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Abstract. Regular An-, Bn- and Cn-crystals are edge-colored directed graphs,
with ordered colors 1, 2, . . . , n, which are related to representations of quantized
algebras Uq(sln+1), Uq(sp2n) and Uq(so2n+1), respectively. We develop combi-
natorial methods to reveal refined structural properties of such objects.

Firstly, we study subcrystals of a regular An-crystalK and characterize pairwise
intersections of maximal subcrystals with colors 1, . . . , n−1 and colors 2, . . . , n.
This leads to a recursive description of the structure of K and provides an
efficient procedure of assembling K.

Secondly, using merely combinatorial means, we demonstrate a relationship
between regular Bn-crystals (resp. Cn-crystals) and regular symmetric A2n−1-
crystals (resp. A2n-crystals).

Keywords : Crystals of representations, Simply and doubly laced Lie algebras

AMS Subject Classification 17B37, 05C75, 05E99

1 Introduction

Crystals are certain “exotic” edge-colored graphs. This graph-theoretic abstraction,
introduced by Kashiwara [6, 7], has proved its usefulness in the theory of representa-
tions of Lie algebras and their quantum analogues. A (general) crystal is a directed
graph K such that: the edges are partitioned into n subsets, or color classes, labeled
1, . . . , n, each connected monochromatic subgraph of K is a finite path, and there is
an interrelation between the lengths of such paths described in terms of the n × n
Cartan matrix M = (mij) related to a given Lie algebra g. This interrelation is: for
colors i, j, any edge (u, v) with color i satisfies (hj(u)− tj(u))− (hj(v)− tj(v)) = mij,
where for a vertex v′, hj(v

′) (resp. tj(v
′)) denotes the length of the maximal path

colored j that begins (resp. ends) at v′. Throughout we assume, w.l.o.g., that any
crystal in question is (weakly) connected, and call an edge with color i an i-edge.
Depending on Cartan matrices, several types of crystals are distinguished.
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Of most interest are crystals of representations, or regular crystals. They are
associated to elements of a certain basis of the highest weight integrable modules
(representations) over a quantized algebra Uq(g). There are known “global” models to
characterize the regular crystals for a variety of types: generalized Young tableaux [8],
Lusztig’s canonical bases [11], Littelmann’s path model [9, 10], and some others.

This paper continues our combinatorial study of crystals begun in [1, 2, 3] and
considers n-colored regular crystals of three types: A,B,C, where the number n of
colors is arbitrary. Recall that type A (concerning g = sln+1) is related to the Cartan
matricM with: mij = −1 if |i−j| = 1, mij = 0 if |i−j| > 1, and mii = 2. For type B
(concerning g = sp2n), the matrix is obtained from the above M by replacing mn−1,n

by −2. And for type C (concerning g = so2n+1), one should replace mn,n−1 by −2.
We will refer to a regular n-colored crystal of type A (B, C) as an An-crystal (resp.
Bn-, Cn-crystal) and omit the index n when the number of colors is not specified.

It is known that the (finite) regular crystals K of these types have the following
properties. (i) K is acyclic (i.e. without directed cycles) and has exactly one zero-
indegree vertex, called the source, and exactly one zero-outdegree vertex, called the
sink of K. (ii) For any I ⊆ {1, . . . , n}, each (inclusion-wise) maximal connected
subgraph of K whose edges have colors from I is a regular crystal related to the
corresponding I × I submatrix of the Cartan matrix of K. Throughout, speaking of
a subcrystal of K, we will always mean a subgraph of this kind.

Two-colored subcrystals are of most importance, due to the result in [5] that for
a crystal with exactly one zero-indegree vertex, the regularity of all such subcrystals
implies the regularity of the whole crystal. Let K ′ be a two-colored subcrystal with
colors i, j in K. Then for type A, K ′ is the Cartesian product of a path with color
i and a path with color j (forming an A1 × A1-crystal) when |i − j| > 1, and an
A2-crystal when |i− j| = 1. For type B, the only difference is that K ′ is a B2-crystal
when (i, j) = (n − 1, n), and the corresponding submatrix is viewed as

(
2 −2
−1 2

)
. And

for type C, K ′ with (i, j) = (n − 1, n) is again a B2-crystal but the corresponding
submatrix is now

(
2 −1
−2 2

)
. The A-crystals belong to the group of simply-laced crystals

(defined by the requirement that each two-colored subcrystal is of type A1 × A1 or
A2), and the B- and C-crystals belong to the group of doubly-laced ones (where each
two-colored subcrystal is of type A1 × A1 or A2 or B2); cf., e.g., [13].

Throughout the paper we are going to deal with regular crystals only, and for this
reason the adjective “regular” will usually be omitted. It should be noted that even
in case of A2- and B2-crystals, the corresponding specifications of “global” models
from [8, 9, 10, 11] are rather intricate to work with directly. Fortunatelly, in the last
decade there appeared more explicit and enlightening ways to define these crystals, via
“local” graph-theoretic axioms or by use of direct combinatorial constructions. In case
of A2-crystals, a short list of “local” defining axioms is pointed out by Stembridge [13]
and an explicit construction is given in [1]. According to that construction, any A2-
crystal can be obtained from an A1 × A1-crystal by replacing each monochromatic
path of the latter by a graph viewed as a triangular half of a directed square grid. In
case of B2-crystals, both “local” axioms and a direct combinatorial construction are
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given in [3]. It is shown there that a B2-crystal can be obtained from an A2-crystal
by replacing each monochromatic path by a certain quadrangular part of a square
grid. Also [3] describes an alternative combinatorial construction for B2-crystals, the
so-called worm model. This model will be extensively used in this paper. (For some
other results on B2-crystals, see [14].)

An important fact is that for any n-tuple c = (c1, . . . , cn) of nonnegative integers,
there exists exactly one An-crystal K such that each ci is equal to the length of the
maximal path with color i beginning at the source (for a short combinatorial proof,
see [2, Sec. 2]). A similar property takes place for Bn- and Cn-crystals. We denote
a crystal K (of a given type) determined by c in this way by K(c), and refer to c as
the parameter of this crystal.

When n > 2, the combinatorial structure of An-crystals becomes rather compli-
cated, even for n = 3. Attempting to learn more about this structure, we elaborated
in [2] a new combinatorial construction, the so-called crossing model (which is a re-
finement of the Gelfand-Tsetlin pattern model [4]). This powerful tool has helped us
to reveal more structural features of an An-crystal K = K(c). In particular, K has
the so-called principal lattice, a set Π of vertices with the following nice properties:

(P1) Π contains the source and sink of K, and the vertices v ∈ Π correspond to
the elements of the integer box B(c) := {a ∈ Zn : 0 ≤ a ≤ c}; we write v = v̌[a];

(P2) For any a, a′ ∈ B(c) with a ≤ a′, the interval of K from v̌[a] to v̌[a′] (i.e.
the subgraph of K formed by the vertices and edges contained in (directed) paths
from v̌[a] to v̌[a′]) is isomorphic to the An-crystal K(a′ − a), and its principal lattice
consists of the principal vertices v̌[a′′] of K with a ≤ a′′ ≤ a′;

(P3) The set K(−n) of (n−1)-colored subcrystals K ′ of K having colors 1, . . . , n−1
is bijective to Π; more precisely, K ′∩Π consists of a single vertex (called the heart of
K ′ w.r.t. K); and similarly for the set K(−1) of subcrystals of K with colors 2, . . . , n.

(A sort of principal lattice can be introduced for B- and C-crystals as well; it
satisfies (P1) and (P2) but not (P3); see Remark 5 in the end of Section 8.)

For a ∈ B(c), let K↑[a] (resp. K↓[a]) denote the subcrystal in K(−n) (resp. in
K(−1)) that contains the principal vertex v̌[a]; we call it the upper (resp. lower)
subcrystal at a. It is shown in [2] that the parameter of this subcrystal is expressed
by a linear function of c and a, and that the number of upper (lower) subcrystals
with a fixed parameter c′ is expressed by a piece-wise linear function of c and c′.

In this paper, we further use the crossing model, aiming to obtain a refined descrip-
tion of the structure of an An-crystal K. We study the intersections of subcrystals
K↑[a] and K↓[b] for all a, b ∈ B(c). This intersection may be empty or consist of one
or more subcrystals with colors 2, . . . , n − 1, called middle subcrystals of K. Each
of these middle subcrystals K̃ is therefore a lower subcrystal of K↑[a] and an upper

subcrystal of K↓[b]; so K̃ has a unique vertex z in the principal lattice Π↑ of the for-
mer, and a unique vertex z′ in the principal lattice Π↓ of the latter. Our main result
on A-crystals (Theorem 3.1) and its consequences give explicit relations between a,

b, the locus of z in Π↑, the locus of z′ in Π↓, and the parameters of K and K̃.
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This gives rise to a recursive procedure of assembling of the An-crystalK(c). More
precisely, suppose that the (n− 1)-colored crystals K↑[a] and K↓[b] for all a, b ∈ B(c)
are already constructed. Then we can combine these subcrystals to obtain the desired
crystal K(c), by properly identifying the corresponding middle subcrystals (if any) for
each pairK↑[a], K↓[b]. This recursive method is implemented as an efficient algorithm
which, given a parameter c ∈ Zn

+, outputs the crystal K(c). The running time of the
algorithm and the needed space are bounded by Cn2|K(c)|, where C is a constant
and |K(c)| is the size of K(c). (It may be of practical use for small n and c; in general,

an An-crystal has “dimension” n(n+1)
2

and its size grows sharply by increasing c.)

The second part of the paper is devoted to n-colored (regular) B-crystals. With the
help of Theorem 3.1, we explain, using merely combinatorial means, that any B-crystal
can be extracted from a symmetric A-crystal. More precisely, given c ∈ Zn

+, define
the (2n−1)-tuple c′ by c′i = c′2n−i := ci for i = 1, . . . , n. The A2n−1-crystal K = K(c′)
has a canonical involution σ on the vertices under which the image (σ(u), σ(v)) of
an i-edge (u, v) is a (2n − i)-edge. We say that K is symmetric and that a vertex v
with σ(v) = v is self-complementary; let S be the set of such vertices. The symmetric

extract from K is the n-colored graph K̃ whose vertex set is S and whose edges
are defined as follows: (i) the edges of K̃ colored n are exactly the n-edges of K

connecting elements of S, and (ii) for i < n, vertices u, v ∈ S are connected in K̃ by
edge (u, v) colored i if K contains a 2-edge path from u to v whose edges are colored

i and (2n− i). We prove that K̃ is isomorphic to the Bn-crystal with the parameter
c. The crucial part of the proof is a verification in case n = 2.

In the final part, we explain a similar fact for C-crystals; now the Cn-crystals are
extracted from symmetric A2n-crystals.

It should be noted that such a way of constructing B- and C-crystals from corre-
sponding symmetric A-crystals has been known; this can be concluded from the work
of Naito and Sagaki [12] where the argument relies on a sophisticated path model.
Our goal is to give alternative proofs which are direct and purely combinatorial. We
take advantages from rather transparent axiomatics and constructions for crystals of
types A,B,C, and appeal to structural results from Section 3.

This paper is organized as follows. Section 2 is devoted to basic definitions and
backgrounds. Here we recall “local” axioms and the crossing model for A-crystals, and
review needed results on the principal lattice Π of an An-crystal and relations between
Π and the (n−1)-colored subcrystals from [2]. Section 3 gives a recursive description
of the structure of an An-crystal K and the algorithm of assembling K; here we rely
on the main structural result (Theorem 3.1) proved in the next Section 4. The devised
assembling method is illustrated in Section 5 for two special cases of A-crystals: for
an arbitrary A2-crystal (in which case the method can be compared with the explicit
combinatorial construction in [1]), and for the particular A3-crystal K(1, 1, 1). The
rest of the paper is devoted to B- and C-crystals. Our combinatorial proof of the
theorem that the Bn-crystals are exactly the extracts from symmetric A2n−1-crystals
is given in Sections 6–8. Here Section 6 reduces the task to n = 2, Section 7 recalls
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the worm model from [3], and the crucial Section 8 gives a proof for n = 2, relying on
the construction of B2-crystals via the worm model. An important step in the proof
consists in representing the self-complementary vertices of a symmetric A3-crystal as
integer points of a certain 4-dimensional polytope (in Theorem 8.2). Arguing in a
similar fashion, Section 9 gives a combinatorial proof of the theorem that the extracts
from symmetric A2n-crystals are Cn-crystals. Most technical claims used in Sections 8
and 9 are proved in the Appendix.

2 Preliminaries

In this section we recall definitions and some basic properties of (regular) crystals of
types A,B and C, referring to them as A-, B- and C-crystals, respectively, and review
results from [2] that will be important for further purposes.

An n-colored crystal is a certain directed graph K whose edge set E(K) is parti-
tioned into n subsets E1, . . . , En, denoted as K = (V (K), E1 ⊔ . . . ⊔En). We assume
that K is (weakly) connected, i.e. it is not the disjoint union of two nonempty graphs.
We say that an edge e ∈ Ei has color i, or is an i-edge. When speaking of a subcrystal
K ′ of K, we always mean that K ′ is inclusion-wise maximal among the connected
subgraphs having the same set of colors as K ′.

2.1 Crystals of type A

Stembridge [13] pointed out a list of “local” graph-theoretic axioms for the regular
simply-laced crystals. The A-crystals form a subclass of those and are defined by
axioms (A1)–(A5) below; we give the axiomatics in a slightly different, but equivalent,
form compared with [13]. Let K be an n-edge-colored graph as before.

Unless explicitly stated otherwise, by a path we mean a simple finite directed
path, i.e. a sequence of the form (v0, e1, v1, . . . , ek, vk), where v0, v1, . . . , vk are distinct
vertices and each ei is an edge from vi−1 to vi (admitting k = 0).

The first axiom concerns the structure of monochromatic subgraphs of K.

(A1) For i = 1, . . . , n, each connected subgraph of (V (K), Ei) is a path.

So each vertex of K has at most one incoming i-edge and at most one outgoing
i-edge, and therefore one can associate to the set Ei a partial invertible operator Fi

acting on vertices: (u, v) is an i-edge if and only if Fi acts at u and Fi(u) = v (or
u = F−1

i (v), where F−1
i is the partial operator inverse to Fi). Since K is connected,

one can use the operator notation to express any vertex via another one. For example,
the expression F−1

1 F 2
3F2(v) determines the vertex w obtained from a vertex v by

traversing 2-edge (v, v′), followed by traversing 3-edges (v′, u) and (u, u′), followed
by traversing 1-edge (w, u′) in backward direction. Emphasize that every time we
use such an operator expression in what follows, this automatically says that all
corresponding edges do exist in K.

5



We refer to a monochromatic path with color i on the edges as an i-path, and to a
maximal i-path as an i-line (the latter is an A1-subcrystal of K). The i-line passing
through a given vertex v (possibly consisting of the only vertex v) is denoted by Pi(v),
its part from the first vertex to v by P in

i (v), and its part from v to the last vertex
by P out

i (v) (the tail and head parts of P w.r.t. v). The lengths (i.e. the numbers of
edges) of P in

i (v) and P out
i (v) are denoted by ti(v) and hi(v), respectively.

Axioms (A2)–(A5) concern interrelations of different colors i, j. They say that
each component of the two-colored graph (V (K), Ei ⊔ Ej) forms an A2-crystal when
colors i, j are neighboring, which means that |i− j| = 1, and forms an A1×A1-crystal
otherwise.

When an edge of a color i is traversed, the head and tail part lengths of lines of
another color j behave as follows:

(A2) For different colors i, j and for an edge (u, v) with color i, one holds tj(v) ≤ tj(u)
and hj(v) ≥ hj(u). The value (hj(u) − tj(u)) − (hj(v) − tj(v)) is the constant
mij equal to −1 if |i − j| = 1, and 0 otherwise. Furthermore, hj is convex
on each i-path, in the sense that if (u, v), (v, w) are consecutive i-edges, then
hj(u) + hj(w) ≥ 2hj(v).

These constants mij are just the coefficients of the Cartan n × n matrix M related
to the crystal type A and the number n of colors. Each diagonal entry mii equals 2,
which agrees with the trivial relation (hi(u)− ti(u))− (hi(v)− ti(v)) = 2 for an i-edge
(u, v).

It follows that for neighboring colors i, j, each i-line P contains a unique vertex r
such that: when traversing any edge e of P before r (i.e. e ∈ P in

i (r)), the tail length tj
decreases by 1 while the head length hj does not change, and when traversing any edge
of P after r, tj does not change while hj increases by 1. This r is called the critical
vertex for P, i, j. To each i-edge e = (u, v) we associate label ℓj(e) := hj(v) − hj(u);
then ℓj(e) ∈ {0, 1} and tj(v) = tj(u)− 1 + ℓj(e). Emphasize that the critical vertices
on an i-line P w.r.t. its neighboring colors j = i − 1 and j = i + 1 may be different
(and so are the edge labels on P ).

Two operators F = Fα
i and F ′ = F β

j , where α, β ∈ {1,−1}, are said to commute
at a vertex v if each of F, F ′ acts at v (i.e. corresponding i-edge and j-edge incident
with v exist) and FF ′(v) = F ′F (v). The third axiom indicates situations when such
operators commute for neighboring i, j.

(A3) Let |i − j| = 1. (a) If a vertex u has outgoing i-edge (u, v) and outgoing j-
edge (u, v′) and if ℓj(u, v) = 0, then ℓi(u, v

′) = 1 and Fi, Fj commute at v.
Symmetrically: (b) if a vertex v has incoming i-edge (u, v) and incoming j-edge
(u′, v) and if ℓj(u, v) = 1, then ℓi(u

′, v) = 0 and F−1
i , F−1

j commute at v. (See
the picture.)
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Using this axiom, one easily shows that if four vertices are connected by two i-edges
e, e′ and two j-edges ẽ, ẽ′ (forming a “square”), then ℓj(e) = ℓj(e

′) ̸= ℓi(ẽ) = ℓi(ẽ
′)

(as illustrated in the picture). Another important consequence of (A3) is that for
neighboring colors i, j, if v is the critical vertex on an i-line w.r.t. color j, then v
is also the critical vertex on the j-line passing v w.r.t. color i, i.e. we can speak of
common critical vertices for the pair {i, j}.

The fourth axiom points out situations when, for neighboring i, j, the operators
Fi, Fj and their inverse ones “remotely commute” (they are said to satisfy the “Verma
relation of degree 4”).

(A4) Let |i− j| = 1. (i) If a vertex u has outgoing edges with color i and color j and
if each edge is labeled 1 w.r.t. the other color, then FiF

2
j Fi(u) = FjF

2
i Fj(u).

Symmetrically: (ii) if v has incoming edges with color i and color j and if both
are labeled 0, then F−1

i (F−1
j )2F−1

i (v) = F−1
j (F−1

i )2F−1
j (v). (See the picture.)
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Again, one shows that the label w.r.t. i, j of each of the eight involved edges is
determined uniquely, just as indicated in the above picture (where the bigger circles
indicate critical vertices).

The final axiom concerns non-neighboring colors.

(A5) Let |i− j| ≥ 2. Then for any F ∈ {Fi, F
−1
i } and F ′ ∈ {Fj, F

−1
j }, the operators

F, F ′ commute at each vertex where both act.

This is equivalent to saying that each component of the two-colored subgraph
(V (K), Ei⊔Ej) is the Cartesian product of an i-path P and a j-path P ′, or that each
subcrystal of K with non-neighboring colors i, j is an A1 × A1-crystal.

One shows that any An-crystal K is finite and has exactly one zero-indegree
vertex sK and one zero-outdegree vertex tK , called the source and sink of K, re-
spectively. Furthermore, the An-crystals K admit a nice parameterization: the
lengths h1(sK), . . . , hn(sK) of monochromatic paths determine K, and for each tuple
c = (c1, . . . , cn) of nonnegative integers, there exists a (unique) An-crystal K such
that ci = hi(sK) for i = 1, . . . , n. (See [13] and [2].) We call c the parameter of K
and denote K by K(c).
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2.2 Crystals of types B and C

These crystals are defined via the types of their two-colored subcrystals, exhibited
in axioms (BC1)–(BC3). The difference between B- and C-crystals concerns only
specifications of axiom (BC3) given in (BC4) and (BC4′). As before,K = (V (K), E1⊔
. . . ⊔ En) is a connected n-colored graph.

(BC1) K satisfies (A1) and (A5).

(BC2) For colors i, j < n with |i − j| = 1, each component of (V (K), Ei ⊔ Ej) is an
A2-crystal, i.e. it satisfies (A2)–(A4).

(BC3) Each component of (V (K), En−1 ⊔ En) is isomorphic to a B2-crystal.

There are several ways to define B2-crystals. Based on Littlemann’s path
model [10], it is shown in [3] that a B2-crystal can be equivalently defined in three
ways: (i) via an explicit combinatorial construction, (ii) via a graphical worm model,
which represents each vertex of the crystal as a certain pair of line-segments in a
rectangle, and (iii) via a list of 14 local or “almost local” axioms. Compared with the
A2 case, this list is big enough and less convenient to handle practically. In contrast,
the worm model has a rather compact description, reviewed in Section 7, and we will
appeal just to this model in our examination of two-colored symmetric extracts from
corresponding A-crystals (in Sections 8 and 9).

For a B2-crystal, with colors i and j say, the coefficients mij and mji are different
and take values −1 and −2 (where, as before, mpq = (hq(u)− tq(u))− (hq(v)− tq(v))
for an edge (u, v) of color p). The difference between B and C types is the following:

(BC4) For Bn-crystals, mn−1,n = −2 and mn,n−1 = −1.

(BC4′) For Cn-crystals, mn−1,n = −1 and mn,n−1 = −2.

The Cartan matrices for types A,B,C and n = 4 are illustrated in the picture
where the coefficient in each empty cell is zero.

A:

2

2

2

2

–1

–1

–1

–1

–1

–1
B:

2

2

2

2

–1

–1

–1

–1

–1

–2
C:

2

2

2

2

–1

–1

–1

–2

–1

–1

Using arguments as in [2, 13] for A-crystals, one can show that any B-crystal K is
finite, has exactly one source s = sK (and one sink), and is determined by the lengths
h1(sK), . . . , hn(sK). Also a Bn-crystal K with h(sK) = c exists for any c ∈ Zn

+, and
similarly for Cn-crystals (this is explained in [3] for n = 2, and follows from reasonings
in Sections 6 and 9 for n > 2). This gives a parametrization of B-crystals similar to
that for A-crystals.
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2.3 The crossing model for An-crystals

Following [2], the crossing model Mn(c) generating the An-crystal K = K(c) with a
parameter c = (c1, . . . , cn) ∈ Zn

+ consists of three ingredients:

(i) a directed graphGn = G = (V (G), E(G)) depending on n, called the supporting
graph of the model;

(ii) a set F = F(c) of feasible functions on V (G);

(iii) a set E = E(c) of transformations f 7→ f ′ of feasible functions, called moves
in the model.

To explain the construction of the supporting graph G, we first introduce another
directed graph G = Gn that we call the proto-graph of G. Its node set consists of
elements Vi(j) for all i, j ∈ {1, . . . , n} such that j ≤ i. (We use the term “node” for
vertices in the crossing model, to avoid a possible mess between these and vertices of
crystals.) Its edges are all possible pairs of the form (Vi(j), Vi−1(j)) (ascending edges)
or (Vi(j), Vi+1(j+1)) (descending edges). We say that the nodes Vi(1), . . . , Vi(i) form
i-th level of G and order them as indicated (by increasing j). We visualize G by
drawing it on the plane so that the nodes of the same level lie in a horizontal line, the
ascending edges point North-East, and the descending edges point South-East. See
the picture where n = 4.

V4(1) V4(2) V4(3) V4(4)

V3(1) V3(2) V3(3)

V2(1) V2(2)

V1(1)

��� ��� ���

��� ���

���

@@R @@R @@R

@@R @@R

@@R

The supporting graph G is produced by replicating elements of G as follows. Each
node Vi(j) generates n−i+1 nodes of G, denoted as vki (j) for k = i−j+1, . . . n−j+1,
which are ordered by increasing k (and accordingly follow from left to right in the
visualization). We identify Vi(j) with the set of these nodes and call it a multinode of
G. Each edge of G generates a set of edges of G (a multi-edge) connecting elements
with equal upper indices. More precisely, (Vi(j), Vi−1(j)) produces n− i+1 ascending
edges (vki (j), v

k
i−1(j)) for k = i− j+1, . . . , n− j+1, and (Vi(j), Vi+1(j+1)) produces

n− i descending edges (vki (j), v
k
i+1(j + 1)) for k = i− j + 1, . . . , n− j.

The resulting G is the disjoint union of n directed graphs G1, . . . , Gn, where each
Gk contains all vertices of the form vki (j). Also Gk is isomorphic to the Cartesian
product of two paths, with the lengths k − 1 and n− k. For example, for n = 4, the
graph G is viewed as
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(where the multinodes are surrounded by ovals) and its components G1, G2, G3, G4

are viewed asb
b

b
b
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v41(1)

So each node v = vki (j) of G has at most four incident edges, namely, (vki−1(j −
1), v), (vki+1(j), v), (v, v

k
i−1(j)), (v, v

k
i+1(j + 1)); we refer to them, when exist, as the

NW-, SW-, NE-, and SE-edges, and denote by eNW(v), eSW(v), eNE(v), eSE(v), respec-
tively.

By a feasible function in the model (with a given c) we mean a function f :
V (G) → Z+ satisfying the following three conditions, where for an edge e = (u, v),
∂f(e) denotes the increment f(u) − f(v) of f on e, and e is called tight for f , or
f -tight, if ∂f(e) = 0:

(2.1) (i) f is monotone on the edges, in the sense that ∂f(e) ≥ 0 for all e ∈ E(G);

(ii) 0 ≤ f(v) ≤ ck for each v ∈ V (Gk), k = 1, . . . , n;

(iii) each multinode Vi(j) contains a node v with the following property: the
edge eSE(u) is tight for each node u ∈ Vi(j) preceding v, and eSW(u′) is
tight for each node u′ ∈ Vi(j) succeeding v.

The first node v = vki (j) (i.e. with k minimum) satisfying the property in (iii) is
called the switch-node of the multinode Vi(j). These nodes play an important role in
our transformations of feasible functions in the model.

To describe the rule of transforming f ∈ F(c), we first extend each Gk by adding
extra nodes and edges (following [2] and aiming to slightly simplify the description).
In the extended directed graph Ḡk, the node set consists of elements vki (j) for all
i = 0, . . . , n + 1 and j = 0, . . . , n such that j ≤ i. The edge set of Ḡk consists of
all possible pairs of the form (vki (j), v

k
i−1(j)) or (v

k
i (j), v

k
i+1(j + 1)). Then all Ḡk are

isomorphic. The disjoint union of these Ḡk gives the extended supporting graph Ḡ.

Each feasible function on V (G) is extended to the extra nodes v = vki (j) as follows:
f(v) := ck if there is a path from v to a node of Gk, and f(v) := 0 otherwise (one
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may say that v lies on the left of Gk in the former case, and on the right of Gk in
the latter case). In particular, each edge e of Ḡ not incident with a node of G is
tight, i.e. ∂f(e) = 0 (extending ∂f to the extra edges). For a node v = vki (j) with
1 ≤ j ≤ i ≤ n, define the value ε(v) = εf (v) by

ε(v) := ∂f(eNW(v))− ∂f(eSE(u)) (= ∂f(eSW(v))− ∂f(eNE(u)), (2.2)

where u := vki (j − 1). For a multinode Vi(j) (and the given f), define the numbers

εi(j) :=
∑

(ε(v) : v ∈ Vi(j)) (2.3)

and
ε̃i(j) := max{0,min{εi(p) + εi(p+ 1) + . . .+ εi(j) : 1 ≤ p ≤ j}}. (2.4)

We call ε(v), εi(j) and ε̃i(j) the slack at a node v, the total slack at a multinode
Vi(j) and the reduced slack at Vi(j), respectively. (We define the slacks ε, ε̃ in a
slightly different way than in [2], which however does not affect the definitions of
active multinodes and switch-nodes below.)

Now we are ready to define the transformations of f (or the moves from f). At
most n transformations ϕ1, . . . , ϕn are possible. Each ϕi changes f within level i and
is applicable when this level contains a multinode Vi(j

′) with ε̃i(j
′) > 0. In this case

we take the multinode Vi(j) such that

ε̃i(j) > 0 and ε̃i(q) = 0 for q = j + 1, . . . , i, (2.5)

referring to it as the active multinode for the given f and i, and increase f by 1 at
the switch-node in Vi(j), preserving f on the other nodes of G. It is shown [2] that
the resulting function ϕi(f) is again feasible.

So the model generates the n-colored directed graph K(c) = (F , E1 ⊔ . . . ⊔ En),
where each color class Ei is formed by the edges (f, ϕi(f)) for all feasible functions f
to which the operator ϕi is applicable. This graph is just an An-crystal.

Theorem 2.1 [2, Th. 5.1] For each n and c ∈ Zn
+, the n-colored graph K(c) is exactly

the An-crystal K(c).

2.4 Principal lattice and (n− 1)-colored subcrystals of an An-crystal

Based on the crossing model, [2] reveals some important ingredients and relations
for an An-crystal K = K(c). One of them is the so-called principal lattice, which is
defined as follows.

Let a ∈ Zn
+ and a ≤ c. One easily checks that the function on the vertices of the

supporting graph G that takes the constant value ak within each subgraph Gk of G,
k = 1, . . . , n, is feasible. We denote this function and the vertex of K corresponding
to it by f [a] and v̌[a], respectively, and call them principal. So the set of principal
vertices is bijective to the integer box B(c) := {a ∈ Zn : 0 ≤ a ≤ c}; this set is called

11



the principal lattice of K and denoted by Π = Π(c). When it is not confusing, the
term “principal lattice” may also be applied to B(c).

The following properties of the principal lattice will be essentially used later.

Proposition 2.2 [2, Expression (6.4)] Let a ∈ B(c), k ∈ {1, . . . , n}, and a′ := a+1k
(where 1k is i-th unit base vector in Rn). The principal vertex v̌[a′] is obtained from
v̌[a] by applying the operator string

Sn,k := wn,k,n−k+1 · · ·wn,k,2wn,k,1, (2.6)

where for j = 1, . . . , n− k + 1, the substring wn,k,j is defined as

wn,k,j := FjFj+1 · · ·Fj+k−1.

When acting on Π, any two (applicable) strings Sn,k, Sn,k′ commute. In particular,
any principal vertex v̌[a] is expressed via the source sK = v̌[0] as

v̌[a] = San
n,nS

an−1

n,n−1 · · ·Sa1
n,1(sK). (2.7)

Proposition 2.3 [2, Prop. 6.1] For c′, c′′ ∈ Zn
+ with c′ ≤ c′′ ≤ c, let K(c′ : c′′) be the

subgraph of K(c) formed by the vertices and edges contained in (directed) paths from
v̌[c′] to v̌[c′′] (the interval of K(c) from v̌[c′] to v̌[c′′]). Then K(c′ : c′′) is isomorphic
to the An-crystal K(c′′ − c′), and the principal lattice of K ′ consists of the principal
vertices v̌[a] of K(c) with c′ ≤ a ≤ c′′.

Let K(−n)(c) denote the set of subcrystals with colors 1, . . . , n− 1, and K(−1) the
set of subcrystals with colors 2, . . . , n in K (recall that a subcrystal is assumed to be
connected and maximal).

Proposition 2.4 [2, Prop. 7.1] Each subcrystal in K(−n) (in K(−1)) contains precisely
one principal vertex. This gives a bijection between K(−n) and Π (resp., between K(−1)

and Π).

We refer to the members of K(−n) and K(−1) as upper and lower ((n− 1)-colored)
subcrystals of K, respectively. For a ∈ B(c), the upper subcrystal containing the
vertex v̌[a] is denoted by K↑[a]. This subcrystal has its own principal lattice of
dimension n − 1, which is denoted by Π↑[a]. We say that the coordinate tuple a is
the locus of K↑[a] (and of Π↑[a]) in Π. Analogously, for b ∈ B(c), the lower subcrystal
containing v̌[b] is denoted by K↓[b], and its principal lattice by Π↓[b]; we say that b is
the locus of K↓[b] (and of Π↓[b]) in Π. It turns out that the parameters of upper and
lower subcrystals can be expressed explicitly, as follows.

Proposition 2.5 [2, Props. 7.2,7.3] For a ∈ B(c), the upper subcrystal K↑[a] is iso-
morphic to the An−1-crystal K(c↑), where c↑ is the tuple (c↑1, . . . , c

↑
n−1) defined by

c↑i := ci − ai + ai+1, i = 1, . . . , n− 1. (2.8)
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The principal vertex v̌[a] is contained in the upper lattice Π↑[a] and its coordinate
}↑ = (}↑1, . . . , }

↑
n−1) in Π↑[a] satisfies

}↑i = ai+1, i = 1, . . . , n− 1. (2.9)

Symmetrically, for b ∈ B(c), the lower subcrystal K↓[b] is isomorphic to the An−1-
crystal K(c↓) with colors 2, . . . , n, where c↓ is defined by

c↓i := ci − bi + bi−1, i = 2, . . . , n. (2.10)

The principal vertex v̌[b] is contained in the lower lattice Π↓[b] and its coordinate
}↓ = (}↓2, . . . , }↓n) in Π↓[b] satisfies

}↓i = bi−1, i = 2, . . . , n. (2.11)

We call v̌[a] the heart of K↑[a] w.r.t. K, and similarly for lower subcrystals.

3 Assembling an An-crystal

As mentioned in the Introduction, the structure of an An-crystal K = K(c) will be
described in a recursive manner. The idea is as follows. We know that K contains
|Π| = (c1+1)× . . .×(cn+1) upper subcrystals (with colors 1, . . . , n−1) and |Π| lower
subcrystals (with colors 2, . . . , n). Moreover, the parameters of these subcrystals are
expressed explicitly by (2.8) and (2.10). So we may assume by recursion that the set
K(−n) of upper subcrystals and the set K(−1) of lower subcrystals are available (already
constructed). In order to assemble K, it suffices to characterize, in appropriate terms,
the intersection K↑[a] ∩K↓[b] for all pairs a, b ∈ B(c) (the intersection may either be
empty, or consist of one or more (n− 2)-colored subcrystals with colors 2, . . . , n− 1
in K). We give an appropriate characterization in Theorem 3.1 below.

To state it, we need additional terminology and notation. Consider a subcrystal
K↑[a], and let c↑, }↑ be defined as in (2.8),(2.9). For p = (p1, . . . , pn−1) ∈ B(c↑), the
vertex in the upper lattice Π↑[a] having the coordinate p is denoted by v↑[a, p]. We
call the vector ∆ := p − }↑ the deviation of v↑[a, p] from the heart v̌[a] in Π↑[a],
and will use the alternative notation v↑[a|∆] for this vertex. In particular, v̌[a] =
v↑[a, }↑] = v↑[a| 0].

Similarly, for a lower subcrystal K↓[b], let c↓, }↓ be as in (2.10),(2.11). For q =
(q2, . . . , qn) ∈ B(c↓), the vertex with the coordinate q in Π↓[b] is denoted by v↓[a, q].
Its deviation is ∇ := q − }↓, and we may alternatively denote this vertex by v↓[b|∇].

We call an (n − 2)-colored subcrystals with colors 2, . . . , n − 1 in K a middle
subcrystals and denote the set of these by K(−1,−n). Each middle crystal K↑↓ is a
lower subcrystal of some upper subcrystal K ′ = K↑[a] of K. By Proposition 2.4
applied to K ′, K↑↓ has a unique vertex v↑[a|∆] in the lattice Π↑[a]. So each K↑↓

can be encoded by a pair (a,∆) formed by a locus a ∈ B(c) and a deviation ∆ in
Π↑[a]. At the same time, K↑↓ is an upper subcrystal of some lower subcrystal K↓[b]
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of K and has a unique vertex v↓[b|∇] in Π↓[b]. Therefore, the members of K(−1,−n)

determine a bijection
ζ : (a,∆) 7→ (b,∇)

between all pairs (a,∆) concerning upper subcrystals and all pairs (b,∇) concerning
lower subcrystals.

The map ζ is expressed explicitly in the following theorem. Here for a tuple
ρ = (ρi : i ∈ I), we denote by ρ+ (ρ−) the tuple with the entries ρ+i := max{0, ρi}
(resp. ρ−i := min{0, ρi}), i ∈ I.

Theorem 3.1 Let a ∈ B(c) and let ∆ = (∆1, . . . ,∆n−1) be a deviation in Π↑[a]. Let
(b,∇) = ζ(a,∆). Then b satisfies

bi = ai +∆+
i +∆−

i−1, i = 1, . . . , n, (3.1)

letting ∆0 = ∆n := 0, and ∇ satisfies

∇i = −∆i−1, i = 2, . . . , n. (3.2)

A proof of this theorem will be given in the next section.

Based on Theorem 3.1, the crystal K(c) is assembled as follows. By recursion we
assume that all upper and lower subcrystals are already constructed. We also assume
that for each upper subcrystal K↑[a] = K(c↑), its principal lattice is distinguished by
use of the corresponding injective map σ : B(c↑) → V (K(c↑)), and similarly for the
lower subcrystals. We delete the edges with color 1 in each K(c↑) and extract the

components of the resulting graphs, forming a list K̃ of all middle subcrystals of K(c).

Each K↑↓ ∈ K̃ is encoded by a corresponding pair (a,∆), where a ∈ B(c) and the
deviation ∆ in Π↑[a] is determined by use of σ as above. Acting similarly for the lower
subcrystals K(c↓) (by deleting the edges with color n there), we obtain an isomorphic
list of middle subcrystals, each of which being encoded by a corresponding pair (b,∇),
where b ∈ B(c) and ∇ is a deviation in Π↓(b). Relations (3.1) and (3.2) indicate how
to identify each member of the first list with its counterpart in the second one. Now
restoring the deleted edges with colors 1 and n, we obtain the desired crystal K(c).
The corresponding map B(c) → V (K(c)) is constructed easily (e.g., by use of operator
strings as in Proposition 2.2).

We conclude this section with several remarks.

Remark 1. (3.1) and (3.2) lead to the following expression of a via b and ∇:

ai = bi +∇+
i +∇−

i+1, i = 1, . . . , n, (3.3)

letting ∇1 = ∇n+1 := 0. This will be used, in particular, in the Appendix.

Remark 2. For each a ∈ B(c) and each vertex v = v↑[a, p] in the upper lattice
Π↑[a], one can express the parameter c↑↓ = (c↑↓2 , . . . , c

↑↓
n−1) of the middle subcrystal

K↑↓ containing v, as well as the coordinate }↑↓ = (}↑↓2 , . . . , }
↑↓
n−1) of its heart w.r.t.
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K↑[a] in the principal lattice of K↑↓. Indeed, since K↑↓ is a lower subcrystal of K↑[a],
one can apply relations as in (2.10),(2.11). Denoting the parameter of K↑[a] by c↑ and
the coordinate of its heart in Π↑[a] by }↑, letting ∆ := p− }↑, and using (2.8),(2.9),
we have:

c↑↓i = c↑i − pi + pi−1 = (ci − ai + ai+1)− (ai+1 +∆i) + (ai +∆i−1) (3.4)

= ci −∆i +∆i−1, i = 2, . . . , n− 1;

}↑↓i = pi−1 = }↑i−1 +∆i−1 = ai +∆i−1, i = 2, . . . , n− 1. (3.5)

Symmetrically, if K↑↓ is contained in K↓[b] and is related to a deviation ∇ in
Π↓[b], then

c↑↓i = ci −∇i +∇i+1, (3.6)

}↓↑i = bi +∇i+1, i = 2, . . . , n− 1, (3.7)

where }↓↑ is the coordinate of the heart of K↑↓ w.r.t. K↓[b] in the principal lattice of
K↑↓ (note that }↓↑ may differ from }↑↓). We will use formulas (3.4)–(3.7) in subsequent
sections.

Remark 3. A straightforward implementation of the above recursive method of
constructing K = K(c) takes O(2q(n)N) time and space, where q(n) is a polynomial
in n and N is the number of vertices of K. Here the factor 2q(n) appears because
the total number of vertices in the upper and lower subcrystals is 2N (implying that
there appear 4N vertices in total on the previous step of the recursion, and so on).
Therefore, such an implementation has polynomial complexity of the size of the output
for each fixed n, but not in general. However, many intermediate subcrystals arising
during the recursive process are repeated, and we can use this fact to improve the
implementation. More precisely, the colors occurring in each intermediate subcrystal
in the process form an interval of the ordered set (1, . . . , n). We call a subcrystal
of this sort a color-interval subcrystal, or a CI-subcrystal, of K. In fact, every CI-
subcrystal of K appears in the process. Since the number of intervals is n(n+1)

2
and

the CI-subcrystals concerning one and the same interval are pairwise disjoint, the
total number of vertices of all CI-subcrystals of K is O(n2N). It is not difficult to
implement the recursive process in such a way that each CI-subcrystal K ′ is explicitly
constructed only once. (For this purpose, one can use pointers from the vertices of
K ′ to its source sK′ and characterize K ′ by its color-interval and sK′ .) As a result,
we obtain the following

Proposition 3.2 Let n ∈ Z+ and c ∈ Zn
+. The An-crystal K(c) and all its CI-

subcrystals can be constructed in O(q′(n)|V (K(c))|) time and space, where q′(n) is a
polynomial in n.

Remark 4. Relation (3.1) shows that the intersection of K↑[a] and K↓[b] may consist
of many middle subcrystals. Indeed, if ∆i > 0 and ∆i−1 < 0 for some i, then b does

15



not change by simultaneously decreasing ∆i by 1 and increasing ∆i−1 by 1. The
number of common middle subcrystals of K↑[a] and K↓[b] for arbitrary a, b ∈ B(c)
can be expressed by an explicit piecewise linear formula, using (3.1) and the box
constraints −ai+1 ≤ ∆i ≤ ci − ai, i = 1, . . . , n − 1, on the deviations ∆ in Π↑[a]
(which follow from (2.8),(2.9)).

4 Proof of Theorem 3.1

Let a,∆, b,∇ be as in the hypotheses of this theorem. First we prove relation (3.2)
in the assumption that (3.1) is valid.

Proof of (3.2). The middle subcrystal K↑↓ determined by (a,∆) is the same as
the one determined by (b,∇). The parameter c↑↓ of K↑↓ is expressed simultaneously
by (3.4) and by (3.6). Then ci − ∆i + ∆i−1 = ci − ∇i + ∇i+1 for i = 2, . . . , n − 1.
Therefore,

∆1 +∇2 = ∆2 +∇3 = . . . = ∆n−1 +∇n =: α. (4.1)

In order to obtain (3.2), one has to show that α = 0. We argue as follows.

Renumber the colors 1, . . . , n as n, . . . , 1, respectively; this yields the crystal K̂ =
K(ĉ) symmetric to K(c). Then K↓[b] turns into the upper subcrystal K̂↑ [̂b] of K̂,

where (̂b1, . . . , b̂n) = (bn, . . . , b1). Also the deviation∇ in Π↓[b] turns into the deviation

∇̂ = (∇̂1, . . . , ∇̂n−1) = (∇n, . . . ,∇2) in the principal lattice of K̂↑ [̂b]. Applying

relations as in (3.1) to (̂b, ∇̂), we have

âi = b̂i + ∇̂+
i + ∇̂−

i−1 = bn−i+1 +∇+
n−i+1 +∇−

n−i+2, i = 1, . . . , n, (4.2)

where âi := an−i+1 and ∇̂+
n := ∇̂−

0 := 0. On the other hand, (3.1) for (a,∆) gives

b̂i = bn−i+1 = an−i+1 +∆+
n−i+1 +∆−

n−i, i = 1, . . . , n. (4.3)

Relations (4.2) and (4.3) imply

an−i+1 = (an−i+1 +∆+
n−i+1 +∆−

n−i) +∇+
n−i+1 +∇−

n−i+2,

whence
∆+

n−i+1 +∆−
n−i +∇+

n−i+1 +∇−
n−i+2 = 0, i = 1, . . . , n.

Adding up the latter equalities, we obtain

(∆1 + . . .+∆n−1) + (∇2 + . . .+∇n) = 0.

This and (4.1) imply (n− 1)α = 0. Hence α = 0, as required.

Proof of (3.1). This proof is rather technical and essentially uses the crossing model.

For a feasible function f ∈ F(c) and its corresponding vertex v in K = K(c), we
may denote v as vf , and f as fv. The following observation from the crossing model
will be of use:

16



(4.4) if a vertex v ∈ V (K) belongs to K↑[a] and to K↓[b], then the tuples a and b are
expressed via the values of f = fv in levels n and 1 as follows:

ak = f(vkn(n− k + 1)) and bk = f(vk1(1)) for k = 1, . . . , n.

Indeed, the principal vertex v̌[a] is reachable from v by applying operators Fi or F
−1
i

with i ̸= n. The corresponding moves in the crossing model do not change f within
level n. Similarly, v̌[b] is reachable from v by applying operators Fi or F

−1
i with i ̸= 1,

and the corresponding moves in the crossing model do not change f within level 1.
Also the relations in (4.4) are valid for the principal function f = fv̌[a].

Next we introduce special functions on the node set V (G) of the supporting graph
G = Gn. Consider a component Gk = (V k, Ek) of G. It is a rectangular grid (rotated
by 45◦ in the visualization of G), and its vertex set is

V k = {vki (j) : j = 1, . . . , n− k + 1, i = j, . . . , j + k − 1}.

To represent it in a more convenient form, introduce the variable m := i− j + 1 and
rename vki (j) as u

k
i−j+1(j), or as ui−j+1(j) (when no confusion can arise). Then

V k = {um(j) : j = 1, . . . , n− k + 1, m = 1, . . . , k},

the (descending) SE-edges inGk are of the form (um(j), um(j+1)), and the (ascending)
NE-edges are of the form (um(j), um−1(j)). We specify the following subsets of V k:

(i) the SW-side P = P k := {uk(1), . . . , uk(n− k + 1)};
(ii) the right rectangle R = Rk := {um(j) : 1 ≤ m ≤ k − 1, 1 ≤ j ≤ n− k + 1};
(iii) the left rectangle L = Lk := {um(j) : 1 ≤ m ≤ k, 1 ≤ j ≤ n− k}.

Denote the characteristic functions (in RV k
) of P,R, L as πk, ρk, λk, respectively.

Return to a ∈ B(c) and a deviation ∆ in Π↑[a]. Associate to (a,∆) the functions

fk
a,∆ := akπ

k + (ak +∆−
k−1)ρ

k +∆+
k λ

k (4.5)

on V k for k = 1, . . . , n (see Fig. 1), and their direct sum

fa,∆ := f 1
a,∆ ⊕ . . .⊕ fn

a,∆

(the function on V (G) whose restriction to each V k is fk
a,∆).

In view of (4.4), f = fa,∆ takes the values in levels n and 1 as required in (3.1)
(with k in place of i), namely, f(vkn(n− k+ 1)) = ak and f(vk1(1)) = ak +∆+

k +∆−
k−1

for k = 1, . . . , n. Therefore, to obtain (3.1) it suffices to show the following

Lemma 4.1 (i) The function f = fa,∆ is feasible. (ii) The vertex vf is the vertex of
Π↑[a] having the deviation ∆.

Proof First we prove statement (i). Let k ∈ {1, . . . , n}. We partition V k into four
subsets (rectangular pieces):

Zk
1 := P k ∩ Lk; Zk

2 := Lk \ P k; Zk
3 := {ukk(n− k + 1)}; Zk

4 := Rk \ Lk

(where Zk
2 = Zk

4 = ∅ when k = 1, and Zk
1 = Zk

2 = ∅ when k = n). By (4.5),
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Figure 1: The partition of V k.

(4.6) f takes a constant value within each piece Zk
q , namely: ak +∆+

k on Zk
1 ;

ak +∆+
k +∆−

k−1 on Zk
2 ; ak on Zk

3 ; and ak +∆−
k−1 on Zk

4

(as illustrated in Fig. 1). Also each edge of Gk connecting different pieces goes either
from Zk

1 to Zk
2 ∪ Zk

3 or from Zk
2 ∪ Zk

3 to Zk
4 . This and (4.6) imply that ∂f(e) ≥ 0 for

each edge e ∈ Ek, whence f satisfies (2.1)(i).

The deviation ∆ is bounded as −}↑ ≤ ∆ ≤ c↑−}↑, where c↑ is the parameter of the
subcrystal K↑[a] and }↑ is the coordinate of its heart v̌[a] in Π↑[a]. Expressions (2.8)
and (2.9) for c↑ and }↑ give

−ak+1 ≤ ∆k ≤ ck − ak and − ak ≤ ∆k−1 ≤ ck−1 − ak−1. (4.7)

The inequalities ∆k ≤ ck − ak and ak ≤ ck imply ak +∆+
k ≤ ck. And the inequalities

−ak ≤ ∆k−1 and ak ≥ 0 imply ak + ∆−
k−1 ≥ 0. Then, in view of (4.6), we obtain

0 ≤ f(v) ≤ ck for each node v of Gk, yielding (2.1)(ii).

To verify the switch condition (2.1)(iii), consider a multinode Vi(j) with i < n. It
consists of n− i+ 1 nodes vki (j), where i− j + 1 ≤ k ≤ n− j + 1.

Let i ≤ n− 2. Suppose that there is a node v = vki (j) whose SW-edge e = (u, v)
exists and is not f -tight. This is possible only if u ∈ Zk

1 and v ∈ Zk
2 . Then k is

determined as k = i − j + 2, i.e. v is the second node in Vi(j). We observe that:
(a) for the first node vk−1

i (j) of Vi(j), both ends of its SE-edge e′ belong to the piece
Zk−1

1 , whence e′ is f -tight; and (b) for any node vk
′

i (j) with k
′ > k in Vi(j), both ends

of its SW-edge e′′ belong either to Zk′
2 or to Zk′

4 . Therefore, the node v satisfies the
requirement in (2.1)(iii) for Vi(j).

Now let i = n−1. Then Vi(j) consists of two nodes v = vn−j
n−1(j) and v

′ = vn−j+1
n−1 (j).

Put k := n− j. Then the edge e = eSE(v) goes from Zk
1 to Zk

3 = {ukk(n− k+1)}, and
the edge e′ = eSW(v′) goes from Zk+1

3 = {uk+1
k+1(n − k)} to Zk+1

4 . By (4.6), we have
∂f(e) = (ak + ∆+

k ) − ak = ∆+
k and ∂f(e′) = ak+1 − (ak+1 + ∆−

k ) = −∆−
k . Since at

least one of ∆+
k ,∆

−
k is zero, we conclude that at least one of e, e′ is tight. So (2.1)(iii)

is valid again.

Next we start proving statement (ii) in the lemma. We use induction on the value

η(∆) := ∆1 + . . .+∆n−1.
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In view of (4.7), η(∆) ≥ −a2 − . . . − an. Let this hold with equality. Then
∆k = −ak+1 ≤ 0 for k = 1, . . . , n − 1, and by (4.6), f = fa,∆ takes the following
values within each V k: f(v) = ak if v ∈ P k, and f(v) = 0 if v ∈ V k − P k. This f
is the minimal feasible function whose values in level n match a, and therefore, vf is
the source of K↑[a]. Then vf is the minimal vertex v̌[a,0] in Π↑[a], and its deviation
in Π↑[a] is just ∆, as required. This gives the base of the induction.

Now consider an arbitrary ∆ satisfying (4.7). Let k be such that ∆k < ck − ak
(if any) and define ∆′

k := ∆k + 1 and ∆′
i := ∆i for i ̸= k. Then η(∆) < η(∆′). We

assume by induction that claim (ii) is valid for fa,∆, and our aim is to show validity
of (ii) for fa,∆′ .

In what follows f stands for the initial function fa,∆.

Let v′ be the vertex with the deviation ∆′ in Π↑[a]. Both vf and v′ are principal
vertices of the subcrystal K↑[a] and the coordinate of v′ in Π↑[a] is obtained from
the one of vf by increasing its k-th entry by 1. According to Proposition 2.2 (with n
replaced by n− 1), v′ is obtained from vf by applying the operator string

Sn−1,k = wn−1,k,n−k · · ·wn−1,k,1,

where wn−1,k,j = Fj · · ·Fj+k−1 (cf. (2.6)). In light of this, we have to show that

(4.8) when (the sequence of moves corresponding to) Sn−1,k is applied to f , the re-
sulting feasible function is exactly fa,∆′ .

For convenience m-th term, from left to right, in the substring wn−1,k,j (i.e.
the operator Fj+m−1) will be denoted by ϕ(j,m), m = 1, . . . , k. So wn−1,k,j =
ϕ(j, 1)ϕ(j, 2) . . . ϕ(j, k).

We distinguish between two cases: ∆ ≥ 0 and ∆ < 0.

Case 1: ∆k ≥ 0. An essential fact is that the number k(n − k) of operators in
Sn−1,k is equal to the number of nodes in the left rectangle Lk of Gk, and moreover,
the substrings in Sn−1,k one-to-one correspond to the NE-paths in Lk. More precisely,
the level of each node um(j) of Lk is equal to the “color” of the operator ϕ(j,m)
(indeed, um(j) = vkj+m−1(j) and ϕ(j,m) = Fj+m−1).

Let f j,m denote the current function on V (G) just before the application of ϕ(j,m)
(when the process starts with f = fa,∆). Also we write (j′,m′) ≺ (j,m) if j′ < j or
if j′ = j and m′ > m. We assert that

(4.9) for each m, the application of ϕ(j,m) to f j,m increases the value at the node
ukm(j) by 1; equivalently: f j,m(ukm′(j′)) = f(ukm′(j′)) + 1 if (j′,m′) ≺ (j,m), and
f j,m(v) = f(v) for the other nodes v of G,

whence (4.8) will immediately follow.

In order to show (4.9), we first examine tight edges and the slacks ε(v) of the
nodes v in levels < n for the initial function f . One can observe from (4.6) that
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(4.10) for k′ = 1, . . . , n, each node v of the subgraph Gk′ has at least one entering edge
(i.e. eSW(v) or eNW(v)) which is f -tight, except, possibly, for the nodes vk

′

k′ (1),
vk

′

k′−1(1), v
k′
n (n− k′ + 1), vk

′
n−1(n− k′ + 1) (indicated by stars in Fig. 1).

Claim. For k′ = 1, . . . , n and a node v of Gk′ in a level < n,

(a) if v ̸= vk
′

k′ (1), v
k′

k′−1(1), then ε(v) = 0;

(b) if v = vk
′

k′ (1), then ε(v) = ck′ − ak′ −∆+
k′ ≥ 0;

(c) if v = vk
′

k′−1(1), then ε(v) = −∆−
k′ ≥ 0.

Proof of Claim. Let v = vk
′

i (j) and i < n. By (2.2), the slack ε(v) is equal to
f(w)+ f(z)− f(u)− f(v), where w := vk

′
i−1(j− 1), z := vk

′
i+1(j), u := vk

′
i (j− 1) (these

vertices belong to the extended graph Ḡk′). We consider possible cases and use (4.6).

(i) If w, z, u are in Gk′ , then ∂f(w, v) = ∂f(u, z).

(ii) If both v, w are in the piece Zk′
1 ofGk′ , then f(w) = f(v) and f(u) = f(z) = ck′ .

(iii) If j = 1 and i ≤ k′ − 2, then f(v) = f(z) and f(u) = f(w) = ck′ . So in these
cases we have ε(v) = 0, yielding (a).

(iv) Let v = vk
′

k′ (1). Then f(v) = ak′ + ∆+
k′ and f(u) = f(w) = f(z) = ck′ . This

gives ε(v) = ck′ − ak′ −∆+
k′ , yielding (b).

(v) Let v = vk
′

k′−1(1). Then f(v) = ak′ + ∆+
k′ + ∆−

k′−1, f(z) = ak′ + ∆+
k′ and

f(u) = f(w) = ck′ . This gives ε(v) = −∆−
k′−1, yielding (c).

This Claim and the relations ∆−
k = 0 and ∆k < ck − ak enable us to estimate the

total slacks εi(j) for f at the multinodes Vi(j) with i < n:

(4.11) (i) the edge eSW(vk+1
k (1)) is f -tight, ε(vkk(1)) > 0, and ε(v) = 0 for the other

nodes v in Vk(1); so εk(1) > 0;

(ii) if i ̸= k, n, then ε(vii(1)), ε(v
i+1
i (1)) ≥ 0 and ε(v) = 0 for the other nodes

v in Vi(1); so εi(1) ≥ 0;

(iii) if i ̸= n and j > 1, then ε(v) = 0 for all nodes v in Vi(j); so εi(j) = 0.

Now we are ready to prove (4.9). When dealing with a current function f j,m and
seeking for the node at level j + m − 1 where the operator ϕ(j,m) should act to
increase f j,m, we can immediately exclude from consideration any node v that has
a tight entering edge (since acting the operator at v would cause violation of the
monotonicity condition (2.1)(i)).

Due to (4.10) and (4.11)(i), for the initial function f = f 1,k, there is only one
node in level k that has no tight entering edge, namely, vkk(1). So, at the first step of
the process, the first operator ϕ(1, k) of Sn−1,k acts just at vkk(1), as required in (4.9).

Next consider a step with f ′ := f j,m and ϕ(j,m) for (j,m) ̸= (1, k), assuming
that (4.9) is valid at the previous step.

(A) Let j = 1 (and m < k). For v := vkm(1) and z := vkm+1(1), we have f ′(v) =
f(v) ≤ f(z) = f ′(z) − 1. So the unique edge e = (z, v) entering v is not f ′-tight.
By (4.10), there are at most two other nodes in level m that may have no tight
entering edges for f (and therefore, for f ′), namely, vmm(1) and v

m+1
m (1). Then ϕ(1,m)
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must act at v, as required in (4.9) (since the non-tightness of the SW-edge e of v
implies that none of the nodes vm

′
m (1) in Vm(1) preceding v (i.e. with m′ < k) can be

the switch-node).

(B) Let j > 1. Comparing f ′ with f in the node v := ukm(j) = vkj+m−1(j) and its
adjacent nodes, we observe that v has no f ′-tight entering edge and that εf ′(v) > 0.
Also for any other node v′ in level j + m − 1, one can see that if v′ has a tight
entering edge for f , then so does for f ′, and that εf (v

′) ≥ εf ′(v′) ≥ 0. Using this,
properties (4.10), (4.11)(iii), and condition (2.5), one can conclude that the total and
reduced slacks for f ′ at the multinode V ′ := Vj+m−1(j) are positive, that V ′ is the
active multinode for f ′ in level j +m− 1, and that ϕ(j,m) can be applied only at v,
yielding (4.9) again.

Thus, (4.8) is valid in Case 1.

Case 2: ∆k < 0. We assert that in this case the string Sn−1,k acts within the
right rectangle Rk+1 of the subgraph Gk+1 (note that Rk+1 is of size k × (n − k)).
More precisely,

(4.12) each operator ϕ(j,m) modifies the current function by increasing its value at
the node uk+1

m (j) by 1.

Then for the resulting function f̃ in the process, its restriction to V k+1 is

ak+1π
k+1 + (ak+1 +∆−

k + 1)ρk+1 +∆+
k+1λ

k+1

(cf. (4.5)). Therefore, f̃ = fa,∆′ (in view of (∆′)−k = ∆−
k + 1), yielding (4.8).

To show (4.12), we argue as in the previous case and use (4.10) and the above
Claim. Since ∆k < 0, part (i) in (4.11) for the initial function f is modified as:

(4.13) for j = 1, . . . , n − k, the SW-edge of each node uk+1
k (j) = vk+1

j+k−1(j) is not f -

tight, ε(vk+1
k (1)) > 0, ε(vkk(1)) ≥ 0, and ε(v) = 0 for the other nodes v in Vk(1);

so εk(1) > 0,

while properties (ii) and (iii) preserve.

By (4.10) and (4.13), there are only two nodes in level k that have no f -tight
entering edges, namely, vkk(1) and v

k+1
k (1). Also e = eSW(vk+1

k (1)) is not tight. So, at
the first step, ϕ(1, k) must act at vk+1

k (1), as required in (4.12) (since the non-tightness
of e implies that the node vkk(1) preceding v

k+1
k (1) cannot be the switch-node in Vk(1)).

The fact that ϕ(1,m) with m < k acts at vk+1
m (1) is shown by arguing as in (A)

above. And for j > 1, to show that ϕ(j,m) = Fj+m−1 acts at uk+1
m (j) = vk+1

j+m−1(j),
we argue as in (B) above. Here, when m = k, we also use the fact that the edge
eSW(uk+1

k (j)) is not f -tight (by (4.13)), whence both edges entering uk+1
k (j) are not

tight for the current function. So (4.12) is always valid.

Thus, we have the desired property (4.8) in both cases 1 and 2, and statement (ii)
in the lemma follows.

This completes the proof of relation (3.1) in Theorem 3.1.
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5 Illustrations

In this section we give two illustrations to the above assembling construction for A-
crystals. The first one specifies the interrelation between upper and lower subcrystals
in an arbitrary A2-crystal, which can be compared with the explicit construction (the
so-called “sail model”) for A2-crystals in [1]. The second one visualizes the subcrystals
structure for one instance of A3-crystals, namely, K(1, 1, 1).

5.1 A2-crystals

The subcrystals structure becomes simpler when we deal with an A2-crystal K =
K(c1, c2). In this case the roles of upper, lower, and middle subcrystals are played
by 1-paths, 2-paths, and vertices of K, respectively, where by an i-path we mean a
maximal path of color i.

Consider an upper subcrystal inK. This is a 1-path P = (v0, v1, . . . , vp) containing
exactly one principal vertex v̌[a] of K (the heart of P ); here vi stands for i-th vertex
in P , a = (a1, a2) ∈ Z2

+ and a ≤ c. Let v̌[a] = vh. Formulas (2.8) and (2.9) give

|P | = p = c1 − a1 + a2 and h = a2. (5.1)

Fix a vertex v = vi of P . It belongs to some 2-path (lower subcrystal) Q =
(u1, u2, . . . , uq). Let v = uj and let v̌[b] = uh̄ be the principal vertex of K occurring
in Q (the heart of Q). The vertex v forms a middle subcrystal of K; its deviations
from the heart of P and from the heart of Q are equal to i− h =: δ and j − h̄ =: δ̄,
respectively. By (3.2) in Theorem 3.1, we have δ̄ = −δ. Then we can compute the
coordinates b by use of (3.1) and, further, apply (2.10) and (2.11) to compute the
length of Q and the locus of its heart. This gives:

(5.2) (i) if δ ≥ 0 (i.e. a2 ≤ i ≤ c1−a1+a2), then b1 = a1+ δ = a1+ i−a2, b2 = a2,
|Q| = c2 − b2 + b1 = c2 − 2a2 + a1 + i, and |Q| − h̄ = |Q| − b1 = c2 − a2;

(ii) if δ ≤ 0 (i.e. 0 ≤ i ≤ a2), then b1 = a1, b2 = a2 + δ = a2 + (i − a2) = i,
|Q| = c2 − b2 + b1 = c2 − i+ a1, and h̄ = b1 = a1.

Using (5.1) and (5.2), one can enumerate the sets of 1-paths and 2-paths and
properly intersect corresponding pairs, obtaining the A2-crystal K(c). It is rather
routine to check that the resulting graph coincides with the one generated by the sail
model from [1]. Next we outline that construction (it will be used in Section 9.1).

Given c ∈ Z2
+, the A2-crystal K(c) is produced from two particular two-colored

graphs R and L, called the right sail of size c1 and the left sail of size c2, respectively.
The vertices of R correspond to the vectors (i, j) ∈ Z2 such that 0 ≤ j ≤ i ≤ c1, and
the vertices of L to the vectors (i, j) ∈ Z2 such that 0 ≤ i ≤ j ≤ c2. In both R,L, the
edges of color 1 are all possible pairs of the form ((i, j), (i + 1, j)), and the edges of
color 2 are all possible pairs of the form ((i, j), (i, j + 1)). (Observe that both R and
L satisfy axioms (A1)-(A4), R is isomorphic to K(c1, 0), L is isomorphic to K(0, c2),
and their critical vertices are the “diagonal vertices” (i, i).)
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In order to produce K(c), take c2 disjoint copies R1, . . . , Rc2 of R and c1 disjoint
copies L1, . . . , Lc1 of L, referring to Rj as j-th right sail, and to Li as i-th left sail.
Let D(Rj) and D(Li) denote the sets of diagonal vertices in Rj and Li, respectively.
For all i = 1, . . . , c1 and j = 1, . . . , c2, we identify the diagonal vertices (i, i) ∈ D(Rj)
and (j, j) ∈ D(Li). The resulting graph is just the desired K(c). The edge colors
of K(c) are inherited from L and R. One checks that K(c) has (c1 + 1) × (c2 + 1)
critical vertices; they are exactly those induced by the diagonal vertices of the sails.
The principal lattice of K(c) is just constituted by the critical vertices.

The case (c1, c2) = (1, 2) is drawn in the picture; here the critical (principal)
vertices are indicated by circles, 1-edges by horizontal arrows, and 2-edges by vertical
arrows.
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In particular, the sail model shows that the numbers of edges of each color in
an A2-crystal are the same. This implies a similar property for any An-crystal (and
moreover, for crystals of classical simply-laced types).

5.2 A3-crystal K(1, 1, 1)

Next we illustrate the A3-crystal K = K(1, 1, 1). It has 64 vertices and 102 edges,
and drawing it in full would take too much space; for this reason, we describe it in
fragments, namely, by demonstrating all of its upper and lower subcrystals. We ab-
breviate notation v̌[(i, j, k)] for principal vertices to (i, j, k) for short. So the principal
lattice consists of eight vertices (0, 0, 0), . . . , (1, 1, 1), as drawn in the picture (where
the arrows indicate moves by principal operator strings S3,k as in (2.6)):
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(0,1,0)

(0,0,1)

(1,1,0)

(1,0,1)

(0,1,1) (1,1,1)=t

S3,1

S3,2

S3,3

S3,1 = F3F2F1

S3,2 = F2F3F1F2

S3,3 = F1F2F3

Thus, K has eight upper subcrystals K↑[i, j, k] and eight lower subcrystals
K↓[i, j, k] (writing K•[i, j, k] for K•[(i, j, k)]); they are drawn in Figures 2 and 3.
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Here the directions of edges of colors 1,2,3 are as indicated in the upper left corner.
In each subcrystal we indicate its critical vertices by black circles, and the unique
principal vertex of K occurring in it (the heart) by a big white circle. K has 30
middle subcrystals (paths of color 2), which are labeled as A, . . . , Z,Γ,∆,Φ,Ψ (note
that B,F,G,N, P, T, V,Φ consist of single vertices).
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Figure 2: The upper subcrystals in K(1, 1, 1)

For each upper subcrystalK↑[i, j, k], its parameter c↑ and heart locus }↑, computed

by (2.8) and (2.9), are as follows (where K̃, s̃, z denote the current subcrystal, its
source, and its heart, respectively):

• for K↑[0, 0, 0]: c↑1 = 1− 0 + 0 = 1, c↑2 = 1− 0 + 0 = 1, and }↑1 = }↑2 = 0 (so K̃ is
isomorphic to K(1, 1) and z coincides with s̃);

• for K↑[1, 0, 0]: c↑1 = 1− 1 + 0 = 0, c↑2 = 1− 0 + 0 = 1, and }↑1 = }↑2 = 0;
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• for K↑[0, 1, 0]: c↑1 = 1 − 0 + 1 = 2, c↑2 = 1 − 1 + 0 = 0, }↑1 = 1, and }↑2 = 0 (so

K̃ ≃ K(2, 0) and z is located at S2,1(s̃) = F2F1(s̃));

• for K↑[0, 0, 1]: c↑1 = 1 − 0 + 0 = 1, c↑2 = 1 − 0 + 1 = 2, }↑1 = 0, and }↑2 = 1 (so

K̃ ≃ K(1, 2) and z is located at S2,2(s̃) = F1F2(s̃));

• for K↑[1, 1, 0]: c↑1 = 1− 1 + 1 = 1, c↑2 = 1− 1 + 0 = 0, }↑1 = 1, and }↑2 = 0;

• for K↑[1, 0, 1]: c↑1 = 1− 1 + 0 = 0, c↑2 = 1− 0 + 1 = 2, }↑1 = 0, and }↑2 = 1;

• for K↑[0, 1, 1]: c↑1 = 1 − 0 + 1 = 2, c↑2 = 1 − 1 + 1 = 1, and }↑1 = }↑2 = 1 (so

K̃ ≃ K(2, 1) and z is located at S2,2S2,1(s̃) = F1F2F2F1(s̃));

• for K↑[1, 1, 1]: c↑1 = 1− 1 + 1 = 1, c↑2 = 1− 1 + 1 = 1, and }↑1 = }↑2 = 1.
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Figure 3: The lower subcrystals in K(1, 1, 1)
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Since K(1, 1, 1) is “symmetric”, so are its upper and lower subcrystals, i.e. each
K↓[i, j, k] is obtained from K↑[k, j, i] by replacing color 1 by 3. In Fig. 3, when writing
K↓[i, j, k] ≃ K(α, β), the parameters α, β concern colors 3 and 2, respectively.

Now the desired K(1, 1, 1) is assembled by gluing the fragments in Figs. 2,3 along
the 2-paths A, . . . ,Ψ.

6 Deriving Bn-crystals from symmetric A2n−1-crystals

We say that an A2n−1-crystal K = (V (K), E1 ⊔ . . . ⊔ E2n−1) with parameter
c = (c1, . . . , c2n−1) is symmetric if ci = c2n−i for each i. Equivalently: renumber-
ing the colors 1, . . . , 2n− 1 as 2n− 1, . . . , 1 makes the same K (since any A-crystal is
determined by its parameter). Color 2n − i is regarded as complementary to color i
and will usually be denoted with prime: we write i′ for 2n− i. In particular, n′ = n.
For an operator string Fα1

i1
F α2
i2
. . . Fαk

ik
(where each Fij concerns the color class Eij

and αj ∈ Z), the complementary string is defined to be Fα1

i′1
Fα2

i′2
. . . Fαk

i′k
. This gives

a natural complementarity relation on the set of paths, including non-directed ones,
that begin at the source s of K, which in turn yields the complementarity bijection
(involution) σ : V (K) → V (K). We extend σ, in a natural way, to edges, paths and
subgraphs of K. A vertex v ∈ V (K) is called self-complementary (or symmetric) if
v = σ(v); equivalently: for some (equivalently, any) path P from s to v, the comple-
mentary path σ(P ) terminates at v as well. In particular, the source and sink of K
are self-complementary.

Let S be the set of self-complementary vertices in K. Clearly if a vertex u ∈ S
has outgoing edge colored i, then v has outgoing i′-edge as well. When i < n, the
colors i, i′ are not neighboring (|i − i′| ≥ 2); so by axiom (A5) (from Section 2.1),
the operators Fi and Fi′ commute at v, and the vertex v = FiFi′(u) is again self-
complementary. We denote such a pair (i, i′) with i < i′ by ī. The pair (u, v) of
vertices as above is regarded as an edge with color ī, or an ī-edge; we denote the
set of ī-edges by Eī and denote the partial operator on S related to Eī by Fī. We
also refer to the four edges (u,w), (w, v), (u,w′), (w′, v) of K, where w := Fi(u) and
w′ := Fi′(u), as the underlying edges of (u, v).

As to color n, if u ∈ S has outgoing n-edge (u, v), then v ∈ S as well. We
formally set n̄ := (n, n′ = n), define En̄ to be the set of n-edges connecting pairs of
self-complementary vertices (so En̄ ⊆ En), and associate to En̄ the partial operator
Fn̄ on S.

As a result, we obtain the n-colored directed graph B = (S,E1̄ ⊔ . . .⊔En̄), called
the symmetric extract from K. The colors in B are ordered as 1̄, . . . , n̄, and different
colors ī, j̄ are called neighboring if |i− j| = 1.

Figure 4 illustrates two “simplest” symmetric A-crystals for n = 3, namely,
K(1, 0, 1) and K(0, 1, 0), and their symmetric extracts B(1, 0) and B(0, 1).

The following relation between A- and B-crystals can be concluded from [12,
Th. 3.2.4].
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Figure 4: Creation of B(1, 0) and B(0, 1).

Theorem 6.1 Let K(c) be a symmetric A2n−1-crystal. Then the symmetric extract
B = (S,E1̄ ⊔ . . . ⊔ En̄) from K(c) is a Bn-crystal.

In Sections 6–8 we give a combinatorial proof of this theorem, based on our knowl-
edge of the structure of An- and B2-crystals. We start with simple observations.

1. An important property of K = K(c) is that it is graded at each color i, which
means that in any closed route inK, the numbers of forward and backward i-edges are
equal (equivalently, V (K) admits a map to Zn under which each i-edge corresponds
to a shift by i-th base vector). Clearly such a property remains valid for B as well.
In particular, B is acyclic. Also for i = 1, . . . , n, each vertex of B has at most one
outgoing ī-edge and at most one incoming ī-edge. So each component of (S,Eī) is a
path (as required in (A1)). Another known fact is that the graph Krev obtained from
(a not necessarily symmetric A-crystal) K by reversing its edges and changing each
edge color to the complementary one is isomorphic to K (this operation swaps the
source and sink). This implies that the “reversed” graph Brev (with preserved edge
colors) is isomorphic to B; this fact will be used in Section 8.3.

2. For a vertex v ∈ S and color ī, let hī(v) (resp. t̄i(v)) denote the length of the
maximal ī-path beginning (resp. ending) at v. Then

hī(v) = hi(v) = hi′(v) and t̄i(v) = ti(v) = ti′(v). (6.1)

This is trivial when i = n. If i < n, consider the component K ′ of (V (K), Ei ⊔ Ei′)
that contains v. Since |i − i′| ≥ 2, K ′ is the Cartesian product of an i-path P and
an i′-path P ′. Since K ′ contains a self-complementary vertex, it easily follows that
K ′ = σ(K ′). This implies that the lengths of P and P ′ are equal, and further, that
V (K ′) ∩ S consists of the vertices of the form Fα

i F
α
i′ (s

′), where s′ is the source of K ′

(the “diagonal” of K ′). Now (6.1) easily follows.
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3. Each vertex v ∈ S is reachable by a (directed) path in B beginning at the
source s of K; in particular, B is connected and s is the source of B. This can be
shown by induction on the length |P | of a path P from s to v in K. Indeed, for such
a P , take the complementary path P ′ (also going from s to v). Let the last edge
(u, v) of P have color i; then the last edge (u′, v) of P ′ has color i′. If i = n, then
u = u′, implying u ∈ S, and we can apply induction. And if i ̸= n, then F−1

i and
F−1
i′ commute at v and the vertex w := F−1

i F−1
i′ (v) is self-complementary. Since K

is graded, the length of a path from s to w in K is less than |P |. So by induction w
is reachable by a path from s in B, implying a similar property for v.

4. By (6.1) applied to v = s, we have hī(s) = ci for each i = 1, . . . , n. So one can
regard the n-tuple c̄ = (c1, . . . , cn) as the parameter of B and denote B as B(c̄) (the
set of such tuples c̄ is Zn

+, and there is a unique B for each c̄ in our construction).

5. Let i, j < n and |i − j| ≥ 2. Then any two colors among i, i′, j, j′ are not
neighboring, and therefore (by (A5)), each subcrystal K ′ of K with these four colors
is the Cartesian product of four monochromatic paths. This implies that if two
operators among Fī, F

−1
ī
, Fj̄, F

−1
j̄

act at v ∈ S, then these operators commute at v,

whence each component of (S,Eī ⊔ Ej̄) is the Cartesian product of an ī-path and a
j̄-path, i.e. an A1×A1-crystal. A similar fact is shown for (S,Eī⊔En̄) when i ≤ n−2.
Thus, B satisfies axiom (BC1) (from Section 2.2).

It remains to verify axioms (BC2),(BC3),(BC4) for B. We start with (BC2).

Lemma 6.2 Let i, j < n and |i − j| = 1. Then each component of the subgraph
B′ := (S,Eī ⊔ Ej̄) is an A2-crystal.

Proof To verify axiom (A2) for B′, consider an ī-edge (u, v). Let x := Fi(u) and
y := Fi′(u); then (u, x), (y, v) are the i-edges and (u, y), (x, v) are the i′-edges of K
underlying (u, v). Since |i − j| = |i′ − j′| = 1 and |i − j′| = |i′ − j| ≥ 2, we obtain
(using (A2),(A5) for K):

hj(v) = hj(x) = hj(u) + ℓj(u, x); hj(v) = hj(y) + ℓj(y, v) = hj(u) + ℓj(y, v);

hj′(v) = hj′(x) + ℓj′(x, v) = hj′(u) + ℓj′(x, v); hj′(v) = hj′(y) = hj′(u) + ℓj′(u, y)

(labels ℓ are defined for A-crystals in Section 2.1). These and the equalities hj(u) =
hj′(u) = hj̄(u) and hj(v) = hj′(v) = hj̄(v) (cf. (6.1)) imply

ℓj(u, x) = ℓj(y, v) = ℓj′(x, v) = ℓj′(u, y) =: α,

and
hj̄(v) = hj̄(u) + α.

Handling lengths tj, tj′ in a similar way, we obtain tj̄(v) = tj̄(u) + 1− α.

Therefore, when traversing (u, v), the lengths hj̄ and tj̄ behave as required for
A-crystals, and
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(6.2) all underlying edges of an ī-edge e have one and the same label α w.r.t. their
neighboring colors in {j, j′}, and e inherits just this label: ℓj̄(e) = α.

To check the convexity condition in (A2), consider consecutive ī-edges (u, v), (v, w)
and take their underlying i-edges (x, v) and (v, y′), where x := F−1

i (v) and y′ := Fi(v).
Then ℓj(x, v) ≤ ℓj(v, y

′) (by (A2) for K) implies ℓj̄(u, v) ≤ ℓj̄(v, w), by (6.2). Thus,
B′ satisfies axiom (A2).

Next, let u ∈ S have outgoing ī-edge (u, v) and outgoing j̄-edge (u, v′) in B, and
let ℓj̄(u, v) = 0. By (A2), hj̄(v) ≥ hj̄(u); so v has outgoing j̄-edge (v, w). Similarly,
v′ has outgoing ī-edge (v′, w′). We assert that w = w′ (as required in (A3)), i.e.

Fj̄Fī(u) = FīFj̄(u).

To show this, let x := Fi′(u) and y := Fj(u) (these vertices are not in S). Then
u, x, y and z := Fj(x) are connected by the i′-edges (u, x), (y, z) and the j-edges
(u, y), (x, z) (since |i′− j| ≥ 2). By (6.2), ℓj̄(u, v) = 0 implies ℓj′(u, x) = 0. Therefore,
hj′(x) = hj′(u). This together with the trivial equalities hj′(y) = hj′(u) and hj′(z) =
hj′(x) (as |j − j′| ≥ 2) implies hj′(y) = hj′(z), which means that ℓj′(y, z) = 0. So the
operators Fi′ , Fj′ commute at y; note that Fj′(y) = v′. We have

w = Fj′FjFi′Fi(u) = Fj′Fi′FjFi(u) = Fj′Fi′FiFj(u)

= Fj′FiFi′Fj(u) = FiFj′Fi′Fj(u) = FiFi′Fj′Fj(u) = w′

(since: Fi, Fj commute at u; Fi′ , Fj′ commute at y = Fj(u); and Fp, Fq with |p−q| ≥ 2
are permutable). Also the fact that ℓi(u, y) = 1 (by (A3) for K) implies ℓī(u, v

′) = 1.
Thus, B′ satisfies the part of (A3) concerning the forward operators Fī, Fj̄. The claim
for the backward operators F−1

ī
, F−1

j̄
follows by reversing the edges of K and B.

Finally, instead of a direct (and tiresome) verification of axiom (A4) for B′, we
can appeal to the result in [1, Proposition 5.3] saying that for a connected two-colored
graph K ′, (A4) follows from (A1),(A2),(A3) and the condition that K ′ has exactly
one source (zero-indegree vertex).

In light of this, consider a component B̃ of B′. Let K̃ be the component of
(V (K), Ei ⊔ Ei′ ⊔ Ej ⊔ Ej′) containing the vertices of B̃. This K̃ is the Cartesian

product of two A2-crystals (with colors i, j and colors i′, j′), whence K̃ has a unique

source s̃. We claim that s̃ is the unique source of B̃.

Indeed, since B̃ is finite and acyclic, it has a source s′. Suppose s′ ̸= s̃. Then s′

has an incoming edge e of some color among {i, i′, j, j′}. Let for definiteness e be an
i-edge. Then F−1

i acts at s′, and by the symmetry, so does F−1
i′ . These operators

commute, and v := F−1
i′ F

−1
i (s′) is a self-complementary vertex. Then (v, s′) is an

edge of B̃ entering s′, contrary to the choice of s′. Thus, s′ = s̃, and (A4) for B′

follows.

This completes the proof of the lemma.
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The crucial point is to show validity of (BC3) and (BC4). Since these axioms
concern only colors n − 1, n, n + 1 in K, we may assume that n = 2. Here we use
the simple fact that if a component K ′ of (V (K), En−1 ⊔ En ⊔ En+1) contains a self-
complementary vertex, then for each v ∈ V (K ′), the vertex σ(v) belongs to K ′ as
well. Hence K ′ is symmetric.

Theorem 6.3 Let K = (V (K), E1⊔E2⊔E3) be a symmetric A3-crystal with param-
eter c = (c1, c2, c3 = c1). Then the symmetric extract B(c̄) = (S,E1̄ ⊔ E2̄) from K is
the B2-crystal with parameter c̄ = (c1, c2) respecting the Cartan coefficients m12 = −2
and m21 = −1.

7 The worm model

Our method of proof of Theorem 6.3 (given in the next section) consists in showing
that the graph B figured there is isomorphic to the graph generated by the so-called
worm model for the given parameter c̄ = (c1, c2). This relies on the fact that the
latter graph is just the B2-crystal for c̄. In this section we review the construction of
worm graphs and operations on them given in [3].

Given a parameter c̄ = (c1, c2) ∈ Z2
+, the worm model produces a two-colored

directed graph W = W (c̄), called the worm graph for c̄. The vertices of W are the
admissible six-tuples w = (x′, y, x′′ ; y′, x, y′′) of integers satisfying

0 ≤ x, x′, x′′ ≤ 2c1 and 0 ≤ y, y′, y′′ ≤ c2. (7.1)

Here the six-tuple w is called admissible if the following three conditions hold:

(7.2) (i) x′ and x′′ are even;
(ii) y′ ≤ y ≤ y′′ and x′ ≤ x ≤ x′′;
(iii) if y′ < y then x′ = x, and if y < y′′ then x = x′′.

It is convenient to visualize w by taking four points in the rectangle R(c1, c2) :=
{(α, β) ∈ R2 : 0 ≤ α ≤ 2c1, 0 ≤ β ≤ c2}, namely:

X ′ = (x′, y), X ′′ = (x′′, y), Y ′ = (x, y′) and Y ′′ = (x, y′′),

and drawing the horizontal line-segment X ′X ′′ connecting X ′ and X ′′ and the vertical
line-segment Y ′Y ′′ connecting Y ′ and Y ′′. Then (7.2) is equivalent to the following:

(7.3) (i) the first coordinates of the points X ′ and X ′′ are even;
(ii) the point X ′′ lies to the right of X ′, and the point Y ′′ lies above Y ′;
(iii) the segments X ′X ′′ and Y ′Y ′′ have nonempty intersection;
(iv) at least one of X ′ = X ′′, X ′ = Y ′′, Y ′ = Y ′′, Y ′ = X ′′ holds.

Depending on the equality in (7.3)(iv), we distinguish between four sorts of vertices
of W , also called worms:
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V-worm (viz. vertical worm) appears when Y ′ ≤ Y ′′ and X ′ = X ′′;
VH-worm: Y ′ ≤ Y ′′ = X ′ ≤ X ′′;
HV-worm: X ′ ≤ X ′′ = Y ′ ≤ Y ′′;
H-worm (viz. horizontal worm): X ′ ≤ X ′′ and Y ′ = Y ′′.

(When, e.g., X ′ = X ′′ = Y ′, we regard w as a V-worm and an HV-worm simultane-
ously.) These cases are illustrated (from left to right) in the picture; hereinafter X
stands for the point X ′ = X ′′, and Y for Y ′ = Y ′′.

d

d
bf

Y ′

Y ′′

X d
bf d
Y ′

Y ′′ = X ′ X ′′

d bf

d

X ′ X ′′ = Y ′

Y ′′

d bf dX ′ Y X ′′

A worm w is called proper if three points amongX ′, X ′′, Y ′, Y ′′ are different. When
a worm degenerates into one point, we say that the worm is principal (which matches
a principal vertex in the related B2-crystal). The horizontal line-segment X ′X ′′ is
called the horizontal limb of w (which degenerates into the single point X in the
V-worm case). Also when Y ′ (resp. Y ′′) does not lie in the line-segment X ′X ′′, we
say that the vertical line-segment Y ′X ′ is the lower limb (resp. X ′′Y ′′ is the upper
limb) of w.

Next we explain the construction of edges of W . We denote the edge colors by 1̃
and 2̃, and write 1̃ and 2̃ for the partial operators on the worms associated to these
colors, respectively. The action of 1̃ on a worm v = (x′, y, x′′ ; y′, x, y′′) is as follows:

(7.4) (i) if 2x > x′ + x′′ then x′ increases by 2;
(ii) if x = x′ = x′′ and y′′ > y then y increases by 1;
(iii) otherwise x′′ increases by 2

(preserving the other entries). The operator does not act if the new six-tuple would
violate the boundary condition (7.1). So in case of a proper HV-worm, the point X ′

moves by two positions to the right; in case of a VH-worm, the point X ′′ moves by
two positions to the right; in case of a V-worm with X ̸= Y ′′, the point X moves
by one position up. The case of H-worms is a bit tricky: one should move (by two
positions to the right) that of the points X ′, X ′′ which is farther from Y ; if they are
equidistant from Y , then the point X ′′ moves.

In its turn, the action of 2̃ on v is as follows:

(7.5) (iv) if 2y > y′ + y′′, then y′ increases by 1;
(v) if y′′ = y = y′ and x′′ > x, then x increases by 1;
(vi) otherwise y′′ increases by 1.
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So the operator 2̃ shifts Y ′ (Y ′′) by one position up in the proper VH-case (resp. in
the HV-case) and shifts Y by one position to the right in the H-case with Y ̸= X ′′.
In the V-case, 2̃ shifts (by one position up) that of the points Y ′, Y ′′ which is farther
from X; if they are equidistant from X, then Y ′′ moves.

Theorem 7.1 [3] For each c̄ ∈ Z2
+, the worm graph W (c̄) is isomorphic to the B2-

crystal B(c̄) (where colors 1̃, 2̃ correspond to 1, 2, respectively).

8 Symmetric extracts from A3-crystals are B2-crystals

In this section we use the above worm model to prove Theorem 6.3 (thus completing
the proof of Theorem 6.1). The proof falls into three stages, described in Sections 8.1–
8.3 below.

Let K = K(c) be a symmetric A3-crystal with parameter c = (c1, c2, c3 = c1), and
B = B(c̄) the symmetric extract from K, where c̄ = (c1, c2). As before, S denotes the
set of self-complementary vertices in K, or the vertices of B. For brevity the partial
operators F1, F2, F3 on the vertices of K are denoted as 1,2,3, and the corresponding
operators F1̄, F2̄ for B by 1̄, 2̄ (respectively).

8.1 Additional relations

Our first goal is to establish additional facts (in Lemma 8.1) about self-complementary
vertices of K which will be needed to relate B to the worm graph for (c1, c2) defined
in Section 7.

In case n = 3, relations in (2.6) on the principal lattice Π of K are specified as:

S3,1 = w3,1,3w3,1,2w3,1,1 = 321;
S3,2 = w3,2,2w3,2,1 = 2312 = 2132;
S3,3 = w3,3,1 = 123.

These relations together with (2.7) and the fact that any operator strings S3,k and
S3,k′ commute within Π imply that for any principal vertex v̌[a = (a1, a2, a3)] of K,
its complementary vertex σ(v̌[a]) is also principal and has the form v̌[(a3, a2, a1)]. (To
see this, take the path from the source s of K to v̌[a] corresponding to the string
Sa3
3,3S

a2
3,2S

a1
3,1. Its complementary path goes to σ(v̌[a]) and corresponds to the string

Sa3
3,1S

a2
3,2S

a1
3,3.) Furthermore, the lower subcrystal K↓[(a3, a2, a1)] (with colors 2,3) is

complementary to the upper subcrystal K↑[a] (with colors 1,2).

Consider a self-complementary vertex v ∈ S of K. It belongs to some upper sub-
crystal K↑[a] and some lower subcrystal K↓[b]. The component (middle subcrystal)
of K↑[a] ∩ K↓[b] containing v is a path P of color 2. By a general fact (cf. Propo-
sition 2.4), P has exactly one vertex, z say, in the upper lattice Π↑[a]; similarly, P
has exactly one vertex, z′ say, in the lower lattice Π↓[b]. Let ∆ = (∆1,∆2) be the
deviation of z in Π↑[a] (from the heart v̌[a] of K↑[a]), and ∇ = (∇2,∇3) the deviation
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of z′ in Π↓[b]. Using notation from Section 3, we denote z and z′ as v↑[a|∆] and
v↓[b|∇], respectively. The next lemma exhibits important features of v.

Lemma 8.1 For a, b,∆,∇ as above, the following properties hold:

(i) (b1, b2, b3) = (a3, a2, a1);

(ii) K↓[b] is complementary to K↑[a];

(iii) ∆1 = −∆2 = ∇3 = −∇2;

(iv) v↑[a|∆] = v↓[b|∇].

Proof We can reach the vertex v from the source s of K by moving along the
concatenation of three paths P1, P2, P3, where: P1 goes from s to v̌[a]; P2 is a path
from v̌[a] to v↑[a|∆] in K↑[a]; and P3 is a path from v↑[a|∆] to v in P . (The paths
P2, P3 are not necessarily directed.) Take the complementary paths P ′

1, P
′
2, P

′
3 to

P1, P2, P3, respectively.

The vertex v belongs to the lower subcrystal K↓[b]. On the other hand, v be-
longs to the lower subcrystal K ′ complementary to K↑[a], which is expressed as
K↓[(a3, a2, a1)] (since the end of P1 is the principle vertex v̌[a] of K and the end of P ′

1

is the complementary principle vertex σ(v̌[a]) = v̌[(a3, a2, a1)]). This yields (i),(ii).

By relation (3.2) in Theorem 3.1, we have ∇2 = −∆1 and ∇3 = −∆2. Also since
the end v↓[b|∇] of P ′

2 is complementary to the end v↑[a|∆] of P2, the deviation ∇ is
complementary to ∆, i.e. ∇2 = ∆2 and ∇3 = ∆1. This yields (iii).

Finally, since the monochromatic paths P3 and P ′
3 have the same color 2 and end

at the same vertex v, we have P ′
3 = P3. Therefore, the beginning vertices v↑[a|∆] and

v↓[b|∇] of these paths coincide, yielding (iv).

8.2 A correspondence between symmetric vertices and worms

In this subsection we explain how to associate the elements of S to the vertices
(worms) of the worm graph W (c̄).

For v ∈ S and its corresponding a,∆ as above, we will write a(v) for a, and ∆(v)
for ∆. By (iii) in Lemma 8.1, the deviation ∆ is of the form

∆ = (∆1,∆2) = (δ,−δ)

for some δ = δ(v) ∈ Z. By (i) in that lemma, b1 = a3; this together with the equality
b1 = a1 + ∆+

1 (cf. (3.1) in Theorem 3.1) implies a3 = a1 + ∆+
1 . This gives certain

constrains on a, δ, namely:

(8.1) one always holds a3 ≥ a1; furthermore, if a3 > a1 then δ = a3 − a1 (> 0), and
if a3 = a1 then δ ≤ 0.

So a(v),∆(v) are determined by a1(v), a2(v), δ(v). The latter triple together with
the coordinate ℓ = ℓ(v) of v in the corresponding middle subcrystal (path of color 2)
P = P (v) determine v in S. We will refer to the quadruple (a1(v), a2(v), δ(v), ℓ(v)) as
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the description of v. In the monochromatic subcrystal P , the principal lattice consists
of all vertices of P ; the heart is the vertex v↑[a|∆], further denoted by z = z(v); and
ℓ is the length of the subpath in P from the beginning to v (the tail length for v).

The description (a1, a2, δ, ℓ) of v satisfies the following linear constrains:

0 ≤ a1 ≤ c1; 0 ≤ a2 ≤ c2; (8.2)

−a2,−c2 + a2 ≤ δ ≤ c1 − a1; (8.3)

0 ≤ ℓ ≤ c2 + 2δ. (8.4)

Here (8.2) is clear. When δ ≥ 0, the right inequality in (8.3) follows from a1 + δ =
a3 ≤ c1; cf. (8.1). The upper subcrystal K↑[a] has parameter c↑ with

c↑1 = c1 − a1 + a2, c↑2 = c2 − a2 + a3 (8.5)

(by (2.8)) and heart coordinate }↑ with

}↑1 = a2, }↑2 = a3 (8.6)

(by (2.9)). When δ ≤ 0, we obtain −δ = −∆1 ≤ }↑1 = a2 and −δ = ∆2 ≤ c↑2 − }↑2 =
c2−a2, yielding the left inequalities in (8.3). Finally, for the middle subcrystal (path)
P , its parameter (length) c↑↓2 and coordinate }↑↓2 of its heart z are:

c↑↓2 = c2 −∆2 +∆1 = c2 + 2δ, }↑↓2 = a2 +∆1 = a2 + δ (8.7)

(by (3.4) and (3.5)). The first relation in (8.7) yields (8.4).

Conversely, let a1, a2, δ, ℓ be integers satisfying (8.2)–(8.4). Put a3 := a1 + δ+,
a := (a1, a2, a3) and b := (a3, a2, a1). Comparing (8.2),(8.3) with (8.5),(8.6), one
can conclude that the upper lattice Π↑[a] contains a vertex whose deviation equals
(δ,−δ). Moreover, this vertex v↑[a|(δ,−δ)] =: z coincides with the vertex v↓[b|(−δ, δ)]
in the lower lattice Π↓[b] and is self-complementary. Then all vertices of the middle
subcrystal P containing z are self-complementary. Now comparing (8.4) with (8.7),
we can conclude that P has a vertex v whose coordinate equals ℓ. This v is just the
self-complementary vertex corresponding to a1, a2, δ, ℓ.

Thus, we obtain the following

Theorem 8.2 For each integer solution (a1, a2, δ, ℓ) to (8.2)–(8.4), there is a vertex
v ∈ S such that (a1, a2, δ, ℓ) = (a1(v), a2(v), δ(v), ℓ(v)), and vice versa.

This correspondence is crucial in our construction of worms for the elements of
S. It is convenient to consider the prism {a ∈ R3 : 0 ≤ a1 ≤ a3 ≤ c1, 0 ≤ a2 ≤ c2};
the integer points in it are exactly the coordinates of principal vertices v̌[a] of K with
a1 ≤ a3. The ground rectangle for the worms that we construct is identified with
the facet Φ of the prism formed by the points a satisfying a1 = a3. We modify the
coordinates on Φ by (a1, a2, a3 = a1) 7→ (2a1, a2); then the first coordinate runs from
0 to 2c1, and the second from 0 to c2.
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Figure 5: (i) δ > 0, ℓ < a2; (ii) δ > 0, a2 < ℓ < a2 + 2δ; (iii) δ > 0, ℓ > a2 + 2δ;
(iv) δ < 0, ℓ < a2 + δ; (v) δ < 0, ℓ > a2 + δ.

Consider v ∈ S and let a, δ, ℓ stand for a(v), δ(v), ℓ(v), respectively. The desired
worm w = w(v) = (X ′, X ′′, Y ′, Y ′′) on Φ is assigned by the following three rules (see
Fig. 5 where the corresponding worms are drawn in bold and δ ̸= 0). We denote the
ℓ1-distance of points A,A′ by ∥AA′∥.

(8.8) The horizontal limb of w connects the points X ′ := (2a1, a2) and X
′′ := (2a3, a2)

(degenerating into the single point X = (2a1, a2) when δ ≤ 0; cf. (8.1)).

(8.9) Let δ ≥ 0. Then (see Fig. 5(i),(ii),(iii)):

(i) if ℓ < a2, then w is the VH-worm in which the lower limb connects the
points Y ′ := (2a1, ℓ) and Y

′′ = X ′ = (2a1, a2);

(ii) if a2 ≤ ℓ ≤ a2 + 2δ, then w is the H-worm in which the point Y is located
at (2a1 + ℓ− a2, a2);

(iii) if ℓ > a2 + 2δ, then w is the HV-worm in which the upper limb connects
the points Y ′ = X ′′ = (2a3, a2) and Y

′′ := (2a3, ℓ− 2δ).

(8.10) Let δ ≤ 0. Then w is the V-worm and (see Fig. 5(iv),(v)):

(i) if ℓ ≤ a2 + δ, then Y ′ := (2a1, ℓ) and Y
′′ := (2a1, a2 + |δ|) = X + (0, |δ|);

(ii) if ℓ > a2+δ, then Y
′ := (2a1, a2+δ) = X+(0, δ) and Y ′′ := (2a1, ℓ+2|δ|).

First of all we have to check that each worm constructed by (8.8)–(8.10) is well-
defined and their set is complete (coincides with the set of worms in W (c̄)).

By (8.8), both points X ′, X ′′ lie in Φ and their first coordinates are even (as
required in (7.2)(i)). Also any horizontal line-segment in Φ connecting points (x′, y)
and (x′′, y) with x′, x′′ even and y integer is present as the horizontal limb of w(v) for
some v ∈ S (namely, with a1(v) = x′/2, a2(v) = y, a3(v) = x′′/2). To verify other
properties, it is useful to partition S into subsets (groups) S(a, δ), each depending on
a pair (a, δ) as in (8.1) and consisting of all v ∈ S such that a(v) = a and δ(v) = δ.
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That is, S(a, δ) is formed by the vertices of the corresponding middle subcrystal,
denoted as P (a, δ); so P (a, δ) = P (v) for all v ∈ S(a, δ). We consider two cases.

Case I: δ ≥ 0. Define Q = Q(a, δ) to be the union of the vertical line-segments
Y0X

′ and X ′′Y1 and the horizontal line-segment X ′X ′′, where Y0 := (2a1, 0) and
Y1 := (2a3, c2). Note that the sum of lengths of these segments is a2 + (2a3 − 2a1) +
(c2 − a2) = c2 +2δ (in view of a3 − a1 = δ); this is equal to the length c↑↓2 of the path
P = P (a, δ) (cf. (8.7)). Regarding Q as the corresponding path from Y0 to Y1, we can
identify it with P . Comparing (8.4) with (8.9), we observe that: the first vertex of P
(where ℓ = 0) is identified with Y0, and the last vertex of P (where ℓ = c2 + 2δ) with
Y1. For the first vertex, the arising worm w has the Y ′ point at Y0 and is the largest
VH-worm for S(a, δ), whereas for the last vertex, w has the Y ′′ point at Y1 and is the
largest HV-worm for S(a, δ). When moving along P step by step, the current worm
w = w(v) evolves as follows: while ℓ(v) < a2, w is a VH-worm whose lower limb
Y ′X ′ shortens by 1 at each step; while a2 ≤ ℓ(v) < a2+2δ, w is an H-worm in which
the point Y shifts to the right by 1 at each step; and while a2 + 2δ ≤ ℓ(v) < c2 + 2δ,
w is an HV-worm whose upper limb X ′′Y ′′ increases by 1 at each step. This behavior
matches the action of operator 2̃ on the worm graph.

Case II: δ ≤ 0. Let Y0 := (2a1, 0) and Y1 := (2a1, c2) (cf. the previous case)

and define Ỹ0 := (2a1, a2 + δ) and Ỹ1 := (2a1, a2 + |δ|). (Recall that δ ≤ 0 implies
a1 = a3.) Comparing (8.4) with (8.10), we observe that: for the first vertex of
P = P (a, δ) (where ℓ = 0), the arising worm w has the Y ′ point at Y0 and the Y ′′

point at Ỹ1, whereas for the last vertex of P (where ℓ = c2 + 2δ), w has Y ′ at Ỹ0
and Y ′′ at Y1. When moving along P , the current H-worm evolves as follows: while
ℓ(v) < a2 + δ (and therefore, ∥Y ′X∥ > |δ| = ∥XY ′′∥), the lower limb Y ′X shortens

by 1 at each step and Y ′′ rests at Ỹ1, and while a2+δ ≤ ℓ(v) < c2+2δ (and therefore,
∥Y ′X∥ = |δ| ≤ ∥XY ′′∥) , the upper limb XY ′′ increases by 1 at each step and Y ′

rests at Ỹ0. (Note that min{∥Y ′X∥, ∥XY ′′∥} is invariant and equal to |δ|.) Again,
this matches the action of 2̃ on the worm graph.

Thus, we come to the following

Proposition 8.3 By the above construction, the correspondence v 7→ w(v) is a bi-
jection between the vertices of the symmetric extract B from K(c) and the vertices of
the worm graph W = W (c̄1, c̄2). Under this bijection, the edges of second color 2̄ of
B are transferred to the edges of second color 2̃ of W .

8.3 Verification of edges of color 1

To finish the proof of Theorem 6.3 it remains to show that under the above cor-
respondence v 7→ w(v), the edges of color 1̄ in the symmetric extract B from
K = K(c1, c2, c1) are transferred one-to-one to the edges of color 1̃ in the worm
graph W (c1, c2). This involves additional ideas and technical tools.

Proposition 8.4 For each v ∈ S, the following properties hold:
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(i) if 1̃ does not act at the worm w(v), then 1̄ does not act at v;

(ii) if 1̃ acts at w(v), then 1̄ acts at v and w(1̄v) = 1̃w(v).

Proof We will use induction on the length of w(v), which is defined below. When
needed, handling one or another object related to v (or another vertex in S), we
will include v as argument in corresponding notation (on the other hand, we of-
ten omit v when it is clear from the context). We associate to v the integers
a1(v), a2(v), a3(v), δ(v), ℓ(v) as before. Considering the worm w(v) in the form of
six-tuple (x′(v), y(v), x′′(v); y′(v), x(v), y′′(v)) as defined in Section 7, we introduce the
following values:

p1(v) := x′(v)/2, p2(v) := y′(v), q1(v) := x′′(v)/2, (8.11)

q2(v) := y′′(v) and η(v) := q1(v) + q2(v)− p1(v)− p2(v).

Then pi ≤ qi, i = 1, 2, and the corresponding points X ′(v), X ′′(v), Y ′(v), Y ′′(v)
are located within the rectangle Rv := {(α, β) ∈ R2 : 2p1(v) ≤ α ≤ 2q1(v), p2 ≤
β ≤ q2(v)}. Moreover, at least one of X ′(v), Y ′(v) lies at the south-west corner
(2p1(v), p2(v)) of Rv and at least one of X ′′(v), Y ′′(v) lies at the north-east corner
(2q1(v), q2(v)); one may say that w(v) spans Rv. We also call Rv the domain of w(v).
It degenerates into a horizontal segment (a vertical segment, a single point) when
w(v) is an H-worm (resp. a V-worm, a principal point).

In addition, extending p(v) and q(v) to the self-complementary triples p̂ =
p̂(v) := (p1(v), p2(v), p1(v)) and q̂ = q̂(v) := (q1(v), q2(v), q1(v)), we consider the
self-complementary vertices v̌[p̂] and v̌[q̂] in the principal lattice Π of K and define
the graph Bv to be the interval of B from v̌[p̂] to v̌[q̂]. We will use the following easy
corollary from Proposition 2.3.

Corollary 8.5 Bv is isomorphic to B(q(v) − p(v)) (the symmetric extract from
K(q̂(v)− p̂(v)).

The number η(v) in (8.11) is just what we call the length of w(v). We assume by
induction that the required properties (i),(ii) are valid for each v′ ∈ S with η(v′) <
η(v). When 1̃ acts at w(v), we denote by u the element of S such that w(u) = 1̃w(v)
(existing by Proposition 8.3). (So our goal in this case is to show that u = 1̄v.) From
the description of the worm model one can see that for the domain Ru, only three
situations are possible: (a) Ru ⊂ Rv (where the inclusion is strict), (b) Ru ⊃ Rv, and
(c) Ru = Rv. The first case is easy.

Claim 1 (i) If Ru ⊂ Rv, then 1̄ acts at v and u = 1̄v. (ii) Suppose 1̄ acts at v and
let v′ := 1̄v. If η(v′) < η(v), then 1̃ acts at w(v) and u = v′.

Proof (i) Clearly Ru ⊂ Rv implies η(u) < η(v). Applying the induction to the
vertex u in the reversed graph Brev (which is isomorphic to B), one can conclude
that the operator reverse to 1̄ transfers u to v. Since 1̄ is invertible, u = 1̄v.

Part (ii) is proved in a similar way.
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The situation Ru ⊇ Rv is less trivial. We examine three cases.

Case 1: w(v) is an H-worm, i.e. p2 = q2 =: r (hereinafter pi stands for pi(v), and qi
for qi(v)). Then q1−p1 = δ ≥ 0, X ′(v) = (2p1, r), X

′′(v) = (2q1, r) and Y (v) = (x, r)
for some 2p1 ≤ x ≤ 2q1. For i = 0, 1, . . . , 2δ, let vi denote the vertex in S such that
w(vi) is the H-worm with X ′(vi) = X ′(v), X ′′(vi) = X ′′(v) and Y (vi) = (2p1 + i, r).
These worms have the same domain, and v = vj for some j.

If j > δ, then ∥X ′(v)Y (v)∥ = j > 2δ − j = ∥Y (v)X ′′(v)∥; therefore (cf. (7.4)) 1̃
acts at w(v) and moves the X ′ point by two units to the right. Then Ru ⊂ Rv, and
we are done by Claim 1(i).

Now let j ≤ δ. We rely on the following claim; it will be proved in the Appendix.

Claim 2 When j ≤ δ, operator 1̄ acts at v if and only if q1 < c1.

If q1 = c1 (and therefore X ′′(v) lies on the right boundary of the entire region
R(c1, c2)), then 1̃ does not act at w(v). By Claim 2, 1̄ does not act at v as well, and
we obtain (i) in the proposition.

Thus, we may assume that q1 < c1. This and ∥X ′(v)Y (v)∥ = j ≤ 2δ − j =
∥Y (v)X ′′(v)∥ imply that 1̃ acts at w(v) and moves the X ′′ point by two units to the
right. Then w(u) = 1̃w(v) is the H-worm with X ′(u) = X ′(v), Y (u) = Y (v) and
X ′′(u) = X ′′(v) + (2, 0) = (2q1 + 2, r). In particular, Ru ⊃ Rv.

By Claim 2, 1̄ acts at v; let v′ := 1̄v. Notice that the assertion in this claim
depends on δ − j and c1 − q1, but not on p1, q1, r, c1. So we can apply it to the
subgraph Bu of B (the interval between the principal vertices v̌[(p1, r, p1)] and v̌[(q1+
1, r, q1 + 1)]), appealing to Corollary 8.5. This implies the important fact that the
vertex v′ belongs to Bu, whence w(v

′) is an H-worm with Rv′ ⊆ Ru. Let

X ′(v′) = (2p′1, r), X ′′(v) = (2q′1, r) and Y (v′) = (2p1 + j′, r).

We have to show that v′ = u, i.e.

p′1 = p1, q′1 = q1 + 1 and j′ = j. (8.12)

To show this, we will construct certain routes in Bu and appeal to the fact that Bu

is graded (i.e. for any route P in Bu and each color ζ, the difference kζ(P ) between
the number of forward and backward edges of color ζ in P depends only on the
beginning and end of P ; cf. 1 in Section 6). (Hereinafter by a route we mean a path
with possible backward edges.)

The case η(v′) < η(v) is impossible, by Claim 1(ii) and the inclusion Ru ⊃ Rv.
Hence either (a) p′1 = p1 and q

′
1 = q1, or (b) p

′
1 = p1+1 and q′1 = q1+1, or (c p′1 = p1

and q′1 = q1 + 1. First of all we exclude (a) and (b).

1) Suppose p′1 = p1 and q′1 = q1. Then the worm w(v′) is obtained from w(v)
by moving the Y point by j′ − j units (to the right or left depending on the sign of
j′ − j). Hence w(v′) = 2̃j′−jw(v), implying v′ = 2̄j′−jv (since the “operator” w and
the second color commute, by Proposition 8.3). The latter is impossible since v′ = 1̄v
and Bu is graded.
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2) Suppose p′1 = p1 + 1 and q′1 = q1 + 1. We can find in Bu a route P1 from
v̌0 := v̌[(p1, r, p1)] to v and a route P2 from v to v̌1 := v̌[(q1 + 1, r, q1 + 1)] such that

k1̄(P1) = δ, k2̄(P1) = j, k1̄(P2) = δ + 2, k2̄(P2) = 2δ + 2− j. (8.13)

To get P1, we construct a sequence of worms as follows. Starting with the principal
worm w(v̌0), we first move the X ′′ point (by two units per move) δ times, obtaining
X ′′ = (2p1 + 2δ, r). Then move Y (by one unit per move) j times, obtaining Y =
(2p1 + j, r). And to get P2, we start with w(v) and first make 2δ − j moves with Y
(obtaining Y = X ′′ = (2q1, r)), then q1 moves with X ′ (obtaining X ′ = (2q1, r)), and
finally one move with X ′′, two moves with Y and one move with X ′. This results in
X ′ = X ′′ = Y = (2q1 + 2, r), giving the worm w(v̌1). Each of these moves on worms
induces passing through the corresponding edge in Bu: this is clear when operator
2̃ applies and follow by the induction when 1̃ applies (since at least one of the two
worms involved in the operation has the length less than η(v)). This gives P1, P2

satisfying (8.13). (Note that the construction of P2 remains correct when η(v) = 0,
i.e. p1 = q1 and v = v̌0. In this case there is a unique directed path P from v̌0
to v̌1 = v̌[(p1 + 1, r, p1 + 1)] in B; see the illustrations of K(1, 0, 1) and B(1, 0) in
Section 6. It corresponds to the relation w(v̌1) = 1̃2̃2̃1̃w(v̌0) in W .)

Using a similar procedure, we construct a route Q2 from v′ to v̌1 such that

k1̄(Q2) = δ and k2̄(Q2) = 2δ + 2− j′.

Then concatenating the route P1, the move by 1̄ from v to v′, and the route Q2, we
obtain a route P ′ from v̌0 to v̌1 for which k1̄(P

′) = δ+ 1+ δ. On the other hand, the
path from v̌0 to v̌1 that is the concatenation of P1 and P2, denoted as P1 · P2, gives
k1̄(P1 · P2) = 2δ + 2. A contradiction with the gradedness of B.

3) Now let p′1 = p1 and q′1 = q1 + 1. To show the desired equality j′ = j, consider
the vertex z in Bu such that w(z) is the H-worm with

X ′(z) = (2p1 + 2, r), X ′′(z) = (2q1 + 2, r) and Y (z) = (2q1 + 2− j, r).

Then the isomorphism between Brev
u and Bu swaps z and v (as well as v̌0 and v̌1).

This implies that 1̄−1 acts at z and the worm of z′ := 1̄−1z should be “symmetric”
to the worm of v′, namely:

X ′(z′) = (2p1, r), X ′′(z′) = (2q1 + 2, r) and Y (z′) = (2q1 + 2− j′, r).

Then w(v′) is transformed into w(z′) by moving the Y point by (2δ + 2− j′)− j′ =
2δ + 2 − 2j′ units. Now concatenating the above route P1 from v̌0 to v, the 1̄-edge
from v to v′, the corresponding route from v′ to z′, the 1̄-edge from z′ to z, and the
route from z to v̌1 that is “symmetric” to P1, we obtain a route Q from v̌0 to v̌1 such
that

k2̄(Q) = j + (2δ + 2− 2j′) + j = 2δ + 2 + 2j − 2j′.
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Since B is graded, we must have k2̄(Q) = k2̄(P1)+k2̄(P2) = 2δ+2 (cf. (8.13)). Hence
j′ = j, yielding (8.12). Thus, we obtain (ii) in the proposition.

Case 2: w(v) is a V-worm with X(v) ̸= Y ′′(v). Then Rv is the vertical segment
connecting the points Y ′(v) = (f, p2) and Y

′′(v) = (f, q2), where f := p1 = q1. Also
X(v) = (f, p2 + j) for some 0 ≤ j < h := q2 − p2. For i = 0, . . . , h, let zi denote the
vertex of B such that Rzi = Rv and X(zi) = (f, p2 + i); then v = zj.

By (7.4), for i = 0, . . . , h− 1, the worm w(zi) is transformed by 1̃ into the worm
w(zi+1). Define z

′
i := 1̄zi. Our goal is to show that z′i = zi+1 for i = 0, . . . , h− 1. We

rely on the following claim which will be proved in the Appendix.

Claim 3 Operator 1̄ acts at each zi with 0 ≤ i < h.

This claim does not impose any conditions on f, p2, c1, c2; so it is applicable to the
subgraph Bv of B (taking into account Corollary 8.5). This implies Rz′i

⊆ Rzi = Rv

for each i < h. The strict inclusion here is excluded by Claim 1(ii). Hence Rz′i
= Rv,

implying z′i = zi′ for some i′ ∈ {0, . . . , h}.
To show the desired equality i′ = i+1 for each i, we use the next claim, denoting

the principal vertices v̌[(f, p2, f)] and v̌[(f, q2, f)] by v̌0 and v̌1, respectively.

Claim 4 Let i ̸= h/2. Let P1 be a route (in B) from v̌0 to zi, and P2 a route from
zi to v̌1. Then k1̄(P1) = i and k1̄(P2) = h− i. In particular, k1̄(P1 · P2) = h.

Proof We construct a sequence of worms starting with w(zi) and ending with w(v̌1)
(aiming to obtain P2 as above). Two cases are possible: (a) i > h/2, and (b) i < h/2.
In case (a), we first apply to w(zi) operator 2̃ which, in view of ∥Y ′(zi)X(zi)∥ = i >
h − i = ∥X(zi)Y

′′(zi)∥, moves Y ′ by one unit up (obtaining Y ′ = (f, p2 + 1)). Then
we make h− i moves with X (obtaining X = (f, q2)), followed by h− 1 moves with
Y ′. This results in Y ′ = Y ′′ = X = (f, q2). And in case (b), we first apply operator
2̃−1 which, in view of ∥Y ′(zi)X(zi)∥ < ∥X(zi)Y

′′(zi)∥, moves Y ′′ by one unit down
(obtaining Y ′′ = (f, q2 − 1)). Then we make h − i − 1 moves with X (obtaining
X = (f, q2 − 1)), followed by h − 1 moves with Y ′ (obtaining Y ′ = (f, q2 − 1)),
and finally make one move with each of Y ′′, X, Y ′ (in this order); this results in
Y ′ = Y ′′ = X = (f, q2).

Since every time we either apply operator 2̃ or 2̃−1, or apply 1̃ to a worm w(z′)
with Rz′ ⊂ Rv, we can conclude that in each case the constructed sequence of worms
induces a route P from zi to v̌1 in Bv. The equality k1̄(P ) = h− i follows by counting
the number of applications of 1̃ in the sequence.

A route P ′ from v̌0 to zi, giving k1̄(P
′) = i, is constructed in a similar way (by

applying the above procedure to zi and v̌0 in Brev
v ).

Consider i ̸= h/2, h. If i′ ̸= h/2, take a route P1 from v̌0 to zi and a route P ′
2

from zi′ to v̌1. Let Q be the concatenation of P1, the 1̄-edge from zi to zi′ , and P
′
2.

By Claim 4, k1̄(P1) = i and k1̄(P
′
2) = h− i′; therefore, k1̄(Q) = i+1+ h− i′. On the

other hand, k1̄(Q) must be equal to h (since B is graded and k1̄(P1 · P2) = h). This
implies i′ = i+ 1, as required.
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Now let i = h/2 − 1 (when h is even). Then the case i′ = h/2 (= i + 1) is only
possible (since i′ ̸= h/2 would imply i′ ̸= i + 1, leading to a contradiction with the
argument above). Finally, let i = h/2. Considering Brev

v and i′′ = h/2 + 1, we have
1̄−1zi′′ = zh/2. Hence i

′ = i′′ = h/2 = i+ 1, as required.

Thus, (ii) in the proposition is valid for each v = zi with i < h.

Case 3: w(v) is a proper VH-worm or a proper HV-worm or a V-worm with X(v) =
Y ′′(v) ̸= Y ′(v). (This is the simplest case in our analysis.) When w(v) is an HV-
worm, we have p1 < q1, X ′(v) = (2p1, p2) and X ′′(v) = Y ′(v) = (2q1, p2). Then
operator 1̃ moves X ′ to (2p1 + 2, p2); this gives Ru ⊂ Rv, and (ii) in the proposition
follows from Claim 1(i).

So we may assume that w(v) is the VH-worm with Y ′(v) = (2p1, p2), Y ′′(v) =
X ′(v) = (2p1, q2) and X

′′(v) = (2q1, q2); it degenerates into a V-worm when p1 = q1.
The following claim will be proved in the Appendix.

Claim 5 When w(v) is a VH-worm, 1̄ acts at v if and only if q1 < c1.

In case q1 = c1, we have (i) in the proposition.

Let q1 < c1. Then 1̃ acts at w(v) and moves X ′′ by two units to the right,
making the VH-worm w(u) with Y ′(u) = Y ′(v) and X ′′(u) = (2q1+2, q2). Claim 5 is
applicable to Bu, whence the vertex v′ := 1̄v satisfies Rv′ ⊆ Ru. The case Rv′ ̸= Ru

is excluded (by repeating some reasonings from Case 1 and using Claim 1(ii)).

Let Rv′ = Ru. Then w(v′) is either the VH-worm w(u) (yielding (ii) in the
proposition), or the HV-worm with X ′(v′) = (2p1, p2) and Y

′′(v′) = (2q1+2, q2). One
easily shows that the latter is impossible.

Thus, the proposition is valid in all cases.

This completes the proofs of Theorems 6.3 and 6.1.

Remark 5. Return to a symmetric A2n−1-crystal K = K(c) and its symmetric
extract B = B(c̄). Let SB(c) be the set of tuples a ∈ B(c) satisfying a2n−i = ai.
Then SΠ := {v̌[a] : a ∈ SB(c)} is the set of self-complementary principal vertices
in K. The projection a 7→ (a1, . . . , an) =: ā gives a bijection between SΠ and the
integer n-box B(c̄). Also for any a, a′ ∈ SB(c) with a ≤ a′, the interval I(a, a′) of K
between the principal vertices v̌[a] and v̌[a′] is isomorphic to the symmetric A2n−1-
crystal K(a′ − a); this implies that the symmetric extract from I(a, a′) is isomorphic
to the Bn-crystal B(ā′ − ā). Thus, SΠ possesses properties similar to (P1)–(P2)
mentioned in the Introduction for A-crystals, due to which this set can be regarded
as the principal lattice of the Bn-crystal B. Note, however, that SΠ need not satisfy
property (P3). This is seen already for n = 2. Indeed, in this case any principal
vertex v̌ is represented by a single point (x, y) (a principal worm) in the worm model;
therefore, in the subcrystal of color 1 (color 2) containing v̌, all vertices correspond
to horizontal (resp. vertical) worms covering (x, y), and none of proper VH- or HV-
worms can be used.

A similar construction of principal lattices can be given for C-crystals.
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9 Deriving Cn-crystals from symmetric A2n-crystals

By an analogue with the construction and results in Sections 6–8, we can construct
and examine the n-colored graphs being symmetric extracts from symmetric A2n-
crystals. In this section we show that these graphs are Cn-crystals.

Using terminology and notation similar to those in Section 6, we consider an A2n-
crystal K = K(c) = (V (K), E1⊔ . . .⊔E2n) with a parameter c satisfying ci = c2n+1−i,
denote by ī the pair of complementary colors (i, i′ := 2n + 1 − i) for i = 1, . . . , n,
and consider the corresponding complementarity involution σ : V (K) → V (K) and
the set S of self-complementary vertices v = σ(v) of K. When i < n, the colors i
and i′ are not neighboring, and, as before, we draw an edge of color ī from a vertex
u ∈ S to a vertex v ∈ S if and only if v = FiFi′(u) (= Fi′Fi(u)). The edges of color
n̄ = (n, n′ = n + 1) are assigned in a different way: we draw an n̄-edge from u ∈ S
to v ∈ S if and only if v = FnFn′Fn′Fn(u) (see an explanation in Remark 6 below).

Let C = (S, E1̄ ⊔ . . . ⊔ En̄) be the obtained n-colored graph. One can see that a
majority of reasonings of Section 6 remain applicable to our case, yielding common
properties of C and B.

Proposition 9.1 The symmetric extract C from a symmetric A2n-crystal K(c) sat-
isfies axioms (BC1) and (BC2) (from Section 2.2).

Thus, like the A2n−1 case, the key problem is to characterize the components
of the two-colored subgraph of C with colors n− 1 and n̄. This is equivalent to
characterizing the extract (S,E1̄ ⊔E2̄) from a symmetric A4-crystal K(c) with colors
1,2,3,4. Our goal is to show the following

Theorem 9.2 Let K(c) be a symmetric A4-crystal. Then the symmetric extract C
from K is the C2-crystal with parameter c̄ = (c1, c2) respecting the Cartan coefficients
m12 = −1 and m21 = −2.

(Cf. Theorem 6.3.) The proof will consist of several stages, which are analogous, to
some extent, to those in Section 8. We will identify the vertices of C with certain
quadruples (somewhat different from those in the A3 → B2 reduction), describe the
polytope spanned by these quadruples and show their one-to-one correspondence to
the vertices of the worm graph W (c2, c1). This gives a counterpart of Proposition 8.3
(but with colors 1̃, 2̃ swapped). Theorem 9.2 will be obtained by comparing the edges
in both graphs. As a result, the desired relation between A- and C-crystals follows.

Corollary 9.3 (Cf. [12, Th. 3.2.4].) The symmetric extract from a symmetric A2n-
crystal is a Cn-crystal, and any Cn-crystal is obtained in this way.

Figure 6 illustrates the “simplest” symmetric A4-crystals K(1, 0, 0, 1) and its sym-
metric extract C(1, 0).
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Figure 6: Creation of C(1, 0).

9.1 A polyhedral description for the vertices of C in case n = 2

Consider a self-complementary vertex v ∈ S. Take the corresponding objects re-
lated to v: the upper subcrystal K↑[a] (with colors 1, 2, 3) and the lower subcrys-
tal K↓[b] (with colors 2, 3, 4), the corresponding deviations ∆ = (∆1,∆2,∆3) and
∇ = (∇2,∇3,∇4), the hearts z := v↑[a|∆] and z′ := v↓[b|∇], and the middle subcrys-
tal K↑↓ (with colors 2, 3). (So K↑↓ contains v and has the heart z in Π↑[a], and z′ in
Π↓[b].) Denoting δ := ∆1, we observe that

∆ = (δ, 0,−δ) and ∇ = (−δ, 0, δ). (9.1)

(Cf. Lemma 8.1(iii).) Indeed, by the complementarity, we have (∇2,∇3,∇4) =
(∆3,∆2,∆1). This together with the relations ∇i = −∆i−1 for i = 2, 3, 4 (by (3.2))
give ∆1 = ∇4 = −∆3 = −∇2 and ∆2 = ∇3 = −∆2, yielding (9.1).

We also have b = (b1, b2, b3, b4) = (a4, a3, a2, a1) (by the complementarity). Com-
paring this with the relations b1 = a1 + ∆+

1 and b2 = a2 + ∆+
2 + ∆−

1 (by (3.1)) and
using (9.1), we obtain

a4 = a1 + δ+ and a3 = a2 + δ−. (9.2)

Thus, a and ∆ (as well as b,∇) are determined by a1, a2, δ. The latter triple obeys:

0 ≤ a1 ≤ c1; 0 ≤ a2 ≤ c2; (9.3)

−a2 ≤ δ ≤ c1 − a1. (9.4)

Here (9.3) is identical to (8.2) (and is obvious), but (9.4) is somewhat different
from (8.3). To see (9.4), take the parameter c↑ and the heart coordinate }↑ of K↑[a];
they are c↑i = ci − ai + ai+1 and }↑i = ai+1 for i = 1, 2, 3 (cf. (2.8),(2.9)). Since
∆ = (δ, 0,−δ), the evident relations −}↑i ≤ ∆i ≤ c↑i − }↑i , i = 1, 2, 3, are reduced to

−a2 ≤ δ ≤ c1 − a1 and − a4 ≤ −δ ≤ c3 − a3.
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The left expression is exactly (9.4) (and both inequalities in it are essential), whereas
the right expression is redundant (since (9.2) implies a4 ≥ a1 + δ ≥ δ and a3 − δ ≤
a2 ≤ c2 = c3).

(An additional fact is that (9.2),(9.3),(9.4) imply 0 ≤ a ≤ c. This is because
0 ≤ a1 ≤ a4 = a1 + δ+ ≤ c1 = c4 and 0 ≤ a2 + δ− = a3 ≤ a2 ≤ c2 = c3.)

One more, fourth, ingredient in the description of v comes up when we consider
the location of v in the middle subcrystal K↑↓ (this is a symmetric A2-crystal, and
our analysis becomes more involved compared with the A3 → B2 case where the cor-
responding middle subcrystal is a path). We rely on the following (using terminology
from Section 5.1).

Lemma 9.4 K↑↓ is symmetric, and a vertex v of K↑↓ belongs to S if and only if v
lies on the diagonal D = {(i, i)} of the critical lattice Π↑↓ of K↑↓. In particular, K↑↓

contains exactly |D| self-complementary vertices.

Proof Take a path in K↑↓ going from v to the sink t̃ of K↑↓, and let P ′ be the path
in K going from v and complementary to P . Then P ′ is contained in K↑↓ (since the
edges of both P, P ′ have colors only 2 and 3). Since the end t̃ of P has no outgoing
edges of colors 2 and 3, so does the end σ(t̃) of P ′. This implies σ(t̃) = t̃, i.e. t̃ ∈ S.
Similarly, considering a path in K↑↓ going from the source s̃ of K↑↓ to v (or to t̃), we
can conclude that s̃ ∈ S.

Consider a vertex u of K↑↓. If u belongs to the critical lattice Π↑↓ and has coor-
dinates (α, β) in it, then u is expressed as (23)β(32)α(s̃). Then the complementary
vertex σ(u) is (32)β(23)α(s̃), and u = σ(u) holds if and only if α = β, i.e. u lies on
the diagonal D. Also when u = t̃, the pair (α, β = α) becomes the parameter of K↑↓;
so K↑↓ is symmetric. Finally, if u is not in Π↑↓ and belongs to a right (left) sail, then
σ(u) must belong to the complementary left (resp. right) sail, whence σ(u) ̸= u.

Remark 6. For two consecutive elements u = (i, i) and w = (i + 1, i + 1) of D, we
have w = 2332(u). Also 32(u) ̸= 23(u). This leads to the following consequence of
Lemma 9.4: if u,w are two self-complementary vertices of a symmetric A2n-crystal
K and if w is obtained from u by applying a string of operators Fn and Fn+1, then
w = (FnF

2
n+1Fn)

q(u) for some integer q ≥ 0. This justifies the definition of edges of
color n̄ in the n-colored extract C.

Remark 7. For a vertex u of the A4-crystal K and a color i, define εi(u) := hi(u)−
ti(u), where hi(u) and ti(u) are the lengths of the maximal paths in K having color i
and going from u and to u , respectively (cf. Section 2.1). For a vertex u of C and a
color ī, the values hī, t̄i and εī(u) are defined in a similar way. Considering an edge
(u,w) of color 2̄ in C, we have (using axiom (A2) for K):

ε1̄(u) = ε1(u) = ε1(2(u))− 1 = ε1(32(u))− 1

= ε1(332(u))− 1 = ε1(2332(u))− 2 = ε1̄(w)− 2,

in view of w = 2332(u) and u,w ∈ S. In its turn, an edge (u,w) of color 1̄ in C gives

ε2̄(u) = ε2(u) = ε2(1(u))− 1 = ε2(41(u))− 1 = ε2̄(w)− 1.
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As a consequence for n-colored extracts, we obtain the relation ε ¯n−1(u)−ε ¯n−1(w) = −2
for an edge (u,w) of color n̄, and the relation εn̄(u)− εn̄(w) = −1 for an edge (u,w)
of color ¯n− 1. This hints that the pair of colors ¯n− 1, n̄ behaves as prescribed by
the Cartan coefficients mn−1,n and mn,n−1 for Cn-crystals figured in Axiom (BC4′).

Return to v as above. Using (3.4), we express the parameter c↑↓ of K↑↓ by

c↑↓2 = c2 −∆2 +∆1 = c2 + δ and c↑↓3 = c↑↓2 . (9.5)

By Lemma 9.4, the vertex v is a point (ρ, ρ) in the diagonal D. Then (9.5) implies
that the number ρ satisfies

0 ≤ ρ ≤ c2 + δ. (9.6)

The obtained quadruple (a1(v), a2(v), δ(v), ρ(v)) determining a vertex v ∈ S is
just what we call the description of v in the graph C with the “first” color 1̄ = (1, 4)
and the “second” color 2̄ = (2, 3). It satisfies (9.3),(9.4),(9.6). It is straightforward
to check the corresponding converse property, and we can conclude with the following
polyhedral result (cf. Theorem 8.2 for the A3 case).

Theorem 9.5 The above correspondence v 7→ (a1, a2, δ, ρ) gives a bijection between
the set of self-complementary vertices of a symmetric A4-crystal K(c) and the set of
integer solutions to the linear system {(9.3),(9.4),(9.6)}.

9.2 Relation to the worm graph

Based on the above linear system, we can associate the vertices of C to worms, but
now the colors 1̃ and 2̃ in the worm model turn out to be “swapped”: they become
related to colors 2̄ and 1̄ in C, respectively (which is agreeable with Remark 7).

More precisely, we should deal with the reversed parameter c′ = (c′1, c
′
2) := (c2, c1)

and accordingly consider the worm graph W (c′) whose vertices (worms) live in the
rectangle R(c′) = {(α, β) : 0 ≤ α ≤ 2c2, 0 ≤ β ≤ c1}. Given v ∈ S and its corre-
sponding a, δ, ρ, we construct the worm w = w(v) = (X ′, X ′′, Y ′, Y ′′) as follows:

Y ′ := (a2 + a3, a1); Y ′′ := (a2 + a3, a4); (9.7)

X ′ := (2min{ρ, a3}, a1 +min{(ρ− a3)
+, δ+}); (9.8)

X ′′ := (2a2 + 2(ρ− a2 − δ)+, a1 +min{(ρ− a3)
+, δ+}). (9.9)

These settings look cumbersome, and to make them more comprehensible, let us
define the following points on R(c′):

I0 := (0, a1), J0 := (2a3, a1), J1 := (2a2, a4), I1 := (2c2, a4).

Then, using relations (9.2)–(9.4),(9.6), we can rewrite (9.7)–(9.9) in a more en-
lightening form, given in (9.10) and (9.11).

(9.10) Let δ ≤ 0. Then a1 = a4, a3 = a2 + δ, and w is an H-worm such that:
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(i) Y is the middle point of the horizontal segment J0J1;

(ii) if ρ ≤ a3, then X
′ is the point (2ρ, a1) occurring in the horizontal segment

I0J0, and X
′′ = J1;

(iii) if ρ ≥ a3, then X
′ = J0, and X

′′ is the point (2a2+2(ρ−a3), a1) occurring
in the horizontal segment J1I1.

(See Fig. 7(a),(b).) Here (i) is obvious. Part (ii) follows from min{ρ, a3} = ρ,
min{(ρ − a3)

+, δ+} = 0 and ρ − a2 − δ = ρ − a3 ≤ 0 (since a3 = a2 + δ−);
cf. (9.8). And (iii) follows from min{ρ, a3} = a3, min{(ρ − a3)

+, δ+} = 0 and
(ρ− a2 − δ)+ = ρ− a3; cf. (9.9).

b bu u uI0 J0 J1 I1

X ′ Y X ′′

|δ| |δ|ρ

(0, a1) 2c22a3

(a)

b bu u uJ0 J1
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Figure 7: (a) δ < 0, ρ < a3; (b) δ < 0, ρ > a3; (c) δ > 0, ρ < a3; (d) δ > 0,
a3 < ρ < a3 + δ; (e) δ > 0, ρ > a3 + δ.

(9.11) Let δ ≥ 0. Then a4 = a1 + δ, a3 = a2, and w is an HV- or V- or VH-worm
such that:

(i) J0J1 is the vertical limb of w, Y ′ = J0 = (2a3, a1) and Y
′′ = J1 = (2a3, a4);

(ii) if ρ ≤ a3, then w is an HV-worm, X ′ is the point (2ρ, a1) occurring in the
horizontal segment I0J0, and X

′′ = J0;

(iii) if a3 ≤ ρ ≤ a3+δ, then w is a V-worm, and X is the point (2a3, a1+ρ−a3)
occurring in the vertical limb J0J1;

(iv) if ρ ≥ a3 + δ, then w is a VH-worm, X ′ = J1, and X ′′ is the point
(2a3 + 2(ρ− a3 − δ), a4) in the horizontal segment J1I1.

(See Fig. 7(c),(d),(e).) Again, (i) is obvious. Part (ii) is provided by min{ρ, a3} = ρ,
min{(ρ − a3)

+, δ+} = 0 and ρ − a2 − δ ≤ 0. Part (iii) follows from min{ρ, a3} = a3,
min{(ρ−a3)+, δ+} = ρ−a3 and ρ−a2−δ ≤ 0. And (iv) follows from min{ρ, a3} = a3,
a1 +min{(ρ− a3)

+, δ+} = a1 + δ = a4 and (ρ− a2 − δ)+ = ρ− a3 − δ.
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Relations (9.2)–(9.4),(9.6) ensure that w(v) is indeed a feasible worm on R(c′),
and one can see that any worm in W (c′) can be obtained by the above construction
from some v ∈ S. Furthermore, for an edge (u, v) of color 2̄ in C, we have a(v) = a(u),
δ(v) = δ(u) and ρ(v) = ρ(u) + 1. Considering (9.10),(9.11), one can realize that the
worm w(v) is obtained from w(u) by applying the first operator on W (c′) (which
updates X ′, X ′′ and preserves Y ′, Y ′′).

Thus, we can conclude with the following result analogous to Proposition 8.3.

Proposition 9.6 By the above construction, the correspondence v 7→ w(v) is a bijec-
tion between the vertices of the symmetric extract C from an A4-crystal K(c1, c2, c2, c1)
and the vertices of the worm graph W =W (c2, c1). Under this bijection, the edges of
color 2̄ in C are transferred one-to-one to the edges of color 1̃ in W .

9.3 Verification of edges of color 2

It remains to prove that the edges of color 1̄ in C are bijective to the edges of color
2̃ in W =W (c2, c1).

Proposition 9.7 For each v ∈ S, the following properties hold:

(i) if 2̃ does not act at the worm w(v), then 1̄ does not act at v;

(ii) if 2̃ acts at w(v), then 1̄ acts at v and w(1̄v) = 2̃w(v).

Proof Our approach is similar to used in Section 8.3; this allows us to argue in a
more concise manner, omitting details which can be restored by the similarity.

Given v ∈ S, we define

p1(v) := a3(v), q1(v) := a2(v), p2(v) := a1(v), q2(v) := a4(v),

consider η(v) and Rv as before and proceed by induction on the length η(v) of
the worm w(v), using Corollary 8.5 (where, instead of Bv, one should consider
the interval Cv of C between the principal vertices v̌[p2(v), p1(v), p1(v), p2(v)] and
v̌[q2(v), q1(v), q1(v), q2(v)]). When 2̃ acts at w(v), we define u so that w(u) = 2̃w(v).
As before, either Ru ⊂ Rv or Ru ⊇ Rv takes place.

The role of Claim 1 is now played by the following claim whose proof is similar.

Claim 1′ (i) If Ru ⊂ Rv, then 1̄ acts at v and u = 1̄v. (ii) If 1̄ acts at v and if
η(v′) < η(v), where v′ := 1̄v, then 2̃ acts at w(v) and u = v′.

Next we examine three cases (“symmetric” to the ones in the proof of Proposi-
tion 8.4); here pi, qi, ai concern v.

Case 1: w(v) is a V-worm, i.e. p1 = q1 =: r. Then q2 − p2 = δ ≥ 0. Also
Y ′(v) = (2r, p2), Y

′′(v) = (2r, q2) and X(v) = (2r, y) for some p2 ≤ y ≤ q2. Let
j := y − p2 (then 0 ≤ j ≤ δ).
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If j > δ/2, then ∥Y ′(v)X(v)∥ = j > δ − j = ∥X(v)Y ′′(v)∥. Hence (cf. (7.5))
operator 2̃ acts at w(v) and moves Y ′ by one unit up. This gives Ru ⊂ Rv, and we
are done by Claim 1′(i).

Now let j ≤ δ/2. The following claim will be proved in the Appendix.

Claim 2′ When j ≤ δ/2, operator 1̄ acts at v if and only if q2 < c1.

In case q2 = c1, neither operator 1̄ acts at v (by Claim 2′), nor operator 2̃ acts at
w(v) (as Y ′′ cannot be moved upward). So we obtain (ii) in the proposition.

Thus, we may assume that q2 < c1. This and ∥Y ′(v)X(v)∥ = j ≤ δ − j =
∥X(v)Y ′′(v)∥ imply that 2̃ acts at w(v) and moves Y ′′ by one unit up. Then w(u) is
the V-worm with Y ′(u) = (2r, p2), Y ′′ = (2r, q2 + 1) and X(u) = (2r, p2 + j).

Since Claim 2′ is applicable to the subgraph Cu of C, the vertex v′ := 1̄v belongs
to Cu, and w(v

′) is a V-worm with Rv′ ⊆ Ru. Let

Y ′(v′) = (2r, p′2), Y ′′(v′) = (2r, q′2) and X(v′) = (2r, p2 + j′).

To show that p′2 = p2, q′2 = q2 + 1 and j′ = j (yielding v′ = u), we argue as
follows. Since η(v′) < η(v) is impossible (by Claim 1′(ii) and in view of η(u) > η(v)),
we are in one of the following three cases: (a) p′2 = p2 and q′2 = q2; (b) p′2 = p2 + 1
and q′2 = q2 + 1; (c) p′2 = p2 and q′2 = q2 + 1.

Case (a) is impossible. For otherwise we would have w(v′) = 1̃j′−jw(v), implying
v′ = 2̄j′−jv (since 2̄ on C corresponds to 1̃ on W , by Proposition 9.6.) But C is
graded and v′ = 1̄v.

In cases (b) and (c), acting as in the proof of Proposition 8.4, we can construct
four routes P1, P2, Q1, Q2, respectively, from v̌0 := v̌[p2, r, r, p2] to v, from v to v̌1 :=
v̌[q2 + 1, r, r, q2 + 1], from v̌0 to v′, and from v′ to v̌1. Moreover, these routes are
consistent with W , in the sense that each of their 1̄-edges (2̄-edges) induces a 2̃-edge
(resp. 1̃-edge) in W . A direct count (using the corresponding routes in W ) gives

k1̄(P1) = δ, k2̄(P1) = j, k1̄(P2) = δ + 2, k2̄(P2) = δ + 1− j. (9.12)

In case (b), a similar count for Q2 gives k1̄(Q2) = q′2−p′2 = δ. Then concatenating
the route P1, the 1̄-edge from v to v′, and the route Q2, we obtain a route P ′ from v̌0
to v̌1 such that k1̄(P

′) = 2δ + 1. But k1̄(P1 · P2) = 2δ + 2; a contradiction.

Thus, case (c) is only possible. To show that j = j′, take the vertices z, z′ in Cu

whose worms are “symmetric” to w(v), w(v′), respectively, i.e.

Y ′(z) = (2r, p2 + 1), Y ′′(z) = (2r, q2 + 1), X(z) = (2r, q2 + 1− j);

Y ′(z′) = (2r, p2), Y ′′(z′) = (2r, q2 + 1), X(z′) = (2r, q2 + 1− j′).

By the isomorphism between Crev
u and Cu, we have z′ = 1̄−1z. Also w(v′) is trans-

formed into w(z′) by moving the X point by (q2 + 1 − j′) − (p2 + j′) = δ + 1 − 2j′

points (regarding the upward direction as positive). Now concatenating the route P1

from v̌0 to v, the 1̄-edge from v to v′, the corresponding route from v′ to z′, the 1̄-edge
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from z′ to z, and the route from z to v̌1 “symmetric” to P1, we obtain a route Q from
v̌0 to v̌1 such that

k2̄(Q) = j + (δ + 1− 2j′) + j = δ + 1 + 2j − 2j′.

On the other hand, k2̄(P1 · P2) = δ + 1 (see (9.12)). Hence j′ = j, as required.

Case 2: w(v) is an H-worm with Y (v) ̸= X ′′(v). Then Rv is the horizontal segment
connecting the pointsX ′(v) = (2p1, f) andX

′′(v) = (2q1, f), where f := p2 = q2. Also
Y (v) = (2p1 + j, f) for some 0 ≤ j < 2h, where h := |δ| = q1 − p1. For i = 0, . . . , 2h,
let zi denote the vertex of C such that Rzi = Rv and Y (zi) = (2p1+ i, f); then v = zj.

By (7.5), for 0 ≤ i < 2h, operator 2̃ transforms the worm w(zi) into w(zi+1).
Define z′i := 1̄zi. Our goal is to show that z′i = zi+1 for i = 0, . . . , 2h − 1. The
following claim will be proved in the Appendix.

Claim 3′ Operator 1̄ acts at each zi with 0 ≤ i < 2h.

This claim is applicable to the subgraph Cv of C, implying that Rz′i
⊆ Rzi = Rv

for each i < 2h. The strict inclusion here is impossible by Claim 1′(ii); so Rz′i
= Rv

and z′i = zi′ for some i′ ∈ {0, . . . , 2h}.
The following claim is proved analogously to the proof of Claim 4 in Section 8.3.

Here v̌0 := v̌[f, p1, p1, f ] and v̌1 := v̌[f, q1, q1, f ].

Claim 4′ Let i ̸= h. Let P1 be a route (in C) from v̌0 to zi, and P2 a route from zi
to v̌1. Then k1̄(P1) = i and k1̄(P2) = 2h− i. In particular, k1̄(P1 · P2) = 2h.

This claim enables us to prove the desired equalities i′ = i + 1. If i ̸= h, 2h and
i′ ̸= h, then concatenating a route from v̌0 to zi, the 1̄-edge from zi to zi′ , and a route
zi′ to v̌1, we obtain a route Q from v̌0 to v̌1 with k1̄(Q) = i+1+ 2h− i′ (by Claim 4′

applied to i and i′). This gives i′ = i+ 1 (since k1̄(Q) must be equal to 2h).

If i = h − 1, then i′ = h (= i + 1) is only possible. And if i = h, then i′ = h + 1
follows by considering Crev

v and i′′ := h+ 1 (obtaining 1̄−1zi′′ = zh, whence i
′ = i′′).

Case 3: w(v) is a proper VH-worm or a proper HV-worm or an H-worm with Y (v) =
X ′′(v) ̸= X ′(v). This case is examined in a similar way as Case 3 from the proof of
Proposition 8.4, relying on the following claim proved in the Appendix.

Claim 5′ When w(v) is an HV-worm, 1̄ acts at v if and only if q2 < c1.

This completes the proofs of Proposition 9.7, Theorem 9.2 and Corollary 9.3.

Appendix. Proofs of claims

In this section we prove the claims from Propositions 8.4 and 9.7 that were left without
verification, thus completing the proofs of main theorems on B- and C-crystals from
Sections 6,8,9. In the proofs below we will extensively use the explicit formulas on
the parameters, heart coordinates and etc. in A-crystals and their subcrystals.
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A.1 Proof of Claims 2, 3, 5 from Proposition 8.4

Recall that in Section 8 we considered a self-complementary vertex v of a symmetric
A3-crystal K = K(c1, c2, c1) and its symmetric extract B. Let a = (a1, a2, a3), ∆ =
(∆1,∆2) = (δ,−δ), ℓ, c↑ = (c↑1, c

↑
2), }↑ = (}↑1, }

↑
2), c

↑↓ = (c↑↓2 ), }↑↓ = (}↑↓2 ) be the
corresponding objects concerning v and its related upper subcrystal K↑[a] and middle
subcrystal K↑↓ (path of color 2). They are subject to relations (8.1)–(8.7).

The path K↑↓, further denoted as P2, is the lower subcrystal containing v in the
A2-crystal K

↑[a] with colors 1,2. The heart z of P2 (i.e. the common vertex of P2

and the critical lattice Π↑ of K↑[a]) has the coordinate }↑↓2 in P2 (counted from the
beginning of P2) equal to a2 + δ, by (8.7). Hence the deviation of v from z in P2 is
expressed as

∆↑↓
2 := ℓ− }↑↓2 = ℓ− a2 − δ. (10.1)

The maximal path P1 of color 1 that contains v is an upper subcrystal in K↑[a].
The location of v in P1 is crucial for the claims that we are going to prove: operator
1̄ acts at v if and only if v is not the last vertex of P1 (taking into account that either
none or both of operators 1, 3 act at v). In order to find this location, we will compute
the parameter (length) c↑↑1 of P1, the coordinate }↑↑1 of the heart z′ of P1 in P1 itself,
and the deviation ∆↑↑

1 of v from z′ in P1. Then

(10.2) 1̄ acts at v if and only if }↑↑1 +∆↑↑
1 < c↑↑1 .

The values figured in (10.2) can be expressed as follows (relying on the fact that
P1, P2 and v are interrelated upper, lower and middle subcrystals in K↑[a]). The
coordinates (locus) b↑ = (b↑1, b

↑
2) of z in Π↑ are expressed as b↑ = }↑ +∆. Then (8.6)

and the relations ∆ = (δ,−δ) and a3 = a1 + δ+ give

b↑1 = a2 + δ and b↑2 = a3 − δ = a1 + δ+ − δ = a1 − δ−. (10.3)

Applying Theorem 3.1 to K↑[a], P1, P2, we observe that the deviation ∆↑↑
1 is

equal to −∆↑↓
2 , and the coordinates (locus) a↑ = (a↑1, a

↑
2) of z

′ in Π are expressed as

a↑1 = b↑1 +∆↑↓
2

−
and a↑2 = b↑2 +∆↑↓

2

+
(cf. (3.3)). Using (10.1), we have

∆↑↑
1 = −∆↑↓

2 = a2 + δ − ℓ; (10.4)

a↑1 = b↑1 +∆↑↓
2

−
= a2 + δ + (ℓ− a2 − δ)− = min{ℓ, a2 + δ}; (10.5)

a↑2 = b↑2 +∆↑↓
2

+
= a1 − δ− + (ℓ− a2 − δ)+. (10.6)

Also (cf. (2.8),(2.9)):

c↑1 = c1 − a1 + a2, c↑↑1 = c↑1 − a↑1 + a↑2 and }↑↑1 = a↑2. (10.7)

Now (10.3)–(10.7) enable us to precisely compute the desired quantity:

c↑↑1 − }↑↑1 −∆↑↑
1 = (c↑1 − a↑1 + a↑2)− a↑2 − (a2 + δ − ℓ)

= (c1 − a1 + a2)−min{ℓ, a2 + δ} − a2 − δ + ℓ

= c1 − a1 − δ + ℓ−min{ℓ, a2 + δ} =: ω.
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Thus (by (10.2)), 1̄ acts at v if and only if ω > 0. (Note that simultaneously ω is
equal to the length of the maximal 1̄-colored path from v in B, i.e. to h1̄(v), using
notation from Section 2.)

Now we are ready to prove Claims 2, 3, 5.

1) The condition j ≤ δ in the hypotheses of Claim 2 is equivalent to ℓ ≤ a2 + δ
(this is seen by considering the actions of operator 2̃ on W described in Case I of
Section 8.2). Hence (in view of a1 + δ = a3)

ω = c1 − a1 − δ + ℓ− ℓ = c1 − (a1 + δ) = c1 − a3 = c1 − q1,

proving Claim 2.

2) Similar conditions δ ≥ 0 and ℓ ≤ a2 + δ hold in Claim 5, and we again obtain
ω = c1 − q1.

3) Since w(v) in Claim 3 is a V-worm, we have δ ≤ 0 and ℓ ≥ a2 + δ (see Case II
in Section 8.2), whence min{ℓ, a2 + δ} = a2 + δ. Also c1 ≥ a1. Then

ω = c1 − a1 − δ + ℓ− a2 − δ ≥ ℓ− a2 − 2δ.

Observe that X(v) is the point (a1, a2) and Y
′′(v) is the point (a1, ℓ−2δ). Now ω > 0

follows from the condition that X(v) lies below Y ′′(v).

A.2 Proof of Claims 2′, 3′, 5′ from Proposition 9.7

In Section 9.3 we considered a self-complementary vertex v of an A4-crystal K =
K(c1, c2, c2, c1) and related a, δ, ρ. Compared with the previous case, we are now
forced to handle more subcrystals of K that contain v, namely, K ′, K ′↓, K ′↑, P2, P1,
where:

(i) K ′ has colors 1,2,3 (it is just the upper subcrystal K↑[a] of K);

(ii) K ′↓ has colors 2,3; it is a lower subcrystal of K ′;

(iii) K ′↑ has colors 1,2; it is an upper subcrystal of K ′;

(iv) P2 has color 2; this path is an upper subcrystal of K ′↓, a lower subcrystal of
K ′↑, and a middle subcrystal of K ′;

(v) P1 has color 1; this path is an upper subcrystal of K ′↑.

Accordingly we denote:

(vi) the principal lattices of K, K ′, K ′↓, K ′↑ by Π, Π′, Π′↓, Π′↑, respectively;

(vii) the unique elements of Π∩K ′, Π′∩K ′↓, Π′∩K ′↑, Π′↓∩P2, Π
′↑∩P2, Π

′↑∩P1 by
z, z↓, z↑, z↓↑, z↑↓, z↑↑, respectively (these are the hearts of corresponding subcrystals);

(viii) the parameters of K ′, K ′↓, K ′↑, P1 by c′, c′↓, c′↑, c′↑↑, respectively (each be-
ing a duly indexed vector; e.g., c′ = (c′1, c

′
2, c

′
3), c

′↓ = (c′↓2 , c
′↓
3 ), c

′↑↑ = (c′↑↑2 )).

Considering one or another heart z•, we denote its coordinate in the principal
lattice of the smaller subcrystal by }′•; e.g., }′↓ concerns z↓ in Π′↓, and }′↑↓ concerns
z↑↓ in P2. Notation for additional objects (such as deviations, loci, et al.) will be
specified on the way.

Like the previous case (cf. (10.2)), the following property is evident:
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(10.8) 1̄ acts at v if and only if c′↑↑1 − }′↑↑1 −∆′↑↑
1 > 0,

where ∆′↑↑
1 is the deviation of v from z↑↑ in P1. To express the quantity figured

in (10.8) in terms of a1, a2, δ, ρ takes some technical efforts. We will use the following
auxiliary values:

ϕ := ρ− a2 − δ and ψ := ρ− a2 − δ−. (10.9)

Recall that the tuple a = (a1, a2, a3, a4) (satisfying (9.2)) is the locus of the heart
of K ′ in Π, and that the deviation in Π′ of the heart z↓ of K ′↓ from the heart v[a] of
K ′ is ∆ = (∆1, ∆2, ∆3) = (δ, 0,−δ) (by (9.1)).

Let a′, b′, a′↑, b′↑ denote the loci of z↑ in Π′, of z↓ in Π′, of z↑↑ in Π′↑, of z↑↓ in Π′↑,
respectively. By (2.8) and (2.9) (applied to appropriate subcrystals), we have

c′1 = c1 − a1 + a2, c′↑1 = c′1 − a′1 + a′2, c′↑↑1 = c′↑1 − a′↑1 + a′↑2 ; (10.10)

}′i = ai+1 (i = 1, 2, 3), }′↑i = a′i+1 (i = 1, 2), }′↑↑1 = a′↑2 . (10.11)

Since b′ = }′ +∆, the first relation in (10.11) gives

b′1 = }′1 + δ = a2 + δ and b′2 = }′2 + 0 = a3 = a2 + δ−. (10.12)

By (10.12) and (2.11) (applied to K ′, K ′↓), the locus }′↓ of z↓ in Π′↓ is computed as

}′↓2 = b′1 = a2 + δ and }′↓3 = b′2 = a2 + δ−. (10.13)

Consider K ′ and its lower, upper and middle subcrystals containing v, namely,
K ′↓, K ′↑ and P2, respectively. Let ∆

′↓ denote the deviation of z↓↑ from z↓ in Π′↓, and
∆′↑ the deviation of z↑↓ from z↑ in Π′↑. We know (cf. Lemma 9.4 and (9.5)) that
the subcrystal K ′↓ (with colors 2,3) is symmetric and has the parameter c′↓i = c2 + δ
(i = 2, 3). Also the vertex v is the point (ρ, ρ) in the principal lattice Π′↓. Hence v
coincides with z↓↑ (the heart of the path P2 w.r.t. Π

′↓). These facts give (using (10.9)
and (10.13)):

∆′↓
2 = ρ− }′↓2 = ρ− a2 − δ = ϕ and ∆′↓

3 = ρ− }′↓3 = ρ− a2 − δ− = ψ. (10.14)

This enables us to compute ∆′↑ and a′. Namely (using (3.2) and (3.3)):

∆′↑
1 = −∆′↓

2 = −ϕ and ∆′↑
2 = −∆′↓

3 = −ψ; (10.15)

and

a′1 = b′1 +∆′↓
2

−
= a2 + δ + ϕ−; (10.16)

a′2 = b′2 +∆′↓
2

+
+∆′↓

3

−
= a2 + δ− + ϕ+ + ψ−.

Also the locus b′↑ of z↑↓ in Π′↑ is expressed (using (10.11) and (10.15)) as

b′↑1 = }′↑1 +∆′↑
1 = a′2 − ϕ and b′↑2 = }′↑2 +∆′↑

2 = a′3 − ψ. (10.17)
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Next we use the fact that P2, P1 and v are the lower, upper and middle subcrystals
of K ′↑, respectively. The coordinate }′↑↓2 of z↑↓ in P2 is equal to b′↑1 (cf. (2.11)), and
the coordinate of v in P2 is equal to ρ (since the locus of v = z↓↑ in Π′↓ is (ρ, ρ)).
Hence the deviation ∆′↑↓

2 of v from z↑↓ in P2 is ρ − b′↑1 , and we have (using (10.15)
and (10.17)):

∆′↑↓
2 = ρ− b′↑1 = ρ− a′2 + ϕ = ρ− a2 − δ− − ϕ+ − ψ− + ϕ = ϕ− + ψ+. (10.18)

Finally, we have

∆′↑↑
1 = −∆′↑↓

2 and a′↑1 = b′↑1 +∆′↑↓
2

−
(10.19)

(cf. (3.2) and (3.3)), where a′↑ is the locus of z↑↑ in Π′↑.

The obtained formulas enable us to compute the desired quantity:

c′↑↑1 − }′↑↑1 −∆′↑↑
1 = (c′↑1 − a′↑1 + a′↑2 )− a′↑2 −∆′↑↑

1 (by (10.10),(10.11))

= (c′1 − a′1 + a′2)− (b′↑1 +∆′↑↓
2

−
) + ∆′↑↓

2 (by (10.10),(10.19))

= (c′1 − a′1 + a′2)− (a′2 − ϕ) + ∆′↑↓
2

+
(by (10.17))

= c′1 − a′1 + ϕ+ (ϕ− + ψ+)+ (by (10.18))

= (c1 − a1 + a2)− (a2 + δ + ϕ−) + ϕ+ (ϕ− + ψ+)+ (by (10.10),(10.16))

= c1 − a1 − δ + ϕ+ + (ϕ− + ψ+)+

= c1 − a1 − δ + (ρ− a2 − δ)+ + ((ρ− a2 − δ)− + (ρ− a2 − δ−)+)+ =: ω′.

Now we are ready to prove Claims 2′, 3′, 5′.

1) In the hypotheses of Claim 2′, w(v) is a V-worm; therefore, δ = a4 − a1 ≥ 0,
a2 = a3 and a2 ≤ ρ ≤ a2 + δ (cf. (9.11)(iii)). Then ϕ = ρ − a2 − δ ≤ 0 and
ψ = ρ− a2 ≥ 0. Also j = ρ− a2 ≤ δ/2. We have

ω′ = c1 − a1 − δ + (ρ− a2 − δ + ρ− a2)
+ = c1 − a4 + (2ρ− 2a2 − δ)+ = c1 − a4.

Since a4 = q2, ω′ > 0 if and only if c1 > q2, as required (in view of (10.8)).

2) In the hypotheses of Claim 3′, w(v) is an H-worm; therefore, δ ≤ 0. Moreover,
Y (v) ̸= X ′′(v) implies δ < 0 (cf. (9.10)). Also a1 ≤ c1. Then ω

′ ≥ c1 − a1 − δ > 0.

3) Since w(v) in Claim 5′ is an HV-worm, δ = a4 − a1 ≥ 0 and ρ ≤ a3 = a2
(cf. (9.11)(ii)). Then ϕ ≤ 0 and ψ ≤ 0. We have ω′ = c1 − a1 − δ + (ϕ− + ψ+)+ =
c1 − a4 = c1 − q2, as required.
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