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Abstract

Let G be a planar digraph embedded in the plane such that each bounded face contains
three edges and forms an equilateral triangle, and let the union R of these faces be a convex
polygon. We consider the polyhedral cone B(G) formed by the real-valued functions o on the
set of boundary edges of G with the following property: there exists a concave function ¢ on
R which is affinely linear within each bounded face and satisfies ¢(v) — ¢(u) = o(e) for each
boundary edge e = (u,v).

Knutson, Tao and Woodward obtained a result on honeycombs which implies that if the
polygon R is a triangle, then the cone B(G) is described by linear inequalities of Horn’s type
with respect to so-called puzzles, along with obvious linear constraints.

The purpose of this paper is to give an alternative proof of that result, working in terms
of discrete concave finctions, rather than honeycombs. Our proof is based on a linear pro-
gramming approach and a non-standard flow model. Moreover, the result is extended to an
arbitrary convex polygon R as above.
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1 Introduction

Let &1, &, &3 be three affinely independent vectors in the plane R? whose sum is the zero vector.
The triangular lattice generated by &1, &9, &3 is associated with the infinite planar directed graph
L whose vertices are integer combinations of these vectors and whose edges are the ordered pairs
(u,v) of vertices such that v —u € {£1,&2,&3}. An edge (u,v) is identified with the straight-line
segment between u, v oriented from u to v.

Consider a convex region R in the plane formed by the union of a nonempty finite set of faces
(little triangles) of L; it is a polygon with 3 to 6 sides. We refer to the subgraph G = (V(G), E(G))
of L consisting of the vertices and edges occurring in R as a convex (triangular) grid. The sets of
vertices and edges in the boundary b(G) of G are denoted by V5 (G) and Ey(G), respectively.

A real-valued function f on the vertices of G is called discrete concave (convex) if its piece-wise
linear extension ¢ to the region R is a concave (resp. convex) function (here c is affinely linear
within each little triangle of G and coincides with f on V(G)). In this paper we prefer to deal
with discrete concave functions; the corresponding results for discrete convex functions follow by
symimetry.

We are interested in the functions on the set of boundary vertices that can be extended to
discrete concave functions on all vertices of G. Instead, one can consider the corresponding
functions on edges. More precisely, a function h : E(G) — R is said to be a cocirculation if there
exists f : V(G) — R such that h(e) = f(v) — f(u) for each edge e = (u,v). Such an h determines
f up to a constant, and we refer to h as a concave cocirculation if f is discrete concave. In these
terms, the problem is:

(1.1) Given a function o : Ey(G) — R, decide whether o is extendable to a concave cocircula-
tion in G.

Clearly the set B(G) of functions o admitting such an extension forms a convex cone in R#0(¢),
Two necessary (but far to be sufficient) conditions on ¢ to belong to B(G) are obvious: (i) the
sum of values of ¢, taken with signs + or — depending on the direction of an edge in the boundary
circuit, amounts to zero, and (ii) o is weakly decreasing along each side-path of b(G).

Interesting results have been obtained for the case when the polygon R spanned by G is a
triangle. In this case the boundary of G is the concatenation of three paths Bi, Bs, Bs forming
the sides of R, where the edges of B; are parallel to &. We refer to G as a 3-side grid and say
that G has size n if |B;| = n (where |P| denotes the number of edges of a path P). It turned out
that the cone B(G) for a 3-side grid G also arises in two other interesting models. More precisely,
Knutson and Tao [6] showed that for a triple of weakly decreasing n-tuples (\, i, v) € (R™)3, the
following properties are equivalent:

(P1) A, p,v are the spectra of three n x n Hermitian matrices whose sum is the zero matrix;

(P2) there exists a honeycomb of size n in which the three tuples of semiinfinite edges have the
constant coordinates A, i, v (see [6] for a definition);



(P3) let G be the 3-side grid of size n and let o be the function on Ey(G) taking the value ),
(resp. f,v4) on jth edge of the path By (resp. Ba, B3); then o € B(G).

Note that while the equivalence of (P2) and (P3) is rather transparent (they are related via
Fenchel’s duality), the equivalence of these to (P1) is quite sophisticated. In the 1960s Horn [4]
recursively constructed a finite list of nontrivial necessary conditions on A, v, u to satisfy property
(P1) and conjectured the sufficiency of this list (which, in particular, implies that these (A, u, v)’s
constitute a polyhedral cone). Horn’s conditions are viewed as linear inequalities of the form

(1.2) M) + p(J) +v(K) >0

for certain subsets I, J, K of {1,...,n} with |I| = |J| = |K]|, letting a(S) := > (a; : ¢ € S) for
a=(ag,...,an) € R" and S C {1,...,n}. Subsequent efforts of several authors have resulted
in a proof of Horn’s conjecture; the obtained result is referred in [7] as the “H-R/T/K theorem”,
abbreviating the names of Helmke, Rosenthal, Totaro, and Klyachko. (A history of studying
problems concerning (P1) and related topics are reviewed in [3].) Recently Knutson, Tao and
Woodward [7] established a combinatorial existence criterion for honeycombs, obtaining another
proof of that theorem, in view of the equivalence between (P2) and (P1). According to their
criterion, each Horn’s triple (1, J, K) is induced by a puzzle, a certain subdivision of a 3-side grid
into little triangles and little thombi endowed with a certain 0,1 labelling on the sides of these
pieces. One more method of proof of the H-R/T /K theorem is given by Danilov and Koshevoy [2].

The purpose of this paper is to give a direct proof of the puzzle criterion for the solvability of
problem (1.1), without using relationships to honeycombs. We extend the notion of puzzle in a
natural way to an arbitrary convex grid G and show that o : Fy(G) — R is extendable to a concave
cocirculation if and only if it obeys the linear inequalities of Horn’s type determined by puzzles
and the above-mentioned obvious linear constraints. Our proof combines a linear programming
approach and some combinatorial techniques where a non-standard flow model is involved.

This paper is organized as follows. Section 2 contains basic definitions and facts and states
problem (1.1) as a linear program. In Section 3 we explain the notion of puzzle for a convex
grid (using a definition somewhat different from, but equivalent to, that in [7]) and formulate
the puzzle criterion for the solvability of the problem (Theorem 3.1). The proof of this theorem
is given in Section 6, based on a weaker, linear programming, criterion discussed in Sections 4
and on a representation of dual variables by use of a flow in an auxilliary graph, explained in
Section 5. The concluding Section 7 discusses some additional aspects and a generalization to
convex grids of results in [7] on the puzzles determining facets of the cone B(G) for a 3-side grid
G, where these puzzles are characterized combinatorially and in terms of rigidity.

Related and other aspects of discrete convex (concave) functions on triangular grids in the
plane and some applications in algebra are discussed in [1].

2  Preliminaries

We start with terminology, notation and conventions. Edges, faces, subgraphs, paths, circuits
and other relevant objects in a convex grid G or another graph in question are usually identified



with their closed images in the plane. By a path (circuit) we usually mean a simple directed
path (circuit) P = (vg,e1,v1,..., ek, v), where e; is the edge (v;_1,v;); it may be abbreviately
denoted as (e, ea,...,e;) (via edges). A path P with beginning vertex u and end vertex v is
called a u — v path; P is called degenerate if it consists of only one vertex ©u = v. When P forms a
straight-line segment in the plane, P is called a straight path, or a line of the graph. A k-circuit
is a circuit with k edges.

Problem (1.1) does not depend, in essense, on the choice of lattice generating vectors &1, &2, &3,
and for convenience we fix these vectors as & = (1,0), & = (—1,v/3)/2 and & = (—1,—/3)/2.
Then the little triangles in G are equilateral triangles of size 1. Note that the boundary of any
triangle in G (formed by the union of some faces) is a circuit directed clockwise or anticlockwise
around the triangle. The little triangle surrounded by a 3-circuit C is denoted by A¢c. We say that
a triangle is normal if its boundary circuit is directed anticlockwise, and turned-over otherwise.

& VANV

&1

&3 normal little triangle turned-over little triangle

We denote the sets of boundary edges directed anticlockwise and clockwise (around R) by
ESF(G) and E (G), respectively. A maximal straight path in b(G), or a side-path of G, whose
edges are parallel to & and belong to Ef (G) (resp. Ej (G)) is denoted by B;t (resp. B; ). One
may assume that if G is a 3-side grid, then the boundary of G is formed by Bf“ , B;r , Bgr .

For a function h on E(G), its restriction to the set of boundary edges is called the border of h.

Next we explain how to formulate problem (1.1) as a linear program. Obviously, a function
f:V(G) — R is discrete concave if and only if

(2.1) flw)+ f() < fv) + fV)

holds for each little rhombus (the union of two little triangles sharing a common edge) p, where
u,u’ are the acute vertices and v,v’" are the obtuse vertices of p:

v’ u’

u v

Clearly h € RE() is a cocirculation if and only if the sum of its values on each 3-circuit is
zero. Linear constraints reflecting the property of a cocirculation h to be concave are derived
from (2.1). Let us say that an ordered pair 7 = (e, €’) of non-adjacent edges of G is a tandem if
they occur as opposite sides of a little rhombus p and the head of e is an obtuse vertex of p (while
the other obtuse vertex of p is the tail of €¢’). We distinguish between two sorts of tandems by
specifying 7 as a normal tandem if the little triangle in p containing e is normal, and a turned-over
tandem otherwise. Note that each little rhombus p involves two tandems one of which is normal
and the other is turned-over. The picture illustrates the case when e, ¢’ are parallel to &;.



e e
normal tandem (e, €’) turned-over tandem (e, €’)
For the cocirculation h generated by a function f on the vertices, (2.1) is just equivalent to

the condition h(e) > h(e’) on the normal tandem (e,e’) in the little rhombus p. Thus, given
o € RFo(G) | g concave cocirculation with border o is a solution h € RF(G) of the system:

(2.2) h(e) + h(e') + h(e") =0, C = (e, e, ") € C(Q),
(2.3) h(e") — h(e) <0, 7= (e,e) € T(G),
(2.4) h(e) = o(e), e € Ey(G),

where C(G) is the set of 3-circuits (considered up to cyclically shifting), and 7 (G) the set of
normal tandems in G. When this system has a solution, we call o feasible.

As mentioned in the Introduction, two necessary conditions on o to be feasible are obvious.
The first one (necessary for the border of any cocirculation) is the zero-sum condition:

(2.5) a(Ey (G)) — a(Ey (G)) =0,
The second one is the monotone condition:
(2.6) o(e1) >...> o(ey) for each straight path (eq,...,e,) in b(G).

Since the set of concave cocirculations on G is described by a finite number of linear constraints,
the cone B(G) formed by all feasible o’s (the borders of concave cocirculations in G) is polyhedral.
To compute the dimension of this cone is easy (cf. [7]).

Statement 2.1 dim(B(G)) = |Ey(G)| — 1.

Proof. In view of (2.5), dim(B(G)) < |Eo(G)| — 1 =: r. To show the reverse inequality, we first
construct a concave cocirculation h for which all tandem inequalities in (2.3) are strict.

Take a maximal straight w — v path P of G not contained in b(G). Let Z be the set of edges
of G that lie in the region on the right from P (when moving from u to v) and are not parallel to
P. Define hp(e) to be 1 if e € Z and e points toward P, —1 for the other edges e in Z, and 0 for
the remaining edges of G. One can check that hp is a concave cocirculation and that h(e) > h(e)
for each tandem (e, e’) where e and e’ are separated by P. The sum of hp’s over all such paths P
gives the desired concave cocirculation h. Let o be the border of h.

Now for each boundary vertex v and each edge e, define h,(e) to be 1 if v is the head of
e, —1 if v is the tail of e, and 0 otherwise. Then h, is a cocirculation; moreover, h + %hv is a
concave cocirculation. Let o, be the border of h,. Clearly r» borders among these o, are linearly
independent. This implies that r borders o+ %av of the concave cocirculations i+ %hv are linearly
independent. m



3 Theorem

Linear programming suggests a standard way to obtain a solvability criterion for system (2.2)—
(2.4). Our aim, however, is to obtain a sharper, combinatorial, characterization for the borders
of concave cocirculations on G.

First of all we construct a certain dual digraph H. For each edge e € E(G), take the middle
point v, on e, making it a vertex of H. For each normal tandem 7 = (e, €’), form (straight-line)
edge a, from v, to v, making it an edge of H. Note that when e, e’ are parallel to &;, the edge
ar is anti-parallel to &_1, in the sense that a, is a parallel translate of the opposite vector —§; 1.
(Hereinafter the corresponding indices are taken modulo 3.) The resulting graph H is the union
of three disjoint digraphs Hi, Hy, Hs, where H; is induced by the introduced edges connecting
points on edges of G parallel to &;. The three types of edges of H are drawn in bold in the picture.

in Hlﬁ’_r/ in Hg:% in Ha: \

So the maximal paths in H; are straight, pairwise disjoint and anti-parallel to &_1. If a path
P of H begins at v, and ends at v/, we say that P leaves the edge e and enters the edge e’ (both
e, concern (), admitting the case of degenerate P. We also say that P leaves (enters) a little
triangle A if e C A (resp. ¢/ C A).

Definition. A puzzle is a pair II = (F,P) consisting of a set F of little triangles of G and a
set P of paths of H such that:
(3.1) (i) the interiors of all triangles in F and all paths in P are pairwise disjoint;

(ii) for each edge e of each normal (resp. turned-over) triangle in F, there is precisely one
path in P entering (resp. leaving) e;

(iii) for each path in P leaving edge e and entering edge €', either e belongs to a turned-over
triangle in F or e € Ear (G), and similarly, either e’ belongs to a normal triangle in F
or e € £y (G).

(Degenerate paths P = v, in P are admitted. When e is an inner edge of G, such a P serves to
“connect” the pair of triangles in F sharing the edge e. When e is a boundary edge, P “connects”
this edge with the triangle in F containing e.) The boundary b(II) of II is defined to be the set
of boundary edges e for which there is a path in P leaving or entering e. The subsets of edges of
Ef (@) and Ej (G) occurring in b(II) are denoted by b (II) and b~ (II)), respectively.

The puzzle criterion for the solvability of (2.2)—(2.4) is the following.

Theorem 3.1 Let G be a convex grid, and let o : Eo(G) — R satisfy (2.5) and (2.6). Then a
concave cocirculation h in G with h(e) = o(e) for all e € Eo(G) exists if and only if

(3.2) o(b*(I1) - (5™ (I1)) > 0

holds for each puzzle 11.



Thus, the cone B(G) is described by the puzzle inequalities (3.2) and the linear constraints (2.5)
and (2.6).

Remark. A puzzle in a 3-side grid G introduced in Knutson et al. [7] is defined to be a diagram
D consisting of a subdivision of the big triangle R into little triangles and little rhombi of G,
and of a 0,1 labelling of the edges of G that are sides of these pieces, satisfying the following
conditions: (a) the three sides of each little triangle in the subdivision are labelled either 1,1,1 or
0,0,0, and (b) the sides of each little rhombus p are labelled 0,1,0,1, in this order clockwise of an
acute vertex of p. The boundary b(D) of D is defined to be the set of boundary edges labelled 1.
There is a natural one-to-one correspondence between the puzzles D of this form and the puzzles
Il = (F,P) in the above definition (in the triangle-path form) and this correspondence preserves
the puzzle boundary: b(D) = b(II). (In this correspondence, F is set of little triangles labelled
1,1,1, and the edges of H used in the paths of P are those connecting the sides labelled 1 in the
rhombi of D.) The triangle-path form of puzzle is more convenient for us to handle in the proof
of Theorem 3.1, which is based on certain path and flow constructions.

To illustrate the theorem, consider a 3-side grid of size n and a puzzle consisting of one triangle
A and three paths Py, P», P, each P; connecting A with the side-path B}t = (b},...,b7):

P
A P
S VAVAN

II={{A},{P1, P, P3}}

Let P; leave edge b:(i) € B; and enter edge e; C A. Summing up the inequalities in (2.3) for the
normal tandems induced by the edges of P;, we have a(bz(z)) = h(bz(l)) > h(ei).‘ This together
with (2.2) for the 3-circuit (e1, e2, e3) implies that the sum of values of o on b:(l), 1=1,2,3, is
nonnegative. Also 7(1) +7(2) +7(3) = n + 2. Thus, any feasible 0 = (\, i, v) € (R™)? must obey

N+ g+ >0

for any choice of i, j, k with i + j + k = n 4 2. This is the simplest sort of Horn’s inequality (1.2).

One can associate with a puzzle IT = (F,P) undirected graph I'r; whose vertices correspond
to the triangles in F and the edges in b(II) and where vertices u,v are connected by an edge if
and only if there is a path in P leaving one and entering the other of u,v. One can see that such
graphs are determined, up to isomorphism, by the list of cardinalities |b(IT) N B|, where B ranges
over the side-paths of G. In particular,

(3.3)  the numbers |F| and |P| are determined by b(IT).

(Instruction: deform G so that each little triangle of G that neither belongs to F nor meets a
path in P is shrunk into a point, and for each nondegenerate v, — v, path in II, the parallelogram



with opposite sides e, ¢’ is shrunk into the edge e. The resulting graph G’ is again a convex grid
(possibly degenerate) in which the little triangles one-to-one correspond to those in F, and the
edges to the paths in P; also the boundary edges of G’ one-to-one correspond to the edges in b(II)
when F # (). Moreover, G’ depends only on the above-mentioned cardinalities.)

4 Linear Programming Approach

In what follows, speaking of a tandem, we always mean a normal tandem in GG. Assign a variable
z(C') € R to each 3-circuit C of G, a variable g(7) € R to each tandem 7, and a variable d(e) € R
to each boundary edge e. Then the linear system dual of (2.2)—(2.4) is viewed as

(4.1) Yo 2O - Y gm+ ) g(n) =0, ecE(G)- Ey(G),

CeC(G):ecC T=(e,e’)€T(G) T=(e/,e)eT (G)
(4.2) o0 - D> g+ D g +d(e) =0, ec Ey(G).
CeC(Q):ecC T=(e,e))ET(G) T=(e/,e)eT (G)

Applying Farkas lemma to (2.2)—(2.4), we obtain an L.p. solvability criterion.

Statement 4.1 Let o € RE0(G) . A concave cocirculation h with border o exists if and only if
(4.3) o-d>0
holds for any z : C(G) = R, g: T(G) — Ry and d : Ey(G) — R satisfying (4.1) and (4.2). »

Hereinafter for a,b € R¥, a-b denotes the inner product Y (a(e)b(e) : e € E). We call a triple
K = (z,g9,d) satisfying (4.1)—(4.2) a vector configuration, or, briefly, a v-configuration, and regard
d as its border.

Statement 4.1 implies that the cone D of borders of v-configurations (which is convex) is anti-
polar to the cone B(G) of borders of concave cocirculation in G, i.e., D := {d € R®(&) : 5.4 >
0 Vo € B(G)}. For a boundary edge e, define f(e) :=1if e € Ef (G), and —1 if e € E; (G). Since
the dimension of B(G) is |Eg(G)| — 1 (by Statement 2.1) and B(G) is contained in the hyperplane
6+ orthogonal to 6 (by (2.5)), the cone D is full-dimensional and contains the line Rf. So the
facets of B(G) one-to-one correspond (by the orthogonality) to the 2-dimensional faces of D, each
being of the form r1d + 720 (r;1 € Ry, 79 € R) for a certain d € RE0(G),

For a function (vector) x, let supp™(z) and supp™ (z) denote the positive part {e : x(e) > 0}
and the negative part {e : z(e) < 0} of the support supp(z) of x, respectively. Since inequality (4.3)
is invariant under adding to d any multiple of 6, it suffices to verify this inequality only for the
v-configurations K = (z, g, d) satisfying:

(44)  (a) supp*(d) C EF(G) and supp~(d) C Ej (G), and (b) supp(d) # 0, Eo(G).

In what follows, we throughout assume that any v-configuration in question satisfies (a). When
(b) takes place too, we call K proper.

Let ©(G) be the set of ¢ € RF0(G) gatisfying (2.5)(2.6). Then B(G) C %(G). A v-
configuration K = (z, g, d) is called essential if d separates £(G), i.e., 0-d < 0 for some o € X(G).



Consider two v-configurations K = (z,¢g,d) and K' = (2/,¢',d’). K and K’ are called equivalent
if their borders are proportional, i.e., d = rd’ for some r > 0. We say that K’ dominates K if at
least one of the following takes place:

(4.5) (i) 0 €X(G) and 0 -d < 0 imply o -d’ < 0, and there exists o € £(G) such that 0 -d >0
but o - d’ < 0; or
(ii) K is proper and not equivalent to K’, and K —rK' is a v-configuration (subject to (a)
n (4.4)) for some r > 0.

If K is dominated by some K’, then K is redundant and can be excluded from consideration (as
d cannot be facet-determining for B(G)). This is obvious in case (i). And in case (ii), the border
d" := d—rd' of the v-configuration K" := K —rK' is nonzero and satisfies (d”)*NB(G) 2 d+NB(G)
and supp(d”) C supp(d). The former inclusion implies that if d* contains a facet F' of B(G), then
(d")* contains F as well. In this case we have d” = r1d + 26 for some r; > 0 and ro € R, which
contradicts the latter inclusion since supp(d) # Ep(G) and K, K" are not equivalent.

Our method of proof of Theorem 3.1 will consist in examining an arbitrary essential config-
uration K and attempting to show that K is dominated unless it is equivalent to some “puzzle
configuration”. Note that one can consider only rational-valued z, g,d in (4.1)—(4.2). Moreover,
by scaling, it suffices to deal with integer v-configurations (z, g, d).

For a boundary edge e of G, let x¢ denote the unit base vector of e in R¥0(%) (i.e., X(a) =1
for a = e, and 0 otherwise). We will use the following observation:

(4.6) if K is an essential v-configuration with border d, K’ is a v-configuration with border
d,and d =d— x¢+ Xe/, where e, €/ are boundary edges occurring in the same side-path in
this order, then K’ dominates K.

To see this, let d” := x¢ — x¢. Then ¢ - d” > 0 for all o € (G), by (2.6). This and d = d’ + d”
imply o -d > 0 for all o € X(G) satisfying o - d’ > 0. Take o1 € B(G) such that o1(e) > o1(€’)
(existing by Statement 2.1). Then oy -d’ > 0 and o1 - d” > 0, implying p := o1 -d > 0. Take
o9 € (@) such that ¢ := 09 - d < 0 (existing as K is essential). Define o := g9 — %01. We have
J-d:UQ-d—%01-d:q—qzoandU'd/:U-d—U'd”:—U'd//:—02~d//—|—%01-d”<0,
yielding (4.5)(i).

5  Flow Model

In the proof of Theorem 3.1 we will take advantage of a representation of a v-configuration
K = (z,g,d) in a more combinatorial form. It is described in this section.

For a 3-circuit C, let us interprete z(C') as the weight of the little triangle A¢ surrounded by
C'. Similarly, d(e) is the weight of a boundary edge e. For each tandem 7, set g(a;) := g(7),
interpreting it as the flow on the edge a, of the graph H (introduced in Section 3). The boundary
edges and little triangles with nonzero weights are interpreted as “sources” or “sinks” of the flow.
We say that a boundary edge e emits d(e) (units of) flow if d(e) > 0, and absorbs |d(e)| flow
if d(e) < 0. Similarly, a little triangle A¢ emits z(C) flow (through each of its three sides) if



z2(C) > 0, and absorbs |z(C)| flow if 2(C) < 0. Then relations (4.1)—(4.2) turn into the flow
balance condition

(5.1)  divg(v) + ZCEC(G):UEAC 2(C) + ZeeEO(G):UEG d(e)=0 for each v € V(H),
where

divg(v) = Zu:(u,v)eE(H) g(u’ U) B Zw:(v,w)EE(H) g(U, w)

Next, for a path P in H, let x* € RE(H) denote the incidence vector of the set of edges of P.
Considering g as a function on E(H), applying usual flow decomposition techniques and taking
into account (5.1), one can find paths Pi,..., Py in H (possibly including degenerate paths) and
positive real weights aq, ..., ay of these paths such that:

(5.2) g=aixD 4+ .. 4 apx

(5.3) for each edge e of G, the sum of weights of emitting elements containing e is equal to
the sum of weights of paths P; leaving e; similarly, the sum of absolute values of weights of
absorbing elements containing e is equal to the sum of weights of paths P; entering e.

We call (Py,..., Pg;aa,...,q) satisfying (5.2)—(5.3) a paths decomposition of g.

When g is integer-valued, there is a decomposition with all weights «; integer (an integer
paths decomposition). In this case we define a triple K = (®,P,1) representing K, in a sense,
as follows. Take d(e) copies of each emitting boundary edge e and z(C') copies of each emitting
triangle A¢, forming family ®* of (unweighted) emitting elements. Take |d(e)| copies of each
absorbing boundary edge e and |z(C)| copies of each absorbing triangle A, forming family &~
of absorbing elements. Then ® is the disjoint union of ®* and ®~. Take «; copies of each path
P;, forming P. Assign amap ¢ : P — & x &~ so as to satisfy the following property:

(5.4) if P € P and «(P) = (¢,¢), then P leaves ¢ and enters ¢’; moreover, for each ¢ € &+
(resp. ¢ € ®7) and each edge e in ¢, there is exactly one path P € P such that «(P) = (¢, )
and P leaves e (resp. «(P) = (-, ¢) and P enters e).

The existence of such an ¢ follows from (5.3). When «(P) = (¢,¢'), we say that the path P is
attached to the elements ¢ and ¢’. So each triangle in ® has three attached paths, by one from
each of Hy, Ho, Hs, and each boundary edge in ® has one attached path.

A converse construction also takes place. More precisely, consider families ®*, ®~, P consisting
of copies of some little triangles and edges from Ej (G), of copies of little triangles and edges from
Ey (G), and of copies of paths in H, respectively. Let ® be the disjoint union of &+ and &,
and ¢ a map of P to ®* x &~ satisfying (5.4). We refer to K = (®,P,.) as a combinatorial
configuration, or, briefly, a c-configuration. Emphasize that we admit some little triangles of G
(but not boundary edges) to have copies simultaneously in both ®* and ®~. Now

(5.5) for C' € C(G), define z(C) to be the number of copies of the triangle A¢ in ®* minus
the number of copies of A in @7; for e € E; (G), define d(e) to be the number of copies of
ein @T; for e € E; (G), define d(e) to be minus the number of copies of e in ®~; and define

g:=>Ax": PcP}
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Then z,g,d give a v-configuration, denoted by K (K). We formally define border d(K) of K to
be the border of K(K). Also we apply to K adjectives “proper, essential” if K(K) is such, and
similarly for the property of being “equivalent to” or “dominated by” another configuration.

When no little triangle of G has copies simultaneously in both ®*,®~, we say that K is
homogeneous. In particular, any c-configuration I obtained from a v-configuration K by the first

construction is homogeneous; in this case K (K) = K.

6 Proof of the Theorem

The proof of Theorem 3.1 for a convex grid G falls into three lemmas. By reasonings in Sections 4
and 5, we can deal with combinatorial configurations and, moreover, with those of them that are
proper, essential and homogeneous.

Given a c-configuration I = (®, P, ), we say that a little triangle or a boundary edge of G or
a path of H is in K if at least one copy of this element occurs in K. Adding to (deleting from) K
such an element means adding (deleting) exactly one copy of it.

We associate with I undirected (multi)graph I'xc whose vertices are the elements of ® and
whose edges one-to-one correspond to the paths in P: each path P € P generates an edge
connecting ¢ and ¢ when ((P) = (¢,¢") (it is analogous to the graph I'yy associated with a
puzzle II, defined in the end of Section 3). The (disjoint) union of I with another or the same
c-configuration K’ is defined in a natural way and denoted by K+ K’ (its associated graph T'xyx
is the disjoint union of I'x and T'xr).

If the interiors of distinct little triangles or edges ¢, ¢', ¢” of G are intersected by a line of H
in this order, we say that ¢’ lies between ¢ and ¢”.

We call K oriented if all triangles in ®~ (the absorbing triangles) are normal and all triangles
in ®* (the emitting triangles) are turned-over. The first lemma eliminates the non-oriented
configurations.

Lemma 6.1 Let a c-configuration K = (®,P,¢) be proper, essential and homogeneous. There
exists a c-configuration K' such that either K' dominates K, or K' is equivalent to K and is
oriented.

Proof. Since we can consider any homogeneous c-configuration equivalent to /C, one may assume
that, among such configurations, K is chosen so that

(6.1)  the number n(K) := |®| + |P| is as small as possible.

Let us say that a triangle in ® is good if it is either emitting and turned-over, or absorbing
and normal. If all triangles are good, K is already oriented. So assume K contains at least one
bad triangle. Our aim is to show that K is dominated.

First of all we impose an additional condition on L. Suppose there is a degenerate path P € P
attached to a pair of bad triangles A € ®T and A’ € ®; so A, A’ share an edge e, and P is of the
form v.. Let e be parallel to & and let a,a’ be the edges of A, A/, respectively, parallel to &_1.
Observe that H;_; has path @ (with one edge) leaving v, and entering v,. When P contains
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a copy of @ attached to the pair (A, A’) as well, we call this pair dense. See the picture where

s .
AN/P N\

We assume that, among all homogeneous c-configurations having the same border d(K) and
satisfying (6.1), K is chosen so that

(6.2)  the number w(K) of dense pairs in K is maximum.

Suppose the graph I'x associated with K is not connected. Then K is the union of two
nonempty c-configurations X', K", and we have d(K) = d(K') + d(K") and n(K) = n(K') +n(K").
(6.1) implies that d(K') # 0 and K’ is not equivalent to . Hence K’ dominates I, by (4.5)(ii).
So one may assume that ' is connected. Then each ¢ € ® is reachable in I'ic by a path from
a vertex representing a boundary edge; let p(¢) denote the minimum number of edges of such a
path.

We consider a bad triangle A with p(A) =: p minimum and proceed by induction on p. Let
P € P be a path attached to A and to an element ¢ € ® with p(¢) = p — 1. Consider two cases.

Case 1. Let p = 1. Then ¢ is (a copy of) a boundary edge b. Assume b € Ej (G); the case
b € E; (G) is symmetric. Then A is absorbing and turned-over, and P leaves b and enters A. Let
for definiteness b be parallel to &. For i = 1,2, 3, consider P; € P and ¢; € ®T such that P; is in
H; and «(P;) = (¢, A). Let e; be the edge of A parallel to &;. (So P, = P and ¢ = b.)

Suppose P is degenerate, i.e., P3 = vc,. Then ¢3 is a normal emitting triangle, and therefore,
¢3 is bad. Take path @ in Hs attached to ¢3, and let +(Q) = (¢3, 5) The fact that P3 is degenerate
implies that b, ¢3, A are intersected by a line of Hs in this order. Hence Hy has path P’ leaving
b and entering % and path Q' leaving ¢3 and entering A. Replace in P the paths P,Q by P’,Q’,
making P’ attached to b, ¢ and making Q' attached to ¢s, A

This results in a correct c-configuration X' with n(K’) = n(K) in which (¢3,A) becomes a
dense pair. One can see that if () is nondegenerate, then such a transformation does not destroy
any dense pair of the previous configuration; so w(K’) > w(K), contradicting (6.2). And if @
is degenerate, then ¢z and (b share an edge of Hs, whence gb is a turned-over absorbing triangle
forming a pair of bad triangles with ¢3. The only possible dense pair which could be destroyed by
the transformation is just (¢s, 5) (when this pair is also connected in K by the corresponding path
in Hp). In this case we have w(K') > w(K), so the above replacement maintains (6.2). Moreover,
the new path leaving b (namely, P’) enters a bad triangle (namely, qz~5) as before and is shorter
than P, as illustrated in the picture:

LA 6 / PN\ / N\
/5 Qf/ -

¢3

Doing so, we eventualy obtain a c-configuration where b is connected with a bad triangle whose
attached path in Hs is nondegenerate.
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Thus, we may assume that P; is nondegenerate. Then, by the convexity of GG, the edge e; of
A does not lie on the boundary of G, and b cannot be the last edge of the side-path By". We now
transform K as follows. Let A’ be the normal triangle of G containing e;, and b’ the edge of B;
next to b. Then Hy has path P’ leaving o’ and entering A’ and Hj has path P; leaving ¢3 and
entering A’ (P4 is a part of the nondegenerate P3). We replace in K the edge b by (one emitting
copy of) ¥/, the triangle A by (one absorbing copy of) A’, and the paths P, P; by P’, Pj, making
P’ attached to b/, A’, and making P; attached to ¢3, A’ (while P; becomes attached to A’ instead

of A) :
P3 A/ b/ Pé\ b/
Pl
P b é b
P /\/ A \ P
This results in a (not necessarily homogeneous) c-configuration K’ with the border d(K) —x®+x?".
By (4.6), K is dominated by K'.

Case 2. Let p > 1. Assume the bad triangle A in question is absorbing (and turned-over); the
case of emitting A is symmetric. Let for definiteness P be in Hy, and define P;, ¢;,¢e; (i =1,2,3)
as in Case 1. (So P = P» and ¢ = ¢2.) Since p(¢p) =p—1> 1, ¢ is a good triangle. So ¢ is a
turned-over emitting triangle and P is nondegenerate. Arguing as in Case 1, we can impose the
condition that Ps is nondegenerate. This and the convexity of G imply that neither the edge e; of
A nor the edge ¢ of ¢ parallel to &; lies on the boundary of G. Let A’ be the normal little triangle
of G containing ey, and ¢’ the normal triangle containing q. We replace A, ¢ in ® by A’, ¢'.

More precisely, when A is replaced by A’, we accordingly replace the paths P, P3 attached
to A by paths P, P§ (while P; preserves, becoming attached to A’). Here P’ is the path of Hj
leaving ¢’ and entering A’, and Pj is the path of Hj3 leaving ¢3 and entering A’ (as before, Py is
a part of the nondegenerate path P3). And when replacing ¢ by ¢’, we should also replace path
Q of Hs attached to ¢, entering triangle (?5 € &~ say, by path Q' of Hy leaving ¢’ and entering q~5
(Q' exists since ¢ lies between ¢’ and ¢.) The path of H attached to ¢ becomes attached to ¢'.
This gives a c-configuration K" in which the added triangle ¢’ is bad and its rank p(¢’) is equal
top—1.

We have d(K') = d(K) and n(K’) = n(K). The latter implies that K’ is homogeneous, i.e.,
K has no emitting copy of A’ or ¢'. For otherwise, cancelling in K’ one emitting copy and one
absorbing copy of the same little triangle of G and properly concatenating their attached paths,
we would obtain a configuration with a smaller value of 1, contrary to (6.1). Finally, one can see
that neither A nor ¢ can be involved in dense pairs of . Hence no dense pair is destroyed while
constructing X', implying w(K’) > w(K). Now the result follows by induction on p. m

Thus, it suffices to consider only oriented configurations.
A puzzle I = (F,P) generates an oriented c-configuration (®,P,:) in a natural way: ®7 is
the set of turned-over triangles in F and edges in b1 (II), ®~ is the set of normal triangles in F
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and edges in b~ (II), and for each u — v path P € P, «(P) is the pair (¢ € ®*,¢ € &) such that
the point u is contained in ¢ and the point v is contained in ¢'. Such a puzzle c-configuration is
denoted by Kpr.

The next lemma describes a situation when an oriented configuration X can be split into a
puzzle configuration and another one (and therefore, K is redundant). Let us say that paths P, P’
of H are crossing if they are not parallel and their interiors have a point in common, and that P
and a little triangle A of G are overlapping if P meets the interior of A:

P P A

P’ crossing P, P’ overlapping P, A

One can see that the puzzle configurations are precisely those having neither crossing nor over-
lapping pairs. Given an oriented c-configuration IC = (®, P, ), define its minimal pre-configuration
Cmin = (@, Pmin 7)) as follows. Let WF (resp. W) be the set of little triangles and boundary
edges of G having at least one copy in ®* (resp. ®~). Then ¥ := UT U ¥~. The set P™" is
formed by taking, for each edge e € F(G) contained in a member of ¥', one (inclusion-wise)
minimal path in P with the beginning v., taking for each edge e € E(G) contained in a member
of ¥~, one minimal path in P with the end v., and ignoring repeated paths if arise. Define 7 to
be the map attaching a u — v path P € P™" to the pair (¢ € T, ¢’ € ¥~) such that u € ¢ and
v € ¢' (this pair is unique since K is oriented). Note that K™ need not be a c-configuration
since some triangles (boundary edges) in it may have more than three (resp. one) attached paths.

Lemma 6.2 Let a c-configuration I = (®,P, 1) be proper and oriented, and let K™ = (U, P™in 7)
be its minimal pre-configuration. Suppose K™ contains neither crossing paths nor overlapping a
path and a triangle. Then: (a) K™ is a puzzle c-configuration, and (b) K™® either is equivalent
to IC or dominates K.

Proof. From the non-existence of paths in P™" overlapping triangles in ¥ it easily follows that
for each element ¢ € ' and each edge e in ¢, there is exactly one path P € P™" leaving e, and
similarly for each element ¢’ € ¥~ and each edge ¢’ in ¢, there is exactly one path P’ € P™in
entering ¢/. Hence K™ is a c-configuration, and now the absence of crossing paths in I implies
that K™ is a puzzle configuration, yielding (a). Next, one can rearrange the attaching map ¢ in
K so that K be represented as the union of ™" and some c-configuration X”. This implies (b),
by (4.5)(ii). m

For i = 1,2,3, a sequence (¢1,...,¢y) of distinct little triangles or edges of G is called an
i-chain if their interiors are intersected in this order by a path of H;. If (A, A’) is an i-chain of
two normal little triangles and there is no normal triangle between them, we say that A is the
i-predecessor of A, and similarly for turned-over triangles.

Our final lemma is the following.

Lemma 6.3 Let a c-configuration K = (®,P,1) be proper, essential and oriented. If K is not
equivalent to a puzzle c-configuration, then IC is dominated.
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Proof. Since we can replace K by any oriented c-configuration equivalent to I (e.g., by taking
the union of r copies of K for any r), one may assume that, among such configurations, I is
chosen so that:

(6.3) (i) there are sufficiently many copies of each member of ® U P;
(ii) subject to (i), the number ¢(KC) of little triangles of G having copies in ® is maximum;

(iii) subject to (i),(ii), the number p(K) of paths of H having copies in K is maximum.
From (iii) it follows that

(6.4)  for any (not necessarily distinct) vertices ui,ug, us, ugq occurring in a path of H in this
order, if P contains copies of both u; — us path P and us — u4 path P’, then P contains
copies of both u; — uy path Q and us — ug path Q' as well, and vice versa.

Indeed, if at least one of Q,Q’ is not in P, we can add Q,Q" to P and delete P, P’ from P,
accordingly correcting the map ¢. This increases p(K). (Recall that adding to K a triangle or
a boundary edge of G or a path of H means adding one copy of this element, and similarly for
deleting an element.) The reverse assertion is proved similarly.

Also we assume that the minimal pre-configuration ™™ contains crossing paths or overlapping
a path and a triangle; otherwise the result immediately follows from Lemma 6.2. We show that
K is dominated in both cases.

Case 1. Let O™ contain crossing a u—v path P and a v/ —v’ path Q. Assume for definiteness
that P is in Hy and is minimal among the paths of P beginning at u, and that @ is in H; (P is anti-
parallel to & and @ is anti-parallel to £3); the case when P is minimal among the paths ending at
v is symmetric. Observe that the point w where P, Q) meet is a vertex of Hs. Let A be the normal
little triangle whose edge parallel to & contains w as the middle point. Then A is not in ®. For
otherwise P would contain a path from some vertex w’ to w (as A is absorbing). Applying (6.4) to
w’,u, w,v or to u,w’,w, v, we obtain that P contains the u —w path, contradicting the minimality
of P.

Next we proceed as follows. For i = 1,2, 3, let ¢; be the edge of A parallel to &. (So w = ve,.)
Take the turned-over little triangle V containing es. Let €], €}, be the edges of V parallel to &1, &o,
respectively. Then Hj has u — w path P" and v, — v path P”, and H; has u' — v, path Q":

X

v /
u
JATS.
Q/

u/

Add (one copy of) the triangle A to ®~, the triangle V to ®*, and the paths P, P”, Q' together
with the degenerate path ve, (“connecting” A and V in Hs) to P. Accordingly delete P, @ from
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P. The attachments for the added elements are assigned in a natural way (e.g., «(P’) := (¢, A),
where ¢ is the element of the old ®* to which P was attached). This increases the parameter
t (since A is added while the new K contains a copy of each triangles from the previous I, by
assumption (6.3)(i)). However, K becomes an “incomplete” configuration since V has no attached
path in H;, and similarly for element gg of @~ to which ) was attached. We cannot improve K
straightforwardly because the points u := Vet and v' do not lie on one line of Hj.

Our aim is to improve the new K, without decreasing the current value of ¢, in order to obtain
a correct c-configuration K’ either dominating or equivalent to the initial K. This will yield the
result in the former case and lead to a contradiction with assumption (6.3)(ii) in the latter case.

First of all we iteratively construct a sequence S of alternating members of ® and P as follows.
Start with Ay := g/g Let A; € @ be the last element of the current S. If A; is a boundary edge,
halt. Otherwise add Pj;+1,A;41 to S, where P;4 is attached to A;; A;11. More precisely: (a) if ¢
is odd (and A; is a normal triangle), then P;1; is a path of Hs and «(P;41) = (Ai+1,A;), and (b)
if 7 is even (and A; is a turned-over triangle), then P, ;; is a path of H; and ¢«(Pj+1) = (A, Ajt1).
Let Ay11 be the last element of the final S. Clearly the edge b := A, belongs to By when g is
odd, and to B; when ¢ is even.

Assume ¢ is odd; the case of g even is examined analogously. For ¢ =1,... ¢, let Q; € P be
the path of Hs attached to A; (it enters A; for ¢ odd, and leaves A; for ¢ even). Let Al be the
other element of ® to which @Q); is attached. We say that the triangle A; is squeezed if i is odd
and Q); is degenerate.

We first explain how to transform K into the desired correct c-configuration when no A; is
squeezed. By the convexity of G' (and regardless of the squeezedness of any A;), the line in the
plane parallel to &3 and passing the point % in V separates S from Bgr (letting Bgr be the common
vertex of B, and B; when they meet). This implies that S can be shifted by distance 1 in the
direction of &» (approaching B:}f ). More precisely, each triangle A; has 3-predecessor AZ in G, and
B; contains edge b next to b. See the picture where g = 3:

A% B B
QY \A3 Y
b

LAY
AX Py \

P

These triangles A; and the elements Ay := V and Aqﬂ := b are connected in H by paths
Pi,..., P, in a natural way: P/ is the path of H; leaving A; and entering A, when 7 is odd,
and the path of Hs leaving A; 41 and entering A; when i is even. Also there are paths Q-5 Qg
of Hs such that Q) leaves A} and enters A; when 7 is odd (as A; is not squeezed, and therefore,

A; lies between A and A;), and Q) leaves A; and enters A} when i is even.
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Add to K theNtriang;les A, ... ,ﬁq, the paths P, ... ’f)‘;ﬂ’ Q1 -+, Qy and the edge b, making
P/ attached to A;_1,4;, and making @} attached to Aj, A}. Accordingly delete from K the

triangles Ay, ..., Ay, the paths P, ..., Pyy1,Q1,...,Qq and the boundary edge b. This results in

a correct c-configuration K. Moreover, K’ has the border d(K)— xb+xg. Therefore, K’ dominates
the initial /C, by (4.6).

Next suppose there is a squeezed A; (i is odd); let ¢ be minimum among such triangles. Form
the triangles Ag,...,A;_1 and paths P}, ... ,PLQY,...,Q,_, as above. Take paths R,D € P
attached to A} and belonging to Hy and Hj, respectively. Let ¢, ¢’ be the other (normal) triangles
to which R, D are attached, respectively. Since A; is squeezed, (Ajy1,Ai, AL, ¢) is a 2-chain and

(A;—1,Al, @) is a 1-chain. See the picture:
AN AN
6 AV\?? Y M/
A R % Py vV Ain é A M
VAo

Let M be the path of Hs leaving A;11 and entering ¢, and M’ the path of H; leaving A;_1 and
entering ¢’. We add to K the triangles A, ..., A,_; and the paths P, .. PLQY,...,Q_,M,M
and accordingly delete the triangles Ay, ..., A; and A} and the paths P, ..., P11, Q1,...,Qi, R, D.
(Note that if P; is degenerate, then A;_1 and Al are copies of the same triangle of G; we consider
them as different objects one of which is added and the other is deleted.) The resulting K’ is
a correct c-configuration with the same border d(K). But ¢(K') > t(K) (as A was added, while

deleting the above triangles does not affect ¢, by (6.3)(i)). This contradicts (6.3)(ii).

Case 2. Let K™™ contain overlapping a path P and a triangle ¢. One may assume that
P is a u — v path of H; and that P is minimal among the paths in P beginning at u. Let
t(P) = (¢',¢"). Then ¢ lies between ¢ and ¢”. Notice that there is no normal (absorbing)
triangle 5 € ® between ¢’ and ¢”. For if such a gg exists, then the end vertex w of the path of
H, attached to ¢ is an intermediate vertex of P. But then P contains the u — w path (by (6.4)),
contrary to the minimality of P. So ¢ is a turned-over (emitting) triangle.

Take path @ of Hy attached to ¢; let t(Q) = (¢, ). Since the absorbing element 1) cannot be
a normal triangle lying between ¢’ and ¢” (by the argument above), the path @ is nondegenerate.
Let e be the edge of ¢ parallel to &, and A the normal little triangle of G containing e. Then A
lies between ¢’ and ¢”; let P’ be the path of H; leaving ¢’ and entering A. Note that K contains
no copy of A (again by the argument above). Next, let €’ be the edge of A parallel to &3, and V
the turned-over triangle of G containing ¢’. Then V lies between ¢ and v (as @ is nondegenerate);
let Q' be the path of Hy leaving V and entering 1. See the picture:
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Now add to K the triangles A, V, the paths P’, Q’, the degenerate path v, (“connecting” ¢ and
A in Hy) and the degenerate path vy (“connecting” V and A in Hj), assigning the attachments
for them in an obvious way. Accordingly delete from X the paths P, Q. This results in an
“incomplete” c-configuration, but having a larger value of ¢, in which V and ¢” have no attached
paths in H;. (It cannot be improved straightforwardly since v and the middle point @ of the edge
of V parallel to & do not lie on one line of Hy). So we have a situation as in Case 1 and proceed
in a similar way to transform K into a correct c-configuration K’ either dominating the initial X
or being equivalent to K but having a larger value of ¢.

This completes the proof of the lemma. =

By Lemmas 6.1 and 6.3, every non-dominated proper essential configuration is equivalent to
a puzzle configuration. This implies Theorem 3.1, in view of explanations in Sections 4,5.

Remark. Analysing the proof of Lemma 6.3, one sees that, in fact, a slightly sharper version of
this lemma is obtained. It reads (taking into account assumption (6.3)(ii) and the construction
of the minimal pre-configuration KC™i):

(6.5) if a c-configuration K is proper, essential and oriented and if X is not dominated, then
K is equivalent to a puzzle configuration K such that the set of triangles of the puzzle 11
includes all little triangles of G having copies in K.

7 Concluding Remarks

We conclude this paper with several remarks.

First, for a cocirculation h in G and a tandem 7 = (e, ¢€’), call o,(7) := h(e) — h(€’) the
discrepancy of h at 7. So h is concave if the discrepancy at each tandem is nonnegative. A more
general problem is: (x) find a cocirculation h having a given border o and obeying prescribed lower
bounds ¢ on the discrepancies: 0,(7) > ¢(7) for each 7 € 7(G). This is reduced to the case of
zero bounds when ¢ comes up from another cocirculation g in G. More precisely, let ¢(7) := d4(7)
for each tandem 7. Re-define the required border by o’(e) := o(e) — g(e) for each boundary edge
e. Then A’ is a concave cocirculation with border ¢’ if and only if h := h/ + g is a cocirculation
with border o satisfying the lower bound ¢ on the discrepancies. Thus, the corresponding changes
in the puzzle inequalities (3.2) and in the monotone condition (2.6) give a solvability criterion for
problem (x) with a cocirculation-induced c.
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Figure 1: Two puzzles with equal boundaries

In particular, the puzzle criterion modified in this way works when all tandem discrepancies
are required to be greater than or equal to a prescribed constant o« € R. This is because there
exists a cocirculation g in G where the discrepancy at each tandem is exactly a. (Such a g is
constructed easily: assuming w.l.o.g. that G is a 3-side grid of size n, put g(e;) := (k — 2i + 1)«
(i =1,...,k) for each maximal straight path (ej,...,ex) in G.)

Second, from the sharper version of Lemma 6.3 given in (6.5) one derives that each puzzle II
determining a facet of the cone B(G) is (uniquely) determined by its boundary b(II).

Indeed, suppose 11y, Iy are two different puzzles with b(Il;) = b(Ily). Let K; stand for the c-
configuration induced by II;; one may assume that K; is proper and essential. Then K := K1 + o
is an oriented c-configuration equivalent to K;. Assume K is not dominated and take a puzzle 11
as in (6.5). We have b(Kr) = b(K;), so the number ¢ of triangles in IT is equal to the number
q1 of triangles in Iy, by (3.3). On the other hand, the fact that II; and IIy are different implies
that IC involves more little triangles of G' compared with K;. This implies ¢ > ¢1, by (6.5); a
contradiction.

Different puzzles with equal boundaries do exist. An example for a 3-side grid is shown in
Fig. 1.

A puzzle determined by its boundary is called rigid. Knutson, Tao and Woodward proved
that in the case of 3-side grids the facet-determining puzzles are exactly the rigid ones. They also
obtained a combinatorial characterization for the facet-determining puzzles, implying that such
puzzles are recognizable in polynomial time.

Theorem 7.1 [7] Let Il = (F,P) be a puzzle in a 3-side grid G such that F is nonempty and
different from the set of all little triangles of G. The following are equivalent:

(i) II determines a facet of B(G);
(i) 11 is rigid;
(i1i) 11 admits no gentle circuits.
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To explain the notion of gentle path/circuit, let R be the set of little rhombi of G that are
split by a path in P into two parallelograms. Let Gg be the subgraph of G induced by the edges
separating either a triangle in F and a rhombus in R (the tp-edges), or a rhombus in R and a little
triangle contained in no member of F U R (the pn-edges). Re-orient each tp-edge (resp. pn-edge)
e so that the triangle of F (resp. the rhombus in R) containing e lie on the right. A path or
circuit P of Gy is called gentle if, when moving along P from an edge to the next edge, the angle
of turn is either 0° or 60°, never 120°. For example, the circuit surrounding the hexagon formed
by the six central triangles in the right puzzle in Fig. 1 is gentle.

One can show that Theorem 7.1 remains valid for an arbitrary convex grid G. (Implication
(i)—(ii) has already been shown. The method of proof of (ii)—(iii) and (iii)—(i) given in [7] is
applicable to an arbitrary convex grid, as it, in essense, does not depend on the shape of the convex
region R spanned by G. Roughly speaking, the proof of (ii)—(iii) relies on a local transformation
of a puzzle II having a gentle circuit C. It creates another puzzle with the same boundary by
re-arranging II only within the 1-neighbourhood of C' (being the union of little triangles and
rhombi sharing common edges with C'). The proof of (iii)—(i) uses the function on the tp- and
pn-edges whose value on an edge e is defined to be the number of all maximal gentle paths with
the first edge e. When II has no gentle circuits, this function (regardless of the shape of R) is
well-defined and it can easily be transformed into a concave cocirculation hg in G for which the
tandem inequality is strict on each little rhombus separated by a tp- or pn-edge. Using hy, it is
routine to construct |Ey(G)| — 2 concave cocirculations whose borders are linearly independent
and orthogonal to the border of Kr;.) We omit details of the proof here.

It is not difficult to check that any puzzle II with F = () and |P| = 1 is facet-determining as
well (such a puzzle can arise when R has > 4 sides). When F = () and |P| > 2, II is already not
facet-determining as it is the union of two disjoint puzzles.

Third, a result of Knutson and Tao [6] on integral honeycombs implies that a feasible integer-
valued function o on the boundary edges of a convex grid G is extendable to an integer concave
cocirculation. In [5] one shows that a sharper property takes place: a concave cocirculation A in
a convex grid G can be turned into an integer concave cocirculation preserving the values of h
on all boundary edges e with h(e) € Z and on each edge occurring in a little triangle where h is
integral on the three edges.

Acknowledgement. I am thankful to Vladimir Danilov and Gleb Koshevoy for stimulating
discussions on discrete concave functions and related topics.
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