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1 Introduction1.1 Multi�owsFor a function ϕ : X → R+ and a subset A ⊆ X, we write ϕ(A) to denote ∑
x∈A ϕ(x).The incidence vector of A in RX is denoted by χA, i.e. χA(e) is 1 for e ∈ A and 0 for

e ∈ X − A (usually X will be clear from the context). When A is a multiset, χA(e)denotes the number of occurrences of e in A.In an undirected graph G, the sets of nodes and edges are denoted by V G and EG,respectively. When G is a directed graph, we speak of arcs rather than edges and write
AG instead of EG. A similar notation is used for paths, cycles, and etc.A walk in G is meant to be a sequence (v0, e1, v1, . . . , ek, vk), where each ei is an edge(or arc) and vi−1, vi are its endnodes; when G is a digraph, ei is directed from vi−1 to vi.Edge-simple (or arc-simple) walks are called paths.We consider an undirected graph G and a distinguished subset T ⊆ V G of nodes,called terminals. Nodes in V G − T are called inner. A T -path is a path P in G whoseendnodes are distinct terminals; we usually assume that all the other nodes of P areinner. The set of T -paths is denoted by P. A multi�ow is a function F : P → Q+.Equivalently, one may think of F as a collection(1.1) {(α1, P1), . . . , (αn, Pm)}(for some m), where the Pi are T -paths and the αi are nonnegative rationals, calledweights of paths. Sometimes (e.g., in [IKN98]) such a multi�ow F is called free toemphasize that all pairs of distinct terminals are allowed to be connected by �ows. Thevalue val(F ) of F is ∑

P F (P ). For a node v, de�ne(1.2) F̂ (v) :=
∑

(F (P ) : P ∈ P, v ∈ V P ) ;the function F̂ on V G is called the (node) load function. Let c : V G→ Z+ be a nonneg-ative integer function of node capacities. We say that F is feasible if F̂ (v) ≤ c(v) for all
v ∈ V G.Suppose we are given, in addition, a function a : V G → Z+ of node costs. Then thecost a(F ) of a multi�ow F is the sum ∑

P a(P )F (P ), where a(P ) stands for the cost
a(V P ) of a path P .In this paper we consider the following problem:(N) Given G,T, c, a as above, �nd a multi�ow F of minimum possible cost a(F ) amongall feasible multi�ows of maximum possible value.1.2 Previous resultsWhen |T | = 2, (N) turns into the undirected min-cost max-�ow problem under nodecapacities and costs, having a variety of applications; see, e.g., [FF62, La76]. It admitsinteger optimal primal and dual solutions [FF62].In the special case a ≡ 0, we are looking simply for a feasible multi�ow of maximumvalue. Such a problem has half-integer optimal primal and dual solutions, due to results2



of Pap [Pa07] and Vazirani [Va01], respectively. Also it is shown in [Pa07] that theproblem is solvable in strongly polynomial time by using the ellipsoid method.An edge-capacitated version of (N) has been well studied. In this version, denotedby (E), c and a are functions on EG rather than V G. For a multi�ow F , its edge loadfunction is de�ned similarly to (1.2):(1.3) F̂ (e) :=
∑

(F (P ) : P ∈ P, e ∈ EP ) for all e ∈ EG,and its cost is de�ned to be ∑
P a(EP )F (P ). Problem (E) is reduced to (N) by addingan auxiliary node on each edge, but no converse reduction is known.An old result is that (E) has a half-integer optimal solution [Ka79]. Also it is shownin [Ka94] that (E) has a half-integer optimal dual solution and that half-integer primaland dual optimal solutions can be found in strongly polynomial time by using the ellip-soid method. A �purely combinatorial� weakly polynomial algorithm, based on cost andcapacity scaling, is devised in [GK97].In the special case of (E) with a ≡ 0, the half-integrality results are due toLov�asz [Lo76] and Cherkassky [Ch77], and a strongly polynomial combinatorial algo-rithm is given in [Ch77] (see also [IKN98] for faster algorithms).1.3 New resultsIn this paper we prove that (N) always admits half-integer optimal primal and dualsolutions. In particular, this implies all half-integrality results mentioned in the previoussubsection.Similar to [Ka94], we introduce a parametric generalization of (N), study propertiesof geodesics (shortest T -paths with respect to some length function), and reduce theparametric problem to a certain single-commodity �ow problem. However, the details ofthis construction are more involved. In particular, the reduced problem concerns integer�ows in a bidirected graph.The second goal is to explore the complexity of (N). We show that half-integeroptimal primal and dual solutions to the parametric problem (and therefore to (N)) canbe found in strongly polynomial time by using the ellipsoid method.2 Preliminaries2.1 Parametric problem and its dualInstead of (N), it is convenient to consider a more general problem, namely:(Nλ) Given G,T, c, a as in (N) and, in addition, λ ∈ Z+, �nd a feasible multi�ow Fmaximizing the objective function Φ(F, a, λ) := λ · val(F )− a(F ).We will prove the followingTheorem 2.1 For any λ ∈ Z+, problem (Nλ) has a half-integer optimal solution.(Note that Φ(F, qa, qλ) = q · Φ(F, a, λ) for any multi�ow F and q ∈ Q+. Therefore, theoptimality of a multi�ow in the parametric problem preserves when both a and λ are3



multiplied by the same positive factor q. This implies that the theorem is generalizedto arbitrary a : V G → Q+ and λ ∈ Q+ (but keeping the integrality of c). However, weprefer to deal with integer-valued a and λ in what follows.)By standard linear programming arguments, (N) and (Nλ) become equivalent when
λ is large enough (moreover, the existence of a half-integer optimal solution for (Nλ)easily implies that taking λ := 2c(V G)a(V G) + 1 is su�cient).Problem (Nλ) can be viewed as a linear program with variables F (P ) ∈ Q+ assignedto T -paths P . Assign to a node v ∈ V G a variable l(v) ∈ Q+. Then the linear programdual to (Nλ) is:(Dλ) Minimize c · l provided that the following holds for every T -path P :(2.1) l(P ) ≥ λ− a(P ).2.2 Translating to edge lengthsThe above dual problem (Dλ) involves lengths of paths (namely, l(P ) and a(P )) deter-mined by �lengths� of nodes (l and a, respectively). It is useful to transform lengths ofnodes into lengths of edges. To do so, for w : V G → Q+, we de�ne the function w on
EG by(2.2) w(e) := αuw(u) + αvw(v) for e = uv ∈ EG,where αx := 1

2 if x ∈ V G− T , and αx := 1 if x ∈ T . This provides the correspondence(2.3) w(P ) = w(P ) for each T -path P(where w(P ) stands for w(V P ), and w(P ) for w(EP )). For a, l as above, de�ne(2.4) ` := l + a.Let dist`(u, v) denote the `-distance between vertices u and v, i.e. the minimum `-length
`(P ) of a u�v path P in G. Then, in view of (2.3) and (2.4), the constraints in (Dλ) canbe rewritten as(2.5) dist`(s, t) ≥ λ for all s, t ∈ T , s 6= t.By the linear programming duality theorem applied to (Nλ) and (Dλ), a feasiblemulti�ow F and a function l : V G → Q+ satisfying (2.5) are optimal solutions to (Nλ)and (Dλ), respectively, if and only if the following (complementary slackness conditions)hold:(2.6) if P is a T -path and F (P ) > 0, then `(P ) = λ; in particular, P is `-shortest;(2.7) if v ∈ V G and l(v) > 0, then v is saturated by F , i.e. F̂ (v) = c(v).In the rest of the paper, to simplify technical details, we will always assume that theinput costs a of all nodes are strictly positive. Then the edge lengths ` de�ned by (2.4)are strictly positive as well. This assumption will not lead to loss of generality in essence,since the desired results for a nonnegative input cost function a can be obtained byapplying a perturbation technique in spirit of [Ka94, pp. 320�321] (by replacing a by anappropriate strictly positive cost function). 4



2.3 GeodesicsCondition (2.6) motivates the study of the structure of `-shortest T -paths in G. To thisaim, set p := min{dist`(s, t) | s, t ∈ T, s 6= t}. A T -path P such that `(P ) = p is calledan `-geodesic (or just geodesic if ` is clear form the context). When a multi�ow F in Gis given as a collection (1.1) in which all paths Pi are `-geodesics, we say that F is an
`-geodesic multi�ow.Next we utilize one construction from [Ka79, Ka94], with minor changes. Considera node v ∈ V G. De�ne the potential π(v) to be the `-distance from v to the nearestterminal, i.e. π(v) := min{dist`(v, t) | t ∈ T}. Set V G` := {v ∈ V G | π(v) ≤ 1

2p} (inparticular, T ⊆ V G`). For s ∈ T , de�ne V s := {v ∈ V G | dist`(s, v) < 1
2p}. Also de�ne

V \ := {v ∈ V G | π(v) = 1
2p}. We refer to V s as the zone of a terminal s ∈ T , and to V \as the set of central nodes (w.r.t. `). The sets V s (s ∈ T ) and V \ are pairwise disjointand give a partition of V G`.The following subset of edges is of importance:

EG` := {uv ∈ EG | ∃ s ∈ T : u ∈ V s, v ∈ V s ∪ V \, |π(u)− π(v)| = `(uv)}

∪{uv ∈ EG | ∃ s, t ∈ T, s 6= t : u ∈ V s, v ∈ V t, π(u) + π(v) + `(uv) = p}.One can see that the subgraph G` := (V G`, EG`) of G contains all `-geodesics.Moreover, a straightforward examination shows that the structure of `-geodesics possessesthe properties as expressed in the following lemma (which is, in fact, a summary ofClaims 1�3 from [Ka94] and uses the strict positivity of `).Lemma 2.2 Let P be an `-geodesic running from s ∈ T to t ∈ T . Then P is containedin G` and exactly one of the following takes place:1. P contains no central nodes and can be represented as the concatenation P1 ◦
(u, e, v) ◦ P2, where u ∈ V s, v ∈ V t, s 6= t, and e ∈ EG`.2. P contains exactly one central node w ∈ V \ and can be represented as the concate-nation P = P1 ◦(u, e1, w, e2, v)◦P2, where u ∈ V s, v ∈ V t, s 6= t, and e1, e2 ∈ EG`.In both cases, parts P1 and P2 are contained in the induced subgraphs G`[V

s] and G`[V
t],respectively. The potentials π are strictly increasing as we traverse P1 from s to u, andstrictly decreasing as we traverse P2 from v to t.Conversely, any T -path in G` obeying the above properties is an `-geodesic.3 Primal half-integrality3.1 Auxiliary bidirected graphIn this subsection we introduce an auxiliary bidirected graph, which will be the cor-nerstone of our approach both for proving half-integrality results and for providing apolynomial-time algorithm.Given G, T , c, a and λ as above, let l be an optimal solution to (Dλ). Form the edgelengths ` := l + a, the potential π, the subgraph G`, and the sets V s (s ∈ T ) and V \, asin Subsection 2.3. One may assume that p := min{dist`(s, t) | s, t ∈ T, s 6= t} = λ (since

p ≥ λ, by (2.5), and if p > λ then F = 0 is an optimal solution to (Nλ), by (2.6)).5



For further needs, we reset c := 2c, making all node capacities even integers. Now ourgoal is to prove the existence of an integer optimal multi�ow F in problem (Nλ) (whichis equivalent to proving the half-integrality w.r.t. the initial c).Recall that in a bidirected graph (or a BD-graph for short) edges of three typesare allowed: a usual directed edge, or an arc, that leaves one node and enters anotherone; an edge directed from both of its ends; and an edge directed to both of its ends(cf. [EJ70, Sc03]). When both ends of an edge coincide, the edge becomes a loop. For ourpurposes we admit no loop entering and leaving its end node simultaneously. Sometimes,to specify the direction of an edge e = uv at one or both of its ends, we will draw arrowsabove the corresponding node characters. For example, we may write −→u−→v if e is directedfrom u to v (a usual arc), −→u←−v if e leaves both u, v, ←−u−→v if e enters both u, v, and −→u v if
e leaves u (and either leaves or enters v).A walk in a BD-graph is an alternating sequence

P = (s = v0, e1, v1, . . . , ek, vk = t)of nodes and edges such that each edge ei connects nodes vi−1 and vi, and for i =
1, . . . , k − 1, the edges ei, ei+1 form a transit pair at vi, which means that one of ei, ei+1enters and the other leaves vi. As before, an edge-simple walk is referred to as a path.Now we associate to G` a BD-graph H with edge capacities c : EH → Z+, as follows(see Fig. 1 for an illustration). Each noncentral node v ∈ V G` − V \ generates two nodes
v1, v2 in H. They are connected by an edge (arc) ev going from v1 to v2 and having thecapacity equal to c(v). We say that ev inherits the capacity of the node v. For s ∈ T ,the set V

s
:= {v1, v2 | v ∈ V s} in H is called the zone of s, similar to V s in G.Consider an edge e = uv ∈ EG`. Let u, v ∈ V s for some s ∈ T and assume forde�niteness that π(u) < π(v) (note that `(uv) > 0 implies π(u) 6= π(v); this is wherethe strict positivity of the cost function a is important). Then e generates in H an edge(arc) going from u2 to v1, and we assign in�nite capacity to it. (By �in�nite capacity�we mean a su�ciently large positive integer.) Now let u ∈ V s and v ∈ V t for distinct

s, t ∈ T . Then e generates an in�nite capacity edge −→u 2←−v 2 (leaving both u2 and v2).The transformation of central nodes is less straightforward. Each w ∈ V \ generatesin H a so-called gadget, denoted by Γw. It consists of |T |+ 1 nodes; they correspond to
w and the elements of T and are denoted as θw and θw,s, s ∈ T . The edges of Γw are: aloop ew leaving θw (twice) and, for each s ∈ T , an edge ew,s going from θw,s to θw, calledthe s-leg in the gadget. Each edge in Γw is endowed with the capacity equal to c(w).Each gadget Γw is connected to the remaining part of H as follows. For each edgeof the form vw in G`, we know that v ∈ V s for some s ∈ T (by the construction of G`).Then vw generates an in�nite capacity edge (arc) going from v2 to θw,s.Finally, we add to H an extra node q, regarding it as the source, and for each s ∈ T ,draw an in�nite capacity edge (arc) from q to s1.The obtained BD-graph H captures information about the `-geodesics in G. Namely,each `-geodesic P going from s to t induces a unique closed q�q walk P in H. The �rstand the last edges of P are −→q −→s 1 and ←−t 1←−q , respectively. For a noncentral node v in
P , P traverses the edge −→v 1−→v 2. An edge uv ∈ EP with π(u) < π(v) inside a zoneinduces the edge −→u 2−→v 1 in P . An edge uv ∈ EP connecting di�erent zones (if any)induces the edge −→u 2←−v 2 in P . Finally, suppose P traverses a central node w ∈ V \ and6
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(b) Bidirected graph H .Figure 1: Constructing graph H. Here T = {p, s, r}, V p = {p, a, b}, V s = {s, c, d},
V r = {r, e, f, g}, V \ = {w}. (The source q is not shown.) Bidirected edges leaving oneendpoint and entering the other are indicated by ordinary directed arcs. Marked are one
`-geodesic P and its image P .let uw,wv ∈ EG` be the edges of P incident to w. By Lemma 2.2, u ∈ V s and v ∈ V tfor some s 6= t. Then the sequence of nodes u,w, v in P generates the subpath in P withthe sequence of edges u2θw,s, ew,s, ew, ew,t, θw,tv

2.The resulting walk P is edge-simple, so it is a closed path. Conversely, let Q bea (nontrivial) q�q walk in H. One can see that Q with q removed is concatenated as
Q1 ◦Q′ ◦Q2, where Q1 is a directed path within a zone V

s, Q2 is reverse to a directedpath within a zone V
t (with possibly s = t), and Q′ either (i) is formed by an edge

−→u 2←−v 2 connecting these zones (in which case s 6= t), or (ii) is the walk with the sequenceof edges ew,s, ew, ew,t, for some central node w of G`. Moreover, the image in G of eachof Q1, Q2 is an `-shortest path. When s = t happens in case (ii), Q traverses the edge
ew,s twice. In all other cases, Q is edge-simple and its image in G is an `-shortest T -path(a λ-geodesic).These observations show that there is a natural bijection between the `-geodesics in
G and the (nontrivial) q�q paths in H.We will refer to the BD-graph H described above as the compact BD-graph related to
G`; it will be essentially used to devise an e�cient algorithm for solving (Nλ) in Section 4.Besides, in the proof of the primal integrality (with c even) in Section 5, we will deal with7



a modi�ed BD-graph. It is obtained from H as above by replicating each gadget Γw into
c(w) copies Γwi, i = 1, . . . , c(w), called the 1-gadgets generated by w. More precisely,to construct Γwi , we make i-th copy θwi of the node θw, i-th copy ewi of the loop ewleaving θwi (twice), and i-th copy ewi,s of each leg ew,s, s ∈ T , where ewi,s goes from
θw,s to θwi (so θw,s, s ∈ T , are the common nodes of the created 1-gadgets). All edges inthese 1-gadgets are endowed with unit capacities.We keep notation H for the constructed graph and call it the expensive BD-graphrelated to G`. Also we keep notation c for the edge capacities in H. There is a naturalrelationship between the q�q walks (paths) in both versions of H. The 1-gadgets createdfrom the same central node w of G` are isomorphic, and for any i, j = 1, . . . , c(w), thereis an automorphism of H which swaps θwi and θwj and is invariant on the other nodes.3.2 Bidirected �owsLet Γ be a bidirected graph. Like in usual digraphs, δin(v) and δout(v) denote the setsof edges in Γ entering and leaving v ∈ V Γ, respectively. A loop e at v, if any, is countedtwice in δin(v) if e enters v, and twice in δout(v) if e leaves v; hence δin(v) and δout(v)are actually multisets. (Recall that we do not allow a loop which simultaneously entersand leaves a node.)Let q be a distinguished node with δin(q) = ∅ in Γ (the source) and let the edges of Γhave integer capacities c : EΓ → Z+. A bidirected q-�ow, or a BD-�ow for short, is afunction f : EΓ → Q+ satisfying divf (v) = 0 for all nodes v ∈ V Γ − {q}; and the valueof f is de�ned to be divf (q) (cf. [GK04]). Here(3.1) divf (v) := f(δout(v))− f(δin(v))is the divergence of f at v. Note that if e is a loop at v then e contributes ±2f(e) in
divf (v). If f(e) ≤ c(e) for all e ∈ EΓ then f is called feasible. In addition, if f is integer-valued on all edges then we refer to f as an integer bidirected q-�ow, or an IBD-�ow.One can see that �nding a fractional (resp. integer) BD-�ow of the maximum value isequivalent to constructing a maximum fractional (resp. integer) packing of closed q�qwalks (they leave q twice).Return to an optimal solution l to (Dλ), and let ` := a + l. Consider the (expensiveor compact) BD-graph H related to G`, and the capacity function c on the edges of
H (constructed from the node capacities c of G). The above correspondence between
`-geodesics in G and q�q paths in H is extended to `-geodesic multi�ows in G andcertain q-�ows in H (where q is the source in H as before). More precisely, let F be a(fractional) `-geodesic multi�ow in G represented by a collection of `-geodesics Pi andweights αi := F (Pi), i = 1, . . . ,m (cf. (1.1)). Then each Pi determines a q�q path P iin H, and f := α1χ

EP 1 + . . . + αmχEPm is a BD-�ow in H; we say that f is generatedby F (note that val(f) = 2val(F )). Furthermore, f is feasible if F is such, and for eachcentral node w ∈ V \, the following relations hold:(3.2) ∑
s∈T

f(ew,s) = 2f(ew) and f(ew,s) ≤ f(ew) for each s ∈ T .Considering an arbitrary BD-�ow f in H, we say that f is good if it satis�es (3.2) forall w ∈ V \ (here the second relation in (3.2) is important, while the �rst one obviouslyholds for any BD-�ow). The following assertion is of use.8



Lemma 3.1 Let f be a good BD-�ow in H. Then f is generated by an `-geodesicmulti�ow F in G. Moreover, if f is integral, then it is generated by an integer `-geodesicmulti�ow F . In both cases, F can be found in O(|V H| · |EH|) time.Proof. Suppose there is a central node w ∈ V \ such that f(ew) > 0. Let us say that
p ∈ T dominates at w (w.r.t. f) if f(ew,p) = f(ew). From (3.2) it follows that there existdistinct s, t ∈ T such that f(ew,s), f(ew,t) > 0 and none of p ∈ T − {s, t} dominates at
w. Choose such s, t. Build in H a maximal walk Q starting with θw, ew,s, θw,s, . . . andsuch that f(e) > 0 for all edges e of Q. It is easily seen from the construction of H that
Q is edge-simple, terminates at q, and have all vertices in V

s, except for θw, θw,s, and q.Build a similar walk (path) Q′ starting with θw, ew,t, θw,t. Then the concatenation of thereverse to Q, the loop ew and the path Q′ is a q�q path P and its image P in G is an
`-geodesic (from s to t).Assign the weight of P to be the maximum number α subject to two conditions: (i)
α ≤ f(e) for each e ∈ EP , and (ii) the �ow f ′ := f−αχP is still good. If α is determinedby (i), we have | supp(f ′)| < | supp(f)| (where supp(ϕ) := {x | ϕ(x) 6= 0}), whereas if αis determined by (ii), there appears p ∈ T dominating at w (w.r.t. f ′). If f ′(ew) > 0,repeat the procedure for f ′ and w, otherwise apply the procedure to f ′ and another
w′ ∈ V \, and so on. (Note that if, in the process of handling w, the current weight αis determined by (ii), then the weights of all subsequent paths through ew are alreadydetermined by (i); this will provide the desired complexity.)Eventually, we come to a good �ow f̃ with f̃(ew) = 0 for all w ∈ V \. This f̃ isdecomposed into a sum of �ows along q�q paths in a straightforward way, in O(|V H| ·
|EH|) time (like for usual �ows in digraphs). Taking together the images in G of theconstructed weighted q�q paths, we obtain a required `-geodesic multi�ow F . The runningtime of the whole process is O(|V H| · |EH|), and if f is integral, then the weights α ofall paths are integral as well. (Integrality of a current weight α subject to integrality of acurrent �ow f is obvious when α is determined by (i), and follows from the fact, impliedby (3.2), that for any p ∈ T , ∑

s 6=p f(ew,s) − f(ew,p) is even, when α is determinedby (ii).) �Remark 3.2 In case of an expensive BD-graph H, any feasible IBD-�ow f is good.Indeed, for any 1-gadget Γwi in H, we have c(ewi) = 1 and, therefore, f(ew) ∈ {0, 1}.The second relation in (3.2) is trivial when f(ew) = 0, and follows from the constraints
f(ew,s) ≤ c(ew,s) = 1 (s ∈ T ) when f(ew) = 1.De�ne the following subset of edges in H:(3.3) E0 := {ev | v ∈ V G, l(v) > 0}.For an optimal (possibly fractional) solution F to (Nλ) and a node v ∈ V G with l(v) > 0,we have F̂ (v) = c(v) (by (2.7)); so the edge ev of H corresponding to v is saturated bythe BD-�ow f generated by F , i.e. f(ev) = c(ev). We call the edges in E0 locked.Thus, the graph H admits a (fractional) good feasible BD-�ow saturating the lockededges. The following strengthening is crucial.Proposition 3.3 There exists a good feasible IBD-�ow in H that saturates all lockededges. 9



A proof of this proposition involves an additional graph-theoretic machinery and willbe given in Section 5. Assuming its validity, we immediately obtain Theorem 2.1 fromLemma 3.1.4 Solving (Nλ) in strongly polynomial timeIn this section we devise a strongly polynomial algorithm for solving the primal parametricproblem (Nλ). As before, we assume that a and λ are integral and that the node capacities
c are even, so our goal is to �nd an integer optimal multi�ow.The algorithm starts with computing a (fractional) optimal dual solution l and con-structing the BD-graph H w.r.t. the length function ` := a+ l. Then it �nds a good IBD-�ow f in H saturating the locked edges (assuming validity of Proposition 3.3). Applyingthe e�cient procedure as in the proof of Lemma 3.1 to decompose f into a collection ofpaths with integer weights, we will obtain an integer optimal solution to (Nλ).To provide the desired complexity, we shall work with H given in the compact form(de�ned in Subsection 3.1). The core of our method consists in �nding the load functionof some integer optimal multi�ow F in G (without explicitly computing F itself). Thisfunction will just generate the desired IBD-�ow in H. We describe the stages of thealgorithm in the subsections below.4.1 Constructing an optimal dual solutionProblem (Dλ) straightforwardly reduces to a �compact� linear program, as follows. Be-sides variables l(v) ∈ Q+ (v ∈ V G), assign a variable ϕs(v) ∈ Q to each terminal s ∈ Tand node v (a sort of �distance� of v from s). Consider the following problem (where land a are de�ned according to (2.2)):(4.1) Minimize c · l subject to the following constraints:

ϕs(u)− ϕs(v) ≤ a(e) + l(e)

ϕs(v)− ϕs(u) ≤ a(e) + l(e) for each e = uv ∈ EG;
ϕs(t)− ϕs(s) ≥ λ for all s, t ∈ T , s 6= t.Lemma 4.1 Programs (Dλ) and (4.1) are equivalent.Indeed, if (l, ϕ) is a feasible solution to (4.1) then, obviously, l is a feasible solutionto (Dλ). Conversely, let l be a feasible solution to (Dλ). For v ∈ V G and s ∈ T , de�ne

ϕs(v) := dist`(s, v), where ` := l + a. It is easy to check that (l, ϕ) is a feasible solutionto (4.1).The size of the constraint matrix in (4.1) (written in binary notation) is polynomial in
|V G|. Therefore, (Dλ) is solvable in strongly polynomial time by use of Tardos' versionof the ellipsoid method. (This remains valid when a and λ are nonnegative rationalnumbers.)

10



4.2 Computing the load function of an optimal multi�owThe following fact is of importance.Lemma 4.2 One can �nd, in strongly polynomial time, a function g : V G → Z+ suchthat g(v) = F̂ (v) for all v ∈ V G, where F is some integer optimal multi�ow in (Nλ).Proof. We explain that in order to construct the desired g, it su�ces to comparetwo optimal objective values: one for the original (integer) costs a and the other forcertain perturbed costs aε. These values are computed by solving the corresponding dualproblems by the method described in the previous subsection.More precisely, let v1, . . . , vn be the nodes of G. Let U := maxi c(vi) + 2, de�ne
ε(vi) := 1/U i+1, i = 1, . . . , n, and de�ne the cost function aε on V G to be a + ε. Thenfor any integer feasible multi�ow F , we have

0 ≤ Φ(F, a, λ)− Φ(F, aε, λ) =
∑

i

F̂ (vi)ε(vi) < U−1 + U−2 + . . . + U−n < 1.This and the fact that Φ(F, a, λ) is an integer (as F, a, λ are integral) imply that if Fis optimal for aε, then F is optimal for a as well. (An integer optimal multi�ow foreven capacities c exists by Theorem 2.1.) Moreover, for such an optimal F , the number
r :=

∑
i F̂ (vi)ε(vi) is computed in strongly polynomial time, since it is equal to c · l−c · lε,where l and lε are optimal dual solutions for a and aε, respectively. Here we use the LPduality equalities Φ(F, a, λ) = c ·l and Φ(F, aε, λ) = c ·lε. Also the size of binary encodingof aε is bounded by that of a times a polynomial in n, so the dual problem with aε issolved in strongly polynomial time w.r.t. the original data.Hence, we have rUn+1 =

∑
i F̂ (vi)U

n−i. The number rUn+1 is an integer and, inview of F̂ (vi) ≤ c(vi) < U for each i, the n coe�cients in its base U decomposition (therepresentation via degrees of U) are just F̂ (v1), . . . , F̂ (vn), thus giving g. �Recall that together with a node load function each multi�ow F also induces its edgecounterpart (see (1.3)). Lemma 4.2 can be strengthened as follows.Lemma 4.3 One can �nd, in strongly polynomial time, a function g : V G ∪ EG→ Z+such that g(v) = F̂ (v) for all v ∈ V G and g(e) = F̂ (e) for all e ∈ EG, where F is someinteger optimal multi�ow F in (Nλ).Proof. Split each edge e = uv of G into two edges uxe, xev in series and assign to eachnew node xe the capacity c(xe) := min{c(u), c(v)} and the cost a(xe) := 0. Clearly thistransformation does not a�ect the problem in essence. The node load function, whichcan be found in strongly polynomial time by Lemma 4.2, yields the desired node andedge load functions in the original graph G. �4.3 Constructing an optimal primal solutionNow we explain how to �nd, in strongly polynomial time, an integer optimal multi�owsolving (Nλ) (for a graph G, even node capacites c, rational node costs a, and an integerparameter λ) by using an optimal dual solution l and a function g as in Lemma 4.3. Forthis g, there exists an integer `-geodesic multi�ow F ′ in G satisfying F̂ ′(v) = g(v) for all11



v ∈ V G and F̂ ′(e) = g(e) for all e ∈ EG, where ` := a + l. Our goal is to construct oneof such multi�ows explicitly.To do this, we consider the compact BD-graph H related to G` (see Subsection 3.1)and put f to be the function on EH corresponding to g. More precisely, let E′ be thesubset of edges of H neither incident to q nor contained in the gadgets Γw (w ∈ V \). Bythe construction of H, there is a natural bijection γ of E′ to the set (V G` − V \) ∪ EG`.For each e ∈ E′, we set f(e) := g(γ(e)). In their turn, the values of f on the edges of agadget Γw are assigned as follows: for the loop ew at θw, set f(ew) := g(w), and for each
s ∈ T , set f(ew,s) :=

∑
(g(e) : e ∈ Es,w), where Es,w is the set of edges in G` connecting

V s and w. Finally, for each s ∈ T , we set f(qs) := h(s).Using the fact that the function g on V G∪EG is determined by some integer optimal(`-geodesic) multi�ow F ′, it follows that the obtained function f on EH is integer-valuedand has zero divergency at all nodes di�erent from q. So f is an IBD-�ow in H. Moreover,
f is generated by F ′ as above; in particular, f is good (i.e. satis�es (3.2)). By Lemma 3.1,we can �nd, in strongly polynomial time, an integer `-geodesic multi�ow F generating f .Then F and F ′ have the coinciding node and edge load functions, and the optimality of
F ′ implies that F is an integer optimal solution to (Nλ) as well, as required.5 Proof of Proposition 3.3To complete the proof of Theorem 2.1 it remains to prove Proposition 3.3, which claimsthe existence of an IBD-�ow saturating the �locked� edges. We eliminate the lowercapacity constraints (induced by the locked edges) by reducing the claim to the existenceof an IBD-�ow with a certain prescribed value.5.1 Maximum IBD-�owsLet Γ be a bidirected graph with a distinguished source q and edge capacities c : EΓ→ Z+,as described in Subsection 3.2. The classic max-�ow min-cut theorem states that themaximum �ow value is equal to the minimum cut capacity. A bidirected version ofthis theorem involves a somewhat more complicated object, called an odd barrier. In thissubsection we give its de�nition and state the crucial properties (in Theorems 5.1, 5.2, 5.3)that will be used in the upcoming proof of Proposition 3.3. These properties are nothingelse than translations, to the language of bidirected graphs, of corresponding propertiesestablished for integer symmetric �ows in skew-symmetric graphs, as we will explain inthe Appendix.Let X ⊆ V Γ−{q}. The �ip at (the nodes of) X modi�es Γ as follows: for each node
v ∈ X and each edge e incident to v, we reverse the direction of e at v (while preservingthe directions of edges at nodes in V G − X). For example, if e = −→u←−v and u, v ∈ Xthen e becomes ←−u−→v , and if e = −→u−→v and u 6∈ X 3 v then e becomes −→u←−v . BD-graphs
Γ and Γ′ are called equivalent if one is obtained by a �ip from the other. Note that �ipsdo not a�ect bidirected walks in Γ in essence and do not change the maximum value ofan IBD-�ow in it. We will essentially use �ips to simplify requirements in the de�nitionof odd barriers below.Next, we employ a special notation to designate certain subsets of edges. For X,Y ⊆
V Γ, let [X,Y ] denote the set of edges with one endpoint in X and the other in Y . We12
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A

M B1 BkFigure 2: A bidirected odd barrier. Grayed edges correspond to odd capacity constraints(edge directions are shown w.r.t. Γ′).will often add arrows above X and/or Y to indicate the subset of edges in [X,Y ] directedin one or another way. For example, [
←−
X,
−→
Y ] denotes the set of edges that enter both Xand Y , [

−→
X,Y ] denotes the set of edges leaving X and having the other endpoint in Y(where the direction is arbitrary), and [

−→
X,
←−
X ] denotes the set of edges that leave X atboth endpoints (including twice leaving loops). When Y = V Γ−X, the second term inthe brackets may be omitted: [X], [

−→
X ], and [

←−
X ] stand for [X,V Γ − X], [

−→
X,V Γ − X],and [

←−
X,V Γ−X], respectively. Finally, for a function ϕ on the edges, we write ϕ[X,Y ](rather than ϕ([X,Y ])) for ∑

e∈[X,Y ] ϕ(e).A tuple B = (Γ′ |A,M ;B1, . . . , Bk), where Γ′ is some BD-graph equivalent to Γ, iscalled an odd barrier for Γ if the following conditions hold with respect to Γ′ (see Fig. 2):(5.1) (i) A,M,B1, . . . , Bk give a partition of V Γ′ = V Γ, and q ∈ A.(ii) For each i = 1, . . . , k, c[
−→
A,Bi] is odd.(iii) For distinct i, j = 1, . . . , k, c[Bi, Bj ] = 0.(iv) For each i = 1, . . . , k, c[Bi,M ] = 0.The capacity of B is de�ned to be(5.2) c(B) := 2c[

−→
A,
←−
A ] + c[

−→
A ]− k.Theorem 5.1 (Max IBD-Flow Min Odd Barrier Theorem) For Γ, c, q as above,the maximum IBD-�ow value is equal to the minimum odd barrier capacity. A (feasible)IBD-�ow g and an odd barrier B = (Γ′ |A,M ;B1, . . . , Bk) for Γ have maximum value andminimum capacity, respectively, if and only if the following conditions hold with respectto Γ′:(i) g[

−→
A,
←−
A ] = c[

−→
A,
←−
A ] and g[

←−
A,
−→
A ] = 0;(ii) g[

−→
A,M ] = c[

−→
A,M ] and g[

←−
A,M ] = 0;(iii) for each i = 1, . . . , k, either g[
−→
A,Bi] = c[

−→
A,Bi]−1 and g[

←−
A,Bi] = 0, or g[

−→
A,Bi] =

c[
−→
A,Bi] and g[

←−
A,Bi] = 1. 13



Note that there may exist many minimum capacity odd barriers for Γ, c, q. It iswell-known that in a usual arc-capacitated digraph with a source s and a sink t, the setof nodes reachable by paths from s in the residual digraph of a maximum s�t �ow fdetermines a minimum capacity s�t cut. Moreover, this minimum cut does not dependon the choice of f and, therefore, may be regarded as the canonical one.A similar phenomenon takes place for maximum IBD-�ows and minimum odd barriers(and we will essentially use this in the proof of Proposition 3.3). To describe this, consideran IBD-�ow g in Γ. The residual BD-graph Γg endowed with the residual capacities
cg : EΓg → Z+ is constructed in a similar way as for usual �ows. More precisely, V Γg =
V Γ and the edges of Γg are as follows:(5.3) (i) each edge e ∈ EΓ with g(e) < c(e) whose residual capacity is de�ned to be

cg(e) := c(e)− g(e), and(ii) the reverse edge eR to each edge e ∈ EΓ with g(e) > 0; the directions of
eR at the endpoints are reverse to those of e and the residual capacity is
cg(e

R) := g(e).A bidirected walk P in Γg is called cg-simple if P passes each edge e at most cg(e)times. If P is a cg-simple closed q�q walk leaving its end q twice, we can increase thevalue of g in Γ by 2, by sending one unit of �ow along P . So the existence (in Γg) ofsuch a walk P , which is called (Γ, g)-residual, implies that g is not maximum. A converseproperty holds as well.Theorem 5.2 An IBD-�ow g in Γ is maximum if and only if there is no (Γ, g)-residualwalk.When we are given a maximum IBD-�ow g, a certain minimum odd barrier can beconstructed by considering the residual graph Γg. Namely, let −→RΓ,g (resp. ←−RΓ,g) be theset of nodes v that are reachable by a (Γ, g)-residual q�v walk that leaves q and enters v(resp. leaves both q and v). Then q /∈
←−
RΓ,g, by the maximality of g.Theorem 5.3 Let g be a maximum IBD-�ow for Γ, c, q. De�ne A := (

−→
R−
←−
R )∪(

←−
R−
−→
R )and M := V Γ− (

−→
R ∪
←−
R ), where −→R :=

−→
RΓ,g and ←−R :=

←−
RΓ,g. Let B1, . . . , Bk be the nodesets of weakly connected components of the underlying undirected subgraph of Γg inducedby −→R ∩ ←−R . De�ne Γ′ to be the BD-graph obtained from Γ by �ipping the set ←−R − −→R(contained in A). Then Bg := (Γ′ |A,M ;B1, . . . , Bk) is a minimum odd barrier.An important fact is that the minimum odd barrier Bg does not depend on g, and werefer to it as the canonical odd barrier for Γ, c, q.Theorem 5.4 The sets←−RΓ,g are same for all maximum IBD-�ows g in Γ, and similarlyfor the sets −→RΓ,g, the minimum odd barriers Bg, and the graphs Γ′ obtained from Γ by�ipping ←−RΓ,g −

−→
RΓ,g.
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5.2 Proof of Proposition 3.3In fact, we have freedom of choosing any of the two forms (expensive or compact) of Hto prove Proposition 3.3 in full, as it is easy to see that the claims in these cases arereduced to each other. We prefer to deal with the expensive form, taking advantage fromcertain nice structural features arising in this case. One reason for our choice is that anyIBD-�ow in the expensive H is automatically good, as explained in Remark 3.2.We know that there exists a good fractional bidirected q-�ow f in H that saturatesthe set E0 of locked edges, and our goal is to show the existence of an IBD-�ow saturating
E0. Recall that any edge e ∈ E0 is generated by some node v of G, i.e. e = ev .It will be convenient for us to construct the desired IBD-�ow without explicitly im-posing the �lower capacities� on the locked edges. For this purpose, we modify H asfollows.First, we add a loop ←−q −→q with in�nite capacity (entering q twice). Also we add to Ha node z, which is regarded as a new source.Second, let E0 contain an edge ev = −→v 1−→v 2 generated by a vertex v ∈ V G` in somezone V s, s ∈ T . We delete ev from H and, instead, add two edges −→v 1←−z and −→z −→v 2 withcapacity c(v) each.Third, let E0 contain the loops ewi (i = 1, . . . , c(w)) for some central node w of G`.We replace each ewi (having unit capacity) by edge −→z←−θwi with capacity 2; we call it theroot edge at θwi .We denote the resulting BD-graph by H1 and keep the previous notation c for itsedge capacities. The above q-�ow f is transformed, in an obvious way, into a feasible
z-�ow in H1, denoted by f as before. Note that this f saturates all edges created fromthose in E0 (i.e. from ev and ewi as above); these edges leave z and the value of f ismaximum among the feasible z-�ows in H1 and is equal to 2c(E0).Let g be a maximum IBD-�ow in H1. We are going to prove that val(f) = val(g).This would imply that the corresponding IBD-�ow in H saturates E0 as required. Tothis aim, consider the canonical odd barrier B = (H2 |A,M ;B1, . . . , Bk) for H1, c, z (seeTheorem 5.4). Here H2 is the BD-graph (with the source z) obtained from H1 accordingto Theorem 5.3 (i.e. H2 := Γ′ for Γ := H1). From now on, speaking of edge directions,the capacities c and the �ow g, we mean those in H2, unless explicitly stated otherwise.We have (cf. (5.2))(5.4) val(g) = c(B) = 2c[

−→
A,
←−
A ] + c[

−→
A ]− k.The following assertion is crucial.Lemma 5.5 For each p = 1, . . . , k:(i) Bp = {θwi} for some w ∈ V \ and i ∈ {1, . . . , c(w)};(ii) ewi is not locked (so H1 contains the loop ewi but not the root edge at θwi);(iii) among the edges (legs) connecting A and Bp, one edge leaves A and the other edgesenter A. 15



Proof. By the constructions of H and H1, for any w ∈ V \ and distinct i, j = 1, . . . , c(w),there is an automorphism π = πw,i,j of H1 that swaps θwi and θwj and is invariant onthe other nodes. Also π respects the capacities in H1, and the function g̃ induced by gunder π (i.e. g̃(e) := g(π(e))) is again a maximum IBD-�ow in H1. Since B is canonical,it follows from Theorem 5.4 that(5.5) −→
RH1,g =

−→
RH1,g̃,

←−
RH1,g =

←−
RH1,g̃,

−→
RH1,g ∪

←−
RH1,g = A ∪B1 ∪ . . . ∪Bk.The nodes in←−RH1,g−

−→
RH1,g are �ipped when constructing H2 from H1. Then (5.5) andTheorem 5.3 imply that for i, j as above,(5.6) (a) θwi is �ipped if and only if θwj is �ipped;(b) θwi ∈ A if and only if θwj ∈ A.(c) θwi ∈ B1 ∪ . . . ∪Bk if and only if θwj ∈ B1 ∪ . . . ∪Bk.Let p ∈ {1, . . . , k}. Since the capacity c[

−→
A,Bp] (in H2) is odd, the set [

−→
A,Bp] containsan edge e with c(e) odd. Any edge in H2 having an odd capacity is either a loop ewi ora leg ewi,s (regarding �in�nite� capacities as even ones).Obviously, no loop can be �responsible� for the oddness of c[

−→
A,Bp].So e = ewi,s = θwiθw,s for some w ∈ V \, i ∈ {1, . . . , c(w)} and s ∈ T . Let ê denotethe edge of H1 corresponding to e. Then ê leaves θw,s and enters θwi (see Fig. 1(b)). Dueto �ips, however, this may not be the case for e in H2.Suppose θwi ∈ A (and θw,s ∈ Bp). Then e leaves θwi, whence θwi is a �ippednode in A. Now (5.6)(a,b) imply that all θwj are �ipped nodes belonging to A and that

ewj ,s ∈ [
−→
A,Bp] for all j = 1, . . . , c(w). But then e cannot be �responsible� for the oddnessof c[

−→
A,Bp] since c(w) is even.So we have θw,s ∈ A and θwi ∈ Bp. Then e leaves θw,s. The edge ê leaves θw,s aswell. Hence θw,s is not �ipped. Since c(w) is even, there must be j ∈ {1, . . . , c(w)} suchthat the leg ewj ,s = θw,sθwj is not in [

−→
A,Bp] (for otherwise one may pick another pair

w, i). Then θwj is not in Bp. In view of (5.6)(c), θwj belongs to a B-set in B di�erentfrom Bp. Considering the automorphisms π = πw,i′,j′ for all distinct i′, j′ = 1, . . . , c(w)and using the fact that the canonical barrier B preserves under π (in view of (5.5)), wecan conclude that the nodes θw1, . . . , θwc(w) belong to di�erent B-sets in B. Since these
B-sets are pairwise disjoint and each automorphism π swaps two copies of θw, and donot move the remaining nodes in H2, each of these B-sets can contain only a single node.Thus, Bp = {θwi}, yielding (i) in the lemma.Next we show (ii). From the construction of H2 it follows that(5.7) A =

−→
RH2,g −

←−
RH2,g̃ and B1 ∪ . . . ∪Bk =

−→
RH2,g ∩

←−
RH2,g.By the �rst equality, any (H2, g)-residual walk ending at a node v ∈ A enters v, and bythe second equality, there exist an (H2, g)-residual walk P to θ := θwi that enters θ andan (H2, g)-residual walk Q to θ that leaves θ. Recall that the residual walks leave thesource z. Let a = u

−→
θ be the last edge of P , and b = v

←−
θ the last edge of Q. De�ne

E′ (resp. E′′) to be the set of legs e = ewi,s with g(e) = 0 (resp. g(e) = 1). Note that(cf. (5.3)) 16



(5.8) (i) if e ∈ E′ then eR /∈ EH2
g and e enters θ in H2

g ;(ii) if e ∈ E′′ then e /∈ EH2
g and eR leaves θ in H2

g .Supposing the existence of the root edge r = −→z
←−
θ (in H1 and H2), we can come to acontradiction as follows. Since there is no loop at θ, both nodes u, v are in A. Note thatthe edge a is di�erent from r (which leaves θ) and from rR (which enters z). Then (5.8)implies that a ∈ E′. Furthermore, a is of the form −→u−→θ . For if a enters u then the edgeof P preceding a leaves u, whence the part of P from z to u forms an (H2, g)-residualwalk leaving u, which is impossible since u ∈ A.So a ∈ [

−→
A,Bp] and g(a) = 0 = c(a) − 1. Then g[

←−
A,Bp] = 0, by Theorem 5.1(iii).This implies that E′′ ⊆ [

−→
A,B]. But then the last edge b = v

←−
θ of the walk Q as abovecannot be reverse to any edge in E′′; for otherwise b enters v, implying that the part of

Q from z to v leaves v. Also b is neither reverse to an edge in E′ (cf. (5.8)), nor equalto r. The latter is because r ∈ [
−→
A,Bp], and therefore, g(a) < c(a) implies g(r) = c(r)(cf. Theorem 5.1(iii)), whence r /∈ EH2

g . Thus, Q does not exist. This contradictionyields (ii).It remains to show (iii). By (ii), we have ewi ∈ EH2, and [A,Bp] is exactly the setof legs at θ := θwi. Suppose d := |[
−→
A,Bp]| 6= 1. Then d ≥ 3, since c[

−→
A,Bp] = d isodd. Hence g[

−→
A,Bp] ≥ d − 1 ≥ 2 (by Theorem 5.1(iii)). Also the fact that all legsenter θ together with divg(θ) = 0 and g(ewi) ≤ 1 implies that the only possible case iswhen g(ewi) = 1, g[
−→
A,Bp] = 2 and g[

←−
A,Bp] = 0. Now take an (H2, g)-residual walk Qto θ that leaves θ, and let b be its last edge. Then b is neither the loop ewi (which issaturated), nor reverse to a leg e = v
−→
θ with g(e) > 0. Indeed, if b = eR then b enters v(in view of v ∈ A and e ∈ [

−→
A,Bp]), and hence the part of Q from z to v leaves v, whichis impossible since v ∈ A. This contradiction yields (iii) and completes the proof of thelemma. �Based on Lemma 5.5, we now �nish the proof of Proposition 3.3. Consider Bp = {θwi}and let ewi,s be the unique edge in [

−→
A,Bp]. Then [

←−
A,Bp] = {ewi,t | t ∈ T−{s}}. Considerthe maximum fractional BD-�ow f as before. By the goodness of f (see (3.2)), we have

f [
−→
A,Bp]− f [

←−
A,Bp] = f(ewi,s)−

∑
t∈T−{s}

f(ewi,t)

= f(ewi,s)−
(
2f(ewi)− f(ewi,s)

)
= 2

(
f(ewi,s)− f(ewi)

)
≤ 0 = c[

−→
A,Bp]− 1.Using this and (5.4), we have

val(f) = divf (z) =
∑

v∈A
divf (v) =

(
2f [
−→
A,
←−
A ]− 2f [

←−
A,
−→
A ]

)
+

(
f [
−→
A ]− f [

←−
A ]

)

=
(
2f [
−→
A,
←−
A ]− 2f [

←−
A,
−→
A ]

)
+

(
f [
−→
A,M ]− f [

←−
A,M ]

)
+

∑k

p=1

(
f [
−→
A,Bp]− f [

←−
A,Bp]

)

≤ 2c[
−→
A,
←−
A ]+c[

−→
A,M ]+

∑k

p=1

(
c[
−→
A,Bp]− 1

)
= 2c[

−→
A,
←−
A ]+c[

−→
A ]−k = c(B) = val(g).Thus, we obtain the desired relation val(f) ≤ val(g) (which, in fact, holds with equality).This completes the proof of Proposition 3.3.17



6 Dual half-integrality6.1 Polyhedral approachTheorem 6.1 Let a : V G → Z+ and p ∈ Z+. Then problem (Dλ) has a half-integeroptimal solution.Proof. The proof follows easily from Theorem 2.1 and the general fact that the �to-tally dual 1/k-integrality� implies the �totally primal 1/k-integrality�, which is a naturalgeneralization of a well-known result on TDI systems due to Edmonds and Giles [EG77].More precisely, we utilize the following simple fact (see, e.g., [Ka89, Statement 1.1]):Lemma 6.2 Let A be a nonnegative m× n-matrix, b be an integral m-vector, and k bea positive integer. Suppose that the program D(c) := max{yb | y ∈ Qm
+ , yA ≤ c} hasa 1/k-integer optimal solution for every nonnegative integral n-vector c such that D(c)has an optimal solution. Then for every nonnegative integral n-vector c, the program

P (c) := min{cx | x ∈ Qn
+, Ax ≥ b} has a 1/k-integer optimal solution whenever it hasan optimal solution.In our case, we set k := 2 and take as A (resp. b) the constraint matrix (resp. the righthand side vector) of (Dλ). Then b is integral, D(c) becomes (Nλ), P (c) becomes (Dλ),and the half-integrality for the former implies that for the latter. �This proof is not �constructive� and does not lead directly to an e�cient method for�nding a half-integer optimal solution l to (Dλ). Below we devise a strongly polynomialalgorithm.6.2 The algorithmIt gets arbitrary (rational-valued) optimal solutions l and F to (Dλ) and (Nλ), respec-tively, and outputs a half-integer optimal solution l̂ to (Dλ). (Such l and F can be foundin strongly polynomial time as described in Section 4.)As before, we set ` := a + l, and in what follows, speaking of a geodesic, we alwaysmean an `-geodesic in G, i.e. a T -path P with `(P ) = a(P ) + l(P ) = λ. Our goal is toconstruct l̂ : V G→ 1

2Z+ satisfying the following conditions:(6.1) (i) a(P ) + l̂(P ) ≥ λ for any T -path P in G;(ii) a(P ) + l̂(P ) = λ for each geodesic P ;(iii) for v ∈ V G, if l(v) = 0 then l̂(v) = 0.Then (6.1) and the complementary slackness conditions (2.6)�(2.7) imply that the nodelengths l̂ form an optimal solution to (Dλ).We construct an undirected graph Γ and endow it with edge lengths µ : EΓ→ Z+ asfollows. We �rst include in Γ the terminal set T and all nodes and edges of G containedin geodesics. Also we add to Γ the edges of G with both ends lying on geodesics or in T .The edges e of the current Γ are called regular and we de�ne µ(e) := 0.Next we add to Γ additional edges, which are related to constraints due to parts of
G outside Γ. More precisely, we scan all pairs of nodes u, v ∈ V Γ not connected by a18



(regular) edge and such that there exists a path Q in G having all nodes in V G−V Γ andwhose �rst node is adjacent to u, and the last node to v. We add to Γ an edge e = uv,referring to it as a virtual edge, and de�ne its length µ(e) to be the minimum value of
a(Q) among such paths Q. The construction of Γ, µ reduces to a polynomial number ofusual shortest paths problems in G.Note that l(v) = 0 holds for each node v ∈ V G− V Γ (by (2.6) and (2.7)). We assign
l̂(v) := 0 for these nodes v and will further focus on �nding values of l̂ on the nodes in Γ.For a path P in Γ, let Λ(P ) denote its full length a(P )+l(P )+µ(P ). Clearly Λ(P ) ≥ λholds for any T -path P in Γ, and for each T -path Q in G, there exists a shortcut path Pin Γ such that Λ(P ) ≤ a(Q) + l(Q).The desired lengths l̂ on V Γ will be extracted from a system of linear constraintsdescribed below. For a node v ∈ V Γ, let Tv (Πv) denote the set of terminals s ∈ T (resp.pairs s, t ∈ T ) such that v belongs to a geodesic from s (resp. connecting s and t). Whena terminal s belongs to no geodesic, we set by de�nition Ts := {s}. For each v ∈ V Γ and
s ∈ Tv, we introduce two variables ρ−s (v) and ρ+

s (v) and impose the following constraints:(6.2) (i) For each s ∈ T , ρ−s (s) = 0.(ii) For each v ∈ V Γ and s ∈ Tv,
ρ+

s (v)− ρ−s (v) = a(v) if l(v) = 0,

≥ a(v) if l(v) > 0.(iii) For each v ∈ V Γ and {s, t} ∈ Πv , ρ+
s (v)+ρ−t (v) = λ (and ρ+

t (v)+ρ−s (v) = λ).(iv) If e = uv ∈ EΓ and s ∈ Tu ∩ Tv, then
ρ−s (v)− ρ+

s (u) ≤ µ(e),

ρ−s (u)− ρ+
s (v) ≤ µ(e).Moreover, if there exists a geodesic from s containing both u, v in this order(resp. in the order v, u), then the former (resp. the latter) inequality isreplaced by equality. (Note that in this case µ(e) = 0.)(v) If e = uv ∈ EΓ, s ∈ Tu, t ∈ Tv, and s 6= t, then ρ+

s (u) + ρ+
t (v) ≥ λ− µ(e).The meaning of these variables becomes evident from the proof of the next statement.Lemma 6.3 System (6.2) has a feasible solution.Proof. For a p�q path P in Γ, de�ne its pre-length to be Λ(P ) − (a(q) + l(q)) (i.e.compared with the full length, we do not count the last node). For v ∈ V Γ and s ∈ Tv,de�ne ρ−s (v) (resp. ρ+

s (v)) to be the minimum pre-length (resp. the minimum full length)of an s�v path in Γ. Then (6.2)(i)�(iii) follow from the construction. Condition (6.2)(iv)represents a sort of triangle inequalities (giving one equality if e belongs to a geodesicfrom s). Finally, condition (6.2)(v) holds since the full length of any s�t path in Γ is atleast λ. �We observe that in linear system (6.2), each constraint contains at most two variables,each occurring with the coe�cient 1 or �1, and that the right-hand side in it is an integer.19



A well-known fact is that a linear system with such features is totally dual half-integral;therefore, it has a half-integer basis solution (whenever it has a solution at all), and sucha solution can be found in strongly polynomial time (cf., e.g., [EJ70, Sc03]).Given a half-integer solution (ρ−, ρ+) to (6.2), we de�ne half-integer node lengths l̂as follows:
l̂(v) := ρ+

s (v) − ρ−s (v)− a(v) for all v ∈ V Γ and s ∈ Tv.Now the desired algorithmic result is provided by the followingLemma 6.4 l̂ is well-de�ned and satis�es (6.1).Proof. We �rst show that for any v ∈ V Γ and s, t ∈ Tv,(6.3) ρ+
s (v)− ρ−s (v) = ρ+

t (v)− ρ−t (v).This is trivial when Πv = ∅ (since in this case v ∈ T and Tv = {v}). Let Πv 6= ∅.If {s, t} ∈ Πv, then (6.3) follows from (6.2)(iii). Now (6.3) with any two s, t ∈ Tv isimplied by the fact that the graph whose nodes and edges are the elements of Tv and Πv ,respectively, is connected (as it is easy to see that for {s, t}, {p, q} ∈ Πv, at least one of
{s, p}, {s, q} is in Πv as well). So l̂ is well-de�ned.Property (6.1)(iii) is immediate from (6.2)(ii).To see (6.1)(ii), consider an s�t geodesic P . Going along P step by step and apply-ing (6.2)(ii),(iv), we observe that for each node v on P , the s�v part P ′ of P satis�es
a(P ′)+ l̂(P ′) = ρ+

s (v)− ρ−s (s). When reaching t, we obtain a(P )+ l̂(P ) = ρ+
s (t)− ρ−s (s),and now (6.1)(ii) follows from (6.2)(iii) and ρ−s (s) = ρ−t (t) = 0 (by (6.2)(i)).Finally, consider an arbitrary T -path Q in Γ, from p to q say. To conclude with (6.1)(i),it su�ces to show that(6.4) ∆(Q) := a(Q) + l̂(Q) + µ(Q) ≥ λ.Represent Q as the concatenation Q′ · Q′′, where Q′ is a part of a geodesic from p.We prove (6.4) by induction on the number |Q′′| of edges in Q′′. When |Q′′| = 0, Q isa geodesic, and we are done. Assuming this is not the case, take the �rst edge e = uvof Q′′, where u is the end of Q′. By reasonings above, ∆(Q′) = ρ+

p (u). If v ∈ T (andtherefore, v = q), (6.4) immediately follows from (6.2)(v) (with s := q and t := q). Andif v /∈ T , then v belongs to some s�t geodesic L. W.l.o.g., one may assume that s 6= pand t 6= q. Applying (6.2)(v) to s, p, e, we have
ρ+

p (u) + ρ+
s (v) + µ(e) ≥ λ.Comparing this with ρ−s (v) + ρ+

t (v) = λ and using ρ+
s (v)− ρ−s (v) = a(v) + l̂(v), one canconclude that ∆(Q) ≥ ∆(R), where R is the t�q path being the concatenation of the t�vpart of (the reverse of) L and the v�q part R′′ of Q. Since |R′′| = |Q′′| − 1, we can applyinduction and obtain ∆(Q) ≥ ∆(R) ≥ λ, as required. �
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Appendix: Skew-symmetric graphs and �owsIn this section we recall the notions of skew-symmetric graphs and integer skew-symmetric�ows, review known results on such graphs and �ows, and then use them to derivenecessary results on bidirected graphs and �ows to which we appealed in Section 5.7.1 Skew-symmetric graphsA skew-symmetric graph, or an SK-graph for short, is a digraph G = (V G,AG), withpossible parallel arcs, endowed with two bijections σV , σA such that: σV is an involutionon the nodes (i.e. σV (v) 6= v and σV (σV (v)) = v for each node v); σA is an involutionon the arcs; and for each arc a from u to v, σA(a) is an arc from σV (v) to σV (u).For relevant results on SK-graphs and a relationship between SK- and BD-graphs, see[Tu67, GK96, GK04, BK07]. For brevity σV and σA are combined into one mapping
σ on V G ∪ AG, which is called the symmetry (or skew-symmetry, to be precise) of G.For a node (arc) x, its symmetric node (arc) σ(x) is also called the mate of x, and weusually use notation with primes for mates, denoting σ(x) by x′. Although G is allowedto contain parallel arcs, when it is not confusing, an arc from u to v may be denoted as
(u, v).Observe that if G contains an arc a from a node v to its mate v′, then a′ is also anarc from v to v′ (i.e. a′ is parallel to a).The symmetry σ is extended in a natural way to walks, subgraphs and other objectsin G. In particular, two walks are symmetric to each other if the elements of one ofthem are symmetric to those of the other and go in the reverse order: for a walk P =
(v0, a1, v1, . . . , ak, vk), the symmetric walk P ′ = σ(P ) is (v′k, a

′
k, v

′
k−1, . . . , a

′
1, v

′
0).Next we explain a relationship between skew-symmetric and bidirected graphs. Givenan SK-graph G, choose an arbitrary partition π = (V1, V2) of V G such that V2 = σ(V1).Then G and π determine the BD-graph G∗ with V G∗ = V1 whose edges correspond tothe pairs of symmetric arcs in G. More precisely, arc mates a, a′ of G generate one edge

e of G∗ connecting nodes u, v ∈ V1 such that: (i) e goes from u to v if one of a, a′ goesfrom u to v (and the other goes from v′ to u′ in V2); (ii) e leaves both u, v if one of a, a′goes from u to v′ (and the other from v to u′); (iii) e enters both u, v if one of a, a′ goesfrom u′ to v (and the other from v′ to u). Note that e becomes a loop if a, a′ connect apair of symmetric nodes.Conversely, a BD-graph G∗ determines an SK-graph G with symmetry σ as follows.Make a copy σ(v) of each element v of V ∗ := V G∗, forming the set (V ∗)′ := {σ(v) |
v ∈ V ∗}. Put V G := V ∗ t (V ∗)′. For each edge e of G∗ connecting nodes u and v,assign two �symmetric� arcs a, a′ in G so as to satisfy (i)�(iii) above (where u′ = σ(u)and v′ = σ(v)). An example is depicted in Fig. 3.Remark 7.1 Note that one BD-graph generates one SK-graph, by the second construc-tion. On the other hand, one SK-graph generates a set of BD-graphs, depending on thepartition π of V G, by the �rst construction. Namely, for each pair of symmetric mates
{v, v′} in G one may distribute v, v′ between V1, V2 so that either v ∈ V1, v′ ∈ V2 or, re-versely, v ∈ V2, v′ ∈ V1. The resulting BD-graphs are obtained from one other by makingcorresponding �ips (de�ned in Subsection 5.1).21
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(b) Corresponding SK-graph G.Figure 3: Related bidirected and skew-symmetric graphs.There is essentially a one-to-one correspondence between the walks in G∗ and G.More precisely, let τ be the natural mapping of V G ∪ AG to V G∗ ∪ EG∗. Each walk
P = (v0, a1, v1, . . . , ak, vk) in G (where ai = (vi−1, vi)) induces the sequence

τ(P ) := (τ(v0), τ(a1), τ(v1), . . . , τ(ak), τ(vk))of nodes and edges in G∗. One can see that τ(P ) is a walk in G∗ (i.e. τ(ai), τ(ai+1) forma transit pair at τ(vi), for each i) and that τ(P ′) is the walk reverse to τ(P ). Moreover,for any walk P ∗ in G∗, there is exactly one walk P in G such that τ(P ) = P ∗ (considering
P up to replacing an arc a ∈ AP by its mate a′ when a, a′ are parallel, i.e. correspondto a loop in G∗).7.2 Skew-symmetric �owsWe call a function ϕ on the arcs of an SK-graph G (self-)symmetric if ϕ(a) = ϕ(a′) forall a ∈ AG. Let s ∈ V G be a designated source; its mate s′ is regarded as the sink.An integer skew-symmetric s�s′ �ow, or an ISK-�ow for short, is a symmetric function
f : AG → Z+ being an s�s′ �ow in a usual sense: divf (v) = 0 for all v ∈ V G − {s, s′},and divf (s) ≥ 0. The value of f is val(f) := divf (s). Here divf (v) denotes the usualdivergence (given by (3.1), where δin(v) and δout(v) are the sets of arcs entering andleaving v, respectively).For a capacity function c : AG→ Z+, a �ow f is said to be feasible if f(a) ≤ c(a) forall a ∈ AG. We refer to a feasible ISK-�ow of maximum possible value as a maximumISK-�ow.The above correspondence between BD- and SK-graphs is naturally extended to �ows.More precisely, if f is a symmetric s�s′ �ow in G, then transferring the values of f fromthe pairs of arc mates of G to the edges of the corresponding BD-graph G∗, we obtain a
τ(s)-�ow in G∗, denoted as f∗. The converse correspondence is evident as well.For X,Y ⊆ V G, let (X,Y ) denote the set of arcs going from X to Y . Also (ac-commodating notation from Section 5 to digraphs) we denote by [

−→
X ] the set of arcsleaving X. 22
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Figure 4: A skew-symmetric odd-barrier. Grayed arcs correspond to odd capacity con-straints.Let c : AG → Z+ be a symmetric capacity function. Then a tuple B =
(A,M ;B1, . . . , Bk) of subsets of V G is called a (skew-symmetric) odd barrier (w.r.t.the source s) if the following conditions hold (see Fig. 4):(7.1) (i) the sets A,A′,M,B1, . . . , Bk give a partition of V G, each Bi is self-symmetric(B′

i = Bi), and s ∈ A;(ii) For each i = 1, . . . , k, c(A,Bi) is odd.(iii) For distinct i, j = 1, . . . , k, c(Bi, Bj) = 0.(iv) For each i = 1, . . . , k, c(Bi,M) = c(M,Bi) = 0.The capacity of B is de�ned to be(7.2) c(B) := c[
−→
A ]− k.Odd barriers in skew-symmetric graphs are related to their bidirected counterpartsintroduced in Section 5. Indeed, consider a BD-graph G∗ with integer edge capacities

c : EG∗ → Z+ and a source s. Construct the related SK-graph G with V G = V t V ′,where V := V G∗. Edge capacities c in G∗ induce symmetric arc capacities in G, alsodenoted by c. The source s in G∗ gives the source s and the sink s′ in G. Consider askew-symmetric odd barrier B = (A,M ;B1, . . . , Bk) in G.This barrier gives rise to the following odd BD-barrier B∗ in G∗ obeying c(B∗) = c(B).We �rst construct a new BD-graph from G by taking a bipartition (V1, V2 = σ(V1)) of
V G such that A ⊆ V1 and V1 − (A ∪ A′) = V − (A ∪A′); cf. Remark 7.1. The resultingBD-graph H∗ is equivalent to G∗. Moreover, H∗ is obtained from G∗ by �ipping a subsetof nodes within A.The node subsets M,B1, . . . , Bk in G are self-symmetric and induce subsets
M∗, B∗

1 , . . . , B∗
k in G∗ and H∗ in a natural way; namely, M∗ := M ∩ V = M ∩ V1and similarly for B∗

i . De�ne B∗ := (H∗|A∗,M∗;B∗
1 , . . . , B∗

k), where A∗ := (A ∪A′) ∩ V1.A straightforward examination shows that the properties in (7.1) imply their bidirectedcounterparts in (5.1). To see that c(B∗) = c(B), de�ne Z := M ∪ B1 ∪ . . . ∪ Bk. Notethat c[
−→
A ] = c(A,A′)+ c(A,Z). The capacity c(A,A′) is equal to 2c[

−→
A∗,
←−
A∗] (in H∗) since23



(A,A′) consists of pairs of arc mates, each pair corresponding to an edge in [
−→
A∗,
←−
A∗].And the capacity c(A,Z) is equal to c[

−→
A∗] since the (symmetric) set Z corresponds to

M∗ ∪B∗
1 . . . B∗

k in H∗.In light of these observations, Theorem 5.1 is a consequence of the following Tutte'stheorem. (For shorter proofs of this and next theorems, see also [GK04].)Theorem 7.2 (Max ISK-Flow Min Odd Barrier Theorem [Tu67]) For G, c, s as above,the maximum ISK-�ow value is equal to the minimum odd barrier capacity. An ISK-�ow f and an odd barrier B = (A,M ;B1, . . . , Bk) have maximum value and minimumcapacity, respectively, if and only if the following hold:(i) f(A,A′ ∪M) = c(A,A′ ∪M) and f(A′ ∪M,A) = 0;(ii) for each i = 1, . . . , k, either f(A,Bi) = c(A,Bi)−1 and f(Bi, A) = 0, or f(A,Bi) =
c(A,Bi) and f(Bi, A) = 1.Next we establish additional correspondences. Consider an ISK-�ow f in G. Theresidual SK-graph Gf endowed with the residual capacities cf : AGf → Z+ is constructedin a standard fashion: V Gf = V G, and the arcs of Gf are:(7.3) (i) each arc a ∈ AG with f(a) < c(a) whose residual capacity is de�ned to be

cf (a) := c(a)− f(a), and(ii) the reverse arc aR = (v, u) to each arc a = (u, v) ∈ AG with f(a) > 0; itsresidual capacity is cf (aR) := f(a)(cf. (5.3)). A path P in Gf is called cf -regular if cf (a) = cf (a′) ≥ 2 holds for each pairof arc mates a, a′ occurring in P . (In other words, the bidirected image of P in G∗
f is a

cf -simple walk.) If P is a cf -regular s�s′ path, we can increase the value of f by 2 (bysending one unit of �ow along P and one unit of �ow along P ′). So the existence of sucha P implies the non-maximality of f . The converse property is valid as well.Theorem 7.3 ([Tu67]) An ISK-�ow f is maximum if and only if there is no cf -regular
s�s′ path in Gf .This implies Theorem 5.2 for IBD-�ows.Given a maximum ISK-�ow f , a certain minimum odd barrier can be constructedby considering the residual graph Gf . The construction described in the proof of Theo-rem 3.5 in [GK04] (relying on Lemma 2.2 in [GK96]) is as follows.Theorem 7.4 Let f be a maximum ISK-�ow. Let R = Rf be the set of nodes reachablefrom s by cf -regular paths in Gf . De�ne A := R − R′ and M := V G − (R ∪ R′). Let
B1, . . . , Bk be the node sets of weakly connected components of the subgraph G induced by
R ∩R′. Then Bf := (A,M ;B1, . . . , Bk) is a minimum odd barrier. �This subset R of nodes in G corresponds to two sets −→R =

−→
RG∗,f∗ and←−R =

←−
RG∗,f∗ in

G∗ (de�ned just before Theorem 5.3; here Γ = G∗ and g = f∗). More precisely, assumingthat each node v ∈ V G∗ corresponds to node mates v, v′ in G (cf. Subsection 7.1), onecan realize that −→R (resp. ←−R ) is the set of nodes v ∈ V G∗ such that v ∈ R (resp. v′ ∈ R).Finally, the last theorem in Subsection 5.1 (Theorem 5.4) is implied by the followingassertion. 24



Theorem 7.5 The sets Rf in Theorem 7.4 are equal for all maximum ISK-�ows f .Therefore, the minimum odd barriers Bf are equal as well.This fact can be extracted from reasonings in [GK04], yet it is not formulated thereexplicitly. For this reason, we give a direct proof.Let f be a maximum ISK-�ow such that the set Rf is inclusion-wise minimal and let
Bf := (A,M ;B1, . . . , Bk). Consider another maximum ISK-�ow g (if any). Then(7.4) c[

−→
A ]− k = c(B) = val(g) =

∑
v∈A

divg(v)

= g〈A,A′〉+ g〈A,M〉 + g〈A,B1〉+ . . . + g〈A,Bk〉,where for disjoint subsets X,Y ⊂ V G, g〈X,Y 〉 denotes g(X,Y ) − g(Y,X). For i =
1, . . . , k, we have: g(A,Bi) ≤ c(A,Bi); c(A,Bi) is odd; and g〈A,Bi〉 is even (the latteris due to a result in [Tu67]; see also [GK04, Corollary 3.2]). Therefore, c(A,Bi) −
g〈A,Bi〉 ≥ 1. Also g〈A,A′〉 ≤ c(A,A′) and g〈A,M〉 ≤ c(A,M). Comparing theserelations with (7.4), we conclude that:(i) all arcs in (A,A′ ∪M) are saturated by g, while all arcs a in (A′ ∪M,A) are freeof g (i.e. g(a) = 0);(ii) for each i, g〈A,Bi〉 = c(A,Bi)− 1.In terms of the residual graph Gg, (i) and (ii) mean that the sets A and V G − Aare connected in Gg by exactly k arcs a1, . . . , ak, each ai going from A to Bi and havingthe residual capacity 1. By symmetry, V G − A′ and A′ are connected by only the arcs
a′1, . . . , a

′
k (each a′i goes from Bi to A′, and cg(ai) = cg(a

′
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