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1. Introduction

Kashiwara [4,5] introduced the fundamental notion of a crystal in representation theory. This is
an edge-colored directed graph in which each connected monochromatic subgraph is a finite path
and there are certain interrelations on the lengths of such paths, described in terms of a Cartan
matrix M; this matrix characterizes the type of a crystal. An important class of crystals is formed by
the crystals of representations, or regular crystals; these are associated to irreducible highest weight
integrable modules (representations) over the quantum enveloping algebra related to M. There are
several global models to characterize the regular crystals for a variety of types; e.g., via generalized
Young tableaux [7], Lusztig’s canonical bases [10], Littelmann’s path model [8,9].

An important fact, due to Kang et al. [3], is that a crystal of type M is regular if and only if
each (maximal connected) 2-colored subgraph in it is regular (concerning the corresponding 2 x 2
submatrix of M). This stimulates a proper study of 2-colored regular crystals.

Stembridge [11] pointed out a list of “local” graph-theoretic axioms characterizing the regular

simply laced crystals. The 2-colored subcrystals of these crystals have type A; x A1 = ((2) g) or type

Ay = (_2]_;) A crystal of type A1 x Ap is quite simple: it is the Cartesian product of two paths.

* This research was supported by NWO-RFBR grant 047.011.2004.017, by RFBR grant 05-01-02805 CNRSL_a, and by School
Support grant NSh-929.2008.6.
E-mail addresses: danilov@cemi.rssi.ru (V.I. Danilov), sasha@cs.isa.ru (A.V. Karzanov), koshevoy@cemi.rssi.ru (G.A. Koshevoy).

0097-3165/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcta.2008.06.002


http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcta
mailto:danilov@cemi.rssi.ru
mailto:sasha@cs.isa.ru
mailto:koshevoy@cemi.rssi.ru
http://dx.doi.org/10.1016/j.jcta.2008.06.002

266 V.I. Danilov et al. / Journal of Combinatorial Theory, Series A 116 (2009) 265-289

A combinatorial analysis of regular A,-crystals is given in [1]; following short terminology there,
we call such crystals RA2-graphs. It is shown in [1] that any RA2-graph can be obtained from an
(A1 x Aq)-crystal by replacing each monochromatic path of the latter by a so-called A-sail, which is
viewed as a triangular part of a 2-dimensional square grid.

A more complicated class is formed by the regular doubly laced crystals. In this case the 2-colored
subcrystals have type A; x A or Ay or By = (fl’zz) or C; = (32’21) (A regular By- or C-crystal is
associated to an irreducible highest weight integrable module over Ug(sp4 = s05).) At the end of [11],
Stembridge raised the problem of characterizing the regular B,-crystals in “local” terms and conjec-
tured a complete list of possible operator relations in these crystals. This conjecture was affirmatively
answered by Sternberg [12]. However, no “local” characterizations for regular B,-crystals have been
found so far.

In this paper we attempt to give an exhaustive combinatorial analysis of regular B,-crystals. There
are three groups of results that we present. First, we give an explicit combinatorial construction for
a class of 2-edge-colored graphs, which we call S-graphs. This construction has an analogy with the
above-mentioned transformation of an (A x Ap)-crystal into a RA2-graph. Now we use as a base a
RA2-graph in which certain vertices are specified, called a “decorated” RA2-graph. Then an S-graph is
obtained from a “decorated” RA2-graph by replacing, in a certain way, each monochromatic path of
the latter by a so-called B-sail. Such a sail is also a part of a square grid but in general has another
shape than an A-sail.

Second, we characterize the S-graphs by “local” axioms. Third, we develop a combinatorial worm
model and show that the objects (worm-graphs) generated by this model are isomorphic to S-graphs.
Moreover, a nice graphical representation of these objects enables us to prove that the finite worm-
graphs satisfy the conditions in Littelmann’s path model for regular B,-crystals. As a result, we obtain
that the set of finite S-graphs is just the set of regular B-crystals, and that these crystals are charac-
terized by our “local” axioms.

It should be noted that the infinite graphs that can be produced by use of our construction as well
are viewed as natural infinite analogs of regular B,-crystals (in spirit of infinite analogs of regular
Ay-crystals introduced in [1]).

The paper is organized as follows. In Section 2 we briefly review a structural result on RA2-graphs
from [1], describe the construction of S-graphs and expose some properties of these graphs. Section 3
gives “local” axioms on a 2-edge-colored graph G and proves that they are defining axioms for the
S-graphs. Note that a part of axioms is stated in terms of G, whereas the other axioms concern the
“decorated” RA2-graph derived from G. The worm model is described in Section 4 and we prove there
that the worm graphs satisfy the above axioms and, conversely, that any S-graph can be realized as
a worm-graph. An equivalence between the worm model and Littelmann’s path model for By-crystals
is proved in Appendix A. Finally, in Appendix B we explain how to transform the axioms formulated
for the “decorated” RA2-graph derived from G into “local” axioms directly for G.

This paper is self-contained, up to appealing to Littelmann’s path model and to a structural result
in [1].

2. An explicit construction

In this section we present an explicit combinatorial construction producing a class of 2-edge-
colored directed graphs; we call them S-graphs (abbreviating “sail-graphs”). We will show later that
the finite S-graphs are precisely the regular B,-crystals. Each finite S-graph is created in a certain
way from a regular A,-crystal (and there is a one-to-one correspondence between these), like the
latter can be created from an (A1 x Ap)-crystal, the simplest type in the 2-colored crystals hierarchy.
Throughout in the pictures we illustrate edges of the first color by horizontal arrows directed to the
right, and edges of the second color by vertical arrows directed up. To avoid a possible mess, the edge
colors of crystals of different types will be denoted differently.

We start with reviewing the construction of regular Aj-crystal of [1], describing it in a slightly
different, but equivalent, form. For n € Z,, let P, denote the (directed) path of length n, i.e., having n
edges.
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Fig. 1. The left graph is C(0, 3) and the right graph is C(2, 0).

A regular A-crystal is determined by parameters a, b € Z,, and we denote it by C(a, b). To form
it, take the Cartesian product P, x Pp, or the directed 2-dimensional rectangular grid I" = I"(a, b)
of size a x b. The latter is regarded as the 2-colored digraph whose vertices correspond to the pairs
@i,j),i=0,...,a, j=0,...,b, the edges of the first color, say, color «, correspond to the pairs of the
form ((i, j), (i+ 1, j)), and the edges of the second color, 8 say, correspond to the pairs of the form
(@, j),(d,j+1)). This I is a regular (A7 x A1)-crystal, and its vertex set V constitutes the set of
principal vertices of C(a, b) (in [1] they are called critical ones).

Now C(a, b) is obtained by sticking to V copies of special 2-edge-colored graphs, so-called A-
sails. The right A-sail of size a is the triangular south-east part R of the a x a grid whose vertices
are the integer points (i, j) for 0 < j <i < a, and the left A-sail of size b is the triangular north-west
part L of the b x b grid whose vertices are the integer points (i, j) for 0 <i < j<b. Both R and L are
2-colored digraphs in which the edges of the first color, say, color I, are all possible pairs of the form
(@, j),(i+1,j)), and the edges of the second color, II say, the pairs of the form ((i, j), (i, j + 1)). The
diagonal of R (of L), denoted by D(R) (resp. D(L)), consists of the points (i, i), which are ordered by
increasing i. We take b + 1 copies Ry, ..., Ry of R and a + 1 copies Lo, ..., L; of L and:

(i) for j=0,...,b, replace the jth a-colored path (Pq, j) in I" by Rj, by identifying, for i =0,...,q,
the point (i, j) in I" with the ith point (i, i) in D(R;) and then deleting the edges of this path;

(ii) for i =0,...,a, replace the ith B-colored path (i, Pp) in I" by L;, by identifying each point (i, j)
in I with the jth point in D(L;) and then deleting the edges of this path.

Then the resulting graph, in which the edge colors I and II are inherited from L and R, is just the

crystal C(a, b). In [1], C(a, b) is called the diagonal-product of R and L and is denoted as R >< L. One
can see that under this construction R and L themselves are the crystals C(a, 0) and C(0, b), respec-
tively (see Fig. 1). Also C(a,b) has one source s (a zero-indegree, or minimal, vertex), which is the
point (0, 0) in each of I', Ry, Lo, and one sink t (a zero-outdegree, or maximal, vertex), which is the
point (a,b) in I', (a,a) in Ry, and (b, b) in L,. The vertices of C(a, b) are covered by (inclusion-wise)
maximal I-colored paths, called I-strings; these are pairwise disjoint and each contains exactly one
principal vertex. More precisely: a vertex (i, j) € V- belongs to the I-string that passes the vertices
0, j),...,(j,j) in L; and then passes the vertices (i +1,1i),...,(a,i) in R; (observe that (j, j) of L;
coincides with (i,i) of R; and with (i, j) of I'). Similarly, there is a natural bijection between the
principal vertices and the maximal II-colored paths, or II-strings. Note that the parameters a and b are
equal to the lengths of the I-string and II-string from the source s, respectively (or of the II-string and
[-string to the sink t, respectively).

2.1. Finite S-graphs

Next we describe the construction of the desired S-graph for parameters a,b € Z, denoted by
S(a, b). It is formed from C(a, b) by replacing its I-strings by right B-sails, and replacing its II-strings
by left B-sails. A B-sail is again a part of a 2-dimensional grid but, compared with the A, case,
its structure is somewhat more complicated and depends on the length of the I- or Il-string to be
replaced by the sail as well as on the location of the principal vertex in this string.

Let r,x € Z4 and r < x. The left B-sail LB(x,r) has the vertices identified with the integer points in
the set {(i, j): 0<i< j<x, j>2i—r} plus the half-integer points in the set {(r +k + %, r+2k+



268 V.I. Danilov et al. / Journal of Combinatorial Theory, Series A 116 (2009) 265-289

Fig. 2. The left sails LB(4, 2), LB(3, 0), and LB(3, 3) (from left to right).

Fig. 3. The right sails RB(4, 1), RB(4,0) and RB(3, 3) (from left to right).

1): keZy, k< "z;r}. The point (r,r) is of importance; it is called the break point of LB(x,r) (at this
point the slope of the “diagonal side” of the sail changes from 1 to 2). The edges correspond to all
possible pairs of the form ((i, j), (i + 1, j)), to which we assign the first color denoted by 1, and all
pairs of the form ((i, j), (i, j + 1)), to which we assign color 2. Also we add special edges with color
1; these correspond to the pairs ((r +k,r +2k + 1), (r +k + % r+ 2k + 1)) (for k € Z+ such that
k < %) and are called left half-edges. Instances of left B-sails are illustrated in Fig. 2 where the break
points are indicated bold.

Right B-sails are defined symmetrically. For q, y € Z4 with g < y, the vertex set of the right sail
RB(y, q) is formed by the integer points in {(i, j): —y < j<i<0, j<2i+gq} and by the half-integer
points in {(—q — k — % —q—2k—1): keZs, k< %}. The break point of RB(y,q) is —(q, q). The
edges are the pairs of the form ((i, j), (i + 1, j)), colored 1, the pairs of the form ((i, j), (i, j + 1)),
colored 2, and the special pairs ((—q — k — % —q—2k—1),(—q —k,—q — 2k — 1)) (for k € Z such
that k < %), which are colored 1 and called right half-edges. Instances of right B-sails are illustrated
in Fig. 3.

Now we are ready to define S(a, b).

For each II-string P of C(a, b) we proceed as follows. If v = (i, j) is the principal vertex in P (using
the coordinates in I"(a, b)), then the part P’ of P from the beginning to v has length i (as P’ passes
the vertices (i,0), ..., (i, i) of the right A-sail R;), and the part P” of P from v to the end has length
b — j (as P” passes the vertices (j, j), ..., (j, b) of the left A-sail L;). We replace P by the left B-sail
LB=LB(x,r) with x=b+1i— j and r =i, by consecutively identifying the vertices of P (in their order)
with the vertices of the “diagonal side” of LB (in their natural ordering starting from the minimal
vertex (0, 0)) and then deleting the edges of P. So v is identified with the break point of LB.

For each I-string P of C(a, b), the procedure is similar. If v = (i, j) is the principal vertex in P, then
the part P’ of P from the beginning to v has length j (as P’ passes the vertices (0, j), ..., (j, j) of
the left A-sail L;), and the part P” of P from v to the end has length a —i (as P” passes the vertices
(i,1),...,(a, i) of the right A-sail R;). We replace P by the right B-sail RB=RB(y,q) with y =a+ j—i
and q =a —1i, by consecutively identifying the vertices of P with the vertices of the “diagonal side” of
RB (in their ordering starting from the minimal vertex (—¥+9, —y)) and then deleting the edges of P.
Again, v is identified with the break point of RB.

Finally, one can see that the half-integer points of the diagonals of B-sails are identified with
precisely those vertices v of C(a,b) that belong to left A-sails and lie at odd distance from their
diagonals. When the II-string passing such a v is replaced by the corresponding left B-sail, v becomes
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Fig. 4. In the upper line: transformation I"(1,0) — C(1,0) — S(1,0). In the middle line: transformation /°(0,1) — C(0,1) —
S(0, 1). In the lower line: transformation I"(1,1) — C(1,1) — S(1,1).

incident to a left half-edge (u, v), and when the I-string passing v is replaced by the corresponding
right B-sail, v becomes incident to a right half-edge (v, w). We merge these half-edges into one edge
ey = (u, w) (so the vertex v vanishes), which inherits the color 1 from (u, v), (v, w).

The resulting 2-colored digraph, with colors 1 and 2, is just the graph S(a, b). The vertices of
C(a, b) occurring in S(a, b), as well as the edges e, obtained by merging half-edges, are called central
elements of S(a,b) (so there is a natural bijection between the central elements and the vertices of
C(a, b)); the principal vertices (viz. the break points of B-sails) are most important among these.

The graph S(a, b) has one source s and one sink t, which coincide with the source and sink of
C(a, b), respectively. Since the I-string and IlI-string beginning at s are replaced by the sails RB(a, a)
and LB(b, b), respectively, it follows that in the graph S(a, b), the string of color 1 beginning at s has
length a and the string of color 2 beginning at s has length b, thus justifying the maintenance of the
parameters a, b. Fig. 4 illustrates three instances of the transformation of an (A1 x Aq)-crystal into an
A-crystal and further into an S-graph.

The simplest nontrivial graphs S(1,0) and S(0, 1) are called fundamental. The graph S(1,1) is the
least S-graph where the “big Verma relation” is present; considering paths from the source s to the
sink t, we observe the operator relations of degree 7 indicated in [11,12]: t = 12212125 = 1231225 =
2122315 = 21212%1s.

Figs. 5 and 6 illustrate the construction of bigger S-graphs, namely, S(2, 1) and S(1, 2), respectively.
Here the horizontal edges are directed to the right, the vertical edges are directed up, and the central
edges of the S-graphs are drawn in bold.

We will prove later, via a chain of equivalence relations, that the S-graphs constructed above are
precisely the regular B;-crystals.

Remark 1. We have seen that the principal vertices (i.e., those coming from the corresponding grid I")
are important in the construction of S(a, b). They also possess the following nice property: for any
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Fig. 5. Creation of S(2,1). (a) I'(2,1); (b) C(2,1); (c) the left B-sails; (d) the right B-sails; (e) S(2,1).

two principal vertices v, v/ whose coordinates (i, j) and (i’, j’) (respectively) in I"(a, b) satisfy i <i’
and j < j’, the interval of S(a,b) from v to v’ is isomorphic to S(i’ — i, j/ — j). (In an acyclic di-
graph G, an interval from a vertex x to a vertex y is the subgraph of G whose vertices and edges
belong to paths from x to y.) This property can be deduced from the above construction and be-
comes quite transparent when S(a, b) is represented via the worm model introduced in Section 4.
(A similar property for principal vertices in regular A,-crystals is shown in [2]. See also Lemma 7.12
in [6].)

Another feature that can be obtained from the construction (and will be easily seen from the worm
model; cf. Remark 4 in Section 4) is the existence of a mapping from the vertex set of S(a, b) to Z?2
which brings each 1-edge to a vector congruent to (1,0), and each 2-edge to a vector congruent to
(0,1) (a “weight mapping”).

2.2. Infinite S-graphs

In [1] the construction of regular Aj-crystals is generalized in a natural way to produce their
infinite analogs. To do so, one considers a grid I" = P x Q in which one of the paths P, Q or both is
allowed to be semi-infinite in forward direction or semi-infinite in backward direction or fully infinite,
i.e. to be of the form ..., v, (vi, Vit1), Vit1, (Vit1, Vit2), ... with the indices running over Z. or Z_
or Z, respectively. The definitions of right A-sails R and left A-sails L are extended accordingly. For
example, if P is fully infinite, then the vertex set of R is formed by the points (i, j) € Z? with j <1,
and if Q is semi-infinite in backward direction, then the vertex set of L is formed by (i, j) € Z? with
i < j<0. As before, the “diagonals” in these sails are the sets of pairs (i,i). The diagonal-product
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R >< L (which remains well-defined in this general case) is the desired graph; following terminology
in [1], we call such a (finite or infinite) graph C an RA2-graph. Now the above construction of right
and left B-sails is extended in a natural way to treat I- and II-strings of such a C (note that, as before,
the diagonal side of each B-sail contains exactly one (finite) break point). As a result, we obtain an
extended collection which includes the above S-graphs and their infinite analogs, to which we refer as
S-graphs as well. We may conditionally use symbols Z,, Z_, Z to denote corresponding parameters
(in place of finite numbers a, b); e.g. S(a,Z_) denotes the S-graph determined by a finite path P,
with color @ and the semi-infinite in backward direction path with color 8.

3. Axioms

In this section we present a list of axioms defining a class of 2-edge-colored digraphs. Although
finite graphs are of most interest for us, our axioms are stated so that they fit infinite graphs as well.
We will prove that the graphs defined by these axioms are exactly the S-graphs from the previous
section (thus obtaining an axiomatical characterization of the regular B,-crystals, by attracting further
arguments).

Let G = (V, E) be a (weakly) connected 2-edge-colored digraph without multiple edges (G is al-
lowed to be infinite). As before, we denote the edge colors of G by 1 and 2 and refer to an edge
with color i as an i-edge. We assume that a set of elements of G consisting of vertices and 1-edges is
distinguished; we call these elements central. (Strictly speaking, our axioms concern the pair: G and
a set of central elements in it.)
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Our original list consists of Axioms (B0)-(B4), Axioms (B3’)-(B4’) (“dual” of (B3)-(B4)), and Ax-
iom (BA). The last axiom bridges B,- and A,-crystals; it requires that a certain graph derived from G
by use of Axioms (B0)-(B4), (B3/)-(B4’) be an RA2-graph in which a certain partition of the vertices
into two sets is distinguished. We will also characterize such a “decorated” RA2-graph via “local” ax-
ioms (Axioms (A0)-(A9)) given in this section and will translate these axioms in direct terms of the
original graph G in Appendix B.

(BO) G is acyclic, and for i =1, 2, each vertex has at most one entering edge with color i and at most
one leaving edge with color i.

Thus, the deletion of all edges of G of color 3 —i produces a disjoint union of (finite or infinite)
paths, called strings of color i, or i-strings. The 1-edges (2-edges) can be identified with the action
of the corresponding partial invertible operator on the vertices, also denoted by 1 (resp. by 2); in
particular, for a 1-edge (u, v), we may write v=1u and u =1""v.

(B1) Each 1-string has exactly one central element (vertex or edge).

Due to this axiom, we partition the vertex set of G into three subsets, the sets of central, left and
right vertices. Here a vertex v is called left (right) if it lies before (resp. after) the central element
of the 1-string containing v. Accordingly, a non-central 1-edge (u, v) is regarded as left (right) if u
is left (resp. v is right). Note that for a central edge e = (x, y), the vertex x is left and the vertex
y is right; it will be convenient for us to think of e as though consisting of two half-edges: the left
half-edge, beginning at x and ending at the “mid-point” of e, and the right half-edge, beginning at
the “mid-point” and ending at y.

(B2) Each 2-string P contains exactly one central vertex v. Moreover, all vertices of P lying before v
are right, whereas all vertices lying after v are left.

A 2-edge (u, v) is regarded as left (right) if v is left (resp. u is right).

Corollary 1. For any left or central 1-edge (u, v), there exists a 2-edge entering u, and the latter edge is left.
For any left 2-edge (u’, v'), there exists a 1-edge leaving v’, and at least a half of the latter edge is left.

Indeed, consider the 2-string P passing u. Since u is left, the center of P is located strictly before u,
by (B2). This gives the first assertion, and the second one is shown in a similar way.

For Axioms (B3), (B4) stated below (as well as for Axioms (B5)-(B13) given in Appendix B), the
corresponding dual axiom will also be default imposed on G; this is the same statement applied to
the dual graph, the graph obtained from G by reversing the orientation of all edges while preserving
their colors and distinguishing the same central elements (so, to get a formulation for G itself, one
should swap the words “left” and “right,” as well as “enter” and “leave”). The axiom dual of (Bi) is
denoted by (Bi').

In illustrations below we indicate the central vertices by thick dots and mark the central edges by
black rhombi in the middle of the corresponding arrows.

By a commutative square one means a quadruple of vertices u, v, v/, v/ (in any order) such that
v=1u, v’ =2u and v/ =1u’ =2v, as well as the subgraph of G induced by these vertices. The next
axiom (together with its dual) says that a non-commutativity of the operators 1 and 2 may occur only
around central vertices or central edges.

(B3) (i) Let (u, v) be a left 1-edge and suppose that there is a 2-edge leaving u or v. Then these two
edges belong to a commutative square. (ii) Let (v, w) be a left 2-edge and suppose that there
is a 1-edge entering v or w. Then these two edges belong to a commutative square. (See the
picture.)
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(So the first part of the dual axiom (B3’) says that for a right 1-edge (u, v), if u or v has entering
2-edge, then these two edges belong to a commutative square.)

Note that the square uu’vv’ in (B3)(i), where u’ =2u and v’ = 2v, is commutative in a stronger
sense: both edges (v, v') and (v, v') are left as well. Indeed, the vertex v is left or central. Therefore,
the vertex v’ is left, by (B2), whence the above edges are left.

Corollary 2. Let (u, v) be a central 1-edge. Then there are a 2-edge (v’, u) and a 2-edge (v, v'). Moreover,
both vertices u’, v’ are central.

Proof. Since the vertex u is left, it lies after the central vertex on its 2-string. So u has entering 2-
edge (u/,u). Suppose u’ is not central. Then u’ is left, and therefore, it has leaving 1-edge (u’, w),
which is left. By Axiom (B3), v/, u, w, v form a commutative square. This contradicts to the fact that
the edge (u, v) is central.

The assertion concerning (v, v’) is symmetric. O

Remark 2. We shall see later that when G is finite, the difference between central, left and right
edges consists in the following. For a vertex v and color i, let t;(v) (resp. h;(v)) denote the length of
the part of the i-string containing v from the beginning to v (resp. from v to the end). For an i-edge
e = (u,v), define At(e) :=t3_j(v) —t3_j(u) and Ah(e) := h3_;j(v) — h3_j(u). Then the status of e is
described in terms of the pair A(e) := (At(e), Ah(e)): (i) when i =1, A(e) is (—2,0) if e is left, (0, 2)
if e is right, and (—1, 1) if e is central; (ii) when i =2, A(e) is (—1,0) if e is right, and (0, 1) if e
is left. (Note that the value At(e) — Ah(e) is equal to —2 for all 1-edges e and —1 for all 2-edges e,
which matches the off-diagonal coefficients of the Cartan matrix for B;.)

Note also that there is another way to characterize the central elements, which is prompted by
Axiom (B3) and Corollary 2 and fits for infinite graphs G as well. More precisely, the central vertices
are exactly those vertices v that satisfy at least one of the following: (i) v has no entering edges or
has no leaving edges; (ii) v has two leaving edges but the operators 1 and 2 do not commute at v,
i.e, 12v # 21v; (iii) v has two entering edges but the operators 1-! and 2~ do not commute at v. In
its turn, the central edges are exactly the 1-edges e = (u, v) such that: u has entering 2-edge ¢’ and
v has leaving 2-edge e”, but neither e, e’ nor e, e” belongs to a square. Based on these properties, one
can slightly modify our axiomatics so as to get rid of explicitly distinguishing the central elements in
the input graph G.

Corollary 3. Let (u, v) be a central 1-edge. Let a 2-edge (u, w) leave u. Then there is a 1-edge (w, w'), and
the vertex w’ is central.

Proof. Since u is left, w is left as well. So a 1-edge (w,w’) exists. This edge cannot be central
(otherwise the vertex u would be central, by Corollary 2). Suppose w’ is not central. Then w’ is left,
and therefore, w’ has entering 2-edge e, which is left. Applying Axiom (B3’) to the edges (w, w’)
and e, we obtain that u, v, w, w’ form a commutative square. But then the edge (u,v) cannot be
central; a contradiction.

The next axiom proposes a certain strengthening of Corollary 3.

(B4) Let u be the beginning vertex of a central edge. Suppose there are a 2-edge (u, w), a 1-edge
(w, w’) and a 2-edge (w’, v). Then v is the beginning vertex of a central edge; see the picture.
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Axioms (B0)-(B4), (B3’)-(B4’) enable us to extract B-sails in G (defined in the previous section), as
follows. Let us cut G in the SW-NE direction at each central vertex v, that is, split v into two vertices
v/, v”, making v’ incident (in place of v) with the 1-edge entering v and the 2-edge leaving v, and
making v” incident with the 1-edge leaving v and the 2-edge entering v, when such edges exist.
Also split each central edge e = (u, w) into two “half-edges” (u,v,) and (v/, w), where v,, v, are
copies of the mid-point v, of e. By (B0)-(B2), the obtained graph has two sorts of components:
those containing left 1- and 2-edges and left half-edges, called left components, and those containing
right 1- and 2-edges and right half-edges, called right components. (Note that left or right components
consisting of a single vertex are possible.) Moreover, each monochromatic string of G becomes split
(at its central point) into two parts, one lying in a left component, and the other in a right component.
Fig. 7 illustrates the splitting procedure.

Consider a left component K. By the commutativity axiom (B3), “above” any 1-edge (not a half-
edge) and “to the left” of any 2-edge of K we have a strip of commutative squares of G; they belong
to K as well. Therefore, K forms a region “without holes” of the grid on Z? and has 3 boundaries: the
left boundary, possibly at infinity, formed by the beginnings of the 1-strings intersecting K, the upper
boundary, possibly at infinity, formed by the ends of the 2-strings intersecting K, and the lower-right
boundary formed by the central points (central vertices and mid-points of central edges) occurring
in K; we call the third boundary, D(K), the diagonal of K. When the left (upper) boundary is not at
infinity, it is the left part of a 2-string (resp. the left part of a 1-string). To show that K is a (possibly
infinite) left B-sail, we have to examine the diagonal D(K).

We order the elements of D(K) in a natural way, by increasing the coordinates in the grid. Ax-
iom (B3) and Corollary 1 imply that for each central vertex v € D(K), the next element is either the
central vertex of the form 12v or the mid-point of the central edge (2v,12v). Let D(K) contain the
mid-point v/, of some central edge e = (x, x’). By Corollary 2, v, is not the first element of D(K), and
its preceding element is the central vertex of the form 2~ !x. Suppose v, is not the last element of
D(K). By Corollary 3, the next element y is the central vertex of the form 12x. Now if y is not the
last in D(K), then, by Axiom (B4), the next element is again a mid-point, namely, the mid-point of
the central edge (z,7) for z=2y.

Fig. 7. Splitting the graph S(0, 2) (in the middle) into left and right components.
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These observations show that K matches the construction of a (possibly infinite) left B-sail in
Section 2, whose diagonal has a (possibly degenerate) slope 1 followed by a (possibly degenerate)
slope 2. (It is still possible that D(K) is unbounded from above and has only slope 1, or is unbounded
from below and has only slope 2, but this is not the case as we shall see later.)

Similarly (using the dual statements of Corollaries 1, 3), each right component forms a right B-
sail. Now we define the following 2-edge-colored digraph C(G), called the central graph for G. Its
vertices are the central vertices and the mid-points of central edges of G. Two vertices u, v of C(G)
are connected by an edge, from u to v, of color I if and only if (a copy of) v is next to u in the
diagonal of a right component, and are connected by an edge of color II if and only if v is next to
u in the diagonal of a left component. (A priori multiple edges are possible.) We also distinguish
between the mid-points, referring to them as ®-vertices, and the other vertices of C(G). Note that
from the connectedness of G it easily follows that C(G) is connected as well.

Given a (finite or infinite) RA2-graph C, let us say that a vertex v of C is an ®-vertex if v belongs
to a left A-sail LA of C and lies at odd distance from the diagonal of LA. The non-®-vertices of H are
called ordinary.

Our final axiom is the following:

(BA) The central graph C(G) is an RA2-graph, and moreover, the sets of ®-vertices in these graphs
are the same.

Theorem 4. Axioms (B0)-(B4), (B3')-(B4’), (BA) define precisely the set of (finite and infinite) S-graphs.
Proof. Immediate from the construction of S-graphs and reasonings above.

In the rest of this section we give defining axioms (namely, (A0)-(A8)) for the RA2-graphs with
the distinguished set of ®-vertices, which we call the decorated RA2-graphs. Compared with “pure”
RA2-graphs, which can be defined via 4 axioms (“local” or “almost local” ones), cf. [1], the list of
axioms becomes longer because we wish to describe the difference between ®-vertices and ordinary
ones in local terms (in the situation when the left sails in an RA2-graph are not indicated explicitly).

Let C be a connected 2-edge-colored digraph with edge colors I and II and with a partition of the
vertex set into two subsets of which elements are called ®-vertices and ordinary vertices, respec-
tively. In illustrations below the former and latter ones are indicated by crossed and white circles,
respectively, and as before, edges of color I are drawn by horizontal arrows.

(A0) (i) The subgraph of C induced by I-edges consists of pairwise disjoint paths, and similarly for
the Il-edges. (ii) No pair of ®-vertices is connected by edge. (iii) If C has no ®-vertices, then
each I-string has a beginning vertex. (iv) If no pair of ordinary vertices is connected by edge,
then each I-string has an end vertex.

(A1) Each ®-vertex has leaving I-edge and entering Il-edge.

O

(A2) Let an ®-vertex v have entering I-edge. Then this edge and the Il-edge entering v belong to
a square. Moreover, the vertex I 'II"'v is an ®-vertex. (See the picture.) Symmetrically: if an
®-vertex v has leaving Il-edge, then the edges leaving v belong to a square, and I(Ilv) is an
®-vertex.

—® = O—®

T

®—0

(A3) Let an ®-vertex v have entering I-edge e = (u, v). Suppose there is a Il-edge e’ leaving u or v.
Then e, e’ belong to a square. Moreover, llu is an ®-vertex. (See the picture.) Symmetrically: if
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an ®-vertex v has leaving Il-edge e = (v, w) and if there is a I-edge e’ entering v or w, then
the edges e, e’ belong to a square, and I !w is an ®-vertex.
&0
[ or T = ’ X
uOT®y uOT Ry wWO®y
(A4) Let v be an ®-vertex, and e = (v, w) its leaving I-edge. Suppose w has leaving Il-edge e’. Then
e, e’ belong to a square. Moreover, IIw is an ®-vertex. (See the picture.) Symmetrically: if e =
(u, v) is the Il-edge entering an ®-vertex v and if u has entering I-edge €/, then e, e’ belong to
a square, and I~'u is an ®-vertex.
O——
- |7
@Oy p® 0
(A5) If (u,v) is a I-edge connecting ordinary vertices, then v has leaving Il-edge (v, w), and the
vertex w is ordinary. (See the picture.) Symmetrically: if (v, w) is a Il-edge connecting ordinary
vertices, then v has entering I-edge (u, v), and the vertex u is ordinary.
O
=
’llo o v ’UO O v
(A6) Let e be a I-edge connecting ordinary vertices u, v. Suppose there is a Il-edge e’ entering u
or v. Then e, e/ belong to a square, and all vertices of this square are ordinary. (See the picture.)
Symmetrically: if e is a ll-edge connecting ordinary vertices u, v and if e’ is a I-edge leaving u
or v, then e, e’ belong to a square, and all vertices of this square are ordinary.
Uo——0Y Uo——0Y Uo——0Y
| = - ] ]
Oo——0O
We say that eight vertices v1q,..., vg form the small Verma configuration from vq to vg if, up to
renumbering v, ..., vy, one has: vy =1Ivq, vy =1lvy, v4 =1lvy, v5 =Ilvg, vg =1Ivs, vy =1vg, and

vg =lvs =1lvy, and in addition, v4 # ve.

(A7)

(A8)

Let an ordinary vertex u have leaving I-edge (u, v) and leaving Il-edge (u, w). Let v be an ordi-
nary vertex, and w an ®-vertex. Then u, v, w belong to the small Verma configuration from u.
Moreover, this configuration contains exactly two ®-vertices, namely, w and II%v. (See the pic-
ture.) Symmetrically: if an ®-vertex u and ordinary vertices v, w are connected by I-edge (u, v)
and Il-edge (w, v), then u, v, w belong to the small Verma configuration to v. Moreover, this
configuration contains exactly two ®-vertices, namely, u and I-2w.

W v o—»i
- 13
UO o v UO O v

Let an ®-vertex u and ordinary vertices v, w be connected by I-edges (u, v) and (v, w). Then
u,v,w belong to the small Verma configuration (from II"'u to llw). Moreover, this configura-
tion contains exactly two ®-vertices, namely, u and I~ 'Ilw. (See the picture.) Symmetrically:
if ordinary vertices u, v and an ®-vertex w are connected by Il-edges (u,v) and (v, w), then
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u,v,w belong to the small Verma configuration, and moreover, this configuration has exactly
two ®-vertices, namely, w and II(I"1u).

®—0
o]
u® 00y = UT—LO—»OM
O

—

Oo—0O

Corollary 5. Let an ®-vertex w have entering I-edge (v, w), and let v have entering I-edge (u, v). Then u is
an ®-vertex. (See the picture.) Symmetrically: if an ®-vertex u has leaving 11-edge (u, v) and v has leaving
II-edge (v, w), then w is an ®-vertex.

u Qu Bw = ® QU ®w

Indeed (in the first claim), by (A2) for the edge (v, w), v has entering Il-edge (v’, v), and v’ is an
®-vertex. Then applying the second part of (A3) to the edge (v’, v), we obtain that u is an ®-vertex.
The symmetric claim is shown similarly.

Proposition 6. Axioms (A0)-(A8) define precisely the set of decorated RA2-graphs.

Proof. To check that any decorated RA2-graph satisfies (A0)-(A8) is easy.

Conversely, let C satisfy (A0)-(A8). Consider an ®-vertex v (if any). By Corollary 5, in the I-string
containing v, each second vertex in backward direction from v is an ®-vertex, and in the II-string
containing v, each second vertex in forward direction from v is an ®-vertex (taking into account
that no pair of ®-vertices is adjacent, by (AO)(ii)). This together with (A1)-(A5) implies that v is
contained in a left A-sail L with the following properties: (a) for each vertex u € L, the maximal II-
path beginning at u and the maximal I-path ending at u are contained in L; (b) the diagonal D(L) of
L consists of ordinary vertices and the ®-vertices in L are exactly those that lie at odd distance from
D(L). Let L be chosen maximal for the given v. Such an L does exist (with D(L) not at infinity) and
is unique, which follows from the connectedness of C and (AO)(iv). Let £ be the set of maximal left
A-sails (without repetitions) constructed this way for the ®-vertices v.

Next, let C contain a pair of adjacent ordinary vertices. Arguing similarly and using (AO)(iii), (A5),
(A6), we extract the set R of maximal right A-sails whose edges are the edges of C connecting
ordinary vertices.

Finally, unless C consists of a single vertex (giving the trivial RA2-graph), three cases are possible.

(i) Let C have no ®-vertices. Since C is connected, R consists of a unique sail R. Then C =R, and
therefore, C is an RA2-graph C(a, 0), where a is either finite or one of Z, Z, Z_ (cf. Section 2).

(ii) Let C have no pair of adjacent ordinary vertices. Then £ consists of a unique sail L, and we have
C =R, yielding C = C(0, b), where b is either finite or one of Z, Z, Z_. Moreover, C is properly
decorated.

(iii) Let C have both an ®-vertex and a pair of adjacent ordinary vertices. Extend the diagonal of each
sail in R (in £) to the corresponding path of color « (resp. color B), and let I be the 2-edge-
colored digraph that is the union of these paths. Applying the argument in [1] (in the proof of
the main structural theorem there), one shows that the small Verma relation axioms (A7) and
(A8) imply that I' is isomorphic to a grid I"(a, b), where each of a, b is either finite or one of Z,
Z+, Z_ (cf. Section 2). Thus, C = C(a, b), and moreover, C is properly decorated. O

Remark 3. One can see that Axioms (B4), (B4') follow from Corollary 5, and therefore, they can be
excluded from the list of axioms defining the S-graphs. We formulated property (B4) as an axiom
aiming to simplify our description logically.
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4. Worm model

In this section we describe a model generating 2-edge-colored digraphs; we call them worm graphs.
Vertices and edges of these graphs have a nice visualization, which will help us to show that these
graphs satisfy the axioms in Section 3 and that any S-graph is a worm graph. In Appendix A we will
take advantages from the worm model to prove that the finite graphs among these are exactly the
regular By-crystals.

All worm graphs are subgraphs of a universal, or free, worm graph F that we now define. The
vertices of F are the admissible six-tuples of integer numbers (x', y,x”; y’,x, y”). Here a six-tuple is
called admissible if the following three conditions hold:

(A) x' and X" are even,
B)y'>y>y and x" > x> ¥,
(C) if y” > y then X" =x, and if y > y’ then x=x.

It is convenient to visualize an admissible six-tuple v = (¥, y,x”; y’, x, y”) by associating to it four
points in Z2:

X'=&"y), X=&.,y, Y'=@xy") and Y =),

and drawing the horizontal segment between X’ and X” and the vertical segment between Y’ and Y”.
Then (A)-(C) are equivalent to the following:

the first coordinates of the points X’ and X" are even;

the point X” lies to the right of X’, and the point Y” lies above Y’;
the segments [X’, X”] and [Y’, Y”] have nonempty intersection;

at least one of the following holds: X' = X", X' =Y", Y/ =Y", Y =X".

NGNS

(1
(2
€
(4

Possible cases are illustrated in the picture where X stands for the point X’ = X”, and Y for
Y =Y.

Y” Y//

X X'y X"
e—@—o

y? '

We call vertices of these sorts, from the left to the right in this picture, a V-worm, a VH-worm,
an HV-worm, and an H-worm, respectively. A worm is proper if three points among X', X", Y’, Y”
are different. If a worm degenerates into one point, i.e. the corresponding six-tuple takes the form
(a,b,a;b,a,b), then this vertex of F is called principal (we shall see later that such a vertex corre-
sponds to a principal vertex in an S-graph).

Each vertex v= (X', y,x”; y',x,y”) of F has two leaving edges, colored 1 and 2, and two entering
edges, colored 1 and 2 (justifying the adjective “free”). More precisely, the action of the operator 1
on v is as follows:

(i) if 2x > x’ + x” then x’ increases by 2;
(ii) if x=%"=x" and y” > y then y increases by 1;
(iii) otherwise x” increases by 2

(preserving the other entries).
So in case of a proper HV-worm, the point X’ moves by two positions to the right; in case of a
VH-worm, the point X” moves by two positions to the right; in case of a V-worm with X # Y”, the
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point X moves by one position up. The case of H-worms is a bit tricky: we move (by two) that of the
points X', X” which is farther from Y; if they are equidistant from Y, then the point X” moves. One
can check that the operator 1 is invertible.

In its turn, the action of 2 on v is as follows:

(iv) if 2y > y’ + y”, then y’ increases by 1;
(v) if y" =y =1y’ and x” > x, then x increases by 1;
(vi) otherwise y” increases by 1.

So the operator 2 shifts Y’ (Y”) by one position up in the proper VH-case (resp. in the HV-case)
and shifts Y by one position to the right in the H-case with Y < X”. In the V-case, 2 shifts, by one
position up, that of the points Y’, Y” which is farther from X; if they are equidistant from X, then Y”
moves. The operator 2 is also invertible.

Remark 4. Associate to a six-tuple (x',y,x”; y',x,y”) the pair (xX'/2+x"/2+y,y + y” + x). This
gives a mapping from the vertex set of F to Z2 such that the 1-edges and 2-edges of F are congruent
to the vectors (1,0) and (0, 1), respectively; cf. Remark 1 in Section 2.

Consider a string (maximal path) P colored 1. One can see that P contains a V-worm or an H-
worm.

Suppose P contains a V-worm. When moving along this string, the “virtual” worm takes stages
HV, V and VH, in this order. The vertical segment [Y’, Y”] is an invariant of the string. Moreover,
the string has a natural “center.” When the distance ||Y' —Y”|| between Y’ and Y” is even, this center
is defined to be the V-worm in which the double point X occurs in the middle of the vertical segment
[Y’,Y”]. When the distance is odd, we define the center to be the edge formed by the corresponding
pair of V-worms (with X lying at distance % below and above the middle point of [Y’, Y”]). Thus, any
edge in P is located either before the center or after the center, unless it is the central edge itself.

If P contains an H-worm, then all vertices of P are H-worms as well. An invariant of P is the
distance from Y to the closer of X’, X”. Then P has a natural center, the H-worm with | X' — Y| =
Y — X”|| (such a worm exists since || X’ — X”|| is even).

The strings with color 2 have analogous structure and invariants. More precisely, if a 2-string Q
contains an H-worm, then the segment [X’, X”] is an invariant of Q, and the worm (X', X",Y =
x’-gx”) is its center. If Q contains a V-worm, then all vertices of Q are V-worms as well. Then Q
has as an invariant the distance from X to the closer of Y’, Y”. The center of Q is defined to be the
V-worm with equal distances from X to Y’ and to Y”.

Thus, the sets of central vertices for 1-strings and for 2-strings are the same, and each central
vertex is represented by a symmetric worm. In particular, any principal vertex is central.

From the above observations we immediately obtain the following

Corollary 7. The free worm graph F satisfies Axioms (B0)-(B2).

A restricted worm model: boundary conditions.

We can impose natural boundary conditions on six-tuples. Let ay, by, a2, by be integers or
+oo satisfying a; < by and ap < b,. Consider the set W (ay, bq;az, by) of admissible six-tuples
&, y, %",y ,x,y") satisfying

2a1 <X,X"<2b; and ay <y, y" <by.

In terms of worms, these conditions say that the worms live in the (possibly infinite) rectangle
[2aq, 2bq] x [az, by]. The set W (ay, by;az, by) is extended to a 2-edge-colored graph by inducing the
corresponding edges from F. (The operator 1 or 2 becomes not applicable to a worm if its action
would cause trespassing the boundary of the rectangle.) One can see that the centers of all 1- and
2-strings of F intersecting the obtained graph lie in the latter, and that Corollary 7 remains valid
for it.
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Fig. 8. W (1,0).
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f2
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Fig.9. W (0, 1).
If the boundaries are a; =a; = —oo and by = by = 0o, we have the entire graph F. If all a; and

b; are finite, we obtain a finite graph. If the boundaries a; and b; are shifted by the same number,
we obtain an isomorphic graph. By this reason, when both a; and a, are finite, it is convenient
to assume that a; =ap; =0, and we may denote the corresponding graph as W (b, by). The graph
W = W (b, by) has the source (“origin”) O = (0, 0, 0; 0, 0, 0) (it is easy to see that one can reach any
vertex of W from O). Also one can see that

(%) the 1-string beginning at O has b; edges, and the 2-string beginning at O has b, edges,

justifying the choice of by, by as the parameters of W.
If the numbers by and b, are finite as well, the graph W has the sink T = (2b1, by, 2b1; by, 2b1, by).
One can see that W is the interval of F between the two principal vertices O and T.

Examples of finite worm graphs.

The graph W (0, 0) consists of a single vertex.

The graph W (1, 0) is formed by 5 worms and their transformations as illustrated in Fig. 8.

The graph W (0, 1) is formed by 4 worms and their transformations as illustrated in Fig. 9.

Therefore, W (1,0) and W (0, 1) are the same as the sail graphs S(1,0) and S(0, 1), respectively
(cf. Fig. 4). A more tiresome, but useful, exercise is to construct the worm graph W (1, 1) and check
that it is equal to the graph S(1, 1).

Remark 5. For an edge e = (u, v) of a finite worm-graph, it is not difficult to compute the numbers
At(e) and Ah(e) (defined in Remark 2), which depend on the color of e and the form of the worm u.
More precisely, when e has color 1: (i) At(e) =0 and Ah(e) =2 if u is a VH-worm or a V-worm
with | X = Y’|| > ||Y” — X]| or an H-worm with ||Y — X'|| < ||X” —Y]||; (ii) At(e) =—1 and Ah(e) =1
if u is a V-worm with |X —Y’|| = ||Y” — X|| — 1; and (iii) At(e) = —2 and Ah(e) =0 in the other
cases. When e has color 2: (iv) At(e) = —1 and Ah(e) =0 if u is a VH-worm or a V-worm with
IX —Y'|| > |IY” — X|| or an H-worm with |Y — X'|| < || X” — Y||; and (v) At(e) =0 and Ah(e) =1 in
the other cases.

Next we show the following key property.

Proposition 8. Any worm graph W satisfies Axioms (B3), (B4), (B3'), (B4'), (BA).



V.I. Danilov et al. / Journal of Combinatorial Theory, Series A 116 (2009) 265-289 281

Proof. We denote the quadruple corresponding to a vertex (worm) v of W by q(v) = (X' (v), X" (v),
Y'(v), Y (v)).

First we verify Axiom (B3). Consider a left 1-edge (u,v) in W. Since the vertex u is left and the
edge (u, v) is not central, only three cases are possible:

(a) uis a V-worm, and ||Y"(u) — X(W)|| > | X() — Y'(w)| + 2;
(b) u is a proper HV-worm;
(c) u is an H-worm, and || X'(u) — Y ()|l > ||Y (u) — X" (w)|| + 2.

The quadruple q(v) is obtained from q(u) by shifting X by 1 up in case (a), and shifting X’ by 2
to the right in cases (b), (c) (preserving the other entries). Suppose u has leaving 2-edge (u,u’).
Then q(u’) is obtained from q(u) by shifting Y” by 1 up in cases (a), (b) and in the subcase of (c)
with Y(u) = X”(u), and by shifting Y by 1 to the right in the subcase of (c) with Y(u) # X" (u).
Form the quadruple q = (X' (v), X"(v), Y'(u'), Y"(u")). It is straightforward to check that in all cases q
determines a feasible worm w, and that w = 2v = 1u/, as required.

Now suppose that v has leaving 2-edge (v, v’). Then q(v’) is obtained from q(v) by shifting Y”
by 1 up in cases (a), (b) and in the subcase of (¢) with Y(v) = X”(v), and by shifting Y by 1 to the
right in the subcase of (c) with Y (v) # X”(v). Again, one easily checks that in all cases the quadru-
ple (X'(u), X"(u),Y'(v'), Y”(v)) determines a feasible worm u’, that u’ = 2u, and that v/ = 1u’, as
required.

This gives part (i) of Axiom (B3). Part (ii) of this axiom is shown in a similar way.

Validity of the dual axiom (B3’) follows from (B3) and the symmetry of F (in the sense that
reversing the edges makes the graph isomorphic to F). To verify (B4), (B4’) is not necessary; see
Remark 3.

Next we verify Axiom (BA). As is said above, the central vertices v of W are defined to be the sym-
metric V-worms (i.e., with |Y' — Y”| even and with X in the middle of [Y’, Y”]) and the symmetric
H-worms (i.e., with Y in the middle of [X’, X”]). Such a v is an ordinary vertex of the central graph
C(W) of W, and we identify it with the corresponding even-length interval J(v) = [U(v), V(v)] of
the form [Y’, Y”] or [X’, X"]. The central 1-edges of W are the pairs (u, v) of V-worms with the same
Y’ and the same Y” and such that |Y'—Y”| is odd and ||Y/ —XW)| = |[Y = X(W)|—1= | X(Vv)=Y"].
Such an edge e generates an ®-vertex of C(W), which we now denote by e as well, and we identify
it with the odd-length vertical interval [Y’, Y”] denoted by J(e) =[U(e), V (e)].

Thus, we have an interval model (simplifying the worm model) to represent the vertices of C(W).
The ®-vertices of C(W) are the odd-length vertical intervals, or, briefly, the odd intervals, and the
ordinary vertices are the even-length (vertical or horizontal) intervals, or the even intervals, in the
model. The edges of C(W) correspond to the following transformations of intervals:

(E1) for a non-degenerate horizontal interval J =[U, V], the operator I (when applicable) increases J
by shifting V by 2 to the right, while Il decreases | by shifting U by 2 to the right;

(E2) for a non-degenerate vertical interval J = [U, V], the operator | decreases ] by shifting U by 1
up, while II (when applicable) increases J by shifting V by 1 up;

(E3) for a degenerate interval | =[U, V] (i.e.,, U = V), the operator I (when applicable) shifts V by 2
to the right, while II (when applicable) shifts V by 1 up.

These can be seen from the following observations. For a non-degenerate central H-worm v, the
interval I(J(v)) is obtained when we apply to v the operator 1 followed by 2 (and similarly if v
is degenerate), and the interval II(J(v)) is obtained when we apply to v the operator 2 followed
by 1. For a non-degenerate central V-worm v, the interval I(J(v)) corresponds to the central 1-edge
with the beginning 1-121v and the end 21v, and the interval II(J(v)) corresponds to the central
1-edge with the beginning 2v and the end 12v (and similarly if v is degenerate). And for a central 1-
edge e = (u, v), the interval I(J(e)) corresponds to the central V-worm 2v, while the interval II(J (e))
corresponds to the central V-worm 12u.

We have to show that C(W) satisfy (A0)-(A8). Property (AO0) is easy. As is seen from (E1)-(E3),
the central graph C(F) of the free worm graph F remains essentially the same when we reverse the
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edges and replace the operator I by 11”1, and II by I~!. Therefore, in (A2)-(A8), it suffices to verify
only the first parts of these axioms.

(i) If J =[U, V] is an odd vertical interval, then both I and II™! are applicable to J (the former
lifts U by 1 and the latter descends V by 1). Also the resulting vertical intervals are even. This
gives (A1).

(ii) Let J =[U, V] be an odd vertical interval and I~! is applicable to J (i.e., U is not on the bottom
of the rectangle bounding W). Let U’ =U — (0,1) and V' =V — (0,1). Then I"1] = [U’, V],
I-'j=[U,V']and I"'[U, V]=1"1[U, V'] =[U’,V’]. Also [U’, V'] is odd. This gives the first
part of (A2).

(iii) Let J =[U,V] and J' =[U’, V] be odd and even vertical intervals with U’ =U + (0,1). If Il is
applicable to J or J/, then the point V' =V + (0, 1) belongs to the rectangle, and the first part
of (A3) follows by arguing as in (ii). The first part of (A4) is shown in a similar way.

(iv) Let J =[U, V] and J' =[U’, V'] be even intervals connected by I-edge (J, J). Then J, J’ are
horizontal intervals, U = U’, and V' =V + (2, 0). The feasible and even interval [U + (2,0), V']
is just II(J), yielding the first part of (A5).

(v) The first part of (A6) is shown by a method as in (ii), with the difference that now we deal with
horizontal intervals.

(vi) Let J, J/, J” be the intervals for u, v, w (respectively) as in the first part of (A7). Then J, J’ are
even and J” is odd. Moreover, since these intervals are connected by I-edge (J, J’) and by Il-edge
(J, ], the only possible case is that J is a degenerate interval [U, U], and therefore, J’ and J”
are the intervals [U, V] and [U, V'], respectively, where V =U + (2,0) and V' =U + (0, 1). In
the rectangle bounding W take the point Z such that [V, Z] is a vertical interval and [V’, Z] is a
horizontal interval; see the picture. We have: [V, V]=1I(J"), [V, Z]=1I[V, V], [V, V]=1(]"),
[V/,Z1=1[V',V'land [Z, Z] =1[V, Z] =1I[V’, Z]. Also among the eight intervals above, only J”
and [V, Z] are odd. This implies the first part of (A7).

v’ Z
J//
U 7 14

(vii) Let J, J/, J” be the intervals for u, v, w (respectively) as in the first part of (A8). Then J is odd
and J’, J” are even. Since these intervals are connected by I-edges (J, J/) and (J', J”), J' is a
degenerate interval [V, V], and therefore, | and J” are the intervals [U, V] and [V, V'], respec-
tively, where U =V — (0, 1) and V' =V + (2, 0). Take the point Z such that [U, Z] is a horizontal
interval and [Z, V'] is a vertical interval. Then the eight intervals (including degenerate ones) in
the rectangle UV V’Z give the small Verma configuration as required in the first part of (A8).

This completes the proof of the proposition. O
Theorem 9. The sets of S-graphs and worm graphs are the same.

Proof. Theorem 4, Proposition 8 and Corollary 7 imply that any worm graph is an S-graph. To see
that the sets of worm graphs and S-graphs coincide, we first observe this coincidence for the case
of finite graphs. Indeed, each finite S-graph S is uniquely determined by the pair of its parameters
a,beZ, (ie, S is S(a,b) defined in Section 2). We have seen that the numbers a, b are just the
lengths of 1-string and 2-string, respectively, from the source of S. In view of property (x) above, a
similar behavior takes place for the finite worm graphs W (a, b) (where (a, b) runs over Z x Z..). So
the sets of finite S-graphs and worm graphs coincide.

For an infinite S-graph S, one can arrange an infinite sequence Si,S»,... of intervals between
principal vertices of S (see Remark 1) such that: (i) each S; is isomorphic to a finite S-graph S(a;, b;)
and contains S;j_1 as an interval between its principal vertices, and (ii) this sequence tends to S. We
can arrange a corresponding sequence W1 C W5 C --- of restricted finite worm subgraphs of the free
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graph F, where each W; is a shift of W (a;, b;). Then this sequence tends to a worm graph W which
is isomorphic to S, and the result follows. O
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Appendix A. A relation to Littelmann’s cones

We use the brief notation W (o) for the restricted worm graph W (0, oo; 0, 0c0) (see Section 4).
This graph has the following properties: it admits a weight mapping (see Remark 4); it has one
minimal vertex (the source), which corresponds to the “origin” six-tuple O = (0, 0, 0; 0, 0, 0); each of
its vertices has two leaving edges, of color 1 and color 2. Also from the worm model it follows that
the finite worm graphs (considered up to isomorphism) are parameterized by the pairs (a,b) € Z2,
and each W = W (a, b) satisfies: (a) the lengths of the 1-string and 2-string beginning at O are equal
to a and b, respectively; (b) W is the interval of W (oc0) between O and the principal vertex (the sink)
of the form (212)?(1221)?0 (cf. the fundamental graphs W (1,0) and W (0, 1)); (c) for each edge e
of W, the number At(e) — Ah(e) (see Remarks 2 and 5) is as prescribed by the Cartan matrix B;.

In light of the above properties, in order to establish that the finite worm graphs (vis. S-graphs)
are precisely the regular B,-crystals, it suffices to show the following.

Theorem 10. W (00) is isomorphic to the graph B(co) for B type.

(The graph B(c0), the inductive limit of By-crystal bases under their inclusions agreeable with
growing the dominant weights, has similar properties as those for W (oco) above: B(oco) has one
source, admits a weight mapping and has leaving edges of both colors at each vertex, and each regular
By-crystal is an interval of B(co) beginning at the source (cf. [6, Chapter 7]).)

Our aim is to prove that W (oco) satisfies Littelmann’s characterization of B(co) for By type, for-
mulated in terms of two cones in Z4.

Let G = (V¢, E¢) be a 2-edge colored directed graph, with colors 1 and 2, which admits a weight
mapping and such that each monochromatic component of G is a path having a beginning vertex; for
convenience we call such a graph normal. Let 1 (2) denote the operator which brings each vertex v
of G to the beginning of the 1-string (resp. 2-string) containing v. Define the numbers

a(v) =), @GO)=0Qv), @) :=0602v), @) =6Q12v);
bi(v):=t1(v),  ba(v):=ta(1v),  b3(v):=t:21v),  ba(v):=t2(121v),
where for a vertex u, tj(u) is the length of the i-colored path from f(u) to u. We denote the quadruple

(a1(v),az(v), az(v),as(v)) by a(v), and the quadruple (b1(v), b2(v), b3(v), ba(v)) by b(v).

Theorem 11. (See [9].) Let G = (V, E¢) be a normal graph with one source O which possesses the following
properties:

(L1) For each vertex v, both 1212v and 2121v coincide with the source O in particular, v is represented as
v = 201(V)102(V)9a3(v)1a4(v) g _ 101(V)9b2(v)1b3(V)9ba(v)

(L2) Theset C1 :={a(v): v € V¢} consists of the quadruples (a1, az, as, as) of nonnegative integers satisfying
2a; > as > 2dag4. (A1)

(L3) Theset Cy := {b(v): v € V¢} consists of the quadruples (b1, by, b3, bs) of nonnegative integers satisfying

by > b3 > by. (A2)
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(L4) For each vertex v, the vectors a(v) = (ay, az, as,as) and b(v) = (b1, by, bs, by) satisfy the following
relations:

bz = min(ay, 2a, —as +ag, a1 +a4) and bg=min(a;,2a; —as,az — 2ay). (A.3)
Then G is isomorphic to the graph B(oo) for By type. Conversely, B(co) satisfies (L1)-(L4).

Note that (L1) implies that all quadruples a(v), v € V¢, are different, and similarly for the quadru-
ples b(v). Also since G has a weight mapping, for each vertex v, we have a;(v)+as(v) =by(v)+bga(v)
and ax(v) +aa(v) = by (v) + bs(v), and therefore, one can transform (A.3) into relations for by and b;.

Thus, we have to show that W (oo) satisfies conditions (L1)-(L4) in Theorem 11. In fact, we can
reduce verification of (L2) (resp. (L3)) to merely checking that the quadruples a(v) (resp. b(v)) of
all vertices v of W (oco) belong to the cone defined by (A.1) (resp. by (A.2)). Indeed, by Theorem 11,
the vertices of B(oco) determine a bijection y : C; — C, and this bijection is given by (A.3). Suppose
(under validity of (A.3) for W (00)) that some a € C; is not realized by a vertex of W (co) (equiva-
lently: y(a) € C; is not realized by a vertex of W(oc0)). Among such elements, choose a for which
the corresponding vertex v of B(co) has minimum distance from the source. Clearly this distance is
nonzero, so v has an entering edge (u, v). Then a(u) = a(u’) for some vertex u’ of W (c0). Letting for
definiteness that (u, v) has color 2, take the edge (u’, v’) with color 2 in W (00). Since both a(v) and
a(v’) are obtained from a(u) = a(u’) by increasing the first entry by one, we have a(v’) = a(v) = a;
a contradiction.

We prove (L1) and (A.1)-(A.3) for the vertices of W (co) by considering six possible cases of a
worm v. We will use the following conventions. In the transformations of v below, X', X", Y’,Y”
denote the points for the current worm, while the numbers x', y,x”, y’, x, y” concern the original v.
Everywhere a; and b; stand for a;(v) and b;(v), respectively. We define (cf. (A.3)):

p:=2a; —as +aa, q:=a +ag, r:=2a; — as, s:=a3 — 244,
and define:

Vi :iv, Vo =iV1, V3 —iVZ, V4 —iV3,

/ T / 3 / 7 7 3

vy i=1v, vy =2V, v3:i=1v5, Vyi=2V3

Case 1. v is a proper VH-worm. The chain of transformations v — vi — va — v3 — vy is illustrated
in the upper line of Fig. 10. More precisely, the operator 2 applied to v moves Y' = (x/, y’) to the
point (x', 0). The action of 1 at v; moves X” = (x”, y”) to the point (¥, y”) (using *5* steps), then
moves the double point X = (X', y”) to (x¥',0) (=Y’), and eventually moves X’ = (x, 0) to the origin
(0, 0) (using ’% steps). The action of 2 at v, moves Y” = (x', y”’) to (¥, 0) and then moves the double
point Y to (0, 0). Finally, the action of 1 at vz moves X” = (¥, 0) to (0, 0) (using "7 steps). So vy is
the source O, as required in (L1). A direct count gives
/! x/
a1 = /’ 4y — — //’ a1 =x //’ a= —.
1=Y 255 +y 3 +y 4=
Relation (A.1) turns into X" +2y” > x' 4+ y” > X/, which is valid because x” > x'. ~
In the second chain of transformations (see the lower line of Fig. 10), the action of 1 at v moves

X" to (X', y") (using XHZ_X’ steps), then moves the double point X to (X', y") (=Y’), and then moves

X’ to (0, y") (using Xj/ steps). The action of 2 at v} moves Y” to (x', y’), then moves the double point
Y to (0,y’), and eventually moves Y’ to (0,0). The action of 1 at v, moves X” to (0,y’) (using "7
steps), and then moves X to (0,0). And the action of 2 at vy moves Y” to (0,0). So v, =0, as
required. We have

/! /
/

bi==+y"=y.  bh=X+y' bs=Z+y, b=y

/

Then (A.2) turns into X' 4+ y” > % +y’ >y, which is valid.
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Y// Y// Y//
X/ X// X/ Xl/
YI
Y, X/ Y/ X// X/ Y ,.)X// X Y
(0,0)
YH YNO
X/ X/I
) X/ S XLy y
Y X//Y X//
Y' XY’ XY

Fig. 10. The transformations for a VH-worm v. In the upper line: v — v{ — vy — v3 — v4 = 0. In the lower line: v — v{ —
vy = vy —> v, =0.

Finally, we obtain p = (x"+2y")~ (X +y")+5 =x' =45 +y" and g=y' + 5. Then b3 =5 +y'=q
and bs < ay, p, yielding the first equality in (A.3). We also have r = (X" +2y") — (X +y") =x" —x' +
y'>y and s= X +y”) —x =y”. Then by =y’ =ay <r,s, yielding the second equality in (A.3).

Case 2. v is a proper HV-worm. The transformations in this case are examined straightforwardly as
well. The action of 2 at v moves Y” to (x”, y'), followed by moving Y to (x', y'), followed by moving
Y’ to (', 0). The action of 1 at v; moves X” to (x, y), followed by moving X to (¥, 0), followed by
moving X’ to (0, 0). The action of 2 at v, moves Y” to (x', 0), followed by moving Y to (0,0). And
the action of 1 at v3 moves X” to (0, 0).

In the second chain, the action of 1 at v moves X’ to (0, y’). The action of 2 at v} moves Y” to
(", y"), followed by moving Y to (0, y’), followed by moving Y’ to (0, 0). The action of 1 at v/, moves

X" to (0, y"), followed by moving X to (0,0). And the action of 2 at v moves Y” to (0,0).
This gives v4 =v,, = 0 and:

Cl]:X//—X/—I—y”,
x/
b1=57 by =x"+y", b3 =—+Yy,

Relation (A1) turns into x” + 2y’ > %'+ y’ > ¥/, and (A.2) turns into x” + y” > "7” +y >y, which
are valid. ) )
/ Finally, we have ay = b3, p=(x"+2y) - (X +y)+5=x"=5+y >b3,and q= ("X +y") +
% > bs, yielding the first equality in (A3). Also a1 =x" =X +y” >y =bs, r=X"4+2y) - X +y) >
X" —X +y >bg, and s= (X' + y') — X' =y’ = by, yielding the second equality in (A.3).

Case 3. v is an H-worm with x” —x > x — x’ =: ¢. This case is a bit more complicated. The action of 2
at v moves Y to (¥, y), followed by moving Y’ to (x’, 0). The action of 1 at v{ moves X"’ to (X, y),
followed by moving X to (x', 0), followed by moving X’ to (0, 0). The action of 2 at v, moves Y” to
(¥, 0), followed by moving Y to (0, 0). And the action of 1 at v3 moves X” to (0, 0). (See the upper
line of Fig. 11.)

In the second chain of transformations (see the lower line of Fig. 11), the operator 1 applied to v
moves X" to the point (x+ ¢, y) = (2x — X', ¥) (so that Y becomes the mid-point of the new interval
[X’, X"1). Then it moves X’ to (0, y). The action of 2 at v} moves Y to (0, y), followed by moving Y’
to (0, 0). The action of 1 at vi, moves X” to (0, y), followed by moving X to (0, 0). And the action of
2 at v, moves Y” to (0,0).

This gives v4 = v}, = 0 and:
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X/ . Y Xl/ X/Y/l Xl/ Y/I
y! Xl Xy XY X! Xy
Xo o X" GX Y X' yihX Xy
Y' XY’ XY

Fig. 11. The transformations for an H-worm with x” — x > x — x'. In the upper line: v — v{ — v3 — v3 — v4 = 0. In the lower
line: v—v{ - vj > vi—v,=0.

X// /
ap=x—x+y, az=7+% az3=x+y, =3
X' —2e X' X+e !
by = =—+x —x by =x+y, b3 = +y=x——=+y, by=y.
1 2 2 2 y 3 2 y 2 y 4=y

Relation (A.1) turns into x” +2y > x'+y > X/, and (A.2) turns into X+ y > x — "7/ +y >y, which
are valid. ) ) )

Fiflally, wehave ay > b3, p=(X"+2y) - (W +y)+5=x"-5+y>bz,and q=(x—¥+y)+ 5 =
x — % + y = bs, yielding the first equality in (A.3). Also @y > bg, r=(X"+2y) — X +y) =x"—x' +
¥y > by, and s = (X' + y) — X' = y = by, yielding the second equality in (A.3).

Case 4. v is an H-worm with 2x > X’ 4+ x”. The first chain of transformations is similar to that in
Case 3, giving similar expressions for the numbers a;. Compute the numbers b;. The action of 1 at v
moves X’ to (0, y). The action of 2 at v} moves Y to (0, y) and then moves Y’ to (0, 0). The action

of 1 at v, moves X" to (0,y) and then moves X to (0,0). And the action of 2 at vy moves Y” to
(0,0). This gives v, = O and:
X//

x/
b1=5, by =x+y, b3:?+y, bys=1y.

Relation (A.2) turns into x+y > "7 +y >y, which is valid since the condition 2x > X’ +x” implies
x> "7”

Finally, we have ay = b3, p=x" — "7/ +y>bs,and g=x — "7/ + y > b3 (taking into account that
2x — x' > X"), yielding the first equality in (A.3). Also ay > by, r=x" —X +y > by, and s =y = by,

yielding the second equality in (A.3).

Case 5. v is a V-worm with 2y >y’ + y”. By this condition, the operator 2 applied to v moves Y’
to (x,0). The action of 1 at v; moves X to (x,0) and then moves X’ to (0,0). The action of 2 at v;
moves Y” to (x,0) and then moves Y to (0, 0). And the action of 1 at v3 moves X” to (0, 0).

In the second chain, the action of 1 at v moves X to (x, y') (=Y’) and then moves X’ to (0, y').
The action of 2 at v} moves Y” to (x, y"), then moves Y to (0, y'), and eventually moves Y’ to (0, 0).
The action of 1 at v, moves X” to (0,y") and then moves X to (0,0). And the action of 2 at V4
moves Y” to (0, 0).

This gives v4 = v, = 0 and:

! X 4 X
m=y, 02=§+,V, a=x+y, 0425;
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b1:§+y—y’, by =x+y", b3=§+y’, by=y'.
Relation (A.1) turns into x4 2y > x+ y” > x, and (A.2) turns into x4+ y” > 5 +y’ > y’, which are
valid (taking into account that 2y > y”).
Finally, we have ap > b3, p=(x+2y) — (x+y")+5=5+2y — y” > b3 (since 2y —y" > y')
and q =y’ + § = bs, yielding the first equality in (A.3). Also a1 =y' =bs, r=x+2y) — (x+y") >
2y —y" >bg, and s = (x + y”) — x=y" > by, yielding the second equality in (A.3).

Case 6. v is a V-worm with y” —y > y — y' =: €. The action of 2 at v moves Y” to (x,y + &) =
(x,2y — y") (so that X becomes the mid-point of the new interval [Y’, Y”]). Then it moves Y’ to
(x,0). The action of 1 at v; moves X to (x,0) and then moves X’ to (0,0). The action of 2 at v
moves Y” to (x,0) and then moves Y to (0,0). And the action of 1 at v3 moves X” to (0,0). This
gives v4 = O and:

a=y"'—2e=y"-2y+2y, a2=§+y, a3=y+e+x=x+2y—y, a4=§.

Relation (A.1) turns into x + 2y > x+ 2y — y’ > x, which is valid.

The second chain of transformations is similar to that in Case 5, giving similar expressions for the
numbers b; and validity of (A.2).

Finally, we have ay > 5+ y' =b3, p=(x+2y) —(x+2y —y)+ 5=y +5=b3, and g=(y" —
2y +2y")+ 5 >y’ + § = b3, yielding the first equality in (A.3). Also a; =y” — 2y + 2y’ >y’ =ba,
r=X+2y)— xX+2y—y)=y =bg,and s= x+2y —y) —x>2y — y >y = by, yielding the
second equality in (A.3).

This completes the proof of Theorem 10.
Appendix B. Refining the “local” axioms

In this section we translate the axioms for decorated A;-crystals given in Section 3 so as to obtain
implications in terms of the original graph G. The resulting axioms (B5)-(B13) together with their dual
ones and Axioms (B0)-(B4), (B3'), (B4’) (where (B4), (B4') can be excluded by Remark 3) will give the
desired list of “local” axioms defining the regular By-crystals and their natural infinite analogs. To
make our description shorter, we do not give verbal formulations of the axioms, confining ourselves
by merely illustrating them in pictures, which to our belief is sufficient for the reader to adequately
restore the formal statements. To help, in each illustration below we keep the same vertex notation
as in the illustration of the corresponding axiom in Section 3, with the only difference that for an ®-
vertex v, the corresponding central edge is denoted as e,. Also in the left-hand sides of some pictures
we do not indicate those edges whose existence follow directly from Axioms (B3), (B3'), (B4), (B4')
and corollaries in Section 3.

As before, the central vertices are indicated by thick dotes, and the central edges by black rhombi.

The corresponding translations of parts (i), (ii) of (AO) have been explained in Section 3. Also
Axiom (A1) turns into Corollary 2.

Axioms (B5)-(B13) below are derived from the first parts of Axioms (A2)-(A8), whereas the second
(symmetrical) parts of the latter will derive the corresponding dual axioms (B5")-(B13’).

The first part of (A2) turns into the following:

(B5)
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The first part of (A3), in the case when e’ leaves v, turns into the following:

€y
(B6)

The first part of (A3), in the case when e’ leaves u, turns into the following:

(B7) I:I =
u

The first part of (A4) turns into the following:

(B8)

The first part of (A5) turns into the following:

(Bg) v
ue® 'l u

The first part of (A6), in the case when e’ enters u, turns into the following:
(B10) 4._l =
The first part of (A6), in the case when e’ enters v, turns into the following:

(B11) ‘ =

The first part of (A7) turns into the following:

(B12)
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(Here the required configuration in the right-hand side is drawn by solid lines, while the dashed lines
indicate the fragments that are automatically added by the commutativity axioms (B3), (B3’). This
gives the crystal S(1,1).)

The first part of (A8) turns into the following:

(B13)
Cu —

It should be noted that Axioms (B0)-(B13), (B3’)-(B13’) characterize a slightly larger class than
the class of (finite and infinite) S-graphs because we did not translate parts (iii), (iv) of (AQ) (their
translations in local terms are not clear). The arising extra graphs are infinite and may be named
as “exotic” infinite analogs of regular B,-crystals. Such graphs are obtained by the construction in
Section 2 when we take as C one of the exotic infinite analogs of A,-crystals (having no principal
points at all), described in [1, Sec. 6], and replace the monochromatic strings in it by “B-sails” with
constant slopes. An instance is the “left B-sail” with slope 2 which is unbounded from below and
bounded from above.
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