜆

𝑘, respectively.
Return to 𝑎 and Δ as above. We associate to (𝑎, Δ) the

functions

𝑓
𝑘

𝑎,Δ
:= 𝑎
𝑘
𝜋
𝑘

+ (𝑎
𝑘
+ Δ
−

𝑘−1
) 𝜌
𝑘

+ Δ
+

𝑘
𝜆
𝑘 (34)

on 𝑉𝑘 for 𝑘 = 1, . . . , 𝑛 (see Figure 1) and define 𝑓
𝑎,Δ

to be the
function on 𝑉(𝐺) whose restriction to each 𝑉𝑘 is 𝑓𝑘

𝑎,Δ
.

In view of (31),𝑓 = 𝑓
𝑎,Δ

takes the values in levels 𝑛 and 1 as
required in (21) (with 𝑘 in place of 𝑖); namely,𝑓(𝑣𝑘

𝑛
(𝑛−𝑘+1)) =

𝑎
𝑘
and 𝑓(𝑣𝑘

1
(1)) = 𝑎

𝑘
+ Δ
+

𝑘
+ Δ
−

𝑘−1
for 𝑘 = 1, . . . , 𝑛. Therefore,

to obtain (21) it suffices to show the following.

Lemma 13. (i) The function 𝑓 = 𝑓
𝑎,Δ

is feasible. (ii) The vertex
𝑣
𝑓
belongs to Π

↑

[𝑎] and has the deviation Δ in it; in other
words, 𝑓 = 𝑓

𝑣̆[𝑎|Δ]
.

Proof. First we prove assertion (i). Let 𝑘 ∈ {1, . . . , 𝑛}. We
partition 𝑉𝑘 into four subsets (rectangular pieces):

𝑍
𝑘

1
:= 𝑃
𝑘

− {𝑥
𝑘

𝑘
(𝑛 − 𝑘 + 1)} ,

𝑍
𝑘

2
:= 𝐿
𝑘

\𝑃
𝑘

, 𝑍
𝑘

3
:= {𝑥
𝑘

𝑘
(𝑛 − 𝑘 + 1)} , 𝑍

𝑘

4
:= 𝑅
𝑘

\𝐿
𝑘

,

(35)

where 𝑍𝑘
2
= 𝑍
𝑘

4
= 0 when 𝑘 = 1, and 𝑍

𝑘

1
= 𝑍
𝑘

2
= 0 when

𝑘 = 𝑛. By (34),

𝑓 takes a constant value within each piece 𝑍𝑘
𝑞
; namely,

𝑎
𝑘
+ Δ
+

𝑘
on 𝑍
𝑘

1
,

𝑎
𝑘
+ Δ
+

𝑘
+ Δ
−

𝑘−1
on 𝑍
𝑘

2
; 𝑎

𝑘
on 𝑍
𝑘

3
,

𝑎
𝑘
+ Δ
−

𝑘−1
on 𝑍
𝑘

4

(36)

(as illustrated in Figure 1). Also each edge of 𝐺𝑘 connecting
different pieces goes either from 𝑍

𝑘

1
to 𝑍
𝑘

2
∪ 𝑍
𝑘

3
or from

𝑍
𝑘

2
∪ 𝑍
𝑘

3
to 𝑍𝑘
4
. This and (36) imply that 𝜕𝑓(𝑒) ≥ 0 for each

edge 𝑒 ∈ 𝐸𝑘, whence 𝑓 satisfies (6)(i).
The deviation Δ is restricted as −ℎ↑ ≤ Δ ≤ 𝑐

↑

− ℎ
↑,

where 𝑐↑ is the parameter of the subcrystal 𝐾↑[𝑎] and ℎ
↑ is

the coordinate of its heart 𝑣̆[𝑎] in Π
↑

[𝑎]. Formulas (15) and
(16) for 𝑐↑ and ℎ↑ give

−𝑎
𝑘+1

≤ Δ
𝑘
≤ 𝑐
𝑘
− 𝑎
𝑘
, −𝑎

𝑘
≤ Δ
𝑘−1

≤ 𝑐
𝑘−1

− 𝑎
𝑘−1

.

(37)

The inequalities Δ
𝑘
≤ 𝑐
𝑘
− 𝑎
𝑘
and 𝑎
𝑘
≤ 𝑐
𝑘
imply 𝑎

𝑘
+ Δ
+

𝑘
≤ 𝑐
𝑘
.

The inequalities −𝑎
𝑘
≤ Δ
𝑘−1

and 𝑎
𝑘
≥ 0 imply 𝑎

𝑘
+ Δ
−

𝑘−1
≥ 0.

Then, in view of (36), we obtain 0 ≤ 𝑓(𝑣) ≤ 𝑐
𝑘
for each node

𝑣 of 𝐺𝑘, yielding (6)(ii).
To verify the switch condition (6)(iii), consider a multin-

ode𝑉
𝑖
(𝑗) with 𝑖 < 𝑛. It consists of 𝑛 − 𝑖 + 1 nodes 𝑣𝑘

𝑖
(𝑗), where

𝑖 − 𝑗 + 1 ≤ 𝑘 ≤ 𝑛 − 𝑗 + 1.
Let 𝑖 ≤ 𝑛 − 2. Suppose that 𝑣 = 𝑣

𝑘

𝑖
(𝑗) is a node whose

SW-edge 𝑒 = (𝑢, 𝑣) exists and is not 𝑓-tight. This is possible
only if 𝑢 ∈ 𝑍

𝑘

1
and 𝑣 ∈ 𝑍

𝑘

2
. In this case, 𝑘 is determined as

𝑘 = 𝑖 − 𝑗 + 2; that is, 𝑣 is the second node in𝑉
𝑖
(𝑗). We observe

that (a) for the first node 𝑣𝑘−1
𝑖

(𝑗) of 𝑉
𝑖
(𝑗), both ends of its SE-

edge 𝑒󸀠 belong to the piece 𝑍𝑘−1
1

; and (b) for any node 𝑣𝑘
󸀠

𝑖
(𝑗)

with 𝑘󸀠 > 𝑘 in𝑉
𝑖
(𝑗), both ends of its SW-edge 𝑒󸀠󸀠 belong either

to 𝑍𝑘
󸀠

2
or to 𝑍𝑘

󸀠

4
. So, such 𝑒󸀠 and 𝑒󸀠󸀠 are 𝑓-tight. Therefore, the

node 𝑣 satisfies the condition in (6)(iii) for 𝑉
𝑖
(𝑗).

Now let 𝑖 = 𝑛 − 1. Then 𝑉
𝑖
(𝑗) consists of two nodes 𝑣 =

𝑣
𝑛−𝑗

𝑛−1
(𝑗) and 𝑣

󸀠

= 𝑣
𝑛−𝑗+1

𝑛−1
(𝑗). Put 𝑘 := 𝑛 − 𝑗. Then the edge

𝑒 = 𝑒
SE
(𝑣) goes from 𝑍

𝑘

1
to 𝑍𝑘
3
= {𝑥
𝑘

𝑘
(𝑛 − 𝑘 + 1)}, and the edge

𝑒
󸀠

= 𝑒
SW

(𝑣
󸀠

) goes from 𝑍
𝑘+1

3
= {𝑥
𝑘+1

𝑘+1
(𝑛 − 𝑘)} to 𝑍

𝑘+1

4
. By

(36), we have 𝜕𝑓(𝑒) = (𝑎
𝑘
+ Δ
+

𝑘
) − 𝑎
𝑘
= Δ
+

𝑘
and 𝜕𝑓(𝑒

󸀠

) =

𝑎
𝑘+1

− (𝑎
𝑘+1

+ Δ
−

𝑘
) = −Δ

−

𝑘
. Since at least one of Δ+

𝑘
, Δ
−

𝑘
is zero,

we conclude that at least one of 𝑒, 𝑒󸀠 is tight. So (6)(iii) is valid
again.

Next we prove assertion (ii) in the lemma. (The idea is
roughly as follows. For each 𝑘, compare the function 𝑓

𝑘

𝑎,Δ
=:

𝑔 with the function ℎ on 𝑉
𝑘 taking the constant value 𝑎

𝑘
.

By (34), 𝑔 = ℎ + Δ
+

𝑘
𝜆
𝑘

+ Δ
−

𝑘−1
𝜌
𝑘. In other words, 𝑔 is

obtained from 𝑓
𝑣̆[𝑎]|𝑉

𝑘
by adding Δ+

𝑘
times the “left rectangle

function” 𝜆𝑘, followed by subtracting |Δ−
𝑘−1

| times the “right
rectangle function” 𝜌𝑘. A crucial observation is that adding
𝜆
𝑘 corresponds to applying the operator string 𝑆

𝑛−1,𝑘
(or

shifting by 𝑘th unit base vector in the upper principal lattice
Π
↑

[𝑎]), while subtracting 𝜌𝑘 corresponds to applying 𝑆−1
𝑛−1,𝑘−1

(or shifting byminus (𝑘−1)th unit base vector inΠ↑[𝑎]).This
is because the substrings𝑤 in 𝑆

𝑛−1,𝑘
correspond to the SW-NE

paths in 𝐿
𝑘, and the substrings in 𝑆

𝑛−1,𝑘−1
to similar paths in

𝑅
𝑘

≃ 𝐿
𝑘−1).

Now we give a more careful and formal description. We
use induction on

𝜂 (Δ) := Δ
1
+ ⋅ ⋅ ⋅ + Δ

𝑛−1
. (38)

In view of (37), 𝜂(Δ) ≥ −𝑎
2
− ⋅ ⋅ ⋅ − 𝑎

𝑛
. Suppose that this

turns into equality. Then Δ
𝑘
= −𝑎
𝑘+1

≤ 0 for 𝑘 = 1, . . . , 𝑛 −

1, and 𝑓 = 𝑓
𝑎,Δ

takes the following values within each 𝑉
𝑘
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(cf. (36)): 𝑓(𝑣) = 𝑎
𝑘
if 𝑣 ∈ 𝑃

𝑘, and 𝑓(𝑣) = 0 if 𝑣 ∈ 𝑉
𝑘

− 𝑃
𝑘.

This 𝑓 is the minimal feasible function whose values in level
𝑛 correspond to 𝑎; that is, 𝑣

𝑓
is the source of𝐾↑[𝑎].Then 𝑣

𝑓
is

theminimal vertex 𝑣̆[𝑎, 0] inΠ↑[𝑎], and its deviation inΠ↑[𝑎]
is just Δ, as required. This gives the base of our induction.

Now consider an arbitraryΔ satisfying (37). Let 𝑘 be such
thatΔ

𝑘
< 𝑐
𝑘
−𝑎
𝑘
(if any) and defineΔ󸀠

𝑘
:= Δ
𝑘
+1 andΔ󸀠

𝑖
:= Δ
𝑖

for 𝑖 ̸= 𝑘. Then 𝜂(Δ) < 𝜂(Δ
󸀠

). We assume by induction that
assertion (ii) is valid for 𝑓

𝑎,Δ
, and our aim is to show validity

of (ii) for 𝑓
𝑎,Δ
󸀠 .

In what follows 𝑓 stands for the former function 𝑓
𝑎,Δ

.
Let 𝑣󸀠 be the vertex with the deviation Δ

󸀠 in Π
↑

[𝑎]. Both
𝑣
𝑓
and 𝑣

󸀠 are principal vertices of the subcrystal 𝐾↑[𝑎], and
the coordinate of 𝑣󸀠 inΠ↑[𝑎] is obtained from the one of 𝑣

𝑓
by

increasing its 𝑘th entry by 1. According to Proposition 2 (with
𝑛 is replaced by 𝑛 − 1), 𝑣󸀠 is obtained from 𝑣

𝑓
by applying the

operator string
𝑆
𝑛−1,𝑘

= 𝑤
𝑛−1,𝑘,𝑛−𝑘

⋅ ⋅ ⋅ 𝑤
𝑛−1,𝑘,1

, (39)

where𝑤
𝑛−1,𝑘,𝑗

= 𝐹
𝑗
⋅ ⋅ ⋅ 𝐹
𝑗+𝑘−1

(cf. (12)). In light of this, we have
to show that
when (the sequence of moves corresponding to) 𝑆

𝑛−1,𝑘

is applied to 𝑓, the resulting feasible function is exactly

𝑓
𝑎,Δ
󸀠 .

(40)

For convenience, 𝑚th term 𝐹
𝑗+𝑚−1

in the substring
𝑤
𝑛−1,𝑘,𝑗

will be denoted by 𝜙(𝑗,𝑚),𝑚 = 1, . . . , 𝑘. So 𝑤
𝑛−1,𝑘,𝑗

=

𝜙(𝑗, 1)𝜙(𝑗, 2) ⋅ ⋅ ⋅ 𝜙(𝑗, 𝑘).
We distinguish between two cases: Δ

𝑘
≥ 0 and Δ

𝑘
< 0.

Case 1 [Δ
𝑘
≥ 0]. An essential fact is that the number 𝑘(𝑛 − 𝑘)

of operators in 𝑆
𝑛−1,𝑘

is equal to the number of nodes in the
left rectangle 𝐿𝑘 of𝐺𝑘. Moreover, the level of each node 𝑥

𝑚
(𝑗)

of 𝐿𝑘 is equal to the “color” of the operator 𝜙(𝑗,𝑚) (indeed,
𝑥
𝑚
(𝑗) = 𝑣

𝑘

𝑗+𝑚−1
(𝑗) and 𝜙(𝑗,𝑚) = 𝐹

𝑗+𝑚−1
).

Let 𝑓𝑗,𝑚 denote the current function on 𝑉(𝐺) just before
the application of 𝜙(𝑗,𝑚) (when the process starts with 𝑓 =

𝑓
𝑎,Δ

). We assert that
for each 𝑚, the application of 𝜙 (𝑗,𝑚) to 𝑓

𝑗,𝑚 increases
the value at the node 𝑥𝑘

𝑚
(𝑗) by 1,

(41)

whence (40) will immediately follow.
In order to show (41), we first examine tight edges and the

slacks 𝜀(𝑣) of the nodes 𝑣 in levels < 𝑛 for the initial function
𝑓. One can see from (36) that

for 𝑘󸀠 = 1, . . . , 𝑛, each node 𝑣 of the subgraph 𝐺
𝑘
󸀠

has at
least one entering edge (i.e., 𝑒SW (𝑣) or 𝑒NW

(𝑣)) which

is 𝑓-tight, except, possibly, for the nodes 𝑣𝑘
󸀠

𝑘
󸀠 (1) ,

𝑣
𝑘
󸀠

𝑘
󸀠
−1
(1) , 𝑣

𝑘
󸀠

𝑛
(𝑛 − 𝑘

󸀠

+ 1) , 𝑣
𝑘
󸀠

𝑛−1
(𝑛 − 𝑘

󸀠

+ 1)

(42)

indicated by stars in Figure 1.

Claim. For 𝑘󸀠 = 1, . . . , 𝑛 and a node 𝑣 of 𝐺𝑘
󸀠

at a level < 𝑛,

(a) if 𝑣 ̸= 𝑣
𝑘
󸀠

𝑘
󸀠 (1), 𝑣

𝑘
󸀠

𝑘
󸀠
−1
(1), then 𝜀(𝑣) = 0;

(b) if 𝑣 = 𝑣
𝑘
󸀠

𝑘
󸀠 (1), then 𝜀(𝑣) = 𝑐

𝑘
󸀠 − 𝑎
𝑘
󸀠 − Δ
+

𝑘
󸀠 ≥ 0;

(c) if 𝑣 = 𝑣
𝑘
󸀠

𝑘
󸀠
−1
(1), then 𝜀(𝑣) = −Δ

−

𝑘
󸀠 ≥ 0.

Proof of Claim. Let 𝑣 = 𝑣
𝑘
󸀠

𝑖
(𝑗) and 𝑖 < 𝑛. By (8), the slack 𝜀(𝑣) is

equal to𝑓(𝑤)+𝑓(𝑧)−𝑓(𝑢)−𝑓(𝑣), where𝑤 := 𝑣
𝑘
󸀠

𝑖−1
(𝑗−1), 𝑧 :=

𝑣
𝑘
󸀠

𝑖+1
(𝑗), 𝑢 := 𝑣

𝑘
󸀠

𝑖
(𝑗 − 1) (these vertices belong to the extended

graph 𝐺𝑘
󸀠

). We consider possible cases and use (36).

(i) If 𝑤, 𝑧, 𝑢 are in 𝐺𝑘
󸀠

, then 𝜕𝑓(𝑤, 𝑣) = 𝜕𝑓(𝑢, 𝑧).

(ii) If both 𝑣, 𝑤 are in the piece 𝑍𝑘
󸀠

1
of 𝐺𝑘

󸀠

, then 𝑓(𝑤) =

𝑓(𝑣) and 𝑓(𝑢) = 𝑓(𝑧) = 𝑐
𝑘
󸀠 .

(iii) If 𝑗 = 1 and 𝑖 ≤ 𝑘
󸀠

− 2, then 𝑓(𝑣) = 𝑓(𝑧) and 𝑓(𝑢) =
𝑓(𝑤) = 𝑐

𝑘
󸀠 . So in these caseswe have 𝜀(𝑣) = 0, yielding

(a).

(iv) Let 𝑣 = 𝑣
𝑘
󸀠

𝑘
󸀠 (1). Then 𝑓(𝑣) = 𝑎

𝑘
󸀠 + Δ
+

𝑘
󸀠 and 𝑓(𝑢) =

𝑓(𝑤) = 𝑓(𝑧) = 𝑐
𝑘
󸀠 . This gives 𝜀(𝑣) = 𝑐

𝑘
󸀠 − 𝑎
𝑘
󸀠 − Δ
+

𝑘
󸀠 ,

yielding (b).
(v) Let 𝑣 = 𝑣

𝑘
󸀠

𝑘
󸀠
−1
(1).Then𝑓(𝑣) = 𝑎

𝑘
󸀠 +Δ
+

𝑘
󸀠 +Δ
−

𝑘
󸀠
−1
,𝑓(𝑧) =

𝑎
𝑘
󸀠 + Δ
+

𝑘
󸀠 and 𝑓(𝑢) = 𝑓(𝑤) = 𝑐

𝑘
󸀠 . This gives 𝜀(𝑣) =

−Δ
−

𝑘
󸀠
−1
, yielding (c).

This claim and the relations Δ−
𝑘
= 0 and Δ

𝑘
< 𝑐
𝑘
− 𝑎
𝑘

enable us to estimate the total slacks 𝜀
𝑖
(𝑗) for 𝑓 at the multi-

nodes 𝑉
𝑖
(𝑗) with 𝑖 < 𝑛:

(i) the edge 𝑒SW (𝑣
𝑘+1

𝑘
(1)) is 𝑓-tight, 𝜀 (𝑣

𝑘

𝑘
(1)) > 0, and

𝜀 (𝑣) = 0 for the other nodes 𝑣 in 𝑉
𝑘
(1) ; so 𝜀

𝑘
(1) > 0;

(ii) if 𝑖 ̸= 𝑘, 𝑛, then 𝜀 (𝑣
𝑖

𝑖
(1)) , 𝜀 (𝑣

𝑖+1

𝑖
(1)) ≥ 0 and 𝜀 (𝑣) = 0

for the other nodes 𝑣 in 𝑉
𝑖
(1) ; so 𝜀

𝑖
(1) ≥ 0;

(iii) if 𝑖 ̸= 𝑛 and 𝑗 > 1, then 𝜀 (𝑣) = 0 for all nodes 𝑣 in

𝑉
𝑖
(𝑗) ; so 𝜀

𝑖
(𝑗) = 0.

(43)

Now we are ready to prove (41). When dealing with a
current function𝑓𝑗,𝑚 and seeking for the node at level 𝑗+𝑚−1

where the operator 𝜙(𝑗,𝑚) should act to increase𝑓𝑗,𝑚, we can
immediately exclude from consideration any node 𝑣 that has
at least one tight entering edge (in view of the monotonicity
condition (6) (i)).

Due to (42) and (43)(i), for the initial function 𝑓 = 𝑓
1,𝑘,

there is only one node in level 𝑘 that has no tight entering
edge, namely, 𝑣𝑘

𝑘
(1). So, at the first step of the process, the first

operator 𝜙(1, 𝑘) of 𝑆
𝑛−1,𝑘

acts just at 𝑣𝑘
𝑘
(1), as required in (41).

Next consider a step with 𝑓
󸀠

:= 𝑓
𝑗,𝑚 for (𝑗, 𝑚) ̸= (1, 𝑘),

assuming validity of (41) on the previous steps.
(A) Let 𝑗 = 1 (and 𝑚 < 𝑘). For 𝑣 := 𝑣

𝑘

𝑚
(1) and 𝑧 :=

𝑣
𝑘

𝑚+1
(1), we have 𝑓󸀠(𝑣) = 𝑓(𝑣) ≤ 𝑓(𝑧) = 𝑓

󸀠

(𝑧) − 1. So the
unique edge 𝑒 = (𝑧, 𝑣) entering 𝑣 is not𝑓󸀠-tight. By (42), there
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are at most two other nodes in level𝑚 that may have no tight
entering edges for𝑓 (and therefore, for𝑓󸀠), namely, 𝑣𝑚

𝑚
(1) and

𝑣
𝑚+1

𝑚
(1). Then 𝜙(1,𝑚)must act at 𝑣, as required in (41) (since

the nontightness of the SW-edge 𝑒 of 𝑣 implies that none of
the nodes 𝑣𝑚

󸀠

𝑚
(1) in 𝑉

𝑚
(1) preceding 𝑣 (i.e., with𝑚󸀠 < 𝑘) can

be the switch-node).
(B) Let 𝑗 > 1. Comparing 𝑓

󸀠 with 𝑓 in the node 𝑣 :=

𝑥
𝑘

𝑚
(𝑗) = 𝑣

𝑘

𝑗+𝑚−1
(𝑗) and its adjacent nodes, we observe that 𝑣

has no𝑓󸀠-tight entering edge and that 𝜀
𝑓
󸀠(𝑣) > 0. Also for any

other node 𝑣󸀠 in level 𝑗 + 𝑚 − 1, one can see that if 𝑣󸀠 has a
tight entering edge for 𝑓, then this property holds for 𝑓󸀠 as
well, and that 𝜀

𝑓
(𝑣
󸀠

) ≥ 𝜀
𝑓
󸀠(𝑣
󸀠

) ≥ 0. Using this, properties (42),
(43) (iii), and condition (11), one can conclude that the total
and reduced slacks for𝑓󸀠 at themultinode𝑉󸀠 := 𝑉

𝑗+𝑚−1
(𝑗) are

positive, that𝑉󸀠 is the activemultinode for𝑓󸀠 in level 𝑗+𝑚−1,
and that 𝜙(𝑗,𝑚) can be applied only at 𝑣, yielding (41) again.

Thus, (40) is valid in Case 1.
Case 2 [Δ

𝑘
< 0]. We assert that in this case the string 𝑆

𝑛−1,𝑘

actswithin the right rectangle𝑅𝑘+1 of the subgraph𝐺𝑘+1 (note
that 𝑅𝑘+1 is of size 𝑘 × (𝑛 − 𝑘)). More precisely,

each operator 𝜙 (𝑗,𝑚) modifies the current function by

increasing its value at the node 𝑥𝑘+1
𝑚

(𝑗) by 1.
(44)

Then the resulting function in the process is just 𝑓
𝑎,Δ
󸀠 (in

view of (Δ󸀠)−
𝑘
= Δ
−

𝑘
+ 1), yielding (40).

To show (44), we argue as in the previous case and use
(42) and the previous claim. Since Δ

𝑘
< 0, part (i) in (43) for

the initial function 𝑓 is modified as follows:

for 𝑗 = 1, . . . , 𝑛 − 𝑘, the SW-edge of each node

𝑥
𝑘+1

𝑘
(𝑗) = 𝑣

𝑘+1

𝑗+𝑘−1
(𝑗) is not 𝑓-tight, 𝜀 (𝑣𝑘+1

𝑘
(1)) > 0,

𝜀 (𝑣
𝑘

𝑘
(1)) ≥ 0, and 𝜀 (𝑣) = 0 for the other nodes 𝑣

in 𝑉
𝑘
(1) ; so 𝜀

𝑘
(1) > 0,

(45)

while properties (ii) and (iii) preserve.
By (42) and (45), there are only two nodes in level 𝑘 that

have no 𝑓-tight entering edges, namely, 𝑣𝑘
𝑘
(1) and 𝑣

𝑘+1

𝑘
(1).

Also 𝑒 = 𝑒
SW

(𝑣
𝑘+1

𝑘
(1)) is not tight. So, at the first step, 𝜙(1, 𝑘)

must act at 𝑣𝑘+1
𝑘

(1), as required in (44) (since the nontightness
of 𝑒 implies that the node 𝑣𝑘

𝑘
(1) preceding 𝑣𝑘+1

𝑘
(1) cannot be

the switch-node in 𝑉
𝑘
(1)).

The fact that 𝜙(1,𝑚) with 𝑚 < 𝑘 acts at 𝑣𝑘+1
𝑚

(1) is shown
by arguing as in (A) above. And for 𝑗 > 1, to show that
𝜙(𝑗,𝑚) = 𝐹

𝑗+𝑚−1
acts at 𝑥𝑘+1

𝑚
(𝑗) = 𝑣

𝑘+1

𝑗+𝑚−1
(𝑗), we argue as in

(B) above. Here, when 𝑚 = 𝑘, we also use the fact that the
edge 𝑒SW(𝑥𝑘+1

𝑘
(𝑗)) is not𝑓-tight (by (45) ), whence both edges

entering 𝑥𝑘+1
𝑘

(𝑗) are not tight for the current function. So (44)
is always valid.

Thus, we have the desired property (40) in both Cases 1
and 2, and statement (ii) in Lemma 13 follows.

This completes the proof of relation (21), yielding
Theorem 8.

5. Illustrations

In this concluding section, we give two illustrations to the
above assembling construction for A-crystals. The first one
refines the interrelation between upper and lower subcrystals
in an arbitrary 𝐴

2
-crystal; this can be compared with the

explicit construction (the so-called “sail model”) for 𝐴
2
-

crystals in [3]. The second one visualizes the subcrystals
structure for one instance of 𝐴

3
-crystals, namely,𝐾(1, 1, 1).

5.1. 𝐴
2
-Crystals. The subcrystals structure becomes simpler

when we deal with an 𝐴
2
-crystal 𝐾 = 𝐾(𝑐

1
, 𝑐
2
). In this case

the roles of upper, lower, and middle subcrystals are played
by 1-paths, 2-paths, and vertices of 𝐾, respectively, where by
an 𝑖-path we mean a maximal path of color 𝑖.

Consider an upper subcrystal in 𝐾. This is a 1-path 𝑃 =

(𝑣
0
, 𝑣
1
, . . . , 𝑣

𝑝
) containing exactly one principal vertex 𝑣̆[𝑎]

of 𝐾 (the heart of 𝑃); here 𝑣
𝑖
stands for 𝑖th vertex in 𝑃, 𝑎 =

(𝑎
1
, 𝑎
2
) ∈ Z2
+
, and 𝑎 ≤ 𝑐. Let 𝑣̆[𝑎] = 𝑣

ℎ
. Formulas (15) and (16)

give

|𝑃| = 𝑝 = 𝑐
1
− 𝑎
1
+ 𝑎
2
, ℎ = 𝑎

2
. (46)

Fix a vertex 𝑣 = 𝑣
𝑖
of 𝑃. It belongs to some 2-path (lower

subcrystal) 𝑄 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑞
). Let 𝑣 = 𝑢

𝑗
and let 𝑣̆[𝑏] = 𝑢

ℎ

be the principal vertex of 𝐾 occurring in 𝑄 (the heart of 𝑄).
The vertex 𝑣 forms a middle subcrystal of 𝐾; its deviations
from the heart of𝑃 and from the heart of𝑄 are equal to 𝑖−ℎ =:
𝛿 and 𝑗 − ℎ =: 𝛿, respectively. By (20) in Theorem 7, we have
𝛿 = −𝛿. Then we can compute the coordinates 𝑏 by the use of
(21) and, further, apply (17) and (18) to compute the length of
𝑄 and the locus of its heart. This gives the following:

(i) if 𝛿 ≥ 0 (i.e., 𝑎
2
≤ 𝑖 ≤ 𝑐

1
− 𝑎
1
+ 𝑎
2
) , then

𝑏
1
= 𝑎
1
+ 𝛿 = 𝑎

1
+ 𝑖 − 𝑎

2
, 𝑏

2
= 𝑎
2
,

|𝑄| = 𝑐
2
− 𝑏
2
+ 𝑏
1
= 𝑐
2
− 2𝑎
2
+ 𝑎
1
+ 𝑖,

and |𝑄| − ℎ = |𝑄| − 𝑏
1
= 𝑐
2
− 𝑎
2
;

(ii) if 𝛿 ≤ 0 (i.e., 0 ≤ 𝑖 ≤ 𝑎
2
) , then 𝑏

1
= 𝑎
1
,

𝑏
2
= 𝑎
2
+ 𝛿 = 𝑎

2
+ (𝑖 − 𝑎

2
) = 𝑖,

|𝑄| = 𝑐
2
− 𝑏
2
+ 𝑏
1
= 𝑐
2
− 𝑖 + 𝑎

1
,

and ℎ = 𝑏
1
= 𝑎
1
.

(47)

Using (46) and (47), one can enumerate the sets of 1-
paths and 2-paths and properly intersect corresponding pairs,
obtaining the 𝐴

2
-crystal 𝐾(𝑐). It is rather routine to check

that the resulting graph coincides with the one generated by
the sail model from [3]. Next we outline that construction.

Given 𝑐 ∈ Z2
+
, the 𝐴

2
-crystal 𝐾(𝑐) is produced from two

particular two-colored graphs 𝑅 and 𝐿, called the right sail
of size 𝑐

1
and the left sail of size 𝑐

2
, respectively. The vertices

of 𝑅 correspond to the vectors (𝑖, 𝑗) ∈ Z2 such that 0 ≤ 𝑗 ≤

𝑖 ≤ 𝑐
1
, and the vertices of 𝐿 to the vectors (𝑖, 𝑗) ∈ Z2 such
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(1,0,1)

(1,1,1)

(0,0,1)

(0,0,0)

(0,1,0)

(1,0,0)

𝑅
𝑆

𝑇

𝑃

𝑄

𝑈 𝑉

Γ

𝑊

(1,1,0)

(0,1,1)

𝐾↑[0,0,0] ≃ 𝐾(1,1) 𝐾↑[1,0,0] ≃ 𝐾(0,1)

𝐾↑[0,0,1] ≃ 𝐾(1,2)

𝐾↑[0,1,0] ≃ 𝐾(2,0)

𝐾↑[0,1,1] ≃ 𝐾(2,1)

𝐾↑[1,1,1] ≃ 𝐾(1,1)

𝐾↑[1,0,1] ≃ 𝐾(0,2)

𝐾↑[1,1,0] ≃ 𝐾(1,0)

𝑋

𝑌
𝑍

2

1
𝐴 𝐵

𝐶

𝐷
𝐸 𝐹

𝐻𝐺

𝐾
𝑀

𝑁

𝐿

𝑂

𝐽

𝐼

Δ

Φ

Ψ

Figure 2: The upper subcrystals in 𝐾(1, 1, 1) (see Section 5).

that 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑐
2
. In both 𝑅 and 𝐿, the edges of color 1 are

all possible pairs of the form ((𝑖, 𝑗), (𝑖 + 1, 𝑗)), and the edges
of color 2 are all possible pairs of the form ((𝑖, 𝑗), (𝑖, 𝑗 + 1)).
(Observe that both 𝑅 and 𝐿 satisfy axioms (A1)–(A4), 𝑅 is
isomorphic to 𝐾(𝑐

1
, 0), 𝐿 is isomorphic to 𝐾(0, 𝑐

2
), and their

critical vertices are the “diagonal vertices” (𝑖, 𝑖).)
In order to produce 𝐾(𝑐), take 𝑐

2
disjoint copies 𝑅

1
,

. . . , 𝑅
𝑐
2

of𝑅 and 𝑐
1
disjoint copies 𝐿

1
, . . . , 𝐿

𝑐
1

of 𝐿, referring to
𝑅
𝑗
as 𝑗th right sail and to𝐿

𝑖
as 𝑖th left sail. Let𝐷(𝑅

𝑗
) and𝐷(𝐿

𝑖
)

denote the sets of diagonal vertices in 𝑅
𝑗
and 𝐿

𝑖
, respectively.

For all 𝑖 = 1, . . . , 𝑐
1
and 𝑗 = 1, . . . , 𝑐

2
, we identify the diagonal

vertices (𝑖, 𝑖) ∈ 𝐷(𝑅
𝑗
) and (𝑗, 𝑗) ∈ 𝐷(𝐿

𝑖
). The resulting

graph is just the desired 𝐾(𝑐). The edge colors of 𝐾(𝑐) are
inherited from 𝐿 and 𝑅. One checks that 𝐾(𝑐) has (𝑐

1
+

1) × (𝑐
2
+ 1) critical vertices; they coincide with the diagonal

vertices of the sails. The principal lattice of 𝐾(𝑐) is just
constituted by the critical vertices.

The case (𝑐
1
, 𝑐
2
) = (1, 2) is drawn in the picture; here the

critical (principal) vertices are indicated by big circles, 1-edges
by horizontal arrows, and 2-edges by vertical arrows:

𝐿 = 𝐾(0, 2)

𝑅 = 𝐾(1,0)

𝐾(1,2)

(48)

In particular, the sail model shows that the numbers of
edges of each color in an𝐴

2
-crystal are the same.This implies

a similar property for any 𝐴
𝑛
-crystal.

5.2. 𝐴
3
-Crystal 𝐾(1, 1,1). Next we illustrate the 𝐴

3
-crystal

𝐾 = 𝐾(1, 1, 1). It has 64 vertices and 102 edges, is rather puz-
zling, and drawing it in full would be cumbersome and take
too much space; for this reason, we expose it by fragments;
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𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

𝐺

(0,0,0)

(0,1,0)

𝑋

𝑅

(0,0,1)

(1,0,0)

𝑈

𝐽

𝑉2

3

(0,1,1)

(1,1,0)

(1,1,1)

𝑀

𝐻

𝑇

𝑍

𝑂
(1,0,1)

𝑆

Δ

𝐼
𝑄

𝑌

𝐾

𝑊

𝐿

𝑃

Γ

𝐾↓[0,0,0] ≃ 𝐾(1,1) 𝐾↓[0,0,1] ≃ 𝐾(0,1)

𝐾↓[1,0,0] ≃ 𝐾(1,2)

𝐾↓[0,1,0] ≃ 𝐾(2,0)

𝐾↓[1,0,1] ≃ 𝐾(0,2)

𝐾↓[1,1,1] ≃ 𝐾(1,1)

𝐾↓[1,1,0] ≃ 𝐾(2,1)

𝐾↓[0,1,1] ≃ 𝐾(1,0)

Φ

𝑁

Ψ

Figure 3: The lower subcrystals in𝐾(1, 1, 1) (see Section 5).

namely, we demonstrate all of its upper and lower subcrystals.
We abbreviate notation 𝑣̆[(𝑖, 𝑗, 𝑘)] for principal vertices to
(𝑖, 𝑗, 𝑘) for short. So the principal lattice consists of eight
vertices (0, 0, 0), . . . , (1, 1, 1), as drawn in the picture (where
the arrows indicate moves by principal operator strings 𝑆

3,𝑘

as in (12)):

(0,1,1)

(0,1,0) (1,1,0)

(0,0,1)

(1,0,0)

(1,0,1)

𝑆3,1 = 𝐹3𝐹2𝐹1

𝑆3,2 = 𝐹2𝐹3𝐹1𝐹2

𝑆3,3 = 𝐹1𝐹2𝐹3

𝑆3,2

𝑆3,3

𝑆3,1𝑠 = (0,0,0)

(1,1,1) = 𝑡

(49)

Thus, 𝐾 has eight upper subcrystals 𝐾↑[𝑖, 𝑗, 𝑘] and eight
lower subcrystals 𝐾

↓

[𝑖, 𝑗, 𝑘] (writing 𝐾
∙

[𝑖, 𝑗, 𝑘] for 𝐾
∙

[(𝑖,

𝑗, 𝑘)]); they are drawn in Figures 2 and 3. Here the directions
of edges of colors 1,2,3 are as indicated in the upper left corner.
In each subcrystal, we indicate its critical vertices by black cir-
cles and the unique principal vertex of 𝐾 occurring in it (the
heart) by a bigwhite circle.𝐾has 30middle subcrystals (paths
of color 2), which are labeled as𝐴, . . . , 𝑍, Γ, Δ, Φ,Ψ (note that
𝐵, 𝐹, 𝐺,𝑁, 𝑃, 𝑇, 𝑉, and Φ consist of single vertices).

For each upper subcrystal𝐾↑[𝑖, 𝑗, 𝑘], its parameter 𝑐↑ and
heart locus ℎ↑, computed by use of (15) and (16), are as follows
(where 𝐾̃, 𝑠, and 𝑧 denote the current subcrystal, its source,
and its heart, resp.):

(i) for 𝐾↑[0, 0, 0]: 𝑐↑
1
= 1 − 0 + 0 = 1, 𝑐↑

2
= 1 − 0 + 0 = 1,

and ℎ↑
1
= ℎ
↑

2
= 0 (so 𝐾̃ is isomorphic to 𝐾(1, 1) and 𝑧

coincides with 𝑠);
(ii) for 𝐾↑[1, 0, 0]: 𝑐↑

1
= 1 − 1 + 0 = 0, 𝑐↑

2
= 1 − 0 + 0 = 1,

and ℎ↑
1
= ℎ
↑

2
= 0;
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(iii) for 𝐾↑[0, 1, 0]: 𝑐↑
1
= 1 − 0 + 1 = 2, 𝑐↑

2
= 1 − 1 + 0 = 0,

ℎ
↑

1
= 1, and ℎ↑

2
= 0 (so 𝐾̃ ≃ 𝐾(2, 0) and 𝑧 is located at

𝑆
2,1
(𝑠) = 𝐹

2
𝐹
1
(𝑠));

(iv) for 𝐾↑[0, 0, 1]: 𝑐↑
1
= 1 − 0 + 0 = 1, 𝑐↑

2
= 1 − 0 + 1 = 2,

ℎ
↑

1
= 0, and ℎ↑

2
= 1 (so 𝐾̃ ≃ 𝐾(1, 2) and 𝑧 is located at

𝑆
2,2
(𝑠) = 𝐹

1
𝐹
2
(𝑠));

(v) for 𝐾↑[1, 1, 0]: 𝑐↑
1
= 1 − 1 + 1 = 1, 𝑐↑

2
= 1 − 1 + 0 = 0,

ℎ
↑

1
= 1, and ℎ↑

2
= 0;

(vi) for 𝐾↑[1, 0, 1]: 𝑐↑
1
= 1 − 1 + 0 = 0, 𝑐↑

2
= 1 − 0 + 1 = 2,

ℎ
↑

1
= 0, and ℎ↑

2
= 1;

(vii) for 𝐾↑[0, 1, 1]: 𝑐↑
1
= 1 − 0 + 1 = 2, 𝑐↑

2
= 1 − 1 + 1 = 1,

and ℎ
↑

1
= ℎ
↑

2
= 1 (so 𝐾̃ ≃ 𝐾(2, 1) and 𝑧 is located at

𝑆
2,2
𝑆
2,1
(𝑠) = 𝐹

1
𝐹
2
𝐹
2
𝐹
1
(𝑠));

(viii) for 𝐾↑[1, 1, 1]: 𝑐↑
1
= 1 − 1 + 1 = 1, 𝑐↑

2
= 1 − 1 + 1 = 1,

and ℎ↑
1
= ℎ
↑

2
= 1.

Since𝐾(1, 1, 1) is “symmetric,” so are its upper and lower
subcrystals; that is, each 𝐾

↓

[𝑖, 𝑗, 𝑘] is obtained from 𝐾
↑

[𝑘,

𝑗, 𝑖] by replacing color 1 by 3. In Figure 3, when writing 𝐾↓[𝑖,
𝑗, 𝑘] ≃ 𝐾(𝛼, 𝛽), the parameters 𝛼, 𝛽 concern colors 3 and 2,
respectively.

Now the desired 𝐾(1, 1, 1) is assembled by gluing the
fragments in Figures 2 and 3 along the 2-paths 𝐴, . . . , Ψ.
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