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1 Introduction

There is a standard non-commutative deformation of the coordinate ring of the flag
variety; in particular, it comes from consideration in theoretical physics. Leclerc and
Zelevinsky [8] considered rational coordinate systems in which all elements quasi-
commute with each other, and gave a purely combinatorial characterization for a pair
of elements to be quasi-commuting, in terms of the so-called weak separation of the cor-
responding index sets. Also they proved that in the n-dimensional case a collection of
(pairwise) quasi-commuting Plücker coordinates has cardinality at most

(
n+1

2

)
+1, and

conjectured that any (inclusion-wise) maximal quasi-commuting collection has exactly
this cardinality. In [6] we affirmatively answered this conjecture, essentially relying on
results in [5] where so-called generalized tilings were introduced and studied and their
close relation to weakly separated collections was demonstrated.

Roughly speaking, a generalized tiling, or a g-tiling for short, is a certain generaliza-
tion of the notion of a rhombus tiling. While the latter is a subdivision of an n-zonogon
Z in the plane into rhombi, the former is a cover of Z with rhombi that may overlap
in a certain way.

Rhombus tilings have been well studied; for a wider discussion and related topics,
see, e.g., [1, 4, 7, 11, 12]. An especial role is played by a rhombus tiling associated to the
set of all intervals of the ordered set [n] of elements 1, 2, . . . , n; it is called the standard
tiling. An important known fact is that any rhombus tilings can be transformed into
the standard one by a sequence of normal flips, which are viewed locally as follows:
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On the other hand, it is shown in [5] that any g-tiling can be reduced to the standard
tiling by making a sequence of semi-normal flips, as illustrated in the picture:
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The purpose of this paper is to show that the semi-normal flips of g-tilings can be
associated with cluster mutations in the cluster algebra of the coordinate ring of the
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flag variety. (The notion of a cluster algebra was introduced in [3] and has proved its
importance in representation theory.) Namely, we associate to a g-tiling T a planar di-
rected graph Σ(T ) so that any semi-normal flip for T corresponds to a cluster mutation
for Σ(T ). As a consequence of this result and the main theorem in [6], we obtain that
any maximal quasi-commuting collection of quantum minors gives rise to a seed in that
quantum cluster algebra; this proves a conjecture in [9], see also [2]. Note that in [10]
a cluster algebra structure was established on the class of Postnikov’s diagrams. In
fact, we obtain a generalization of that result, using the transformation of Postnikov’s
diagrams to special g-tilings as described in the Appendix of [5].

2 Generalized tilings and weakly separated collections

2.1 Weakly separated collections.

We deal with two binary relations on subsets of [n]. For A,B ⊆ [n], we write:

(i) Al B if B − A is nonempty and i < j holds for any i ∈ A− B and j ∈ B − A
(where A′ −B′ stands for the set difference {i′ : A′ 3 i′ 6∈ B′});

(ii) A B B if both A − B and B − A are nonempty and B − A can be (uniquely)
expressed as a disjoint union B′ tB′′ of nonempty subsets so that B′ l A−B lB′′.

Note that these relations need not be transitive in general.

Definition Sets A,B ⊆ [n] are called weakly separated (from each other) if either
A l B, or B l A, or A B B and |A| ≥ B, or B B A and |B| ≥ |A|, or A = B. A
collection C ⊆ 2[n] is called weakly separated if any two of its members are weakly
separated. We will usually abbreviate the term “weakly separated collection” to “ws-
collection”.

These notions were introduced by Leclerc and Zelevinsky in [8] where their impor-
tance is demonstrated, in particular, in connection with the problem of characterizing
quasi-commuting quantum flag minors.

Recall that an n×n-matrix X of indeterminates xab is meant to be a quantum matrix
if there is an additional variable (quantum parameter) q and the following relations
hold:

xilxik = qxikxil ∀ i, ∀ k < l;

xjkxik = qxikxjk ∀ i < j, ∀ k;

xjkxil = xilxjk ∀ i < j, ∀ k < l;

xjlxik = xikxjl + (q − q−1)xilxjk ∀ i < j, ∀ k < l.

It was proved in [8] that, whenever X is lower triangular, quantum flag minors
X[i]×I and X[j]×J , where I, J ⊂ [n], i = |I| and j = |J |, are quasi-commuting (which
means that X[i]×I ×X[j]×J = qc(I,J)X[j]×J ×X[i]×I) if and only if the sets I and J are
weakly separated.
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2.2 Generalized tilings.

Tiling diagrams live within a zonogon, which is defined as follows. In the upper half-
plane R× R+, take n non-colinear vectors ξ1, . . . , ξn so that:

(i) ξ1, . . . , ξn follow in this order clockwise around (0, 0), and

(ii) all integer combinations of these vectors are different.

Then the set Z = Zn := {λ1ξ1 + . . . + λnξn : λi ∈ R, 0 ≤ λi ≤ 1, i = 1, . . . , n} is a 2n-
gone. Moreover, Z is a zonogon, as it is the sum of n line-segments {λξi : 1 ≤ λ ≤ 1},
i = 1, . . . , n. Also it is the image by a linear projection π of the solid cube conv(2[n]) into
the plane R2, defined by π(x) := x1ξ1 + . . . + xnξn. The boundary bd(Z) of Z consists
of two parts: the left boundary formed by the points (vertices) z`

i := ξ1 + . . . + ξi

(i = 0, . . . , n) connected by the line-segments z`
i−1z

`
i := z`

i−1 + {λξi : 0 ≤ λ ≤ 1}, and
the right boundary formed by the points zr

i := ξi+1 + . . . + ξn (i = 0, . . . , n) connected
by the line-segments zr

i z
r
i−1. So z`

0 = zr
n is the minimal vertex of Z and z`

n = zr
0 is the

maximal vertex. We direct each segment z`
i−1z

`
i from z`

i−1 to z`
i and direct each segment

zr
i z

r
i−1 from zr

i to zr
i−1.

A subset X ⊆ [n] is identified with the corresponding vertex of the n-cube and with
the point

∑
i∈X ξi in the zonogon Z. Due to (ii), all such points in Z are different.

In fact, it does not matter what vectors ξ1, . . . , ξn are chosen subject to (i),(ii). It
is convenient for us to assume that these vectors have unit height, i.e. each ξi is of the
form (ai, 1) (and a1 < . . . < an).

By a tile we mean a parallelogram τ of the form X + {λξi + λ′ξj : 0 ≤ λ, λ′ ≤ 1},
where X ⊂ [n] and 1 ≤ i < j ≤ n; we also call it an ij-tile at X and denote by
τ(X; i, j). According to a natural visualization of τ , its vertices X, Xi,Xj, Xij are
called the bottom, left, right, top vertices of τ and denoted by b(τ), `(τ), r(τ), t(τ),
respectively. (We write Xi′ . . . j′ for X ∪ {i′} ∪ . . . ∪ {j′}.) The edge from b(τ) to `(τ)
is denoted by b`(τ), and the other three edges of τ are denoted as br(τ), `t(τ), rt(τ) in
a similar way. Also we say that a point (subset) Y ⊆ [n] is of height |Y |.

A generalized tiling, or a g-tiling for short, is a collection T of tiles τ(X; i, j) which
is partitioned into two subcollections Tw and T b, of white and black tiles, respectively,
obeying axioms (T1)–(T4) below.

We associate to T the directed graph GT = (VT , ET ), where VT and ET are the sets
of vertices and edges, respectively, occurring in tiles of T . For a vertex v ∈ VT , the set
of edges incident with v is denoted by ET (v), and the set of tiles having a vertex at v
is denoted by FT (v).

(T1) Each boundary edge of Z belongs to exactly one tile. Each edge in ET not
contained in bd(Z) belongs to exactly two tiles. All tiles in T are different, in the
sense that no two coincide in the plane.

(T2) Any two white tiles having a common edge do not overlap, i.e. they have no
common interior point. If a white tile and a black tile share an edge, then these
tiles do overlap. No two black tiles share an edge.

See the picture; here all edges are directed up and the black tiles are drawn in bold.
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(T3) Let τ be a black tile. None of b(τ), t(τ) is a vertex of another black tile. All edges
in ET (b(τ)) leave b(τ), i.e. they are directed from b(τ). All edges in ET (t(τ))
enter t(τ), i.e. they are directed to t(τ).

We refer to a vertex v ∈ VT as terminal if v is the bottom or top vertex of some
black tile. A nonterminal vertex v is called ordinary if all tiles in FT (v) are white, and
mixed otherwise (i.e. v is the left or right vertex of some black tile). Note that a mixed
vertex may belong, as the left or right vertex, to several black tiles.

Each tile τ ∈ T corresponds to a square in the solid cube conv(2[n]), denoted by
σ(τ): if τ = τ(X; i, j) then σ(τ) is the convex hull of the points X,Xi,Xj, Xij in the
cube (so π(σ(τ)) = τ). (T1) implies that the interiors of these squares are pairwise
disjoint and that ∪(σ(τ) : τ ∈ T ) forms a 2-dimensional surface, denoted by DT , whose
boundary is the preimage by π of the boundary of Z. The last axiom is:

(T4) DT is a disc, in the sense that it is homeomorphic to {x ∈ R2 : x2
1 + x2

2 ≤ 1}.

When no black tile exists (i.e. T b = ∅), T turns into a pure tiling ; in this case the
tiles do not overlap and form a subdivision of Z (a pure tiling becomes a rhombus tiling
if the vectors ξi have equal euclidean norms).

The spectrum of a g-tiling T is the collection ST of (the subsets of [n] represented
by) nonterminal vertices in GT . The following result on g-tilings is of importance.

Theorem 2.1 [6] The spectrum ST of any generalized tiling T forms an (inclusion-
wise) maximal ws-collection. Conversely, for any maximal ws-collection C ⊆ 2[n], there
exists a generalized tiling T on Zn such that ST = C. (Moreover, such a T is unique
and there is an efficient procedure that constructs T from C.)

2.3 Flips in g-tilings.

Let T be a g-tiling. By an M-configuration in T we mean a quintuple of vertices of the
form Xi, Xj,Xk, Xij,Xjk with i < j < k (as it resembles the letter “M”), which is
briefly denoted as CM(X; i, j, k). By a W-configuration in T we mean a quintuple of
vertices Xi,Xk,Xij,Xjk, Xik with i < j < k (as resembling “W”), briefly denoted
as CW (X; i, j, k). A configuration is called feasible if all five vertices are non-terminal,
i.e. they belong to the spectrum ST .

Proposition 2.2 [5] Let the spectrum of a g-tiling T contain five non-terminal vertices
Xi, Xk, Xij, Xjk, Y , where i < j < k and Y ∈ {Xik, Xj}. Then there exists a g-
tiling T ′ such that ST ′ is obtained from ST by replacing Y by the other member of
{Xik, Xj}.

For such a pair of tilings, we say that T ′ covers T if Xj = Y ∈ ST .
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Theorem 2.3 [5] The set of g-tilings on Zn forms a poset w.r.t. the cover relation;
this poset has a unique minimal and a unique maximal elements.

3 Generalized tilings and the cluster algebra of the coordinate

ring of full flags

In this section we explain how to associate to a generalized tiling T on the zonogon Z
a planar directed graph Σ(T ) (different from GT ) in such a way that the semi-normal
flips between g-tilings correspond to cluster mutations between the associated graphs
(representing seeds in the related Plücker cluster algebra).

3.1 Construction of a planar digraph Σ(T ).

Given a g-tiling T , the set V (Σ(T )) of vertices of the digraph Σ(T ) is formed by the
spectrum ST of T .

The set E(Σ(T )) of edges of Σ(T ) consists of some white edges of the graph GT ,
some reversed white edges, and “horizontal” diagonals of tiles of T . Here, following
terminology from [5], an edge of GT is called (fully) white if both of its end vertices
are non-terminal.

Specifically, for each white tile τ ∈ Tw, the edge set of Σ(T ) contains the diagonal
eτ going from `(τ) to r(τ), and for each black tile τ ′ ∈ T b, it contains the diagonal eτ ′

going from r(τ ′) to `(τ ′).

For a white edge e of GT , the edge set E(Σ(T )) contains either e or its reverse edge
−e or none of e,−e. This is assigned by the following rules.

Suppose e is an internal edge (i.e. it is not contained in the boundary of Z). Then
e is a common edge of two white tiles, say, τ and τ ′. There are four possible cases:

a) if e is the edge rt(τ) of τ and the edge b`(τ ′) of τ ′, then we add e to E(Σ(T ));

b) if e = br(τ) = `t(τ ′), then we add −e to E(Σ(T ));

c) if e = rt(τ) = `t(τ ′), then none of e,−e is added to E(Σ(T ));

d) if e = br(τ) = b`(τ ′), then none of e,−e is added to E(Σ(T )).

Now suppose that e lies in the left boundary of Z, and let τ be the white tile
containing e. If e = `t(τ), then we add −e to E(Σ(T )). And if e = b`(τ), then neither
e nor −e is added to E(Σ(T )).

Finally, suppose that e lies in the right boundary of Z and belongs to a (white) tile
τ ′. If e = rt(τ ′), then we add e to E(Σ(T )). And if e = br(τ ′), then nether e nor −e is
added to E(Σ(T )).

This gives the desired digraph Σ(T ) = (V (Σ(T )), E(Σ(T ))).

The picture below illustrates the graph Σ(T ) for the standard tiling T (in case
n = 5). Recall that the vertices of such a T are the intervals in [n] (the sets [i..j] :=
{i, i + 1, . . . , j} for 1 ≤ i ≤ j ≤ n plus the empty set) and the tiles of T are white
and span all quadruples of intervals of the form [i..j], [i − 1..j], [i..j + 1], [i − 1..j + 1]
or ∅, {i}, {i + 1}, {i, i + 1}).
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3.2 Cluster algebras.

Let G = (V (G), E(G)) be a directed multigraph in which the vertex set V (G) is
partitioned into two subsets: a set V1 of frozen vertices, and a set V2 of mutable
vertices. The (integer) edge multiplicity function is regarded as being skew-symmetric:
if vertices u, v are connected by α edges going from u to v (which are members of E(G)),
we simultaneously think of these vertices as being connected by −α edges going from
v to u. To each vertex v of G one associates a variable xv so that {xv : v ∈ V (G)}
is a transcendence basis of a field of rational functions. Such a pair consisting of a
digraph and a transcendence basis indexed by its vertices is said to be a cluster seed ;
it generates a skew-symmetric cluster algebra [3].

The digraph and variables are modified by applying the following operations called
cluster mutations. A cluster mutation µv applied at a mutable vertex v ∈ V2 changes
one variable, namely, xv, and modifies the digraph G, as follows. For a vertex v, denote
In(v) := {v′ ∈ V (G) : (v′, v) ∈ E(G)} and Out(v) := {v′′ ∈ V (G) : (v, v′′) ∈ E(G)}.

The digraph µv(G) has the same vertex set as G, V (µv(G)) = V (G), partitioned
into frozen and mutable vertices in the same way as before. The edges E(µv(G)) are
obtained from edges E(G) by the following rule:

(i) the edges in E(µv(G)) incident to the vertex v are exactly the edges in E(G)
incident to v but taken with the reverse direction;

(ii) for each pair v′ ∈ In(v) and v′′ ∈ Out(v), form the edge (v′, v′′) in E(µv(G))
whose multiplicity is defined to be γ − α · β, where α ≥ 1 is multiplicity of the edge
(v′, v) in E(G), β ≥ 1 is that for (v, v′′), and γ ∈ Z is that for (v′, v′′);

(iii) the other edges of µv(G) are those of G that neither are incident to v nor
connect pairs v′, v′′ as in (ii).

For u 6= v, we put µv(xu) := xu and define µv(xv) = xnew
v by the following rule:

xnew
v · xv =

∏

v′∈In(v)

xv′ +
∏

v′′∈Out(v)

xv′′ .

This gives the new digraph µv(G) and variables µv(xu), u ∈ V (µv(G)) = V (G).

3.3 Main result.

Let T be a g-tiling, and Σ(T ) the planar digraph as above. We associate to each vertex
v ∈ ST the Plücker coordinate, that is, the flag minor with the column set indexed by
the subset S of [n] corresponding to v (and the row set [|S|]). We define the frozen
vertices in Σ(T ) to be the boundary vertices of GT .

Theorem 3.1 Let a g-tiling T ′ cover a g-tiling T . Then Σ(T ′) is obtained from Σ(T )
by applying a cluster mutation.
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Corollary 3.2 For any g-tiling T , the pair (Σ(T ), {X[|S|]×S : S ∈ ST}) represents
a cluster seed in in the cluster algebra of the coordinate ring of the flag variety (the
Plücker cluster algebra).
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