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A regular An-crystal is an edge-colored directed graph, with
n colors, related to an irreducible highest weight integrable
module over Uq(sln+1). Based on Stembridge’s local axioms for
regular simply-laced crystals and a structural characterization of
regular A2-crystals in [V.I. Danilov, A.V. Karzanov, G.A. Koshevoy,
Combinatorics of regular A2-crystals, J. Algebra 310 (2007) 218–
234], we present a new combinatorial construction, the so-called
crossing model, and prove that this model generates precisely the
set of regular An-crystals.
Using the model, we obtain a series of results on the combinatorial
structure of such crystals and properties of their subcrystals.

© 2008 Published by Elsevier Inc.

1. Introduction

The notion of a crystal introduced by Kashiwara [7,8] has proved its importance in representation
theory. This is an edge-colored directed graph, with n colors, in which each connected monochro-
matic subgraph is a finite path, and there are certain interrelations on the lengths of such paths,
described via coefficients of an n ×n Cartan matrix M (this matrix characterizes the type of a crystal).
The central role in the theory of Kashiwara is played by crystals of representations, or regular crys-
tals; these are associated to irreducible highest weight integrable modules (representations) over the
quantum enveloping algebra related to M . There are several global models to characterize the regular
crystals for a variety of types; e.g., via generalized Young tableaux [11], Lusztig’s canonical bases [15],
Littelmann’s path model [12,14].
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Stembridge [16] pointed out a list of “local” graph-theoretic defining axioms for the regular
simply-laced crystals. These concern simply-laced Cartan matrices M , i.e., those having coefficients
mii = 2 and mij = m ji ∈ {0,−1} for i �= j. He showed that if M has full rank, then for each n-tuple
c = (c1, . . . , cn) of nonnegative integers, there is precisely one graph K satisfying his axioms and such
that: K is acyclic and has a unique minimal vertex (source) s, and the lengths of maximal monochro-
matic paths with colors 1, . . . ,n beginning at s are equal to c1, . . . , cn , respectively. Moreover, K is
a regular crystal related to M (it is the crystal graph of the integrable module of highest weight∑

i ciωi over the corresponding quantum enveloping algebra, where ωi is ith fundamental weight).
So in this case (and when M is fixed) c may be regarded as the parameter of K , and we may de-
note K by K (c).

This paper is devoted to a combinatorial study of regular simply-laced crystals of An-type, or
regular An-crystals; for brevity we throughout call them RAN-crystals. They are related to the algebra
Uq(sln+1), and the off-diagonal coefficients mij of the Cartan matrix (which is of full rank) are equal
to −1 if |i − j| = 1, and 0 otherwise.

In our previous paper [3] we described the combinatorial structure of regular A2-crystals K and
demonstrated additional combinatorial and polyhedral properties of these crystals and their exten-
sions. The structure turns out to be rather transparent: K always has a (unique) source, and therefore,
K = K (c1, c2) for some c1, c2 ∈ Z+ , and it can be produced by a certain operation of replicating and
gluing together from the crystals K (c1,0) and K (0, c2). The latter crystals are of simple form and are
viewed as triangle-shaped parts of square grids. (In fact, K is the largest component of the tensor
product of K (c1,0) and K (0, c2).)

When n > 2, the structure of an RAN-crystal becomes much more sophisticated, even for n = 3. To
explore this structure, in this paper we introduce a certain combinatorial construction, called the
crossing model. This model consists of three ingredients: (i) a finite directed graph G , called the
supporting graph, depending only on the number n of colors; (ii) a set F of integer-valued feasible
functions on the vertices of G , depending on a parameter c ∈ Z

n+; and (iii) n sets E1, . . . ,En , each
consisting of transformations f �→ f ′ of feasible functions. (In fact, the crossing model is a sort of
decomposition of the Gelfand–Tsetlin pattern model [6].)

Our main working theorem asserts that the n-colored directed graph formed by F as the vertex
set and by E1, . . . ,En as the edge sets of colors 1, . . . ,n, respectively, is isomorphic to the RAN-
crystal K (c). In addition, we explain that any finite graph satisfying Stembridge’s axioms for the An

case has a source. Therefore, the crossing model produces precisely the set of crystals of repre-
sentations for Uq(sln+1). Our construction and proofs rely merely on Stembridge’s axiomatics and
combinatorial arguments and do not appeal explicitly to powerful tools, such as the Path Model, or
so.

Then we take advantages from the description of RAN-crystals via the crossing model. The sup-
porting graph G consists of n pairwise disjoint subgraphs G1, . . . , Gn , and given a parameter c, the
values of any feasible function to each Gi (i = 1, . . . ,n) are between 0 and ci . The feasible functions
that are constant within each Gi are of especial interest to us. We refer to the vertices of the crys-
tal K (c) corresponding to such functions as principal ones, and to the set Π of these vertices as the
principal lattice. So there are (c1 + 1) × · · · × (cn + 1) principal vertices, each corresponding to an n-
tuple a = (a1, . . . ,an) ∈ Z

n+ with a � c, being denoted as v[a]. The principal lattice Π is proved to
have the following properties:

(i) for any a,b ∈ Z
n+ with a � b � c, the interval of K (c) between the principal vertices v[a] and v[b]

is isomorphic to the RAN-crystal K (b − a);
(ii) there are exactly |Π | maximal (connected) subcrystal of K (c) with colors 1, . . . ,n − 1 and each

of them contains exactly one principal vertex; a similar property takes place for the maximal
subcrystals with colors 2, . . . ,n.

We also establish other features of maximal subcrystals K ′ with colors 1, . . . ,n − 1 (or 2, . . . ,n).
In particular, the parameter of K ′ is expressed by an explicit linear function of c and a, where v[a] is
the principal vertex in K ′ .
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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The crossing model enables us to reveal one more interesting object in the crystal K (c). When
a feasible function varies within some subgraph Gi and is constant within each of the other sub-
graphs G j of the supporting graph G , we obtain an n-colored subcrystal of K (c) having the param-
eter c′ such that c′

i = ci and c′
j = 0 for j �= i. (This is the crystal graph of the integrable module of

Uq(sln+1) with the highest weight ciωi .) The union of these subcrystals (for all i) forms a canonical
subgraph that we call the skeleton of K (c). It coincides with the whole crystal K (c) when n = 2, and
is typically smaller when n � 3.

By use of the crossing model, we also can derive natural infinite analogs of RAN-crystals, in which
some or all maximal monochromatic paths are infinite (this generalizes the construction of infinite
A2-crystals in [3]).

This paper is organized as follows. Section 2 states Stembridge’s axioms for RAN-crystals, recalls
some basic properties of crystals, and briefly reviews results on A2-crystals from [3]. Also, relying on
a structural characterization of regular A2-crystals, we explain in this section that any RAN-crystal
has a source (Corollary 2.5). The crossing model is described throughout Section 3 (concerning the
supporting graph and feasible functions) and Section 4 (concerning transformations of feasible func-
tions). The equivalence between the objects generated by the crossing model and the RAN-crystals
is proved in Section 5 (Theorem 5.2). Section 6 introduces the principal lattice, principal intervals
and the skeleton of an RAN-crystal and explains relations between these objects. Also infinite analogs
of RAN-crystals and their properties are discussed in this section. Section 7 is devoted to a study
of maximal (n − 1)-colored subcrystals; here we prove the above-mentioned relation between these
subcrystals and the principal lattice, compute their parameters and multiplicities, and discusses addi-
tional issues.

Our study of RAN-crystals by use of the crossing model will be continued in the forthcom-
ing paper [5] where we characterize the pairwise intersections of maximal subcrystals with colors
1, . . . ,n − 1 and colors 2, . . . ,n and, as a result, obtain a recursive description of the combinatorial
structure and an algorithm of assembling of the RAN-crystal for a given parameter. (Also, using re-
sults on B2-crystals from [4], we discuss there a relation between RAN-crystals and regular crystals
of types B and C.)

2. Axioms of RAN-crystals and backgrounds

Throughout, by an n-colored digraph we mean a (finite or infinite) directed graph K =
(V (K ), E(K )) with vertex set V (K ) and with edge set E(K ) partitioned into n subsets E1, . . . , En .
We say that an edge in Ei has color i and for brevity call it an i-edge.

2.1. Axioms

Stembridge [16] pointed out local graph-theoretic axioms that precisely characterize the set of reg-
ular simply-laced crystals. The RAN-crystals (which form a subclass of regular simply-laced crystals)
are defined by axioms (A1)–(A5) below; we give axiomatics in a slightly different, but equivalent, form
compared with [16]. In what follows an n-colored digraph K is assumed to be a (weakly) connected,
i.e., it is not representable as the disjoint union of two nonempty digraphs.

The first axiom concerns the structure of monochromatic subgraphs (V , Ei).

(A1) For i = 1, . . . ,n, each maximal connected subgraph (component) of (V , Ei) is a simple finite path,
i.e., a sequence of the form (v0, e1, v1, . . . , ek, vk), where v0, v1, . . . , vk are distinct vertices and
each ei is an edge from vi−1 to vi .

In particular, for each i, each vertex has at most one incoming i-edge and at most one outgoing
i-edge, and therefore, one can associate to the set Ei partial invertible operator Fi acting on vertices:
(u, v) is an i-edge if and only if Fi is applicable to u and Fi(u) = v . Since K is connected, one can use
the operator notation to express any vertex via another one. For example, the expression F −1

1 F 2
3 F2(v)

(where F −1
p stands for the partial operator inverse to F p) determines the vertex w obtained from

a vertex v by traversing 2-edge (v, v ′), followed by traversing 3-edges (v ′, u) and (u, u′), followed by
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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traversing 1-edge (w, u′) in backward direction. Emphasize that every time we use such an operator
expression in what follows, this automatically indicates that all involved edges do exist in K .

We refer to a maximal monochromatic path with color i on the edges as an i-line. The i-line
passing a vertex v (possibly consisting of the only vertex v) is denoted by Pi(v), its part from the
first vertex to v by P in

i (v), and its part from v to the last vertex by P out
i (v). The lengths of P in

i (v)

and P out
i (v) (i.e., the numbers of edges in these paths) are denoted by ti(v) and hi(v), respectively.

Axioms (A2)–(A5) tell us about interrelations of different colors i, j. Taken together, they are equiv-
alent to saying that each component of the digraph (V (K ), Ei ∪ E j) forms a regular A2-crystal when
colors i, j are neighboring, i.e., |i − j| = 1, and forms a regular A1 × A1-crystal (the Cartesian product
of two paths) otherwise.

The second axiom indicates possible changes of the head and tail part lengths of j-lines when one
traverses an edge of another color i; these changes depend on the Cartan matrix.

(A2) For any two colors i �= j and for any edge (u, v) with the color i, one holds t j(v) � t j(u) and
h j(v) � h j(u). The value (t j(v) − t j(u)) + (h j(u) − h j(v)) is equal to the coefficient mij in the
Cartan matrix M . Furthermore, h j is convex on each i-path, in the sense that if (u, v), (v, w) are
consecutive i-edges, then h j(u) + h j(w) � 2h j(v).

This can be rewritten as follows.

(2.1) When |i − j| = 1, each i-line P contains a vertex r such that: for any edge (u, v) in P in
i (r),

one holds t j(v) = t j(u) − 1 and h j(v) = h j(u), and for any edge (u′, v ′) in P out
i (r), one holds

t j(v ′) = t j(u′) and h j(v ′) = h j(u′) + 1. When |i − j| � 2, any i-edge (u, v) satisfies t j(v) = t j(u)

and h j(v) = h j(u).

Such a vertex r (which is unique) is called the critical vertex for P , i, j. It is convenient to assign
to each i-edge e label � j(e) taking value 0 if e occurs in the corresponding i-line before the critical
vertex, and 1 otherwise. Emphasize that the critical vertex (and therefore, edge labels) on an i-line P
depends on j: the critical vertices on P with respect to the neighboring colors j = i − 1 and j = i + 1
may be different.

Two operators F = F α
i and F ′ = F β

j , where α,β ∈ {1,−1}, are said to commute at a vertex v if each
of F , F ′ acts at v and F F ′(v) = F ′ F (v). The third axiom points out the situations when operators
commute for neighboring colors i, j.

(A3) Let |i − j| = 1. (a) If a vertex u has outgoing i-edge (u, v) and outgoing j-edge (u, v ′) and
if � j(u, v) = 0, then �i(u, v ′) = 1 and Fi F j(u) = F j Fi(u). Symmetrically: (b) if a vertex v has
incoming i-edge (u, v) and incoming j-edge (u′, v) and if � j(u, v) = 1, then �i(u′, v) = 0 and
F −1

i F −1
j (v) = F −1

j F −1
i (v). (See the picture.)

� � � � � � �

� � � � � � �

� � �

� � �
� � � � � �

��
��

��
��

u

v ′

v u

v ′

v

w u v

u′ w

u v

u′
0 0 1

0 1 1

1 1 0 0

Note that for each “square” u, v , v ′ , w , where v = Fi(u), v ′ = F j(u) and w = F j(v) = Fi(v ′), the
trivial relations h j(u) = h j(v ′) + 1 and h j(v) = h j(w) + 1 imply that the opposite i-edges (u, v) and
(v ′, w) have equal labels � j ; similarly �i(u, v ′) = �i(v, w). Another important consequence of (A3) is
that

(2.2) for |i − j| = 1, if v is the critical vertex on an i-line with respect to the color j, then v is the
critical vertex on the j-line passing v with respect to the color i,
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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i.e., we can speak of common critical vertices for the pair {i, j}. Indeed, if a vertex v has incoming
i-edge (u, v) with � j(u, v) = 0 and outgoing j-edge (v, w), then h j(u) = h j(v) � 1, and hence u
has outgoing j-edge (u, v ′). By (A3), w = Fi(v ′) and �i(u, v ′) = 1; the latter implies �i(v, w) = 1.
Symmetrically, if v has outgoing i-edge e with � j(e) = 1 and incoming j-edge e′ , then �i(e′) = 0.

The fourth axiom points out the situations when for neighboring i, j, the operators Fi , F j and
their inverse ones “remotely commute” (they are said to satisfy the “Verma relation of degree 4”).

(A4) Let |i − j| = 1. (i) If a vertex u has outgoing edges with the colors i and j and if each edge is
labeled 1 (with respect to the other color), then Fi F 2

j F i(u) = F j F 2
i F j(u). Symmetrically: (ii) if v

has incoming edges with the color i and j and if both are labeled 0, then F −1
i (F −1

j )2 F −1
i (v) =

F −1
j (F −1

i )2 F −1
j (v). (See the picture.)

� �
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v0
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� �
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� �

� �
v

1

1 0

0 1
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0

One can show that the labels with respect to i or j of all involved edges are determined uniquely,
just as indicated in the above picture (where the circles indicate the critical vertices).

The final axiom concerns nonneighboring colors.

(A5) Let |i − j| � 2. Then for any F ∈ {Fi, F −1
i } and F ′ ∈ {F j, F −1

j }, the operators F , F ′ commute at
each vertex where both act.

This is equivalent to saying that for |i − j| � 2, each component of the 2-colored subgraph
(V (K ), Ei ∪ E j) is the Cartesian product of a path with the color i and a path with the color j,
i.e., it is an A1 × A1-crystal (viewed as a rectangular grid).

2.2. Some properties of RAN-crystals

We review some known properties of RAN-crystals that will be used later.
We say that a vertex v of a finite or infinite digraph G is the source (resp. sink) if any inclusion-

wise maximal path begins (resp. ends) at v; in particular, v has zero indegree (resp. zero outdegree).
When such a vertex exists, we say that G has source (resp. has sink). The importance of simply-laced
crystals with source is emphasized by a result of Stembridge in [16]; in the An case it reads as follows:

(2.3) For any n-tuple c = (c1, . . . , cn) of nonnegative integers, there exists precisely one RAN-crystal
K with source s such that hi(s) = ci for i = 1, . . . ,n. This K is the crystal graph of the integrable
Uq(sln+1)-module of highest weight c.

(Hereinafter we usually denote n-tuples in bold.) We say that c is the parameter (tuple) of such a K
and denote K by K (c). If we reverse the edges of K while preserving their colors, we again obtain an
RAN-crystal (since (A1)–(A5) remain valid for it). It is called the dual of K and denoted by K ∗ .

Another property, indicated in [16] for simply-laced crystals with a nonsingular Cartan matrix, is
easy.

(2.4) An RAN-crystal K is graded for each color i, which means that for any cycle ignoring the orien-
tation of edges, the number of i-edges in one direction is equal to the number of i-edges in the
other direction. (One also says that K admits a weight mapping.) In particular, K is acyclic and
has no parallel edges.
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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(Indeed, associate to each vertex v the n-vector wt(v) whose jth entry is equal to h j(v) − t j(v),
j = 1, . . . ,n. Then for each i-edge (u, v), the difference wt(u) − wt(v) coincides with the ith row
vector mi of the Cartan matrix M , in view of axiom (A2) and the obvious equality hi(u) − ti(u) =
hi(v) − ti(v) + 2. So under the map wt : V (K ) → R

n , the edges of each color i correspond to parallel
translations of one and the same vector mi , and now (2.4) follows from the fact that the vectors
m1, . . . ,mn are linearly independent.)

In general a regular simply-laced crystal need not have source and/or sink; it may be infinite and
may contain directed cycles. One simple result on regular simply-laced crystals in [16] remains valid
for more general digraphs, in particular, for a larger class of crystals of representations.

Proposition 2.1. Let G be an (uncolored) connected and graded digraph with the following property (∗): for
any vertex v and any edges e, e′ entering v, there exist two paths from some vertex w to v such that one
path contains e and the other contains e′ . Then either G has source or all maximal paths in G are infinite in
backward direction.

(A similar assertion concerns sinks and infinite paths in forward direction. For any RAN-crystal,
condition (∗) in the proposition is provided by axioms (A3)–(A5).)

Proof. Suppose this is not so. Then, since G is connected and acyclic (as it is graded), there exists
a vertex v and two paths P , P ′ ending at v such that P begins at a zero-indegree vertex s, while P ′
either is infinite in backward direction or begins at a zero-indegree vertex different from s. Let such v ,
P , P ′ be chosen so that the length |P | of P is minimum. Then the last edges e = (u, v) and e′ = (u′, v)

of P and P ′ , respectively, are different. By (∗), there is a vertex w , a path Q from w to v containing e
and a path Q ′ from w to v containing e′. Extend Q to a maximal path Q̄ ending at v . Three cases
are possible: (i) Q̄ is infinite in backward direction; (ii) Q̄ begins at a (zero-indegree) vertex different
from s; and (iii) Q̄ begins at s. In cases (i), (ii), we come to a contradiction with the minimality of P
by taking the vertex u and the part of P from s to u. And in case (iii), there is a path Q̄ ′ from s to v
that contains e′ . Since G is graded, |Q̄ ′| = |P |. Then we again get a contradiction with the minimality
of P by taking u′ , the part of Q̄ ′ from s to u′ , and the part of P ′ ending at u′ . �

(The fact that G is graded is important. Indeed, take G with the vertices s and ui, vi for all i ∈ Z+ ,
and the edges (s, u0) and (ui, ui+1), (vi+1, vi), (ui, vi) for all i. This G satisfies (∗), the vertex s has
zero indegree, and the path on the vertices vi is infinite in backward direction. One can also construct
a locally finite graph satisfying (∗) and having many zero-indegree vertices.)

Our crossing model will generate n-colored graphs satisfying axioms (A1)–(A5); moreover, it gener-
ates one RAN-crystal with source for each parameter tuple c ∈ Z

n+ . In light of (2.3) and Proposition 2.1,
a reasonable question is whether every RAN-crystal has source and sink (or, equivalently, is finite). The
question will be answered affirmatively in the next subsection, thus implying that the crossing model
gives the whole set of RAN-crystals.

As a consequence of the crossing model, we also will observe the following anti-symmetric prop-
erty of an RAN-crystal K : if we reverse the numeration of colors (regarding each color i as n− i +1) in
the dual crystal K ∗ , then the resulting crystal is isomorphic to K . In other words, hi(sK ) = tn−i+1(s̄K )

for i = 1, . . . ,n, where sK and s̄K are the source and sink of K , respectively.
Finally, recall that a Gelfand–Tsetlin pattern [6], or a GT-pattern for short, is a triangular array

X = (xij)1� j�i�n of integers satisfying xij � xi−1, j, xi+1, j+1 for all i, j. Given a weakly decreasing n-
tuple a = (a1 � · · · � an) of nonnegative integers, one says that X is bounded by a if a j � xn, j � a j+1
for j = 1, . . . ,n, letting an+1 := 0. It is known that GT-patterns, as well as the corresponding semi-
standard Young tableaux, are closely related to crystals of representations for Uq(sln+1) (cf. [2,9,11,13]).
More precisely,

(2.5) for any c ∈ Z
n+ , there is a bijection between the vertex set of the RAN-crystal K (c) and the set

of GT-patterns bounded by the n-tuple cΣ = (cΣ
1 , . . . , cΣ

n ), defined by cΣ
j := c1 + · · ·+ cn− j+1 for

j = 1, . . . ,n.
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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(a) (b) (c)

Fig. 1. (a) K (0,2), (b) K (1,0), (c) K (1,0) 	
 K (0,2).

As mentioned in the Introduction, there is a correspondence between GT-patterns and feasible func-
tions in the crossing model; it will be exposed in Proposition 3.1.

2.3. Properties of A2-crystals

In this subsection we give a brief review of certain results from [3] for the simplest case n = 2,
namely, for regular A2-crystals, or RA2-crystals for short. They describe the combinatorial structure of
such crystals and demonstrate some additional properties.

An RA2-crystal K is defined by axioms (A1)–(A4) with {i, j} = {1,2} (since (A5) becomes redun-
dant). It turns out that these crystals can be produced from elementary 2-colored crystals by use of
a certain operation of replicating and gluing together. This operation can be introduced for a pair of
arbitrary finite or infinite graphs as follows. (In Section 6 the construction is generalized to n graphs,
in connection with the so-called skeleton of an RAN-crystal.)

Consider graphs G = (V , E) and H = (V ′, E ′) with distinguished vertex subsets S ⊆ V and T ⊆ V ′ .
Take |T | disjoint copies of G , denoted as Gt (t ∈ T ), and |S| disjoint copies of H , denoted as Hs (s ∈ S).
We glue these copies together in the following way: for each s ∈ S and each t ∈ T , the vertex s in Gt
is identified with the vertex t in Hs . The resulting graph, consisting of |V ||T |+ |V ′||S|− |S||T | vertices
and |E||T | + |E ′||S| edges, is denoted as (G, S) 	
 (H, T ).

In our special case the role of G and H is played by 2-colored digraphs R and L viewed as triangu-
lar parts of square grids. More precisely, R depends on a parameter c1 ∈ Z+ and its vertices v corre-
spond to the integer points (i, j) in the plane such that 0 � j � i � c1. The vertices v of L, depending
on a parameter c2 ∈ Z+ , correspond to the integer points (i, j) such that 0 � i � j � c2. We say that v
has the coordinates (i, j) in the sail. The edges with the color 1 in these digraphs correspond to all
possible pairs ((i, j), (i +1, j)), and the edges with the color 2 to the pairs ((i, j), (i, j +1)). We call R
the right sail of size c1, and L the left sail of size c2.

It is easy to check that R satisfies axioms (A1)–(A4) and is just the crystal K (c1,0), and that the set
of critical vertices in R coincides with the diagonal D R = {(i, i): i = 0, . . . , c1}. Similarly, L = K (0, c2),
and the set of critical vertices in it coincides with the diagonal DL = {(i, i): i = 0, . . . , c2}. These
diagonals are just taken as the distinguished subsets in these digraphs. The vertices in D R (DL ) are
ordered in a natural way, according to which (i, i) is referred as the ith critical vertex in R (L).

We refer to the digraph obtained by use of operation 	
 in this case as the diagonal-product of R
and L, and for brevity write R 	
 L, omitting the distinguished subsets. The edge colors in the resulting
graph are inherited from R and L. Using the above ordering in the diagonals, we may speak of pth
right sail in R 	
 L, denoted by R p . Here 0 � p � c2, and R p is the copy of R corresponding to the
vertex (p, p) of L. In a similar way, one defines qth left sail Lq in R 	
 L for q = 0, . . . , c1. The common
vertex of R p and Lq is denoted by v p,q .

One checks that R 	
 L has source and sink and satisfies axioms (A1)–(A4). Moreover, it is exactly
the RA2-crystal K (c1, c2). The critical vertices in it are just v p,q for all p,q, the source is v0,0 and the
sink is vc1,c2 . The case c1 = 1 and c2 = 2 is illustrated in Fig. 1; here the critical vertices are indicated
by circles, 1-edges by horizontal arrows, and 2-edges by vertical arrows.

Theorem 2.2. (See [3].) Any RA2-crystal K is representable as K (a,0) 	
 K (0,b) for some a,b ∈ Z+ (in par-
ticular, K is finite). The set of RA2-crystals is exactly {K (c): c ∈ Z

2+}.
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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A useful consequence of the above construction is that the vertices v of K one-to-one correspond
to the quadruples (α1,α2, β1, β2) of integers such that

(2.6) (i) 0 � α2 � α1 � c1, (ii) 0 � β1 � β2 � c2, and (iii) at least one of the equalities α2 = α1 and
β1 = β2 takes place,

and each i-edge (i = 1,2) corresponds to the increase by 1 of one of αi , βi , subject to maintain-
ing (2.6).

Under this correspondence, if β1 = β2 then v occurs in the right sail with the number β1 and has
the coordinates (α1,α2) in it, while if α2 = α1 then v occurs in the left sail with the number α1 and
has the coordinates (β1, β2). In particular, a critical vertex v p,q corresponds to (q,q, p, p).

Remark 1. The representation of the vertices of K as the above quadruples satisfying (2.6) gives rise to
constructing the crossing model for the simplest case n = 2, as we explain in the next section. A more
general numerical representation (which is beyond our consideration in this paper) does not impose
condition (iii) in (2.6). In this case the admissible transformations of quadruples (α1,α2, β1, β2) (giv-
ing the edges of a digraph on the quadruples) are assigned as follows. For Δ := min{α1 −α2, β2 −β1},
we choose one of α1,α2, β1, β2 and increase it by 1 unless this increase violates (i) or (ii) in (2.6)
or changes Δ. One can see that the resulting digraph Q is the disjoint union of 1 + min{c1, c2} RA2-
crystals, namely, K (c1 −Δ, c2 −Δ) for Δ = 0, . . . ,min{c1, c2}. (This Q is the tensor product of crystals
(sails) K (c1,0) and K (0, c2).)

One more useful result in [3] is as follows.

Proposition 2.3. Part (ii) of axiom (A4) for RAN-crystals is redundant. Furthermore, axiom (A4) itself follows
from (A1)–(A3) if we add the condition that each component of (V , Ei ∪ E j) with |i − j| = 1 has exactly one
zero-indegree (or exactly one zero-outdegree) vertex.

In conclusion of this section, return to an arbitrary RAN-crystal K . For a color i, let Hi denote the
operator on V (K ) that brings a vertex v to the end vertex of the path Pi(v), i.e., Hi(v) = F hi(v)

i (v)

(letting F 0
i = id). We observe that

(2.7) for neighboring colors i, j and a vertex v , if hi(v) = 0 then the vertex w = Hi H j(v) satisfies
hi(w) = h j(w) = 0.

Indeed, the RA2-subcrystal with the colors i, j in K that contains v is K (ci, c j) for some
ci, c j ∈ Z+ . Represent v as quadruple q = (αi,α j, βi, β j) in (2.6) (with i, j in place of 1, 2). Then
hi(q) = 0 implies αi = ci and βi = β j . One can see that applying H j to q results in the quadruple
q′ = (ci, ci, βi, c j) and applying Hi to q′ results in (ci, ci, c j, c j). This gives (2.7).

Using (2.7), we can show the following important property of RAN-crystals.

Proposition 2.4. Any RAN-crystal K has a zero-outdegree vertex.

Proof. For a vertex u, let p(u) be the maximum integer p such that hi(u) = 0 for i = 1, . . . , p − 1.
Assuming p(u) < n+1, we claim that the vertex w = H1 H2 · · · H p(u)(u) satisfies p(w) > p(u), whence
the result will immediatelly follow. (In other words, by applying the operator H̄n H̄n−1 · · · H̄1 to an
arbitrary vertex, we get a zero-outdegree vertex, where H̄i stands for H1 H2 · · · Hi .)

Indeed, let p = p(u). For the vertex v p := H p(u), we have hp(v p) = 0 and hi(v p) = hi(u) for
all i �= p − 1, p + 1 (since the colors p, i commute), while hp−1(v p) may differ from hp−1(u). So
hi(v p) = 0 for i = 1, . . . , p − 2, p. Similarly, the vertex v p−1 := H p−1(v p) satisfies hp−1(v p−1) = 0 and
hi(v p−1) = hi(v p) for all i �= p −2, p. Moreover, applying (2.7) to v = u, i = p −1 and j = p, we obtain
hp(v p−1) = 0. So hi(v p−1) = 0 for i = 1, . . . , p − 3, p − 1, p. On the next step, in a similar fashion one
shows that v p−2 := H p−2(v p−1) satisfies hi(v p−2) = 0 for all i ∈ {1, . . . , p} \ {p − 3}, and so on. Then
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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the final vertex v1 := H1 · · · H p(u) in the process has the property hi(v1) = 0 for i = 1, . . . , p, as
required in the claim. �

Also K has a zero-indegree vertex (since Proposition 2.4 can be applied to the dual crystal K ∗).
This together with (2.3) and Proposition 2.1 gives the following.

Corollary 2.5. Every RAN-crystal K is finite and has source and sink. Therefore, K = K (c) for some c ∈ Z
n+ .

3. Description of the crossing model

As mentioned in the Introduction, the crossing model Mn for RAN-crystals consists of three ingre-
dients:

(i) a certain digraph G = (V (G), E(G)) depending only on the number n of colors, called the sup-
porting graph (the structural part of Mn);

(ii) a certain set F = F(c) of nonnegative integer-valued functions on V (G), called feasible functions,
depending on an n-tuple of parameters c ∈ Z

n+ (the numerical part);
(iii) n partial operators acting on F , called moves (the operator part).

(The feasible functions will correspond to the vertices of the crystal with the parameter c, and the
moves to the edges of this crystal.) Parts (i) and (ii) are described in this section, and part (iii) in
the next one. To avoid a possible mess when both a crystal and the supporting graph are considered
simultaneously, we will refer to a vertex of the latter graph as a node.

To explain the idea, we first consider the simplest case n = 2 and a 2-colored crystal K = K (c1, c2).
The model M2 is constructed by relying on encoding (2.6) of the vertices of K . The supporting
graph G is formed by two disjoint edges (u1, u2) and (w2, w1) (which are related to the elemen-
tary crystals, or sails, K (c1,0) and K (0, c2)). A feasible function f on V (G) takes values f (u1) = α1,
f (u2) = α2, f (w1) = β1, f (w2) = β2 for α, β as in (2.6). So the direction of each edge e of G indi-
cates the corresponding inequality to be imposed on the values of any feasible function f on the end
nodes of e, and each f one-to-one corresponds to a vertex of K . The graph G is illustrated on the
picture:

� �

� �

�
�
�
�

�
����

�
�
�

�
��	w2 u2

u1 w1

β2 α2

α1 β1

Note that each admissible quadruple (α1,α2, β1, β2) generates the GT-pattern X of size 2 (see
Subsection 2.3), defined by x11 := α1 + β1, x21 := β2 + c1 and x22 := α2 (see the diagram below). This
pattern is bounded by cΣ = (c1 + c2, c1).

c1 + β2 α2

α1 + β1

Next we start describing the model for an arbitrary n. The “simplest” case of an n-colored graph
K = K (c) arises when all entries in c = (c1, . . . , cn) are zero except for one entry ck . In this case we
say that K is the kth base crystal of size ck and denote it by K k

n(ck).

3.1. The supporting graph of Mn

To facilitate understanding the construction of the supporting graph G , we first introduce an aux-
iliary digraph G = Gn , called the proto-graph of G . Its node set consists of elements V i( j) for all
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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1 � j � i � n. Its edge set consists of all possible pairs of the form (V i( j), V i−1( j)) (ascending edges)
or (V i( j), V i+1( j + 1)) (descending edges). We say that the nodes V i(1), . . . , V i(i) form the ith level
of G and order them as indicated (by increasing j). We visualize G by drawing it on the plane so
that the nodes of the same level lie on a horizontal line, the edges have equal lengths, the ascending
edges point North–East, and the descending edges point South–East. See the picture for n = 4.

V 4(1) V 4(2) V 4(3) V 4(4)

V 3(1) V 3(2) V 3(3)

V 2(1) V 2(2)

V 1(1)

��
 ��
 ��


��
 ��


��


��� ��� ���

��� ���

���

The supporting graph G is formed by replicating elements of G as follows. Each node V i( j) gen-
erates n − i + 1 nodes of G , denoted as vk

i ( j) for k = i − j + 1, . . . ,n − j + 1, which are ordered by
increasing k (and accordingly follow from left to right in the visualization). We identify V i( j) with
the set of these nodes and call it a multinode of G . Each edge of G generates a set of edges of G (a
multi-edge) connecting the elements with equal upper indexes. More precisely, (V i( j), V i−1( j)) gives
n − i + 1 ascending edges (vk

i ( j), vk
i−1( j)) for k = i − j + 1, . . . ,n − j + 1, and (V i( j), V i+1( j + 1)) gives

n − i descending edges (vk
i ( j), vk

i+1( j + 1)) for k = i − j + 1, . . . ,n − j.

The resulting G is the disjoint union of n digraphs G1, . . . , Gn . Here Gk = Gk
n contains all vertices

of the form vk
i ( j) (the indexes i, j range over 1 � j � n −k +1 and 0 � i − j � k −1, and Gk is viewed

as a square (or, better to say, rhombic) grid of size k − 1 by n − k; we shall see later that Gk is, in
fact, the supporting graph for the base crystal K k

n ). For example: for n = 4, the graph G is viewed as
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(where the multinodes are surrounded by ovals) and its components G1, G2, G3, G4, called the base
subgraphs of G , are viewed as
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Thus, each node v = vk
i ( j) of G has at most four incident edges, namely, (vk

i−1( j − 1), v),

(vk
i+1( j), v), (v, vk

i−1( j)), (v, vk
i+1( j + 1)); we refer to them, when exist, as the NW-, SW-, NE-, and

SE-edges, and denote by eNW(v), eSW(v), eNE(v), eSE(v), respectively.
Four nodes of each Gk are distinguished: the leftmost node vk

k(1), the rightmost node vk
n−k+1(n −

k + 1), the topmost node vk
1(1), and the bottommost node vk

n(n − k + 1), denoted by leftk , rightk , topk ,

and bottomk , respectively. Note that leftk is the source and rightk is the sink of Gk .

3.2. Weights of nodes

We consider nonnegative integer-valued functions f on V (G) and refer to the value f (v) as the
weight of a node v . A function f is called feasible if it satisfies the following three conditions. Here
for an edge e = (u, v), ∂ f (e) denotes the difference f (u)− f (v), and e is called tight for f , or f -tight,
if ∂ f (e) = 0.

(3.1) (i) f is monotone on the edges, in the sense that ∂ f (e) � 0 for all e ∈ E(G);
(ii) 0 � f (v) � ck for each v ∈ V (Gk), k = 1, . . . ,n (or, equivalently, f (leftk) � ck and f (rightk) �

0, in view of (i));
(iii) each multinode V i( j) contains a node v such that: the edge eSE(u) is tight for each node

u ∈ V i( j) preceding v , and eSW(u′) is tight for each node u′ ∈ V i( j) succeeding v .

We say that such a v in (iii) satisfies the switch condition. The first of such nodes v = vk
i ( j) (i.e.,

with k minimum) is called the switch-node in the multinode V i( j). It plays an important role in
transformations of feasible functions in the model. (We shall see later that the forward moves, related
to acting operators Fi , handle just switch-nodes, while the backward moves, related to acting F −1

i ,
handle last nodes satisfying the switch condition.) See the picture, where tight edges are drawn bold
and only one node, marked by a circle, satisfies the switch condition.
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The fact that the feasible functions one-to-one correspond to the vertices of the crystal K (c) can
be shown by two methods. A direct proof of the assertion that F along with the moves obeys axioms
(A1)–(A5) will be given in Section 5. Another way consists in showing a correspondence to GT-patterns
and relies on property (2.5). For p,q ∈ {1, . . . ,n} with p � q, let c[p : q] denote cp +· · ·+ cq . As before,
cΣ

j stands for c[1 : n − j + 1].

Proposition 3.1. For 1 � j � i � n, define

xi, j := f̄ i( j) + c[1 : i − j], (3.2)

where f̄ i( j) denotes the sum of values of f on the nodes in V i( j). This gives a bijection between the set of
feasible functions f and the set of GT-patterns X = (xi, j) of size n bounded by cΣ .

(Note that this leads to an alternative proof of (2.5), via the crossing model.)

Proof. For a weight function f satisfying (3.1)(i), (ii) (but not necessarily (3.1)(iii)), define X by (3.2).
Each multinode Vn( j) in the bottom level consists of the single node v = vn− j+1

n ( j), and we have
0 � f (v) � cn− j+1 (since v is in Gn− j+1). Therefore, xn, j is between c[1 : n − j] and c[1 : n − j + 1].
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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The inequality xi, j � xi+1, j+1 is provided by nonincreasing f along the edges from V i( j) to
V i+1( j + 1) and by the fact that the term in (3.2) concerning c is the same for (i, j) and for
(i + 1, j + 1). The inequality xi+1, j � xi, j follows from nonincreasing f along the edges from V i+1( j)

to V i( j) and from the inequality ci− j+1 � f (vi− j+1
i ( j)). Thus, X is a GT-pattern bounded by cΣ .

Conversely, let X be a GT-pattern bounded by cΣ . We construct the desired f step by step, starting
from the bottom level. For each node v = vn− j+1

n ( j) (forming Vn( j)), we define f (v) := xn, j − c[1 :
n − j]. This value is nonnegative, and (3.2) holds for i = n.

Now consider a multinode V i( j) with i < n, assuming that f is already determined for all levels
i′ > i and satisfies (3.1) and (3.2) for the nodes in these levels and the edges between them. We
show that f can be properly extended to the nodes in V i( j) and that such an extension is unique.
Consider an intermediate node v in V i( j) (existing when i < n − 1). It has both SW- and SE-edges, say,
(u, v), (v, w). The weights of u and w (already defined) satisfy f (u) � f (w) (since for the node v ′
in the level i + 2 such that (u, v ′) = eSE(u) and (v ′, w) = eSW(w), we have f (u) � f (v ′) � f (w)).
The maximum possible weight of v not violating (3.1)(i) is f (u), while the minimum possible weight
is f (w). In its turn, the first node v of V i( j) is connected with the level i + 1 by the unique edge
eSE(v), say, (v, w), and the maximum possible weight of v is ci− j+1 (since v belong to Gi− j+1), while
the minimum one is f (w). And the last node v of V i( j) is connected with the level i + 1 by the
unique edge eSW(v), say, (u, v), the maximum possible weight of v is f (u), and the minimum one is
zero.

Thus, the maximum assignment of weights for all nodes of V i( j) would give f̄ i( j) = f̄ i+1( j) +
ci− j+1, implying xi, j � f̄ i( j) + c[1 : i − j], in view of xi, j � xi+1, j = f̄ i+1( j) + c[1 : i − j + 1]. And the
minimum assignment would give f̄ i( j) = f̄ i+1( j + 1), implying xi, j � f̄ i( j) + c[1 : i − j], in view of
xi, j � xi+1, j+1 = f̄ i+1( j + 1) + c[1 : i − j]. Therefore, starting with the maximum assignment, scanning
the nodes in V i( j) according to their ordering and decreasing their weights step by step, one can
always correct the weights so as to satisfy (3.1)(iii) and (3.2), while maintaining (3.1)(i), (ii). Moreover,
(3.1)(iii) guarantees that the weights within V i( j) are determined uniquely. Eventually, after handling
level 1, we obtain the desired function f on V (G). �
4. Moves in the model

So far, we have dealt with the case of nonnegative upper bounds (parameters) c1, . . . , cn and zero
lower bounds, i.e., for any feasible function f , the weight f (v) of each node v of a kth base subgraph
lies between 0 and ck . However, it is useful for us to slightly extend the setting by admitting nonzero
lower bounds (in particular, for purposes of Subsection 6.3 where the model is extended to produce
crystals with possible infinite monochromatic paths).

Formally: for c,d ∈ Z
n with c � d, we define a feasible function to be an integer function f on

V (G) satisfying (3.1)(i), (iii) and the relation

dk � f
(

vk
i ( j)

)
� ck for all k, i, j, (4.1)

instead of (3.1)(ii). The set of feasible functions for (c,d) is denoted by F(c,d). Clearly the numerical
part of the model remains equivalent when for any k, we add a constant to both ck and dk and
accordingly add this constant to any weight function for Gk . In particular, F(c,d) is isomorphic to
F(c − d,0), and when d = 0, F(c,d) coincides with F(c) as above.

Now we start describing the desired transformations of functions in F(c,d), or moves (that will
correspond to edges of the crystal K (c−d)). Each transformation is performed only within one level i,
in which case it is called an i-move. We need some additional definitions, notation and construction.

First of all, to simplify technical details, we extend each Gk by adding extra nodes and edges. More
precisely, in the extended digraph Ḡk , the node set consists of elements vk

i ( j) for (i, j) = (0,0) and
for all i, j such that 0 � i, j � n + 1 and j � i + 1, except for (i, j) = (n + 1,0). The edge set of Ḡk

consists of all possible pairs of the form (vk
i ( j), vk

i−1( j)) or (vk
i ( j), vk

i+1( j +1)) (as before). An instance
is illustrates in the picture; here n = 4, k = 2, and the thick lines indicate the edges of the original
graph G2

4.
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
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G2
4

Ḡ2
4

The disjoint union of these Ḡk gives the extended supporting graph Ḡ . It possesses the property that
the original multinodes become balanced, in the sense that for the set J of index pairs (i, j) sat-
isfying 1 � j � i � n, the extended multinodes V̄ i( j) contain the same number n of nodes (these
are v1

i ( j), . . . , vn
i ( j)). Also each node v = vk

i ( j) of Ḡ with (i, j) ∈ J has exactly four incident edges,

namely, all of eNW(v), eSW(v), eNE(v), and eSE(v).
Each feasible function on V (G) is extended to the extra nodes v = vk

i ( j) as follows:

(i) put f (v) := ck if there is a path from v to Gk (equivalently: j = 0 or i − j > k − 1; one may say
that v lies on the left from Gk); and

(ii) put f (v) := dk otherwise (equivalently: j > i or j > n − k + 1, saying that v lies on the right
from Gk).

One can see that such the extension maintains conditions (3.1)(i), (ii), (iii) everywhere. Also

(4.2) each edge of Ḡ with both ends not in G is tight; and for any (i, j) ∈ J , a node v ∈ V i( j) satisfies
the switch condition in G if and only if it does so in Ḡ .

Given a feasible function f on V (Ḡ), the move from f in a level i ∈ {1, . . . ,n} changes f within
some multinode in this level. The choice of this multinode depends on so-called residual slacks.

First, for a node v = vk
i ( j), define

ε(v) := ∂ f
(
eNW(v)

)
and δ(v) := ∂ f

(
eSE(v)

)

when the corresponding NW- or SE-edge exists in Ḡ (i.e., when i, j � 1 in the former case and i, j � n
in the latter case). We call these the upper slack and the lower slack of f at v , respectively.

Next, define the upper slack εi( j) and the lower slack δi( j) at a multinode V̄ i( j) as

εi( j) :=
n∑

k=1

ε
(

vk
i ( j)

)
and δi( j) :=

n∑

k=1

δ
(

vk
i ( j)

)
(4.3)

(the former when i, j � 1, and the latter when i, j � n). Note that

εi(1) � δi(0) for i = 1, . . . ,n (4.4)

(as f (vk
i−1(0)) = f (vk

i (0)) = ck and f (vk
i (1)) � f (vk

i+1(1)) for all k). Also εi(i + 1) = 0.

Finally, we define the residual upper slack ε̃i( j) and the residual lower slack δ̃i( j) by the following
rule:
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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(4.5) (a) for 0 � p < q � i + 1, put π(p,q) := ∑q
r=p+1 εi(r) − ∑q−1

r=p δi(r); (b) for j = 1, . . . , i + 1,

put ε̃i( j) := max{0,min{π(p, j): 0 � p < j}}; and (c) for j = 0, . . . , i, put δ̃i( j) := max{0,

min{−π( j,q): j < q � i + 1}}.

Remark 2. The residual slacks can also be computed via the following recursive cancelation process.
Initially, put ε̃i := εi and δ̃i := δi . At each step, choose some pair j′ < j such that ε̃i( j) > 0, δ̃i( j′) > 0,
and ε̃i(q) = δ̃i(q) = 0 for all j′ < q < j. Subtract from each of ε̃i( j) and δ̃i( j′) their minimum. Repeat.
Upon termination of this process (when j′, j as above no longer exist), we obtain ε̃ and δ̃ exactly as
in (4.5) for all j. This observation will be used in Section 5.

The residual slacks are integers and there exists j ∈ {1, . . . , i} such that

δ̃i(0) = · · · = δ̃i( j − 1) = 0 and ε̃i( j + 1) = · · · = ε̃i(i + 1) = 0. (4.6)

(Indeed, suppose ε̃i( j) > 0 and δ̃i( j′) > 0 for some j > j′ . Then, by (4.5)(b), (c), π( j′, j) > 0 and
−π( j′, j) > 0; a contradiction.) Take the minimum j satisfying (4.6) (if there are many). If ε̃i( j) > 0,
then we say that V̄ i( j) is the active multinode in the level i (otherwise ε̃i(1) = · · · = ε̃i(i) = 0 takes
place).

The moving operator φi in level i is applicable when the active multinode V̄ i( j) does exist, and its
action is simple: it increases by one the value of f on the switch-node in V̄ i( j), preserving f on all
other nodes of Ḡ .

To show that φi is well defined, we will examine some rhombi of Ḡ , where by a (little) rhombus
we mean a quadruple ρ of nodes of the form vk

i ( j), vk
i−1( j), vk

i ( j + 1), vk
i+1( j + 1), called the left,

upper, right, and lower nodes of ρ , respectively. The following simple observation is useful:

(4.7) for a rhombus ρ , define ∂ f (ρ) := f (u′) + f (w ′) − f (z′) − f (v ′), where z′ , u′ , v ′ , w ′ are the
left, upper, right and lower nodes of ρ , respectively; then ∂ f (ρ) = ε(v ′) − δ(z′); in particular,
ε(v ′)− δ(z′) is nonnegative if eNE(z′) or eSE(z′) is f -tight, and nonpositive if eNW(v ′) or eSW(v ′)
is f -tight.

It follows that if V̄ i( j) is the active multinode in level i and v is the switch-node in it, then v
belongs to G . Indeed, suppose v occurs before the first node of V i( j). Then, in view of (3.1)(iii)
and (4.2), the SW-edges of all nodes of V̄ i( j) are tight, implying π( j − 1, j) � 0 (by (4.7)), contrary to
ε̃i( j) > 0. The fact that v cannot occur after the last node of V i( j) is easy as well. So we can speak of
active multinodes within G and of the switch-nodes there.

Proposition 4.1. The function f ′ := φi( f ) is feasible.

Proof. We have to check validity of (i) and (iii) in (3.1) for f ′ (then (4.1) for f ′ will follow automati-
cally). Below, when speaking of switch-nodes or using expressions with ε , ε̃ , δ, δ̃, π , we always mean
the corresponding objects for f . Let X := V̄ i( j) be the active multinode for f and i. Denote the nodes
in X by v1, . . . , vn (in this order), and the switch-node by v .

Suppose ∂ f ′(e) < 0 for some edge e. This is possible only if ∂ f (e) = 0 and e enters v , i.e., e is
eNW(v) or eSW(v).

(a) Let e = eSW(e). If v �= v1, then ∂ f (e) > 0 (otherwise the switch-node in X would occur be-
fore v). So v = v1. Then the SW-edges of all nodes in X are f -tight, by (3.1)(iii). In view of (4.7), this
implies π( j − 1, j) � 0, contrary to ε̃i( j) > 0.

(b) Now let e = eNW(v). The beginning node of e belongs to the multinode V i−1( j − 1). Con-
sider the rhombi ρ1, . . . , ρn containing v1, . . . , vn as right nodes, respectively. Let zk , uk , wk denote,
respectively, the left, upper and lower nodes in ρk . So z1, . . . , zn are the elements of V̄ i( j − 1);
u1, . . . , un are the elements of V̄ i−1( j − 1); and w1, . . . , wn are the elements of V̄ i+1( j) (and the
indices grow according to the orderings in these multinodes). Let v = v p , and let uq be the switch-
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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node in V̄ i−1( j − 1). By (3.1)(iii), the edges (wk, vk) for k = p + 1, . . . ,n and the edges (uk′
, vk′

) for
k′ = 1, . . . ,q − 1 are tight for f . This gives

ε
(

vk) � δ
(
zk) for k = 1, . . . ,q − 1 and for k = p + 1, . . . ,n

(in view of (4.7)). Also the tightness of e gives ε(v p) � δ(zp). Suppose q < p. Then up occurs in
V̄ i−1( j − 1) after the switch-node uq , and therefore, (zp, up) is tight for f . We have f (zp) = f (up) =
f (v p), which implies the f -tightness of all edges in ρ p . Then ∂ f (eSW(v)) = 0, contrary to shown
in (a). Thus, q � p. This implies ε(vk) � δ(zk) for all k, and therefore, εi( j) � δi( j); a contradiction.

So, (3.1)(i) for f ′ is proven. Next, since ∂ f ′(e) � ∂ f (e) for all SW- and SE-edges e of nodes in
V̄ i−1( j − 1), (3.1)(iii) is valid for f ′ and this multinode. Also (3.1)(iii) is, obviously, valid for f ′ and X .
It remains to examine the multinode Y := V i−1( j) since for the edge e = eNE(v) = (v, u), which is
the SW-edge for the node u in Y , the value ∂ f ′(e) becomes greater than ∂ f (e). If e is not f -tight or
if the last node u′ in Y satisfying the switch condition for f does not occur before u, then (3.1)(iii)
follows automatically.

Suppose ∂ f (e) = 0 and u′ occurs before u. We show that this is not the case by arguing in a way
close to (b). For k = 1, . . . ,n, let zk , uk , vk , wk denote, respectively, the left, upper, right and lower
nodes of the rhombus whose upper node (namely, uk) is contained in Y . Then the node v (as before)
is zp , and u′ = uq for some p, q with q < p. The fact that both v , u′ satisfy the switch condition for f
(in their multinodes), together with q < p, implies that for each k = 1, . . . ,n, at least one of ∂ f (zk, uk)

and ∂(zk, wk) is zero. This gives (cf. (4.7)):

δ
(
zk) � ε

(
vk) for all k.

Moreover, this inequality is strict for k = q. Indeed, we have ∂ f (zq, wq) = 0 and ∂ f (uq, vq) > 0 (oth-
erwise the node in Y next to u would satisfy the switch condition for f as well, but u′ is the last
of such nodes). So we obtain δi( j) < εi( j + 1). This implies (in view of ε̃i( j) > 0 and δ̃i( j′) = 0 for
j′ = 0, . . . , j − 1) that δ̃i( j) = 0 and ε̃i( j + 1) > 0, and therefore, the active multinode in level i should
occur after V i( j); a contradiction.

This completes the proof of the proposition. �
In conclusion of this section we discuss one more important aspect.

Backward moves. Besides the above description of partial operators φi that increase functions in
F(c,d), we can describe explicitly the corresponding decreasing operators, which make backward
moves. For i = 1, . . . ,n, such an operator ψi acts on a feasible function f as follows (as before, we
prefer to deal with extended functions on V (Ḡ)). We take the first multinode V i( j) (with j minimum)
in level i for which δ̃i( j) > 0; the operator does not act when δ̃i( j) = 0 for all j. In view of (4.4),
1 � j � n. In this multinode, called active in backward direction, we take the last node v possessing the
switch condition (3.1)(iii), called the switch-node in backward direction. Then the action of ψi consists
in decreasing the weight f (v) by one, preserving the weights of all other nodes of G .

Proposition 4.2. The function f ′ := ψi( f ) is feasible. Moreover, φi is applicable to f ′ , and φi( f ′) = f .

Proof. One can prove this by arguing in a similar spirit as in the proof of Proposition 4.1. Instead, we
can directly apply that proposition to a certain reversed model. This is based on a simple observation,
as follows.

For a node v ∈ V (Ḡ), define μ(v) := ∂ f (eNE(v)) and ν(v) := ∂ f (eSW(v)) (when such an NE- or
SW-edge exists in Ḡ). The alternative upper and lower slacks at a multinode V i( j) are defined to
be, respectively, the sum of numbers μ(v) and the sum of numbers ν(v) for the nodes v in this
multinode (the former is defined for j = 0, . . . , i, and the latter for j = 1, . . . , i + 1). Compare (4.3).
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Considering the little rhombus containing nodes u = vk
i ( j − 1) and v = vk

i ( j), we have ν(v) − μ(u) =
ε(v) − δ(u) (cf. (4.7)). This gives

νi( j) − μi( j − 1) = εi( j) − δi( j − 1). (4.8)

The reversed model Mr is obtained by reversing the edges of G , by replacing the upper bound c
by −d, and by replacing the lower bound d by −c (one may think that we now read the original
model from right to left). Accordingly, a feasible function f in M is replaced by f r := − f . One can
see that f r is feasible for Mr and that the last node satisfying the switch condition for f in an original
multinode V i( j) turns into the switch-node for f r in the corresponding multinode V r

i ( j′) in Mr . Also
εr

i ( j′) = μi( j) and δr
i ( j′) = νi( j) (where εr , δr stand for ε , δ in the reversed model). In view of (4.8),

expressions in (4.5) with f r in Mr will give ε̃r
i ( j′) = δ̃i( j) and δ̃r

i ( j′) = εi( j) for all j.
These observations enable us to conclude that the function ( f r)′ obtained by the forward move

from f r in Mr generates the function f ′ = ψi( f ) in M . Therefore, f ′ is feasible. To see the second part
of the proposition, let v be the node of the active in backward direction multinode V i( j) where f
decreases (by one) to produce f ′ . The edge eSW(v) is nontight for f ′ , which implies that v is the
unique node in V i( j) satisfying the switch condition for f ′ , and therefore, v becomes the switch-
node there. Also decreasing f by one at v results in increasing ε(v), and one can see that the residual
slack ε̃i( j) for f ′ is greater by one than that for f . This and (4.6) imply that V i( j) is just the active
multinode for f ′ and i. Hence the forward move from f ′ increases it by one at v , and we obtain
φiψi( f ) = f , as required. �

By this proposition, the operator ψi is injective. The “doubly reversed” model coincides with the
original one, and therefore, Proposition 4.2 implies that ψiφi( f ) = f for each f to which φi is appli-
cable. So φ and ψ are inverse to each other and we may denote ψi by φ−1

i .

5. The relation of the model to RAN-crystals

We have seen that the feasible functions in the model one-to-one correspond to the vertices of
a crystal, by using the GT-pattern model for the latter, see Proposition 3.1. In this section we directly
verify that the set F of these functions and the set of (forward) moves satisfies axioms (A1)–(A5),
and therefore, they constitute an RAN-crystal. One may assume that the lower bounds are zero, i.e.,
F = F(c) for c ∈ Z

n+ . When the operator φi is applicable to an f ∈ F , we say that f and f ′ := φi( f )
are connected by the directed edge ( f , f ′) with the color i; the set of these edges is denoted by Ei .
This produces the n-colored digraph K(c) = (F ,E) in which E is partitioned into the color classes
E1, . . . ,En . So we are going to show the following.

Theorem 5.1. K(c) is an RAN-crystal.

Proof. As before, it is more convenient to operate with the extended supporting graph Ḡ and assume
that the functions in F are properly extended to the nodes in V (Ḡ) − V (G).

Axiom (A1) immediately follows from properties of operators φi and ψi . Next we observe the fol-
lowing. For f ∈F and a color i, if V i( j) is the active multinode, then the action of φi decreases ε̃i( j)
by 1, increases δ̃i( j) by 1, and does not change the residual slacks ε̃ and δ̃ for the other multinodes
in level i. This follows from (4.6) and the fact that under increasing f by 1 at the switch-node v
in V i( j), ε(v) decreases by 1 and δ(v) increases by 1. Similarly, if V i( j′) is the active multinode in
backward direction, then ψi decreases δ̃i( j′) by 1, increases ε̃i( j′) by 1, and preserves the residual
slacks for the other multinodes in level i. This implies

hi( f ) =
i∑

j=1

ε̃i( j) and ti( f ) =
i∑

j=1

δ̃i( j), (5.1)

regarding f as a vertex of K.
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If i, i′ are two colors with |i− i′| � 2, then any changes of f in the level i do not affect the numbers
ε(v) and δ(v) for nodes v in the level i′ . So hi′( f ) = hi′ ( f ′) and ti′( f ) = ti′ ( f ′) for f ′ = φi( f ). This
implies validity of axiom (A5).

In order to verify axioms (A2), (A3) and (especially) (A4) for neighboring colors, we need a more
careful analysis of the behavior of residual slacks. The following interpretation for the cancelation
process (see Remark 2 in Section 4) is of help.

For f ∈F and a fixed level i′′ , we may think of V ( j) as a box where ε( j) white balls and δ( j) black
balls are contained (we omit the subindex i′′ hereinafter). Imagine that there is a set C of couples,
each involving one black ball b from a box V ( j) and one white ball w from a box V ( j′) such that
j < j′ (each ball occurs in at most one couple). We associate to a couple (b, w) the integer interval
[ j(b), j(w)], where

j(q) denotes the number of the box containing a ball q.

The set I of these intervals (with possible multiplicities) is required to form an interval family, which
means that there are no two intervals [α,β], [α′, β ′] such that α < α′ < β < β ′ (i.e., no crossing
intervals). In particular, the set of maximal intervals in I , not counting multiplicities, forms a linear
order in a natural way. Also it is required that: (i) C is maximal, in the sense that there are no
uncoupled, or free, a black ball b and a white ball w such that j(b) < j(w); and (ii) no free ball lies
in the interior of an interval in I .

It is easy to realize that such a C exists and unique, up to recombining couples with equal intervals.
We denote the set of free white (free black) balls by W (resp. B) and call (C, W , B) the arrangement
for the given collection of black and white balls. Furthermore, for each j, the number of free white
balls (free black balls) in V ( j) is precisely ε̃( j) (resp. δ̃( j)).

Let p denote the maximal number j(w) among w ∈ W (letting p = −∞ if W = ∅), and q the min-
imal number j(b) among b ∈ B (letting q = ∞ if B = ∅). Then p � q. One can see that if some black
ball b is removed, then the arrangement changes as follows (we indicate only the changes important
for us).

(5.2) If b is free, it is simply deleted from B . And if b is coupled and occurs in a maximal interval
σ = [α,β], then: (a) if β � q then one of the previously coupled white balls w with j(w) = β

becomes free (and σ is replaced by a maximal interval [α,β ′] for some j(b) < β ′ � β , unless σ
vanishes at all); and (b) if q � α, then one free black ball b′ whose number j(b′) is maximum
provided that j(b′) � α becomes coupled and generates the maximal interval [ j(b′), β].

On the other hand, when a new white ball w is added, the changes are as follows.

(5.3) In case j(w) � q: (a) if j(w) is in the interior of some maximal interval [α,β], then w becomes
coupled and one previously coupled white ball w ′ with j(w ′) = β becomes free; (b) other-
wise w is simply added to W . And in case j(w) > q: (c) w becomes coupled and one free black
ball b with j(b) maximum provided that j(b) < j(w) becomes coupled as well.

Using this interpretation, we now check axioms (A2)–(A4) for neighboring levels (viz. colors) i
and i − 1 in the model. Here for f ∈ F in question, the number of the active multinode (the active
multinode in backward direction) in the level i is denoted by p = p( f ) (resp. q = q( f )), and p′ = p′( f )
and q′ = q′( f ) stand for the analogous numbers in the level i − 1 (as before, we use the sign −∞
or ∞ if such a multinode does not exist).

Verification of (A2). When φi applies to f (at V i(p)), the value δi−1(p − 1) decreases by 1. (Recall
that for v ∈ V i( j) and (u, v) = eNW(v), u belongs to V i−1( j − 1).) In the above interpretation, this
means that one black ball is removed from the arrangement for the level i − 1. Then (5.2) implies
that in case p − 1 < q′ , the sum of values ε̃i−1( j) over j (equal to hi−1( f )) increases by 1, while all
δ̃i−1( j) preserve. And if p − 1 � q′ , then the sum of values δ̃i−1( j) (equal to ti−1( f )) decreases by 1,
while all ε̃i−1( j) preserve. Also in the former case, we obtain p( f ′) � p( f ) and q′( f ′) = q′( f ), where
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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f ′ := φi( f ), and therefore, the next application of φi will fall in the former case as well (further
increasing hi−1). Next, when φi−1 applies to f , we observe from (5.3) that: in case p′ � q − 1, the
sum of ε̃i( j) increases by one, while all δ̃i( j) preserve, and in case p′ � q, the sum of δ̃i( j) decreases
by one, while all ε̃i( j) preserve. Also in the former case, p′( f ′) � p′( f ) and q( f ′) = q( f ), where
f ′ := φi−1( f ), so the next application of φi−1 increases hi as well.

Verification of (A3). This is also easy. Let f ′ := φi( f ) and f ′′ := φi−1( f ). Suppose ( f , f ′) has label 0.
Then p − 1 � q′ and p′( f ′) = p′( f ) (see the previous verification). Moreover, the switch-node u in
V i−1(p′) for f remains the switch-node for f ′ . (Indeed, since p′ � p − 1, the slacks of the SW-
edges of all nodes in V i−1(p′) preserve, and the slacks of their SE-edges do not increase.) In its turn,
p′ � p − 1 � q − 1 implies that ( f , f ′′) has label 1, as required in the axiom. Also neither the active
multinode in the level i nor the switch-node v in it can change when φi−1 applies to f . Thus, both
φi−1φi and φiφi−1 increase the original function f by 1 on the same elements u, v . A verification of
the relation φi−1φi( f ) = φiφi−1( f ) in the case when ( f , f ′′) has label 0 is similar.

Verification of (A4). This is somewhat more involved. Assuming that both φi and φi−1 are applicable
to a feasible function f , define f1 := φi( f ) and g1 := φi−1( f ), and let both ( f , f1) and ( f , g1) have
label 1. Then p − 1 < q′ and p′ + 1 � q (where p = p( f ), and similarly for q, p′ , q′).

Since �( f , f1) = 1, we have hi−1( f1) = hi−1( f ) + 1 � 2. Therefore, we can define f2 := φi−1( f1)

and f3 := φi−1( f2). Similarly, we can define g2 := φi(g1) and g3 := φi(g2). Our aim is to show that φi
is applicable to f3, that φi−1 is applicable to g3, and that φi( f3) = φi−1(g3). Two cases are possible:
p′ � p − 1 and p′ � p.

Case p′ ��� p −1. For k = 1,2,3, we denote p( fk), q( fk), p′( fk), q′( fk) by pk , qk , p′
k , q′

k , respectively;
similar numbers for gk are denoted by p̄k, q̄k, p̄′

k, q̄′
k . We use the above interpretation and associate

to each current function f ′ the corresponding arrangement (C = C( f ′), W = W ( f ′), B = B( f ′)) in the
level i and the corresponding arrangement (C ′ = C ′( f ′), W ′ = W ′( f ′), B ′ = B ′( f ′)) in the level i − 1.

Since ε̃i(p) > 0, there is a white ball w ∈ W ( f ) with j(w) = p. In view of p − 1 < q′ , w corre-
sponds to a coupled black ball b′ with j(b′) = p − 1 in the level i − 1; let [α′, β ′] be the maximal
interval for C ′( f ) that contains b′ . Then p − 1 < β ′ � q′ . We also define the number β as follows: if
the point p′ + 1 lies in the interior of some maximal interval [α̃, β̃] for C( f ), put β := β̃; otherwise
put β := p′ + 1. (The meaning of β is: in view of p′ + 1 � q, if a new white ball ŵ with j(ŵ) = p′ + 1
is added in the level i, then the arrangement in this level changes so that there appears a free ball w ′
with j(w ′) = β; see (5.3).) Appealing to the interpretation, we can precisely characterize the changes
of ε̃i , δ̃i , ε̃i−1, δ̃i−1 when the above-mentioned transformations of our functions are carried out.

(i) The transformation f → f1 decreases ε̃i(p) by 1 and increases δ̃i(p) by 1. Also ε̃i−1(β
′) becomes

equal to 1; cf. (5.2)(a).

In particular, p′
1 = β ′ , i.e., V i−1(β

′) becomes the active multinode in the level i − 1.

(ii) The transformation f1 → f2 reduces ε̃i−1(β
′) to 0 and increases δ̃i−1(β

′) by 1. Also δ̃i(r) decreases
by 1 for some r � p = q1; cf. (5.3)(c).

This gives p′
2 = p′ and q2 � p and preserves all intervals for C that lie before p.

(iii) The transformation f2 → f3 decreases ε̃i−1(p′) by 1 and changes δ̃i−1(p′) from 0 to 1. Also ε̃i(β)

increases by 1; cf. (5.3)(a), (b).

The latter property implies p′ + 1 � β � p3 � p. Then φi is applicable to f3; define f4 := φi( f3).
(Furthermore, one can see that V i(p3) is the active multinode in the level i for the function φiφi−1( f )
as well.)
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
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Thus, the combined transformation φiφi−1φi−1φi consecutively increases f by 1 in the switch-
nodes v0, v1, v2, v3 of V i(p), V i−1(β

′), V i−1(p′), V i(p3), respectively, where each switch-node is
defined for the current function at the moment of the corresponding transformation. (Note that p′
and β ′ are different, while p and p3 may coincide.)

Next we examine the other chain of transformations.

(iv) The transformation f → g1 decreases ε̃i−1(p′) by 1 and increases δ̃i−1(p′) by 1. Also ε̃i(β) in-
creases by 1.

From (5.3)(a), (b) it follows that β � p, implying p̄1 = p.

(v) The transformation g1 → g2 decreases ε̃i(p) by 1 and increases δ̃i(p) by 1. Also δ̃i−1(p′) reduces
to 0.

Moreover, (5.2)(b) implies the following important property (∗): [p′, β ′] becomes a maximal inter-
val in the new arrangement in the level i − 1. Also (as mentioned after (iii)) p̄2 coincides with p3.

(vi) The transformation g2 → g3 decreases ε̃i(p̄2) by 1 and increases δ̃i(p̄2) by 1. Also, in view of
p′ + 1 � p̄2 � p, the interval [p′, β ′] in the level i − 1 (see (∗) above) is destroyed and ε̃i−1(β

′)
becomes equal to 1; cf. (5.2)(a).

So p̄′
3 = β ′ and we can apply φi−1 to g3; let g4 := φi−1(g3). We assert that g4 = f4.

To see this, notice that the combined transformation φi−1φiφiφi−1 increases the initial f within the
same multinodes as those in the transformation φiφi−1φi−1φi , namely, V i−1(p′), V i(p), V i(p̄2 = p3),
V i−1(β

′) (but now the order is different). Let v̄0, v̄1, v̄2, v̄3 be the switch-nodes in these multinodes,
respectively (each being taken at the moment of the corresponding transformation). Since no change
in the level i − 1 affects the slacks of SW- and SE-edges in the level i, we have v̄1 = v0 and v̄2 = v3.
Also p′ + 1 � β , p implies that the transformations in the level i do not decrease the slacks of the
SE-edges of nodes in V i−1(p′) and do not change the slacks of their SW-edges, whence v̄0 = v2.

It remains to check that v̄3 = v1. Let u be the switch-node in V i−1(β
′) =: X for the initial func-

tion f . We have p � β ′ . Therefore, the increase at v0 = v̄1 can change the switch-node in X only if
p = β ′ and if the end u′ of the edge eNE(v0) is situated after u in the ordering on X . If this is the case,
then under each of the transformations f → f1 and g1 → g2 (concerning V i(p)) the switch-node u
in X is replaced by u′ . Besides these, there is only one transformation in the level i that preceedes
the transformation within X , namely, g2 → g3. We know that p̄2 � p and that if p̄2 = p then v̄2 co-
incides with or preceedes v0 (taking into account that the transformation g1 → g2 concerning V i(p)

was applied earlier). This easily implies that g2 → g3 can never change the switch-node in X . Thus,
v̄3 = v1.

The case p′ � p is examined in a similar fashion, and we leave it to the reader.
Finally, due to Proposition 2.3, verifying the second part of axiom (A4) (concerning the opera-

tors φ−1
i and φ−1

i−1) is not necessary.
This completes the proof of Theorem 5.1. �

Remark 3. In light of the second claim in Proposition 2.3, instead of the tiresome verification of
axiom (A4) in the above proof, one may attempt to show that a maximal connected subgraph with
colors i and i − 1 in K has only one zero-indegree vertex. However, no direct method to show this is
known to us.

Clearly the source of the crystal K(c) is the identically zero function f0 on V (G), and the sink is
the function fc taking the constant value ck within each subgraph Gk , k = 1, . . . ,n. In particular, this
implies that

(5.4) the distance (viz. the number of edges of a path) from the source to the sink, or the length
of K(c), is equal to

∑n
k=1 ck|V (Gk)|, or

∑n
k=1 ckk(n − k + 1).
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Also one can see that for the source function f0 and a level i, one has ε̃i(1) = ci and ε̃i( j) = 0
for j = 2, . . . , i (moreover: starting from f0, each application of φi increases the weight of vi

i(1) by 1
until the weight becomes ci). So hi( f0) = ci for each color i. This means that K(c) is the crystal K (c),
and now the result of Stembridge [16] that there exists exactly one RAN-crystal with source having
a prescribed n-tuple c of parameters (see (2.3)) and Corollary 2.5 enable us to conclude with the
following

Theorem 5.2. The crossing model Mn generates precisely the set of regular An-crystals.

6. Principal lattice, principal subcrystals, and skeleton

In this section we apply the crossing model to establish certain structural properties of RAN-
crystals. We consider the initial setting for the crossing model, i.e., when the upper bounds are non-
negative integers and the lower bounds are zeros. So we deal with a parameter tuple c = (c1, . . . , cn) ∈
Z

n+ and the set F(c) of feasible functions in the model. As before, G = (V (G), E(G)) is the support-
ing graph, and Gk = (V (Gk), E(Gk)) is kth base subgraph (component) in G . The pair (F(c),E(c)) is
isomorphic to the crystal K = K (c) = (V , E). Recall that Fi denotes ith partial operator on V (corre-
sponding to the partial operator φi on F(c)), and K k = K k

n(ck) denotes kth base crystal. We will also
use the following additional notation:

• v( f ) denotes the vertex of K corresponding to a feasible function f ;
• f 1 � f 2 � · · · � f n , where f k : V (Gk) → Z (i = 1, . . . ,n), denotes the function on V (G) coinciding

with f k within each Gk;
• vk( f k) denotes the vertex of K k corresponding to a feasible function f k on V (Gk);
• Cka denotes the function on V (Gk) taking a constant value a ∈ Z.

6.1. Principal lattice and principal subcrystals

Among the variety of feasible functions, certain functions are of most interest to us. These are
functions f of the form C1a1 � · · · � Cnan , where each ak is an integer satisfying 0 � ak � ck . Such
an f is feasible (since all edges of G are f -tight); we call it a principal function and denote by f [a],
where a = (a1, . . . ,an). The corresponding vertex v( f ) is called a principal vertex of the crystal and
denoted by v[a]. In particular, the source and sink of K are the principal vertices v[0] and v[c],
respectively. So there are (c1 + 1) × · · · × (cn + 1) principal vertices; their set is denoted by Π = Π(c)
and called the principal lattice in K .

The principal lattice possesses a number of nice properties, described throughout this and next
sections. One of them is that the intervals between pairs of principal vertices are RAN-crystals as
well, where for vertices u, v in an (acyclic) digraph, the interval from u to v is the subgraph Int(u, v)

formed by the vertices and edges lying on paths from u to v .
To show this (and also for purposes of Subsection 6.3), we first consider the crossing model with

tuples c′,d′ ∈ Z
n of upper and lower bounds, c′ � d′ . This gives the crystal K (c′ − d′), also denoted as

K (c′,d′). Let c′′,d′′ ∈ Z
n be such that c′′ � c′ and d′′ � d′ . Clearly

(6.1) any feasible function f for (c′,d′) is feasible for (c′′,d′′) as well.

This gives an injective map γ from the vertex set of K ′ = K (c′,d′) to the vertex set of the crystal
K ′′ = K (c′′,d′′). Comparing the residual slacks ε̃′

i ( j) and δ̃′
i( j) for the function f in the model with

the bounds c′ , d′ and the residual slacks ε̃′′
i ( j) and δ̃′′

i ( j) for f in the model with the bounds c′′ , d′′ ,
one can see that

ε̃′′
i (1) = ε̃′

i (1) + c′′
i − c′

i and ε̃′′
i ( j) = ε̃′

i ( j) for j = 2, . . . , i;
δ̃′′

i (i) = δ̃′
i(i) + d′

i − d′′
i and δ̃′′

i ( j′) = δ̃′
i( j′) for j′ = 1, . . . , i − 1. (6.2)
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
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Moreover, for each multinode, the switch-nodes concerning f in both models are the same, and sim-
ilarly for the switch-nodes in backward direction. Also the situation when an active multinode V i( j)
for f , c′′ , d′′ is not active for f , c′,d′ can arise only if: j = 1, the switch-node in V i( j) is vi

i(1), and
f (vi

i(1)) = ci ; and symmetrically for the active multinodes in backward direction. These observations
show that γ is extendable to the edges of K ′ , and moreover,

(6.3) the image of K ′ by γ is a subcrystal of K ′′ isomorphic to K ′ , and any path in K ′′ connecting ver-
tices of γ (K ′) is entirely contained in γ (K ′). Therefore, γ (K ′) is the interval Int(γ (sK ′ ), γ (s̄K ′ ))
of K ′′ , where sK ′ and s̄K ′ are the source and sink of K ′ , respectively.

Note that γ (sK ′ ) and γ (s̄K ′ ) are the principal vertices v[d′ − d′′] and v[c′ − d′′] in K (c′′ − d′′), respec-
tively. So we obtain the following

Proposition 6.1. For a,b, c ∈ Z
n+ with a � b � c, the interval of K (c) between the principal vertices v[a]

and v[b] is isomorphic to the RAN-crystal K (b − a).

6.2. Skeleton

This is a certain part of a RAN-crystal K = K (c) related to so-called 1-relaxations of principal
functions. We use notation a(−k) for an (n − 1)-tuple of integers ai where the index i ranges 1, . . . ,

k −1,k +1, . . . ,n. For a(−k) satisfying 0(−k) � a(−k) � c(−k) , define F [a(−k)] to be the set of all feasible
functions f = f 1 � · · · � f n on V (G) such that f i = C iai for each i �= k. In other words, the nonfixed
part f k of f is any feasible function for Gk . (The latter is an arbitrary nonnegative integer function g
on V (Gk) bounded by ck and satisfying the monotonicity condition g(u) � g(v) for each edge (u, v) ∈
E(Gk). Since the switch condition becomes redundant for Gk taken separately, just all these functions
g generate the vertices v of K k: v = vk(g).)

Let K [a(−k)] denote the subgraph of K induced by the set of vertices v( f ) for all f ∈F [a(−k)]. For
any f ∈ F [a(−k)], all edges in the subgraphs Gi with i �= k are f -tight. Also each multinode X of G
contains at most one node of Gk . These facts imply that the moves from f do not depend on the
entries of a(−k) , unless f is transformed within a leftmost multinode V i(1) not intersecting Gk (i.e.,
with i �= k). This leads to the following property.

Proposition 6.2. For any a(−k) � c(−k) , the subgraph K [a(−k)] of K (c) is isomorphic to the base crystal K k(ck).

The union C of these subgraphs K [a(−k)] over all k and all a(−k) � c(−k) constitutes the object that
we call the skeleton of K . Each K [a(−k)] contains ck + 1 principal vertices v[a′] of K (c); here a′

i = ai

for i �= k and a′
k runs 0, . . . , ck . The corresponding set of ck + 1 vertices in the base crystal K k

n(ck) is
referred as its axis and denoted by Sk = Sk(ck). (In case n = 2, [3] uses the name “diagonal” rather
than “axis.”)

The proposition below asserts that the skeleton of K (c) is obtained from the base crystals K k(ck)

by use of a construction which is a natural generalization of the diagonal-product construction for
RA2-crystals (see Theorem 2.2) to the case of n colors.

Again (like for n = 2) we can describe such a construction for arbitrary graphs H1, . . . , Hn with
distinguished vertex subsets S1, . . . , Sn (respectively). Let V be the collection of all n-element sets
containing exactly one vertex from each Si . For k = 1, . . . ,n, let V(−k) be the collection of all (n − 1)-
element sets containing exactly one vertex from each Si with i �= k. For each k, take |V(−k)| copies
of Hk , each being indexed as Hk

q for q ∈ V(−k) . We glue these copies together by identifying, for each

q = {v1, . . . , vn} ∈ V (where vk ∈ Sk), the copies of vertices vk in Hk
q\{vk} , k = 1, . . . ,n, into one vertex.

The resulting graph is denoted as (H1, S1) 	
 · · · 	
 (Hn, Sn).
In our case we take as Hk the base crystal K k

n(ck), and as the distinguished subset Sk the axis
in it. The graph (H1, S1) 	
 · · · 	
 (Hn, Sn) is called the axis-product and denoted by A(c) (this is an
n-colored digraph where the edge colors are inherited from the base crystals). The principal vertices
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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in A(c) are defined to be those obtained by gluing together vertices from the axes of graphs K k . So
the principal vertices of A(c) one-to-one correspond to the principal functions in the model, or to
the n-tuples a ∈ Z

n+ with a � c.
Summing up the above explanations, we have the following

Proposition 6.3. K (c) contains an induced subgraph K ′ isomorphic to A(c) = (H1, S1)	
 · · ·	
 (Hn, Sn) (re-
specting edge colors). Moreover, K ′ is determined uniquely and its vertices correspond to the feasible functions
f 1 � · · · � f k for (G, c) such that each f i is a constant function on V (Gi), except possibly for one function f k,
which is an arbitrary feasible function for (Gk, ck).

Here the uniqueness can be shown as follows. The length of a path in K from the source v[0] to
the sink v[c] is equal to

∑n
k=1 ck|V (Gk)| (see (5.4)). The length of a path from the source to the sink

in A(c) is the same. Therefore (since K is graded), the source of K ′ must be at v[0] and the sink
of K ′ must be at v[c]. Now it is easy to realize that K ′ is reconstructed in K in a unique way.

Next, for two principal vertices v[a] and v[b], let us say that the latter is the kth immediate succes-
sor of the former if bk = ak + 1 and ai = bi for all i �= k. One can see that any possible transformation
of the function f [a] into f [b] (by use of forward moves in the model) consists of a sequence of
|V (Gk)| moves, and the corresponding sequence of nodes where the current function changes forms
a linear order on V (Gk) agreeable with the poset structure of Gk . In other words, this is an ordering
(u1, . . . , ud) of the nodes of Gk such that for each p = 1, . . . ,d, the set U p = {u1, . . . , up} is an ideal
in Gk (i.e., no edge goes to U p from the complement). Each U p determines the function gp on V (Gk)

taking the value ak + 1 within U p , and ak on the rest. Let �(p) denote the level number of up in G ,
and let f p denote the function on V (G) formed from f [a] by replacing Ckak on V (Gk) by gp . One can
check that f p coincides with the function obtained from f p−1 by the move in the level �(p) (which
just increases the weight of up by one). Thus, we have the following

Proposition 6.4. For k = 1, . . . ,n and a principal vertex v of K , if the kth immediate successor w of v exists,
then each paths from v to w in K one-to-one corresponds to a linear order (u1, . . . , ud) for Gk (where d =
|V (Gk)|). Under this correspondence, the node w can be expressed as F�(d) · · · F�(1)v, where �(p) is the level
number of up .

For k = 1, . . . ,n, the set of strings �(d) · · · �(1) as in this proposition is denoted by FSn(k); this is
invariant for all principal vertices having the kth immediate successor. We refer to any of such strings
as a fundamental one. As a special case, FSn(k) contains the fundamental string

(6.4) Sn,k = wn,k,n−k+1 · · · wn,k,2 wn,k,1, where the substring wn,k,i is of the form (i)(i+1) · · · (i+k−1).

(This corresponds to a route in Gk (according to which the weights of nodes are consecutively in-
creased by 1) consisting of n − k + 1 paths, as follows. We starts from the source leftk and go as long
as possible in the NE direction, up to the topmost node topk (obtaining the string wn,k,1 of levels).
Then we begin at the next node on the SW-side of Gk , namely, vk

k+1(2), and again go in the NE direc-
tion (yielding wn,k,2), and so on. At the final stage, we begin at the last node on the SW-side, namely,
bottomk , and go up to the sink rightk (yielding wn,k,n−k+1).)

Example. Let n = 3. Since the graph G1 forms a path, there is only one fundamental string for k = 1,
namely, 321. Similarly, FS3(3) consists of a unique string, namely, 123. The set FS3(2) for the graph
(rhombus) G2 consists of two strings: 2312 and 2132.

6.3. Infinite crystals

So far, we have dealt with n-colored crystals having a finite set of vertices, or finite crystals. How-
ever, by use of the crossing model one can generate infinite analogs of RAN-crystals (arising when
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
doi:10.1016/j.jalgebra.2008.08.006
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we admit infinite monochromatic paths). Some applications of “crystals” of this sort are indicated
in [10] in connection with modified quantized enveloping algebras. Infinite analogs of RA2-crystals
are discussed in [3, Sec. 6].

To obtain infinite RAN-crystals, we use the crossing model with double-sided bounds and consider
an upper bound c ∈ (Z ∪ {∞})n and a lower bound d ∈ (Z ∪ {−∞})n with c � d. More strictly: for
a variable M ∈ Z+ and each color i, define cM

i to be ci if ci < ∞, and max{M,di} otherwise, and de-
fine dM

i to be di if di > −∞, and min{−M, ci} otherwise. When M grows, there appears a sequence of
finite crystals K (cM ,dM), each containing the previous crystal K (cM−1,dM−1) as a principal interval,
by (6.3). At infinity we obtain the desired (well-defined) “infinite crystal” K (c,d) (when c or/and d is
not finite).

Some trivial consequences of this construction are as follows. The largest “infinite crystal,” denoted
by K ∞−∞ , arises when ci = ∞ and di = −∞ for all i. Among the variety of “crystals” produced by
the construction, K ∞−∞ is distinguished by the property that any monochromatic path in it is fully
infinite, i.e., infinite in both forward and backward directions (this object was introduced as the free
combinatorial A-type crystal by Berenstein and Kazhdan [1]).

Equivalently: the principal lattice of K ∞−∞ is formed by the vertices v[a] for all a ∈ Z
n . Also K ∞−∞

can be regarded as the “universal” RAN-crystal (with n colors), due to the following property:

(6.5) any finite or “infinite” RAN-crystal is a (finite or infinite) principal interval of K ∞−∞ , and vice
versa.

(An infinite principal interval of the form Int(v[a],∞) (resp. Int(−∞, v[a])) is the union of all paths
beginning at v[a] (resp. ending at v[a]).)

7. Subcrystals with n − 1 colors

In this section we apply the crossing model to study (n − 1)-colored subcrystals of an RAN-crystal
K = K (c) = (V , E1 ∪ · · · ∪ En).

For a subset J ⊂ {1, . . . ,n} of colors, let K( J ) denote the set of maximal connected subgraphs
of K whose edges have colors from J , i.e., the components of the graph (V ,

⋃
(Ei: i ∈ J )). When the

colors in J go in succession, i.e., J is an interval of (1, . . . ,n), each member K ′ of K( J ) is a regular
A| J |-crystal. (When J has a gap, K ′ becomes the Cartesian product of several regular crystals. For
example, for J = {1,3}, K ′ is the Cartesian product of two paths, with the color 1 and the color 3, or
a regular A1 × A1-crystal.)

We are interested in the case when J is either {1, . . . ,n − 1} or {2, . . . ,n}, denoting K( J ) by K(−n)

in the former case, and by K(−1) in the latter case. In other words, K(−n) (resp. K(−1)) is the set of
(n − 1)-colored crystals arising when the edges with the color n (resp. 1) are removed from K .

Consider K ′ ∈ K(−n) and let F(K ′) denote the set of feasible functions corresponding to the ver-
tices of K ′ . Since K ′ is connected, any f ∈ F(K ′) can be obtained from any other f ′ ∈ F(K ′) by
a series of forward and backward moves in levels 1, . . . ,n − 1. So all functions in F(K ′) have one and
the same tuple of values within the level n of G . This level consists of nodes v1

n(n), v2
n(n−1), . . . , vn

n(1)

(from right to left), and we denote the n-tuple ( f (v1
n(n)), . . . , f (vn

n(1))) by a(K ′), where f ∈ F(K ′).
Thus, we have the following property: each subcrystal K ′ ∈ K(−n) contains at most one principal ver-
tex v of K , in which case v = v[a] for a = a(K ′). Also the members of K(−n) cover all principal
vertices of K .

Similarly, for K ′′ ∈ K(−1) and for the set F(K ′′) of feasible functions corresponding to the vertices
of K ′′ , the tuple a(K ′′) := ( f (v1

1(1)), . . . , f (vn
1(1))) (where the nodes follow from left to right in the

level 1) is the same for all f ∈ F(K ′′). So each subcrystal K ′′ ∈ K(−1) contains at most one principal
vertex of K as well, and the members of K(−1) cover all principal vertices of K .

We show a sharper property.

Proposition 7.1. Each subcrystal in K(−n) contains precisely one principal vertex of K (c), and similarly for the
subcrystals in K(−1) . In particular, |K(−n)| = |K(−1)| = (c1 + 1) × · · · × (cn + 1).
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
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(This property need not hold when an (n − 1)-element subset of colors is different from {1, . . . ,

n − 1} and {2, . . . ,n}.)

Proof. For a node v of the supporting graph G , the maximal path beginning at v and going in the
NE direction is called the NE-path from v and denoted by P NE(v). Similarly, the maximal path begin-
ning at v and going in the SE direction is called the SE-path from v and denoted by P SE(v).

Let K ′ ∈K(−n) and let a = (a1, . . . ,an) := a(K ′). Consider an arbitrary function f ∈F(K ′). We show
that the principal function f [a] can be reached from f by a series of forward moves, followed by a
series of backward moves, all in levels �= n, whence the desired inclusion f [a] ∈F(K ′) will follow.

To show this, let F0 be the set of functions f ′ ∈F(K ′) that can be obtained from f by (a series of)
forward moves in levels �= n and such that f ′(vk

k(1)) = f (vk
k(1)) =: bk for k = 1, . . . ,n. Take a maximal

function f0 in F0. We assert that

(7.1) the SW-edges of all nodes in G (where such edges exist) are tight for f0.

Suppose this is not so for some node, and among such nodes choose a node v = vk
i ( j) with i

minimum. Acting as in Section 4, extend G to the graph Ḡ and extend f0 to the corresponding
function f̄0 on V (Ḡ) by setting the upper bound b and the lower bound 0 (then f̄0 satisfies both
the monotonicity condition and the switch condition at each multinode and its values within each
subgraph Gk lie between 0 and bk).

Consider an arbitrary node v ′ = vk′
i ( j′) with 1 � j′ � i in the level i and take the rhombus ρ con-

taining v ′ as the right node; let z′ , u′ , w ′ be the left, upper and lower nodes of ρ , respectively. Then
∂ f̄0(z′, u′) = 0 (this follows from f̄0(z′) = f̄0(u′) = ck′ when j′ = 1, and follows from the minimality
of i when j′ > 1, in view of (z′, u′) = eSW(u′)). This implies ε(v ′) � δ(z′) (where these numbers con-
cern the bound b); cf. (4.7). Moreover, this inequality is strict when v ′ = v (since (w ′, v ′) = eSW(v ′)
and eSW(v) is not tight).

These observations imply ε̃i( j) > 0, where ε̃ concerns the bound b. So the level i contains an active
multinode, and therefore, f̄0 can be increased by a forward move in this level. This move remains
applicable when the bound changes to c; cf. (6.2). Thus, f0 is not maximal, and this contradiction
proves (7.1).

From (7.1) it follows that for each k, all edges of the NE-path from the bottommost node bottomk

in Gk (going to the sink rightk) are f0-tight. Hence f (rightk) = ak .
Now we apply (a series of) backward moves from f0 in levels �= n. Let F1 be the set of functions

f ′ ∈ F(K ′) that can be obtained by such moves and satisfy f ′(rightk) = ak for k = 1, . . . ,n. Let f1 be
a minimal function in F . Arguing in a similar fashion, one shows that

(7.2) the NW-edges of all nodes in G (where such edges exist) are tight for f1.

Now (7.2) implies that f1 is constant within each Gk , i.e., f1 = f [a], as required.
To show the assertion concerning K(−1) , we can simply renumber the colors, by regarding each

color i as n − i + 1, and apply the model for this numeration. Clearly the set of principal vertices
preserves under this renumbering, and now the result for K(−1) follows from that for K(−n) . �
Remark 4. Renumbering the colors as above causes a “turn-over” of the original model, so that level i
turns into level n − i + 1. (Note that the model does not maintain this transformation since the
switch condition (3.1)(iii) is imposed on SW- and SE-edges of nodes, but not on NW- and NW-ones.)
A feasible function f in the original model corresponds to a feasible function f ′ in the new model, so
that f and f ′ determine the same vertex of the crystal. (In fact, the transformation f �→ f ′ is related
to the Schützenberger involution in a crystal.) It seems to be a nontrivial task to explicitly express f ′
via f (for n = 2 an explicit piece-wise linear relation is pointed out in [3]).

We denote the member of K(−n) (of K(−1)) containing a given principal vertex v[a] by K (−n)[a]
(resp. K (−1)[a]) and call it the upper (resp. lower) subcrystal of K (c) determined by a.
Please cite this article in press as: V.I. Danilov et al., The crossing model for regular An-crystals, J. Algebra (2008),
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It turns out that one can explicitly express the parameter of K ′ = K (−n)[a].
To do this, note that the source and sink of K ′ correspond to the minimal function fmin(K ′) and

the maximum function fmax(K ′) in F(K ′), respectively. One can see that in each Gk , fmin(K ′) takes
value 0 on all nodes, except for those on the path P SE(leftk) (from leftk to bottomk), where the values
are identically ak . (The paths P NE(·) and P SE(·) are defined in the proof of Proposition 7.1.) In its
turn, fmax(K ′) takes value ck on all nodes, except for those on the path P NE(bottomk) (from bottomk

to rightk), where the value is ak . Symmetrically: the source and sink of a subcrystal K ′′ = K (−1)[a]
correspond to the minimal and maximum functions in F(K ′′), respectively, and in each Gk , the former
takes value 0 on all nodes, except for those on P NE(leftk), where the value is ak , while the latter takes
value ck on all nodes, except for those on P SE(topk), where the value is ak .

Proposition 7.2. The subcrystal K (−n)[a] is isomorphic to the crystal Kn−1(q) with colors 1, . . . ,n − 1, where
qi = ci − ai + ai+1 for each i. In its turn, K (−1)[a] is isomorphic to the crystal Kn−1(q′) with colors 2, . . . ,n,
where q′

i = ci − ai + ai−1 .

Proof. Consider f = fmin(K (−n)[a]) and i ∈ {1, . . . ,n − 1}. From the above description of f it fol-
lows that for each node vk

i ( j) with j � 1 in the extended supporting graph Ḡ , at least one of its
NW- and SW-edges is tight for f (extended to Ḡ), except possibly for two nodes in the multin-
ode V i(1): the first node v = vi

i(1), in which ∂ f (eSW(v)) = ∂ f (eNW(v)) = ci −ai , and the second node

v ′ = vi+1
i (1), in which ∂ f (eSW(v ′)) = ai+1 and ∂ f (eNW(v ′)) = ci+1. So, maintaining the monotonicity

condition (3.1)(i), one can increase the function (by the operator φi ) only at v or v ′ . More precisely,
the active multinode in the level i is V i(1) (unless qi = 0) and the switch-node in it is either v or v ′ .
If ai+1 > 0, then v cannot be the switch-node (since eSW(v ′) is not tight). So the switch-node is v ′ ,
and the operator φi acts ai+1 times at v ′ , making the edge eSW(v ′) tight. After that the switch-node
becomes v and φi acts ci − ai times at this node. This gives the desired parameter of K (−n)[a].

(One can argue more formally. For each rhombus ρ of Ḡ with the left and right nodes in the
level i, the value ∂ f (ρ) (defined in (4.7)) is zero, except possibly for two rhombi: the rhombus ρ
whose right node is v , where ∂ f (ρ) = ci − ai , and the rhombus ρ whose right node is v ′ , where
∂ f (ρ) = ai+1. This implies that the total residual upper slack ε̃i(1) + · · · + ε̃i(i) for f in the level i is
just qi = ci − ai + ai+1.)

The assertion concerning the lower subcrystal K (−1)[a] follows by symmetry (when each color i is
renumbered as n − i + 1). �
Remark 5. This proposition implies that all possible parameters q of the upper subcrystals of K (c) give
the set of integer points of some polytope in R

n−1. Note also that for corresponding tuples q and a,
the numbers a1, . . . ,an−1 are determined by q and an , namely: ai = c[i : n − 1] − q[i : n − 1] + an

for i < n. This enables us to compute the quantity η(q) of crystals in K(−n) having a prescribed
parameter q: this is as large as the set of numbers an ∈ Z that together with q determine a satisfying
0 � ai � ci for all i = 1, . . . ,n. (One can express η(q) as the difference between min{cn,q[i : n − 1] −
c[i + 1 : n − 1]: i = 1, . . . ,n − 1} and max{0,q[i : n − 1] − c[i : n − 1]: i = 1, . . . ,n − 1}. In particular, if
ci = 0 takes place for some i, then all upper subcrystals of K (c) are different.) This gives a branching
rule for decomposing an irreducible sln+1-module into the sum of irreducible sln-modules. In the
above expression, the branching rule looks simpler than the rule indicated in [2, Corollary 2.11].

Next, we are able to indicate where a principal vertex v[a] of K (c) is located in the subcrystals
K (−n)[a] and K (−1)[a].

Proposition 7.3. Let Π ′ be the principal lattice of the upper subcrystal K ′ = K (−n)[a]. Then the principal
vertex v = v[a] of K = K (c) is contained in Π ′ and the (n − 1)-tuple a′ of its coordinates in Π ′ satisfies
a′

i = ai+1 for i = 1, . . . ,n − 1. Symmetrically, v is contained in the principal lattice Π ′′ of the lower subcrystal
K (−1)[a] and the (n − 1)-tuple a′′ of its coordinates in Π ′′ satisfies a′′

i = ai−1 , i = 2, . . . ,n.
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Proof. We have to show that the principal vertex v ′ of K ′ with the coordinates a′ in Π ′ coincides
with v . By explanations in Subsection 6.2 (applied to K ′ in place of K ), the vertex v ′ can be obtained
from the source of K ′ by applying the sequence of forward moves (in Mn−1) corresponding to the
combined string

(Sn−1,n−1)
an (Sn−1,n−2)

an−1 · · · (Sn−1,2)
a3 (Sn−1,1)

a2 .

For k = 1, . . . ,n, partition V (Gk
n) into two subsets Lk, Rk , where Lk is the set of nodes of the path

P SE(leftk) and Rk is the rest. Note that R1 = ∅ and that for k > 1, the subgraph of Gk
n induced by Rk

is isomorphic to Gk−1
n−1. Also: (a) the minimal feasible function fmin(K ′) for the subcrystal K ′ (in Mn)

takes the constant value ak on Lk and 0 on Rk , for each k; and (b) the principal function f [a] takes
the value ak on each Lk ∪ Rk .

Suppose that b ∈ Z
n+ is such that b � a, and that f is the feasible function taking the constant

values ak and bk within Lk and Rk , respectively, for each k. To obtain the desired result, it suffices to
show the following:

(7.3) let bk < ak for some k > 1, and let f ′ be the feasible function (in Mn) taking the constant value
bk + 1 within Rk and coinciding with f on the rest; then f ′ is obtained from f by applying the
sequence of moves (in Mn) corresponding to the fundamental string Sn−1,k−1.

According to (6.4), Sn−1,k−1 = wn−1,k−1,n−k+1 · · · wn−1,k−1,2 wn−1,k−1,1, and for each i, the sub-
string wn−1,k−1,i =: w ′

i is (i)(i + 1) · · · (i + k − 2). Observe that each w ′
i corresponds to the (maximal)

NE-path Pi in Gk
n beginning at the node vk

i+k−2(i) (which is the ith node on the SW-side of the rect-

angular indiced by Rk , viz. on the path P SE(vk
k−1(1))). One can check that the action corresponding

to Sn−1,k−1 changes f only within the base subgraph Gk
n and the action corresponding to w ′

i consec-
utively increases the current function along the path Pi . This results in the function f ′ as required
in (7.3). A verification in details is left to the reader.

The assertion concerning K (−1)[a] follows by symmetry. �
Note that for K ′ = K (−n)[a] and a′ as in Proposition 7.3, if we apply the first part of Proposition 7.2

to K ′ and the second part to the lower subcrystal K̃ of K ′ determined by a′ , then we obtain that
the (n − 2)-colored crystal K̃ with colors 2, . . . ,n − 1 that contains the principal vertex v[a] of K (c)
has the parameter c′′ such that c′′

i = (ci − ai + ai+1) − a′
i + a′

i−1 = ci − ai + ai+1 − ai+1 + ai = ci for

i = 2, . . . ,n − 1. (This K̃ is the component of K (−n)[a] ∩ K (−1)[a] that contains v[a].) This leads to
a rather surprising property:

(7.4) for any 1 � r � �n/2�, all (n − 2r + 2)-colored subcrystals of K (c) with the colors r, r + 1, . . . ,

n − r + 1 that meet the principal lattice Π(c) have the same parameter, namely, (cr, . . . , cn−r+1),
and therefore, they are isomorphic.

Finally, using the crossing model, one can compute the lengths of maximal monochromatic paths
in K (−n)[a] (or in K (−1)[a]) that go through the principal vertex v[a] of K (one can say that the length
concerning a color i expresses the “i-width” of the subcrystal at this vertex).

In conclusion of this paper we can add that the crossing model can be used to reveal more struc-
tural properties of RAN-crystals. A nontrivial problem on this way is to characterize the intersection
of the upper subcrystal K (−n)[a] and the lower subcrystal K (−1)[b] of K (c) for any a,b ∈ Z

n+ (this in-
tersection may be empty or consist of one or more subcrystals with colors 2, . . . ,n − 1). This problem
is solved in the forthcoming paper [5], giving rise to an efficient recursive algorithm of assembling the
RAN-crystal K (c) for a given parameter c. Also using the model, we explain there that a regular Bn-
crystal (Cn-crystal) with parameter c = (c1, . . . , cn) can be extracted from the “symmetric part” of the
regular A2n−1-crystal with parameter (c1, . . . , cn, . . . , c1) (resp. the regular A2n-crystal with parameter
(c1, . . . , cn, cn, . . . , c1)).
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