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Abstract. Let Q be a convex solid in R", partitioned into two volumes u and
v by an area s. We show that s > min(u,v)/diam @, and use this inequality
—5/2 on the conductance of order Markov chains,
which describe nearly uniform generators of linear extensions for posets of

to obtain the lower bound n

size n. We also discuss an application of the above results to the problem of
sorting of posets.
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1. Isoperimetric inequality on partitions of convex bodies and
a lower bound on the conductance of order Markov chains

Let A={1,...,n;<} be a poset with n elements, and let £ = E(A) be the set of
linear extensions of A, i.e. the set of all total linear orders

e={e(l)<e(2) <---<ek)<ek+1)<---<e(n)} (1.1)

compatible with the partial order < on A. Thus, each linear extension e € E can
be viewed as an order preserving permutation (1.1) of elements 1,...,n. Two linear
extensions e,g € E are said to be neighbours in F, if g can be obtained by a single
transposition of two consecutive elements in e, i.e., if

g={e(l)<e2)<---<elk+1)<ek)<---<e(n)}

for some k € [1,n — 1]. In particular, the number n(e) of neighbours of e in E is at
most n — 1.

Given a poset A, consider the order Markov chain M of A with states e € E,
and with transition probabilities

1/(2n —2) if e and g are neighbours in £
ple,g) =49 1-n(e)/(2n—-2) ife=g (1.2)
0 otherwise.

* On leave from Computing Center of the U.S.S.R. Academy of Sciences.
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Geometrically, we consider the canonical triangulation

Q=UQ(e), e€E, (1.3)
of the order polyhedron of A
Q={zecR"|0<2; <1, i=1,...,n; z;<zx; if i <jin A} (1.4)
into the simplexes
Qle) ={z € R" |0 < we1) Swea) < - S xe) < 1} (1.5)

corresponding to linear extensions e of A, see, e.g., [St]. The order Markov chain
(1.2) describes a random walk through the simplexes in the triangulation (1.3), or
equivalently through the set E of linear extensions of A. This random walk starts at an
arbitrary simplex Q(eg) of the triangulation. At the t-th step, ¢ = 0,1,..., we choose
with probability 1/(2n — 2) one of n — 1 facets

Fk(e) = Q(e) N {17 e R" ‘ Te(k) = xe(k+1)}, ke [1,n — 1], (1.6)

of the current simplex Q(e) = Q(e;). If the adjacent simplex Q(g), sharing the chosen
facet Fi(e) with Q(e), belongs to the triangulation, we move to this simplex: Q(e¢41) =
Q(g); otherwise the random walk stays at the present simplex: Q(e;11) = Q(e).

The above construction is similar to the one considered in [DFK], and it is easy
to see that (1.2) is an ergodic time-reversible Markov chain with uniform stationary
distribution. In other words, for an arbitrary poset A and an arbitrary initial probability
distribution 7 (0, e), e € F, on the set of linear extensions of A, the distribution after ¢
steps of the random walk

n(t,e) =Y w(t—1,9)p(ge), t=12,...,
gelk

converges to the uniform distribution on E:
lim 7(t,e) = 1/|E|, Ve € E.
t—00

Thus, for an arbitrary poset A and sufficiently large T' = T4, the following algorithm,
RandWalk, gives a nearly uniform generator of linear extensions of the poset.
Input A, T,
{topological sorting} find a linear extension e = {e(1) < --- < e(n)} of A;
{random walk} for t =1,...,T do:
begin
choose at random an integer k € [1,2n — 2[;
if Kk <n—1andnot e(k) <e(k+1)in A, then
swap e(k) and e(k+ 1) in e
end;

Output e



The complexity of RandWalk is O(n? + T) operations plus T times the complexity of
(pseudo) random uniform generation of k € [1,2n — 2].

The rate of convergence of RandWalk can be estimated using the following inequal-
ity of Sinclair and Jerrum [SJ] (see also [Mi]): for any initial distribution,

| m(t,e) —1/|E| | < (1—-a?)! VecE. (1.7)

Here « is the conductance of the Markov chain (1.2), defined as

o= 5 min{C(X)/IX|| X € B, 1< |X| < |E|/2}, (18)

where
C(X) is the capacity of the cut (X, E — X), (1.9)

i.e. the number of pairs e € X, g € ' — X such that e and g are neighbors in F.
Theorem 1. Let M be the order Markov chain (1.2) of a poset with n elements. Then

a=a(M)>2732n75/2, (1.10)

Remark 1. If a poset A contains a chain of n — 1 elements and a singleton, then
a=(2n-2) Ln/QJ)fl ~ n~2. We believe that the lower bound (1.10) can be improved
by a factor of n?-°.

Theorem 1 is a simple corollary of a more general isoperimetric inequality inde-
pendently obtained in [KK] and [LS].

Theorem 2. Let (Q be a conver n-dimensional solid. Suppose that () is partitioned
into two subsets U and V' by an (n—1)-dimensional surface S = 0U —0Q = 0V —0Q
of area s = vol,_15. Then

s > min(u,v)/diam @, (1.11)

where u = vol,, U and v = vol,,V .

Proof. For any € > 0 there exists a convex solid Q). C @ with a smooth boundary such
that vol, (Q — Q.) < e. If (1.11) holds for Q. and € — 0, we get (1.11) for Q. Therefore
we may assume without loss of generality that the boundary of the original body @ is
smooth.

Let us fix two positive numbers u and v whose sum is the volume of () and consider
Plateau’s problem:

minimaize vol, 1S,
where S is an (n — 1)—dimensional surface (1.12)

partitioning @ into volumes u and v.

3



We will utilize some known properties of extremal surfaces (in (1.13),(1.14) and
(1.16)) briefly reviewed below.

Suppose at first that there exists a smooth surface S extremal to the problem
(1.12). Then
S is transversal to the boundary of Q. (1.13)

The convexity of @ and (1.13) imply that

for any point y € int QQ — S there exists a regular point x € S Nint Q (1.14)

closest to y on the surface : ||y —z| = dist(y,5).

Remark 2. If the transversality condition (1.13) is violated, then for some points
y € int @ — S all the closest points on the surface may lie on 9Q), see Fig. 1.

Figure 1.

In general, the extremal partitioning surface S possibly may have a closed singular
set. However, it is known [Al] that any point on S closest to a point not on S' is regular.
Therefore (1.14) holds for the general case.

Let 6(z) be a smooth vector field vanishing outside of a small regular disc on
S nNint @Q, and let S” be the surface obtained by means of displacement of each point
x in the disc by the vector A\d(z), where X is a scalar. Then for small A the variations
of the volumes u and v are given by the surface integrals

ou = —dv = /\/ < d(x),n(x) > ds, + O\,
S

where n(zx) is the outside normal vector to U at x, and < , > stands for the inner
product. Next, the variation of the area s of the boundary is given by

ds = )\/ <6(z),n(x) > h(x)dsy, + O(\?),
S

where

(1.15)




and R;(x), i =1,...,n — 1, are the radii of curvature of the U-side of S at = (we put
1/00 = 0). Since S is extremal to the problem (1.12), we get the following well-known
condition (see, e.g., [BZ]):

at any regular point x € S Nint Q of the extremal surface, the mean

1.16
curvature (1.15) of the U—side of S is constant : h(zx) = H. (1.16)

Of course, (1.16) also holds for the V-side of S with the mean curvature —H.

Let y e R"— S, and let x € SNint @ be a regular point closest to y on S. Clearly,
this implies that

y — x is perpendicular to S at x, and
p=|ly—z|| <plx) =min{R;(z) | 1 <i<n-—1, Ri(z) >0, Ri(z)#0c0 }, (1.17)

where R;(x) are the radii of curvature of the y-side of S at x.

[If all n — 1 radii of curvature are either negative or equal to co, we put p(z) = +00].

If a point y € R™ — S and a regular point z € SNint Q satisfy (1.17), we say that
y is wisible from the corresponding side of S at distance p. As we know from (1.14), all
the interior points of U (of V') are visible from the U-side (from the V-side ) of S at
distance p < diam ). Note that some of the visible points may lie outside of Q.

Let ds, be an elementary area of the extremal surface at a regular point x €
SnNint @Q, and let ds,[p] be the corresponding elementary area, visible from the U-side
of ds, at distance p. By (1.17)

{?mﬂﬁfﬂ—pﬂ%@» it p < p(x)

bl = it > pla),

where R;(z) are the radii of curvature of the U-side of S at x. Since 1 —r < exp(—r),
we get for all p > 0

n—1

dsz[p] < dsy exp(—p Z

m) = ds, exp(—pH) (1.18)

(see (1.16)). Recalling that all the interior points of U are visible from the U-side of S
at distance p < diam ), we obtain from (1.18) the following upper bound:

diam Q@ diam Q
u = vol,U §/ [/ exp(—pH) d,o] ds, = s/ exp(—pH) dp.
S 0 0

If H > 0, we have u < s diam @ and (1.11) follows. If H < 0, we have v < s diam Q
and again obtain (1.11). o

Remark 3. Let Q be a cylinder of height A, and let S be the middle hyperplane
parallel to the base of ). Then s/ min{u,v} =2/h — 2/diam Q for h — oc.
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Now we can prove Theorem 1.

Proof. Let A be an arbitrary poset with |E| > 1 linear extensions, and let X be a
subset of E of cardinality 1 < |X| < |E|/2. Consider the corresponding partition

U=Uecex Q(e), V =Ucecr_x Qe)
of the order polytope @ of A, see (1.3)—(1.5). Clearly,

u:voan:@<v:voan:

£ — | X]
n! - '

n!

Furthermore, since
voly_1Fye) =242 /(n —1)!

for each facet (1.6), we have
s =wol, 158 =C(X)2Y%/(n - 1),

where S is the common boundary of U and V', and C'(X) is the capacity of the cut (see
(1.9)). Hence

1 CX) 1 s S 9-3/2,,—2 s
2n—2 |X|  (2n—2)2Y2n min{u,v} min{u, v}

(by (1.11)) > 273/2p=2/diam Q = 273/2n%/2,
and we obtain (1.10) from the definition (1.8) of «. o

By (1.7) and (1.10), the number T" of steps of the algorithm RandWalk sufficient
to generate linear extensions of a given poset A uniformly to a given relative accuracy
v e (0,1)

|7(T,e) —1/|E|| < v/|E|, Ye€FE (1.19)

can be bounded as
E
T = O(n°log u)
v
Thus, for reasonable v, say v = 0.01, one has

T = O(n°log |E|).

We expect that these bounds can be improved by at least a factor of n.

2. An application to the problem of sorting of posets.

Suppose that we wish to sort a given poset A with E(A) > 1 linear extensions by
querying an oracle. Namely, suppose that we can choose any pair i,j € {1,...,n} of
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incomparable elements in A and ask the oracle to compare them. Having gotten the
answer, say ¢ precedes j, we add the relation ¢ < 7 and all its transitive consequences
to A and obtain a new partial order A' = A&[i < j] on the same set {1,...,n} of
elements. If |[E(A')] > 1, we call the oracle again, ask it to compare a new pair of
elements, obtain a new partial order A2, and so on.

Thus, in a finite number g of queries we sort the original poset A, i.e. obtain a total
linear order A7 = e € E(A) on {1,...,n}. Clearly, one has the following well-known
information theory worst-case lower bound

q = logy |E(A)] (2.1)

on the number of queries. In 1976 Fredman [Fr|] made the following conjecture:

For any poset A with |E(A)| > 1 linear extensions, there exists a pair of elements
i,7 €{1,...,n} such that

BT < g])| [B(A] < i)
e e e .

with = 2/3.
The inequality (2.2) says that in any poset A there exists a [3-balanced comparison

i, 7, which decreases the number of linear extensions by at least (3.

At present the original conjecture (2.2) with § = 2/3 still remains open. However,
it is known [KS] that (2.2) holds with 8 = 8/11. The latter result implies that using
an 8/11-balanced test comparison, one can sort an arbitrary poset A in at most

4 < 2.2 log, |E(A) (2.3)

queries.

It is also known [BW] that computing the “balancing constants”
Bij = |E(A&[i < j])| /|E(A)| = probability {i < j in E(A)}

is # P-hard.

However, one can compute sufficiently good approximations to the balancing con-
stants, say
Bij — Bij| < 0.1 with probability 0.99,

in time O(T), where T' is the complexity of nearly uniform generation of linear exten-
sions of A. Therefore, a well-balanced comparison in a given poset can also be found

with the same probability in time O(T).

Since T, necessary to obtain (1.19) with a fixed v, can grow at least as n3, see

example in Remark 1, in our computational experiments (where codes were written
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by E. Zhirova, Moscow Institute of Physics and Technology, 1988) we used another
approach, based on the following fact [KS]:

Let )
1/
T, = = e (1) (2.4)
)] 2
be the average rank of i € {1,...,n} over the set of linear extensions of A; then an

arbitrary pair i,j of elements such that
’7’1'—7’j| <1 (25)
is an 8/11-balanced comparison in A.

Remark 5. Since |E(A)| > 1, it is easy to see that a pair (2.5) always exists and that
(2.4)—(2.5) imply the incomparability of 7 and j in A. In fact, it is easy to show that if,
instead of (2.5), a pair 7, j of incomparable elements satisfies a weaker inequality, say
|ri — r;| < 1.2, then the comparison of ¢ and j is still S-balanced with some absolute
constant 3 < 1.

We generated a single random trajectory of RandWalk! in E(A) for averaging the
ranks 7; of elements at the moments t = n,2n,...,|T/n| for T = 10n?. Due to the
choice of the moments of sampling on the trajectory, these computations require only
O(T) = O(n?) operations. Next we determined a possible well-balanced comparison,
using the strategy of minimizing |r; — 7| over 4,j € {1,...,n}. Though this approach
does not guarantee a reliable determination of well-balanced comparisons, the com-
putational results on the total number ¢ of queries were encouraging at least for the
moderate values of n. For instance, if A consists of n singletons, one gets the best
known bounds on ¢ up to n = 16 and the results, which differ by at most 5% from
the lower bound (2.1) up to n = 50. This is also true in the experiments with merging
two chains of lengths ny + ny < 50, and in some other experiments. Thus, at least
for posets of moderate size, even very short random trajectories result in the total
number of queries, which is much less than the theoretical upper bound (2.3) for long
trajectories, and close to the information theory lower bound (2.1).

Acknowledgments. The authors would like to thank Professor F. Almgren for point-
ing out to us reference [AC].
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