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Abstract

Let G be a planar digraph embedded in the plane such that each bounded face contains
three edges and forms an equilateral triangle, and let the union R of these faces be a convex
polygon. We consider the polyhedral cone B(G) formed by the real-valued functions σ on the
set of boundary edges of G with the following property: there exists a concave function c on
R which is affinely linear within each bounded face and satisfies c(v) − c(u) = σ(e) for each
boundary edge e = (u, v).

Knutson, Tao and Woodward obtained a result on honeycombs which implies that if the
polygon R is a triangle, then the cone B(G) is described by linear inequalities of Horn’s type
with respect to so-called puzzles, along with obvious linear constraints.

The purpose of this paper is to give an alternative proof of that result, working in terms
of discrete concave finctions, rather than honeycombs. Our proof is based on a linear pro-
gramming approach and a non-standard flow model. Moreover, the result is extended to an
arbitrary convex polygon R as above.
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1 Introduction

Let ξ1, ξ2, ξ3 be three affinely independent vectors in the plane R2 whose sum is the zero vector.
The triangular lattice generated by ξ1, ξ2, ξ3 is associated with the infinite planar directed graph
L whose vertices are integer combinations of these vectors and whose edges are the ordered pairs
(u, v) of vertices such that v − u ∈ {ξ1, ξ2, ξ3}. An edge (u, v) is identified with the straight-line
segment between u, v oriented from u to v.

Consider a convex region R in the plane formed by the union of a nonempty finite set of faces
(little triangles) of L; it is a polygon with 3 to 6 sides. We refer to the subgraph G = (V (G), E(G))
of L consisting of the vertices and edges occurring in R as a convex (triangular) grid. The sets of
vertices and edges in the boundary b(G) of G are denoted by V0(G) and E0(G), respectively.

A real-valued function f on the vertices of G is called discrete concave (convex) if its piece-wise
linear extension c to the region R is a concave (resp. convex) function (here c is affinely linear
within each little triangle of G and coincides with f on V (G)). In this paper we prefer to deal
with discrete concave functions; the corresponding results for discrete convex functions follow by
symmetry.

We are interested in the functions on the set of boundary vertices that can be extended to
discrete concave functions on all vertices of G. Instead, one can consider the corresponding
functions on edges. More precisely, a function h : E(G) → R is said to be a cocirculation if there
exists f : V (G) → R such that h(e) = f(v)− f(u) for each edge e = (u, v). Such an h determines
f up to a constant, and we refer to h as a concave cocirculation if f is discrete concave. In these
terms, the problem is:

(1.1) Given a function σ : E0(G) → R, decide whether σ is extendable to a concave cocircula-
tion in G.

Clearly the set B(G) of functions σ admitting such an extension forms a convex cone in RE0(G).
Two necessary (but far to be sufficient) conditions on σ to belong to B(G) are obvious: (i) the
sum of values of σ, taken with signs + or − depending on the direction of an edge in the boundary
circuit, amounts to zero, and (ii) σ is weakly decreasing along each side-path of b(G).

Interesting results have been obtained for the case when the polygon R spanned by G is a
triangle. In this case the boundary of G is the concatenation of three paths B1, B2, B3 forming
the sides of R, where the edges of Bi are parallel to ξi. We refer to G as a 3-side grid and say
that G has size n if |Bi| = n (where |P | denotes the number of edges of a path P ). It turned out
that the cone B(G) for a 3-side grid G also arises in two other interesting models. More precisely,
Knutson and Tao [6] showed that for a triple of weakly decreasing n-tuples (λ, µ, ν) ∈ (Rn)3, the
following properties are equivalent:

(P1) λ, µ, ν are the spectra of three n× n Hermitian matrices whose sum is the zero matrix;

(P2) there exists a honeycomb of size n in which the three tuples of semiinfinite edges have the
constant coordinates λ, µ, ν (see [6] for a definition);
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(P3) let G be the 3-side grid of size n and let σ be the function on E0(G) taking the value λj

(resp. µj , νj) on jth edge of the path B1 (resp. B2, B3); then σ ∈ B(G).

Note that while the equivalence of (P2) and (P3) is rather transparent (they are related via
Fenchel’s duality), the equivalence of these to (P1) is quite sophisticated. In the 1960s Horn [4]
recursively constructed a finite list of nontrivial necessary conditions on λ, ν, µ to satisfy property
(P1) and conjectured the sufficiency of this list (which, in particular, implies that these (λ, µ, ν)’s
constitute a polyhedral cone). Horn’s conditions are viewed as linear inequalities of the form

λ(I) + µ(J) + ν(K) ≥ 0(1.2)

for certain subsets I, J,K of {1, . . . , n} with |I| = |J | = |K|, letting α(S) :=
∑

(αi : i ∈ S) for
α = (α1, . . . , αn) ∈ Rn and S ⊆ {1, . . . , n}. Subsequent efforts of several authors have resulted
in a proof of Horn’s conjecture; the obtained result is referred in [7] as the “H-R/T/K theorem”,
abbreviating the names of Helmke, Rosenthal, Totaro, and Klyachko. (A history of studying
problems concerning (P1) and related topics are reviewed in [3].) Recently Knutson, Tao and
Woodward [7] established a combinatorial existence criterion for honeycombs, obtaining another
proof of that theorem, in view of the equivalence between (P2) and (P1). According to their
criterion, each Horn’s triple (I, J,K) is induced by a puzzle, a certain subdivision of a 3-side grid
into little triangles and little rhombi endowed with a certain 0,1 labelling on the sides of these
pieces. One more method of proof of the H-R/T/K theorem is given by Danilov and Koshevoy [2].

The purpose of this paper is to give a direct proof of the puzzle criterion for the solvability of
problem (1.1), without using relationships to honeycombs. We extend the notion of puzzle in a
natural way to an arbitrary convex grid G and show that σ : E0(G) → R is extendable to a concave
cocirculation if and only if it obeys the linear inequalities of Horn’s type determined by puzzles
and the above-mentioned obvious linear constraints. Our proof combines a linear programming
approach and some combinatorial techniques where a non-standard flow model is involved.

This paper is organized as follows. Section 2 contains basic definitions and facts and states
problem (1.1) as a linear program. In Section 3 we explain the notion of puzzle for a convex
grid (using a definition somewhat different from, but equivalent to, that in [7]) and formulate
the puzzle criterion for the solvability of the problem (Theorem 3.1). The proof of this theorem
is given in Section 6, based on a weaker, linear programming, criterion discussed in Sections 4
and on a representation of dual variables by use of a flow in an auxilliary graph, explained in
Section 5. The concluding Section 7 discusses some additional aspects and a generalization to
convex grids of results in [7] on the puzzles determining facets of the cone B(G) for a 3-side grid
G, where these puzzles are characterized combinatorially and in terms of rigidity.

Related and other aspects of discrete convex (concave) functions on triangular grids in the
plane and some applications in algebra are discussed in [1].

2 Preliminaries

We start with terminology, notation and conventions. Edges, faces, subgraphs, paths, circuits
and other relevant objects in a convex grid G or another graph in question are usually identified
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with their closed images in the plane. By a path (circuit) we usually mean a simple directed
path (circuit) P = (v0, e1, v1, . . . , ek, vk), where ei is the edge (vi−1, vi); it may be abbreviately
denoted as (e1, e2, . . . , ek) (via edges). A path P with beginning vertex u and end vertex v is
called a u− v path; P is called degenerate if it consists of only one vertex u = v. When P forms a
straight-line segment in the plane, P is called a straight path, or a line of the graph. A k-circuit
is a circuit with k edges.

Problem (1.1) does not depend, in essense, on the choice of lattice generating vectors ξ1, ξ2, ξ3,
and for convenience we fix these vectors as ξ1 = (1, 0), ξ2 = (−1,

√
3)/2 and ξ3 = (−1,−√3)/2.

Then the little triangles in G are equilateral triangles of size 1. Note that the boundary of any
triangle in G (formed by the union of some faces) is a circuit directed clockwise or anticlockwise
around the triangle. The little triangle surrounded by a 3-circuit C is denoted by ∆C . We say that
a triangle is normal if its boundary circuit is directed anticlockwise, and turned-over otherwise.
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r
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­
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turned-over little triangle

We denote the sets of boundary edges directed anticlockwise and clockwise (around R) by
E+

0 (G) and E−
0 (G), respectively. A maximal straight path in b(G), or a side-path of G, whose

edges are parallel to ξi and belong to E+
0 (G) (resp. E−

0 (G)) is denoted by B+
i (resp. B−

i ). One
may assume that if G is a 3-side grid, then the boundary of G is formed by B+

1 , B+
2 , B+

3 .
For a function h on E(G), its restriction to the set of boundary edges is called the border of h.
Next we explain how to formulate problem (1.1) as a linear program. Obviously, a function

f : V (G) → R is discrete concave if and only if

f(u) + f(u′) ≤ f(v) + f(v′)(2.1)

holds for each little rhombus (the union of two little triangles sharing a common edge) ρ, where
u, u′ are the acute vertices and v, v′ are the obtuse vertices of ρ:
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r r

u v

v′ u′
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­
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­
­

­­ÀJ
J

JJ]

Clearly h ∈ RE(G) is a cocirculation if and only if the sum of its values on each 3-circuit is
zero. Linear constraints reflecting the property of a cocirculation h to be concave are derived
from (2.1). Let us say that an ordered pair τ = (e, e′) of non-adjacent edges of G is a tandem if
they occur as opposite sides of a little rhombus ρ and the head of e is an obtuse vertex of ρ (while
the other obtuse vertex of ρ is the tail of e′). We distinguish between two sorts of tandems by
specifying τ as a normal tandem if the little triangle in ρ containing e is normal, and a turned-over
tandem otherwise. Note that each little rhombus ρ involves two tandems one of which is normal
and the other is turned-over. The picture illustrates the case when e, e′ are parallel to ξ1.
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For the cocirculation h generated by a function f on the vertices, (2.1) is just equivalent to
the condition h(e) ≥ h(e′) on the normal tandem (e, e′) in the little rhombus ρ. Thus, given
σ ∈ RE0(G), a concave cocirculation with border σ is a solution h ∈ RE(G) of the system:

h(e) + h(e′) + h(e′′) = 0, C = (e, e′, e′′) ∈ C(G),(2.2)

h(e′)− h(e) ≤ 0, τ = (e, e′) ∈ T (G),(2.3)

h(e) = σ(e), e ∈ E0(G),(2.4)

where C(G) is the set of 3-circuits (considered up to cyclically shifting), and T (G) the set of
normal tandems in G. When this system has a solution, we call σ feasible.

As mentioned in the Introduction, two necessary conditions on σ to be feasible are obvious.
The first one (necessary for the border of any cocirculation) is the zero-sum condition:

σ(E+
0 (G))− σ(E−

0 (G)) = 0,(2.5)

The second one is the monotone condition:

(2.6) σ(e1) ≥ . . . ≥ σ(en) for each straight path (e1, . . . , en) in b(G).

Since the set of concave cocirculations on G is described by a finite number of linear constraints,
the cone B(G) formed by all feasible σ’s (the borders of concave cocirculations in G) is polyhedral.
To compute the dimension of this cone is easy (cf. [7]).

Statement 2.1 dim(B(G)) = |E0(G)| − 1.

Proof. In view of (2.5), dim(B(G)) ≤ |E0(G)| − 1 =: r. To show the reverse inequality, we first
construct a concave cocirculation h for which all tandem inequalities in (2.3) are strict.

Take a maximal straight u− v path P of G not contained in b(G). Let Z be the set of edges
of G that lie in the region on the right from P (when moving from u to v) and are not parallel to
P . Define hP (e) to be 1 if e ∈ Z and e points toward P , −1 for the other edges e in Z, and 0 for
the remaining edges of G. One can check that hP is a concave cocirculation and that h(e) > h(e′)
for each tandem (e, e′) where e and e′ are separated by P . The sum of hP ’s over all such paths P

gives the desired concave cocirculation h. Let σ be the border of h.
Now for each boundary vertex v and each edge e, define hv(e) to be 1 if v is the head of

e, −1 if v is the tail of e, and 0 otherwise. Then hv is a cocirculation; moreover, h + 1
2hv is a

concave cocirculation. Let σv be the border of hv. Clearly r borders among these σv are linearly
independent. This implies that r borders σ+ 1

2σv of the concave cocirculations h+ 1
2hv are linearly

independent.
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3 Theorem

Linear programming suggests a standard way to obtain a solvability criterion for system (2.2)–
(2.4). Our aim, however, is to obtain a sharper, combinatorial, characterization for the borders
of concave cocirculations on G.

First of all we construct a certain dual digraph H. For each edge e ∈ E(G), take the middle
point ve on e, making it a vertex of H. For each normal tandem τ = (e, e′), form (straight-line)
edge aτ from ve to ve′ , making it an edge of H. Note that when e, e′ are parallel to ξi, the edge
aτ is anti-parallel to ξi−1, in the sense that aτ is a parallel translate of the opposite vector −ξi−1.
(Hereinafter the corresponding indices are taken modulo 3.) The resulting graph H is the union
of three disjoint digraphs H1,H2, H3, where Hi is induced by the introduced edges connecting
points on edges of G parallel to ξi. The three types of edges of H are drawn in bold in the picture.
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So the maximal paths in Hi are straight, pairwise disjoint and anti-parallel to ξi−1. If a path
P of H begins at ve and ends at ve′ , we say that P leaves the edge e and enters the edge e′ (both
e, e′ concern G), admitting the case of degenerate P . We also say that P leaves (enters) a little
triangle ∆ if e ⊂ ∆ (resp. e′ ⊂ ∆).

Definition. A puzzle is a pair Π = (F ,P) consisting of a set F of little triangles of G and a
set P of paths of H such that:

(3.1) (i) the interiors of all triangles in F and all paths in P are pairwise disjoint;

(ii) for each edge e of each normal (resp. turned-over) triangle in F , there is precisely one
path in P entering (resp. leaving) e;

(iii) for each path in P leaving edge e and entering edge e′, either e belongs to a turned-over
triangle in F or e ∈ E+

0 (G), and similarly, either e′ belongs to a normal triangle in F
or e ∈ E−

0 (G).

(Degenerate paths P = ve in P are admitted. When e is an inner edge of G, such a P serves to
“connect”the pair of triangles in F sharing the edge e. When e is a boundary edge, P “connects”
this edge with the triangle in F containing e.) The boundary b(Π) of Π is defined to be the set
of boundary edges e for which there is a path in P leaving or entering e. The subsets of edges of
E+

0 (G) and E−
0 (G) occurring in b(Π) are denoted by b+(Π) and b−(Π)), respectively.

The puzzle criterion for the solvability of (2.2)–(2.4) is the following.

Theorem 3.1 Let G be a convex grid, and let σ : E0(G) → R satisfy (2.5) and (2.6). Then a
concave cocirculation h in G with h(e) = σ(e) for all e ∈ E0(G) exists if and only if

σ(b+(Π))− σ(b−(Π)) ≥ 0(3.2)

holds for each puzzle Π.
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Thus, the cone B(G) is described by the puzzle inequalities (3.2) and the linear constraints (2.5)
and (2.6).

Remark. A puzzle in a 3-side grid G introduced in Knutson et al. [7] is defined to be a diagram
D consisting of a subdivision of the big triangle R into little triangles and little rhombi of G,
and of a 0,1 labelling of the edges of G that are sides of these pieces, satisfying the following
conditions: (a) the three sides of each little triangle in the subdivision are labelled either 1,1,1 or
0,0,0, and (b) the sides of each little rhombus ρ are labelled 0,1,0,1, in this order clockwise of an
acute vertex of ρ. The boundary b(D) of D is defined to be the set of boundary edges labelled 1.
There is a natural one-to-one correspondence between the puzzles D of this form and the puzzles
Π = (F ,P) in the above definition (in the triangle-path form) and this correspondence preserves
the puzzle boundary: b(D) = b(Π). (In this correspondence, F is set of little triangles labelled
1,1,1, and the edges of H used in the paths of P are those connecting the sides labelled 1 in the
rhombi of D.) The triangle-path form of puzzle is more convenient for us to handle in the proof
of Theorem 3.1, which is based on certain path and flow constructions.

To illustrate the theorem, consider a 3-side grid of size n and a puzzle consisting of one triangle
∆ and three paths P1, P2, P3, each Pi connecting ∆ with the side-path B+

i = (b1
i , . . . , b

n
i ):
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∆ Π = {{∆}, {P1, P2, P3}}

Let Pi leave edge b
r(i)
i ∈ Bi and enter edge ei ⊂ ∆. Summing up the inequalities in (2.3) for the

normal tandems induced by the edges of Pi, we have σ(br(i)
i ) = h(br(i)

i ) ≥ h(ei). This together
with (2.2) for the 3-circuit (e1, e2, e3) implies that the sum of values of σ on b

r(i)
i , i = 1, 2, 3, is

nonnegative. Also r(1) + r(2) + r(3) = n + 2. Thus, any feasible σ = (λ, µ, ν) ∈ (Rn)3 must obey

λi + µj + νk ≥ 0

for any choice of i, j, k with i + j + k = n + 2. This is the simplest sort of Horn’s inequality (1.2).

One can associate with a puzzle Π = (F ,P) undirected graph ΓΠ whose vertices correspond
to the triangles in F and the edges in b(Π) and where vertices u, v are connected by an edge if
and only if there is a path in P leaving one and entering the other of u, v. One can see that such
graphs are determined, up to isomorphism, by the list of cardinalities |b(Π)∩B|, where B ranges
over the side-paths of G. In particular,

(3.3) the numbers |F| and |P| are determined by b(Π).

(Instruction: deform G so that each little triangle of G that neither belongs to F nor meets a
path in P is shrunk into a point, and for each nondegenerate ve−ve′ path in Π, the parallelogram
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with opposite sides e, e′ is shrunk into the edge e. The resulting graph G′ is again a convex grid
(possibly degenerate) in which the little triangles one-to-one correspond to those in F , and the
edges to the paths in P; also the boundary edges of G′ one-to-one correspond to the edges in b(Π)
when F 6= ∅. Moreover, G′ depends only on the above-mentioned cardinalities.)

4 Linear Programming Approach

In what follows, speaking of a tandem, we always mean a normal tandem in G. Assign a variable
z(C) ∈ R to each 3-circuit C of G, a variable g(τ) ∈ R+ to each tandem τ , and a variable d(e) ∈ R
to each boundary edge e. Then the linear system dual of (2.2)–(2.4) is viewed as

∑

C∈C(G):e∈C

z(C)−
∑

τ=(e,e′)∈T (G)

g(τ) +
∑

τ=(e′,e)∈T (G)

g(τ) = 0, e ∈ E(G)− E0(G),(4.1)

∑

C∈C(G):e∈C

z(C)−
∑

τ=(e,e′)∈T (G)

g(τ) +
∑

τ=(e′,e)∈T (G)

g(τ) + d(e) = 0, e ∈ E0(G).(4.2)

Applying Farkas lemma to (2.2)–(2.4), we obtain an l.p. solvability criterion.

Statement 4.1 Let σ ∈ RE0(G). A concave cocirculation h with border σ exists if and only if

σ · d ≥ 0(4.3)

holds for any z : C(G) → R, g : T (G) → R+ and d : E0(G) → R satisfying (4.1) and (4.2).

Hereinafter for a, b ∈ RE , a · b denotes the inner product
∑

(a(e)b(e) : e ∈ E). We call a triple
K = (z, g, d) satisfying (4.1)–(4.2) a vector configuration, or, briefly, a v-configuration, and regard
d as its border.

Statement 4.1 implies that the cone D of borders of v-configurations (which is convex) is anti-
polar to the cone B(G) of borders of concave cocirculation in G, i.e., D := {d ∈ RE0(G) : σ · d ≥
0 ∀σ ∈ B(G)}. For a boundary edge e, define θ(e) := 1 if e ∈ E+

0 (G), and −1 if e ∈ E−
0 (G). Since

the dimension of B(G) is |E0(G)|− 1 (by Statement 2.1) and B(G) is contained in the hyperplane
θ⊥ orthogonal to θ (by (2.5)), the cone D is full-dimensional and contains the line Rθ. So the
facets of B(G) one-to-one correspond (by the orthogonality) to the 2-dimensional faces of D, each
being of the form r1d + r2θ (r1 ∈ R+, r2 ∈ R) for a certain d ∈ RE0(G).

For a function (vector) x, let supp+(x) and supp−(x) denote the positive part {e : x(e) > 0}
and the negative part {e : x(e) < 0} of the support supp(x) of x, respectively. Since inequality (4.3)
is invariant under adding to d any multiple of θ, it suffices to verify this inequality only for the
v-configurations K = (z, g, d) satisfying:

(4.4) (a) supp+(d) ⊆ E+
0 (G) and supp−(d) ⊆ E−

0 (G), and (b) supp(d) 6= ∅, E0(G).

In what follows, we throughout assume that any v-configuration in question satisfies (a). When
(b) takes place too, we call K proper.

Let Σ(G) be the set of σ ∈ RE0(G) satisfying (2.5)–(2.6). Then B(G) ⊆ Σ(G). A v-
configuration K = (z, g, d) is called essential if d separates Σ(G), i.e., σ ·d < 0 for some σ ∈ Σ(G).

8



Consider two v-configurations K = (z, g, d) and K ′ = (z′, g′, d′). K and K ′ are called equivalent
if their borders are proportional, i.e., d = rd′ for some r > 0. We say that K ′ dominates K if at
least one of the following takes place:

(4.5) (i) σ ∈ Σ(G) and σ · d < 0 imply σ · d′ < 0, and there exists σ ∈ Σ(G) such that σ · d ≥ 0
but σ · d′ < 0; or

(ii) K is proper and not equivalent to K ′, and K− rK ′ is a v-configuration (subject to (a)
in (4.4)) for some r > 0.

If K is dominated by some K ′, then K is redundant and can be excluded from consideration (as
d cannot be facet-determining for B(G)). This is obvious in case (i). And in case (ii), the border
d′′ := d−rd′ of the v-configuration K ′′ := K−rK ′ is nonzero and satisfies (d′′)⊥∩B(G) ⊇ d⊥∩B(G)
and supp(d′′) ⊆ supp(d). The former inclusion implies that if d⊥ contains a facet F of B(G), then
(d′′)⊥ contains F as well. In this case we have d′′ = r1d + r2θ for some r1 > 0 and r2 ∈ R, which
contradicts the latter inclusion since supp(d) 6= E0(G) and K, K ′ are not equivalent.

Our method of proof of Theorem 3.1 will consist in examining an arbitrary essential config-
uration K and attempting to show that K is dominated unless it is equivalent to some “puzzle
configuration”. Note that one can consider only rational-valued z, g, d in (4.1)–(4.2). Moreover,
by scaling, it suffices to deal with integer v-configurations (z, g, d).

For a boundary edge e of G, let χe denote the unit base vector of e in RE0(G) (i.e., χe(a) = 1
for a = e, and 0 otherwise). We will use the following observation:

(4.6) if K is an essential v-configuration with border d, K ′ is a v-configuration with border
d′, and d′ = d− χe + χe′ , where e, e′ are boundary edges occurring in the same side-path in
this order, then K ′ dominates K.

To see this, let d′′ := χe − χe′ . Then σ · d′′ ≥ 0 for all σ ∈ Σ(G), by (2.6). This and d = d′ + d′′

imply σ · d ≥ 0 for all σ ∈ Σ(G) satisfying σ · d′ ≥ 0. Take σ1 ∈ B(G) such that σ1(e) > σ1(e′)
(existing by Statement 2.1). Then σ1 · d′ ≥ 0 and σ1 · d′′ > 0, implying p := σ1 · d > 0. Take
σ2 ∈ Σ(G) such that q := σ2 · d < 0 (existing as K is essential). Define σ := σ2 − q

pσ1. We have
σ · d = σ2 · d− q

pσ1 · d = q − q = 0 and σ · d′ = σ · d− σ · d′′ = −σ · d′′ = −σ2 · d′′ + q
pσ1 · d′′ < 0,

yielding (4.5)(i).

5 Flow Model

In the proof of Theorem 3.1 we will take advantage of a representation of a v-configuration
K = (z, g, d) in a more combinatorial form. It is described in this section.

For a 3-circuit C, let us interprete z(C) as the weight of the little triangle ∆C surrounded by
C. Similarly, d(e) is the weight of a boundary edge e. For each tandem τ , set g(aτ ) := g(τ),
interpreting it as the flow on the edge aτ of the graph H (introduced in Section 3). The boundary
edges and little triangles with nonzero weights are interpreted as “sources” or “sinks” of the flow.
We say that a boundary edge e emits d(e) (units of) flow if d(e) > 0, and absorbs |d(e)| flow
if d(e) < 0. Similarly, a little triangle ∆C emits z(C) flow (through each of its three sides) if
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z(C) > 0, and absorbs |z(C)| flow if z(C) < 0. Then relations (4.1)–(4.2) turn into the flow
balance condition

divg(v) +
∑

C∈C(G):v∈∆C

z(C) +
∑

e∈E0(G):v∈e
d(e) = 0 for each v ∈ V (H),(5.1)

where
divg(v) :=

∑
u:(u,v)∈E(H)

g(u, v)−
∑

w:(v,w)∈E(H)
g(v, w).

Next, for a path P in H, let χP ∈ RE(H) denote the incidence vector of the set of edges of P .
Considering g as a function on E(H), applying usual flow decomposition techniques and taking
into account (5.1), one can find paths P1, . . . , Pk in H (possibly including degenerate paths) and
positive real weights α1, . . . , αk of these paths such that:

(5.2) g = α1χ
P1 + . . . + αkχ

Pk ;

(5.3) for each edge e of G, the sum of weights of emitting elements containing e is equal to
the sum of weights of paths Pi leaving e; similarly, the sum of absolute values of weights of
absorbing elements containing e is equal to the sum of weights of paths Pi entering e.

We call (P1, . . . , Pk;α1, . . . , αk) satisfying (5.2)–(5.3) a paths decomposition of g.
When g is integer-valued, there is a decomposition with all weights αi integer (an integer

paths decomposition). In this case we define a triple K = (Φ,P, ι) representing K, in a sense,
as follows. Take d(e) copies of each emitting boundary edge e and z(C) copies of each emitting
triangle ∆C , forming family Φ+ of (unweighted) emitting elements. Take |d(e)| copies of each
absorbing boundary edge e and |z(C)| copies of each absorbing triangle ∆C , forming family Φ−

of absorbing elements. Then Φ is the disjoint union of Φ+ and Φ−. Take αi copies of each path
Pi, forming P. Assign a map ι : P → Φ+ × Φ− so as to satisfy the following property:

(5.4) if P ∈ P and ι(P ) = (φ, φ′), then P leaves φ and enters φ′; moreover, for each φ ∈ Φ+

(resp. φ ∈ Φ−) and each edge e in φ, there is exactly one path P ∈ P such that ι(P ) = (φ, ·)
and P leaves e (resp. ι(P ) = (·, φ) and P enters e).

The existence of such an ι follows from (5.3). When ι(P ) = (φ, φ′), we say that the path P is
attached to the elements φ and φ′. So each triangle in Φ has three attached paths, by one from
each of H1,H2,H3, and each boundary edge in Φ has one attached path.

A converse construction also takes place. More precisely, consider families Φ+, Φ−,P consisting
of copies of some little triangles and edges from E+

0 (G), of copies of little triangles and edges from
E−

0 (G), and of copies of paths in H, respectively. Let Φ be the disjoint union of Φ+ and Φ−,
and ι a map of P to Φ+ × Φ− satisfying (5.4). We refer to K = (Φ,P, ι) as a combinatorial
configuration, or, briefly, a c-configuration. Emphasize that we admit some little triangles of G

(but not boundary edges) to have copies simultaneously in both Φ+ and Φ−. Now

(5.5) for C ∈ C(G), define z(C) to be the number of copies of the triangle ∆C in Φ+ minus
the number of copies of ∆C in Φ−; for e ∈ E+

0 (G), define d(e) to be the number of copies of
e in Φ+; for e ∈ E−

0 (G), define d(e) to be minus the number of copies of e in Φ−; and define
g :=

∑{χP : P ∈ P}.
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Then z, g, d give a v-configuration, denoted by K(K). We formally define border d(K) of K to
be the border of K(K). Also we apply to K adjectives “proper, essential” if K(K) is such, and
similarly for the property of being “equivalent to” or “dominated by” another configuration.

When no little triangle of G has copies simultaneously in both Φ+, Φ−, we say that K is
homogeneous. In particular, any c-configuration K obtained from a v-configuration K by the first
construction is homogeneous; in this case K(K) = K.

6 Proof of the Theorem

The proof of Theorem 3.1 for a convex grid G falls into three lemmas. By reasonings in Sections 4
and 5, we can deal with combinatorial configurations and, moreover, with those of them that are
proper, essential and homogeneous.

Given a c-configuration K = (Φ,P, ι), we say that a little triangle or a boundary edge of G or
a path of H is in K if at least one copy of this element occurs in K. Adding to (deleting from) K
such an element means adding (deleting) exactly one copy of it.

We associate with K undirected (multi)graph ΓK whose vertices are the elements of Φ and
whose edges one-to-one correspond to the paths in P: each path P ∈ P generates an edge
connecting φ and φ′ when ι(P ) = (φ, φ′) (it is analogous to the graph ΓΠ associated with a
puzzle Π, defined in the end of Section 3). The (disjoint) union of K with another or the same
c-configuration K′ is defined in a natural way and denoted by K+K′ (its associated graph ΓK+K′
is the disjoint union of ΓK and ΓK′).

If the interiors of distinct little triangles or edges φ, φ′, φ′′ of G are intersected by a line of H

in this order, we say that φ′ lies between φ and φ′′.
We call K oriented if all triangles in Φ− (the absorbing triangles) are normal and all triangles

in Φ+ (the emitting triangles) are turned-over. The first lemma eliminates the non-oriented
configurations.

Lemma 6.1 Let a c-configuration K = (Φ,P, ι) be proper, essential and homogeneous. There
exists a c-configuration K′ such that either K′ dominates K, or K′ is equivalent to K and is
oriented.

Proof. Since we can consider any homogeneous c-configuration equivalent to K, one may assume
that, among such configurations, K is chosen so that

(6.1) the number η(K) := |Φ|+ |P| is as small as possible.

Let us say that a triangle in Φ is good if it is either emitting and turned-over, or absorbing
and normal. If all triangles are good, K is already oriented. So assume K contains at least one
bad triangle. Our aim is to show that K is dominated.

First of all we impose an additional condition on K. Suppose there is a degenerate path P ∈ P
attached to a pair of bad triangles ∆ ∈ Φ+ and ∆′ ∈ Φ−; so ∆, ∆′ share an edge e, and P is of the
form ve. Let e be parallel to ξi and let a, a′ be the edges of ∆, ∆′, respectively, parallel to ξi−1.
Observe that Hi−1 has path Q (with one edge) leaving va and entering va′ . When P contains
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a copy of Q attached to the pair (∆, ∆′) as well, we call this pair dense. See the picture where
i = 3.

J
J

JJ

J
J

JJ

­
­

­­Q

P∆′
∆r s r¾

We assume that, among all homogeneous c-configurations having the same border d(K) and
satisfying (6.1), K is chosen so that

(6.2) the number ω(K) of dense pairs in K is maximum.

Suppose the graph ΓK associated with K is not connected. Then K is the union of two
nonempty c-configurations K′,K′′, and we have d(K) = d(K′) + d(K′′) and η(K) = η(K′) + η(K′′).
(6.1) implies that d(K′) 6= 0 and K′ is not equivalent to K. Hence K′ dominates K, by (4.5)(ii).
So one may assume that ΓK is connected. Then each φ ∈ Φ is reachable in ΓK by a path from
a vertex representing a boundary edge; let ρ(φ) denote the minimum number of edges of such a
path.

We consider a bad triangle ∆ with ρ(∆) =: ρ minimum and proceed by induction on ρ. Let
P ∈ P be a path attached to ∆ and to an element φ ∈ Φ with ρ(φ) = ρ− 1. Consider two cases.

Case 1. Let ρ = 1. Then φ is (a copy of) a boundary edge b. Assume b ∈ E+
0 (G); the case

b ∈ E−
0 (G) is symmetric. Then ∆ is absorbing and turned-over, and P leaves b and enters ∆. Let

for definiteness b be parallel to ξ2. For i = 1, 2, 3, consider Pi ∈ P and φi ∈ Φ+ such that Pi is in
Hi and ι(Pi) = (φi, ∆). Let ei be the edge of ∆ parallel to ξi. (So P2 = P and φ2 = b.)

Suppose P3 is degenerate, i.e., P3 = ve3 . Then φ3 is a normal emitting triangle, and therefore,
φ3 is bad. Take path Q in H2 attached to φ3, and let ι(Q) = (φ3, φ̃). The fact that P3 is degenerate
implies that b, φ3,∆ are intersected by a line of H2 in this order. Hence H2 has path P ′ leaving
b and entering φ̃ and path Q′ leaving φ3 and entering ∆. Replace in P the paths P, Q by P ′, Q′,
making P ′ attached to b, φ̃ and making Q′ attached to φ3, ∆.

This results in a correct c-configuration K′ with η(K′) = η(K) in which (φ3, ∆) becomes a
dense pair. One can see that if Q is nondegenerate, then such a transformation does not destroy
any dense pair of the previous configuration; so ω(K′) > ω(K), contradicting (6.2). And if Q

is degenerate, then φ3 and φ̃ share an edge of H2, whence φ̃ is a turned-over absorbing triangle
forming a pair of bad triangles with φ3. The only possible dense pair which could be destroyed by
the transformation is just (φ3, φ̃) (when this pair is also connected in K by the corresponding path
in H1). In this case we have ω(K′) ≥ ω(K), so the above replacement maintains (6.2). Moreover,
the new path leaving b (namely, P ′) enters a bad triangle (namely, φ̃) as before and is shorter
than P , as illustrated in the picture:
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Doing so, we eventualy obtain a c-configuration where b is connected with a bad triangle whose
attached path in H3 is nondegenerate.
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Thus, we may assume that P3 is nondegenerate. Then, by the convexity of G, the edge e1 of
∆ does not lie on the boundary of G, and b cannot be the last edge of the side-path B+

2 . We now
transform K as follows. Let ∆′ be the normal triangle of G containing e1, and b′ the edge of B+

2

next to b. Then H2 has path P ′ leaving b′ and entering ∆′ and H3 has path P ′
3 leaving φ3 and

entering ∆′ (P ′
3 is a part of the nondegenerate P3). We replace in K the edge b by (one emitting

copy of) b′, the triangle ∆ by (one absorbing copy of) ∆′, and the paths P, P3 by P ′, P ′
3, making

P ′ attached to b′,∆′, and making P ′
3 attached to φ3, ∆′ (while P1 becomes attached to ∆′ instead

of ∆) :
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This results in a (not necessarily homogeneous) c-configuration K′ with the border d(K)−χb+χb′ .
By (4.6), K is dominated by K′.

Case 2. Let ρ > 1. Assume the bad triangle ∆ in question is absorbing (and turned-over); the
case of emitting ∆ is symmetric. Let for definiteness P be in H2, and define Pi, φi, ei (i = 1, 2, 3)
as in Case 1. (So P = P2 and φ = φ2.) Since ρ(φ) = ρ − 1 ≥ 1, φ is a good triangle. So φ is a
turned-over emitting triangle and P is nondegenerate. Arguing as in Case 1, we can impose the
condition that P3 is nondegenerate. This and the convexity of G imply that neither the edge e1 of
∆ nor the edge q of φ parallel to ξ1 lies on the boundary of G. Let ∆′ be the normal little triangle
of G containing e1, and φ′ the normal triangle containing q. We replace ∆, φ in Φ by ∆′, φ′.

More precisely, when ∆ is replaced by ∆′, we accordingly replace the paths P, P3 attached
to ∆ by paths P ′, P ′

3 (while P1 preserves, becoming attached to ∆′). Here P ′ is the path of H2

leaving φ′ and entering ∆′, and P ′
3 is the path of H3 leaving φ3 and entering ∆′ (as before, P ′

3 is
a part of the nondegenerate path P3). And when replacing φ by φ′, we should also replace path
Q̃ of H3 attached to φ, entering triangle φ̃ ∈ Φ− say, by path Q̃′ of H3 leaving φ′ and entering φ̃.
(Q̃′ exists since φ lies between φ′ and φ̃.) The path of H1 attached to φ becomes attached to φ′.
This gives a c-configuration K′ in which the added triangle φ′ is bad and its rank ρ(φ′) is equal
to ρ− 1.

We have d(K′) = d(K) and η(K′) = η(K). The latter implies that K′ is homogeneous, i.e.,
K has no emitting copy of ∆′ or φ′. For otherwise, cancelling in K′ one emitting copy and one
absorbing copy of the same little triangle of G and properly concatenating their attached paths,
we would obtain a configuration with a smaller value of η, contrary to (6.1). Finally, one can see
that neither ∆ nor φ can be involved in dense pairs of K. Hence no dense pair is destroyed while
constructing K′, implying ω(K′) ≥ ω(K). Now the result follows by induction on ρ.

Thus, it suffices to consider only oriented configurations.
A puzzle Π = (F ,P) generates an oriented c-configuration (Φ,P, ι) in a natural way: Φ+ is

the set of turned-over triangles in F and edges in b+(Π), Φ− is the set of normal triangles in F
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and edges in b−(Π), and for each u− v path P ∈ P, ι(P ) is the pair (φ ∈ Φ+, φ ∈ Φ−) such that
the point u is contained in φ and the point v is contained in φ′. Such a puzzle c-configuration is
denoted by KΠ.

The next lemma describes a situation when an oriented configuration K can be split into a
puzzle configuration and another one (and therefore, K is redundant). Let us say that paths P, P ′

of H are crossing if they are not parallel and their interiors have a point in common, and that P

and a little triangle ∆ of G are overlapping if P meets the interior of ∆:

¾

­
­

­
­
­Á

r r

r

r

P

P ′ crossing P, P ′
¾

J
J

­
­r rP ∆

overlapping P, ∆

One can see that the puzzle configurations are precisely those having neither crossing nor over-
lapping pairs. Given an oriented c-configurationK = (Φ,P, ι), define its minimal pre-configuration
Kmin = (Ψ,Pmin, ι̂) as follows. Let Ψ+ (resp. Ψ−) be the set of little triangles and boundary
edges of G having at least one copy in Φ+ (resp. Φ−). Then Ψ := Ψ+ ∪ Ψ−. The set Pmin is
formed by taking, for each edge e ∈ E(G) contained in a member of Ψ+, one (inclusion-wise)
minimal path in P with the beginning ve, taking for each edge e ∈ E(G) contained in a member
of Ψ−, one minimal path in P with the end ve, and ignoring repeated paths if arise. Define ι̂ to
be the map attaching a u− v path P ∈ Pmin to the pair (φ ∈ Ψ+, φ′ ∈ Ψ−) such that u ∈ φ and
v ∈ φ′ (this pair is unique since K is oriented). Note that Kmin need not be a c-configuration
since some triangles (boundary edges) in it may have more than three (resp. one) attached paths.

Lemma 6.2 Let a c-configuration K = (Φ,P, ι) be proper and oriented, and let Kmin = (Ψ,Pmin, ι̂)
be its minimal pre-configuration. Suppose Kmin contains neither crossing paths nor overlapping a
path and a triangle. Then: (a) Kmin is a puzzle c-configuration, and (b) Kmin either is equivalent
to K or dominates K.

Proof. From the non-existence of paths in Pmin overlapping triangles in Ψ it easily follows that
for each element φ ∈ Ψ+ and each edge e in φ, there is exactly one path P ∈ Pmin leaving e, and
similarly for each element φ′ ∈ Ψ− and each edge e′ in φ′, there is exactly one path P ′ ∈ Pmin

entering e′. Hence Kmin is a c-configuration, and now the absence of crossing paths in K implies
that Kmin is a puzzle configuration, yielding (a). Next, one can rearrange the attaching map ι in
K so that K be represented as the union of Kmin and some c-configuration K′′. This implies (b),
by (4.5)(ii).

For i = 1, 2, 3, a sequence (φ1, . . . , φk) of distinct little triangles or edges of G is called an
i-chain if their interiors are intersected in this order by a path of Hi. If (∆, ∆′) is an i-chain of
two normal little triangles and there is no normal triangle between them, we say that ∆ is the
i-predecessor of ∆′, and similarly for turned-over triangles.

Our final lemma is the following.

Lemma 6.3 Let a c-configuration K = (Φ,P, ι) be proper, essential and oriented. If K is not
equivalent to a puzzle c-configuration, then K is dominated.
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Proof. Since we can replace K by any oriented c-configuration equivalent to K (e.g., by taking
the union of r copies of K for any r), one may assume that, among such configurations, K is
chosen so that:

(6.3) (i) there are sufficiently many copies of each member of Φ ∪ P;

(ii) subject to (i), the number t(K) of little triangles of G having copies in Φ is maximum;

(iii) subject to (i),(ii), the number p(K) of paths of H having copies in K is maximum.

From (iii) it follows that

(6.4) for any (not necessarily distinct) vertices u1, u2, u3, u4 occurring in a path of H in this
order, if P contains copies of both u1 − u3 path P and u2 − u4 path P ′, then P contains
copies of both u1 − u4 path Q and u2 − u3 path Q′ as well, and vice versa.

Indeed, if at least one of Q,Q′ is not in P, we can add Q,Q′ to P and delete P, P ′ from P,
accordingly correcting the map ι. This increases p(K). (Recall that adding to K a triangle or
a boundary edge of G or a path of H means adding one copy of this element, and similarly for
deleting an element.) The reverse assertion is proved similarly.

Also we assume that the minimal pre-configurationKmin contains crossing paths or overlapping
a path and a triangle; otherwise the result immediately follows from Lemma 6.2. We show that
K is dominated in both cases.

Case 1. Let Kmin contain crossing a u−v path P and a u′−v′ path Q. Assume for definiteness
that P is in H2 and is minimal among the paths of P beginning at u, and that Q is in H1 (P is anti-
parallel to ξ1 and Q is anti-parallel to ξ3); the case when P is minimal among the paths ending at
v is symmetric. Observe that the point w where P, Q meet is a vertex of H2. Let ∆ be the normal
little triangle whose edge parallel to ξ2 contains w as the middle point. Then ∆ is not in Φ. For
otherwise P would contain a path from some vertex w′ to w (as ∆ is absorbing). Applying (6.4) to
w′, u, w, v or to u,w′, w, v, we obtain that P contains the u−w path, contradicting the minimality
of P .

Next we proceed as follows. For i = 1, 2, 3, let ei be the edge of ∆ parallel to ξi. (So w = ve2 .)
Take the turned-over little triangle ∇ containing e3. Let e′1, e

′
2 be the edges of ∇ parallel to ξ1, ξ2,

respectively. Then H2 has u− w path P ′ and ve′2 − v path P ′′, and H1 has u′ − ve1 path Q′:
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Add (one copy of) the triangle ∆ to Φ−, the triangle∇ to Φ+, and the paths P ′, P ′′, Q′ together
with the degenerate path ve3 (“connecting” ∆ and ∇ in H3) to P. Accordingly delete P,Q from
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P. The attachments for the added elements are assigned in a natural way (e.g., ι(P ′) := (φ,∆),
where φ is the element of the old Φ+ to which P was attached). This increases the parameter
t (since ∆ is added while the new K contains a copy of each triangles from the previous K, by
assumption (6.3)(i)). However, K becomes an “incomplete” configuration since ∇ has no attached
path in H1, and similarly for element φ̂ of Φ− to which Q was attached. We cannot improve K
straightforwardly because the points ũ := ve′1 and v′ do not lie on one line of H1.

Our aim is to improve the new K, without decreasing the current value of t, in order to obtain
a correct c-configuration K′ either dominating or equivalent to the initial K. This will yield the
result in the former case and lead to a contradiction with assumption (6.3)(ii) in the latter case.

First of all we iteratively construct a sequence S of alternating members of Φ and P as follows.
Start with ∆1 := φ̂. Let ∆i ∈ Φ be the last element of the current S. If ∆i is a boundary edge,
halt. Otherwise add Pi+1,∆i+1 to S, where Pi+1 is attached to ∆i, ∆i+1. More precisely: (a) if i

is odd (and ∆i is a normal triangle), then Pi+1 is a path of H2 and ι(Pi+1) = (∆i+1, ∆i), and (b)
if i is even (and ∆i is a turned-over triangle), then Pi+1 is a path of H1 and ι(Pi+1) = (∆i, ∆i+1).
Let ∆q+1 be the last element of the final S. Clearly the edge b := ∆q+1 belongs to B+

2 when q is
odd, and to B−

1 when q is even.
Assume q is odd; the case of q even is examined analogously. For i = 1, . . . , q, let Qi ∈ P be

the path of H3 attached to ∆i (it enters ∆i for i odd, and leaves ∆i for i even). Let ∆′
i be the

other element of Φ to which Qi is attached. We say that the triangle ∆i is squeezed if i is odd
and Qi is degenerate.

We first explain how to transform K into the desired correct c-configuration when no ∆i is
squeezed. By the convexity of G (and regardless of the squeezedness of any ∆i), the line in the
plane parallel to ξ3 and passing the point ũ in ∇ separates S from B+

3 (letting B+
3 be the common

vertex of B−
2 and B−

1 when they meet). This implies that S can be shifted by distance 1 in the
direction of ξ2 (approaching B+

3 ). More precisely, each triangle ∆i has 3-predecessor ∆̃i in G, and
B+

2 contains edge b̃ next to b. See the picture where q = 3:
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These triangles ∆̃i and the elements ∆̃0 := ∇ and ∆̃q+1 := b̃ are connected in H by paths
P ′

1, . . . , P
′
q+1 in a natural way: P ′

i is the path of H1 leaving ∆̃i and entering ∆̃i+1 when i is odd,
and the path of H2 leaving ∆̃i+1 and entering ∆̃i when i is even. Also there are paths Q′

1, . . . , Q
′
q

of H3 such that Q′
i leaves ∆′

i and enters ∆̃i when i is odd (as ∆i is not squeezed, and therefore,
∆̃i lies between ∆′

i and ∆i), and Q′
i leaves ∆̃i and enters ∆′

i when i is even.
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Add to K the triangles ∆̃1, . . . , ∆̃q, the paths P ′
1, . . . , P

′
q+1, Q

′
1, . . . , Q

′
q and the edge b̃, making

P ′
i attached to ∆̃i−1, ∆̃i, and making Q′

j attached to ∆̃j , ∆′
j . Accordingly delete from K the

triangles ∆1, . . . , ∆q, the paths P2, . . . , Pq+1, Q1, . . . , Qq and the boundary edge b. This results in
a correct c-configuration K′. Moreover, K′ has the border d(K)−χb+χ

eb. Therefore, K′ dominates
the initial K, by (4.6).

Next suppose there is a squeezed ∆i (i is odd); let i be minimum among such triangles. Form
the triangles ∆̃0, . . . , ∆̃i−1 and paths P ′

1, . . . , P
′
i , Q

′
1, . . . , Q

′
i−1 as above. Take paths R,D ∈ P

attached to ∆′
i and belonging to H2 and H1, respectively. Let φ, φ′ be the other (normal) triangles

to which R, D are attached, respectively. Since ∆i is squeezed, (∆i+1,∆i, ∆′
i, φ) is a 2-chain and

(∆̃i−1,∆′
i, φ

′) is a 1-chain. See the picture:
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Let M be the path of H2 leaving ∆i+1 and entering φ, and M ′ the path of H1 leaving ∆̃i−1 and
entering φ′. We add to K the triangles ∆̃1, . . . , ∆̃i−1 and the paths P ′

1, . . . , P
′
i , Q

′
1, . . . , Q

′
i−1,M,M ′

and accordingly delete the triangles ∆1, . . . , ∆i and ∆′
i and the paths P2, . . . , Pi+1, Q1, . . . , Qi, R, D.

(Note that if Pi is degenerate, then ∆̃i−1 and ∆′
i are copies of the same triangle of G; we consider

them as different objects one of which is added and the other is deleted.) The resulting K′ is
a correct c-configuration with the same border d(K). But t(K′) > t(K) (as ∆ was added, while
deleting the above triangles does not affect t, by (6.3)(i)). This contradicts (6.3)(ii).

Case 2. Let Kmin contain overlapping a path P and a triangle φ. One may assume that
P is a u − v path of H1 and that P is minimal among the paths in P beginning at u. Let
ι(P ) = (φ′, φ′′). Then φ lies between φ′ and φ′′. Notice that there is no normal (absorbing)
triangle φ̃ ∈ Φ between φ′ and φ′′. For if such a φ̃ exists, then the end vertex w of the path of
H1 attached to φ̃ is an intermediate vertex of P . But then P contains the u−w path (by (6.4)),
contrary to the minimality of P . So φ is a turned-over (emitting) triangle.

Take path Q of H2 attached to φ; let ι(Q) = (φ, ψ). Since the absorbing element ψ cannot be
a normal triangle lying between φ′ and φ′′ (by the argument above), the path Q is nondegenerate.
Let e be the edge of φ parallel to ξ2, and ∆ the normal little triangle of G containing e. Then ∆
lies between φ′ and φ′′; let P ′ be the path of H1 leaving φ′ and entering ∆. Note that K contains
no copy of ∆ (again by the argument above). Next, let e′ be the edge of ∆ parallel to ξ3, and ∇
the turned-over triangle of G containing e′. Then ∇ lies between φ and ψ (as Q is nondegenerate);
let Q′ be the path of H2 leaving ∇ and entering ψ. See the picture:
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ũ

Now add to K the triangles ∆,∇, the paths P ′, Q′, the degenerate path ve (“connecting” φ and
∆ in H2) and the degenerate path ve′ (“connecting” ∇ and ∆ in H3), assigning the attachments
for them in an obvious way. Accordingly delete from K the paths P, Q. This results in an
“incomplete” c-configuration, but having a larger value of t, in which ∇ and φ′′ have no attached
paths in H1. (It cannot be improved straightforwardly since v and the middle point ũ of the edge
of ∇ parallel to ξ1 do not lie on one line of H1). So we have a situation as in Case 1 and proceed
in a similar way to transform K into a correct c-configuration K′ either dominating the initial K
or being equivalent to K but having a larger value of t.

This completes the proof of the lemma.

By Lemmas 6.1 and 6.3, every non-dominated proper essential configuration is equivalent to
a puzzle configuration. This implies Theorem 3.1, in view of explanations in Sections 4,5.

Remark. Analysing the proof of Lemma 6.3, one sees that, in fact, a slightly sharper version of
this lemma is obtained. It reads (taking into account assumption (6.3)(ii) and the construction
of the minimal pre-configuration Kmin):

(6.5) if a c-configuration K is proper, essential and oriented and if K is not dominated, then
K is equivalent to a puzzle configuration KΠ such that the set of triangles of the puzzle Π
includes all little triangles of G having copies in K.

7 Concluding Remarks

We conclude this paper with several remarks.

First, for a cocirculation h in G and a tandem τ = (e, e′), call δh(τ) := h(e) − h(e′) the
discrepancy of h at τ . So h is concave if the discrepancy at each tandem is nonnegative. A more
general problem is: (∗) find a cocirculation h having a given border σ and obeying prescribed lower
bounds c on the discrepancies: δh(τ) ≥ c(τ) for each τ ∈ T (G). This is reduced to the case of
zero bounds when c comes up from another cocirculation g in G. More precisely, let c(τ) := δg(τ)
for each tandem τ . Re-define the required border by σ′(e) := σ(e)− g(e) for each boundary edge
e. Then h′ is a concave cocirculation with border σ′ if and only if h := h′ + g is a cocirculation
with border σ satisfying the lower bound c on the discrepancies. Thus, the corresponding changes
in the puzzle inequalities (3.2) and in the monotone condition (2.6) give a solvability criterion for
problem (∗) with a cocirculation-induced c.
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Figure 1: Two puzzles with equal boundaries

In particular, the puzzle criterion modified in this way works when all tandem discrepancies
are required to be greater than or equal to a prescribed constant α ∈ R. This is because there
exists a cocirculation g in G where the discrepancy at each tandem is exactly α. (Such a g is
constructed easily: assuming w.l.o.g. that G is a 3-side grid of size n, put g(ei) := (k − 2i + 1)α
(i = 1, . . . , k) for each maximal straight path (e1, . . . , ek) in G.)

Second, from the sharper version of Lemma 6.3 given in (6.5) one derives that each puzzle Π
determining a facet of the cone B(G) is (uniquely) determined by its boundary b(Π).

Indeed, suppose Π1, Π2 are two different puzzles with b(Π1) = b(Π2). Let Ki stand for the c-
configuration induced by Πi; one may assume that Ki is proper and essential. Then K := K1 +K2

is an oriented c-configuration equivalent to Ki. Assume K is not dominated and take a puzzle Π
as in (6.5). We have b(KΠ) = b(Ki), so the number q of triangles in Π is equal to the number
q1 of triangles in Π1, by (3.3). On the other hand, the fact that Π1 and Π2 are different implies
that K involves more little triangles of G compared with K1. This implies q > q1, by (6.5); a
contradiction.

Different puzzles with equal boundaries do exist. An example for a 3-side grid is shown in
Fig. 1.

A puzzle determined by its boundary is called rigid. Knutson, Tao and Woodward proved
that in the case of 3-side grids the facet-determining puzzles are exactly the rigid ones. They also
obtained a combinatorial characterization for the facet-determining puzzles, implying that such
puzzles are recognizable in polynomial time.

Theorem 7.1 [7] Let Π = (F ,P) be a puzzle in a 3-side grid G such that F is nonempty and
different from the set of all little triangles of G. The following are equivalent:

(i) Π determines a facet of B(G);

(ii) Π is rigid;

(iii) Π admits no gentle circuits.
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To explain the notion of gentle path/circuit, let R be the set of little rhombi of G that are
split by a path in P into two parallelograms. Let G0 be the subgraph of G induced by the edges
separating either a triangle in F and a rhombus in R (the tp-edges), or a rhombus in R and a little
triangle contained in no member of F ∪R (the pn-edges). Re-orient each tp-edge (resp. pn-edge)
e so that the triangle of F (resp. the rhombus in R) containing e lie on the right. A path or
circuit P of G0 is called gentle if, when moving along P from an edge to the next edge, the angle
of turn is either 0◦ or 60◦, never 120◦. For example, the circuit surrounding the hexagon formed
by the six central triangles in the right puzzle in Fig. 1 is gentle.

One can show that Theorem 7.1 remains valid for an arbitrary convex grid G. (Implication
(i)→(ii) has already been shown. The method of proof of (ii)→(iii) and (iii)→(i) given in [7] is
applicable to an arbitrary convex grid, as it, in essense, does not depend on the shape of the convex
region R spanned by G. Roughly speaking, the proof of (ii)→(iii) relies on a local transformation
of a puzzle Π having a gentle circuit C. It creates another puzzle with the same boundary by
re-arranging Π only within the 1-neighbourhood of C (being the union of little triangles and
rhombi sharing common edges with C). The proof of (iii)→(i) uses the function on the tp- and
pn-edges whose value on an edge e is defined to be the number of all maximal gentle paths with
the first edge e. When Π has no gentle circuits, this function (regardless of the shape of R) is
well-defined and it can easily be transformed into a concave cocirculation h0 in G for which the
tandem inequality is strict on each little rhombus separated by a tp- or pn-edge. Using h0, it is
routine to construct |E0(G)| − 2 concave cocirculations whose borders are linearly independent
and orthogonal to the border of KΠ.) We omit details of the proof here.

It is not difficult to check that any puzzle Π with F = ∅ and |P| = 1 is facet-determining as
well (such a puzzle can arise when R has ≥ 4 sides). When F = ∅ and |P| ≥ 2, Π is already not
facet-determining as it is the union of two disjoint puzzles.

Third, a result of Knutson and Tao [6] on integral honeycombs implies that a feasible integer-
valued function σ on the boundary edges of a convex grid G is extendable to an integer concave
cocirculation. In [5] one shows that a sharper property takes place: a concave cocirculation h in
a convex grid G can be turned into an integer concave cocirculation preserving the values of h

on all boundary edges e with h(e) ∈ Z and on each edge occurring in a little triangle where h is
integral on the three edges.

Acknowledgement. I am thankful to Vladimir Danilov and Gleb Koshevoy for stimulating
discussions on discrete concave functions and related topics.
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